1
|
Deshpande A, Zhang LQ, Balu R, Yahyavi-Firouz-Abadi N, Badjatia N, Laksari K, Tahsili-Fahadan P. Cerebrovascular morphology: Insights into normal variations, aging effects, and disease implications. J Cereb Blood Flow Metab 2025:271678X251328537. [PMID: 40314210 PMCID: PMC12048404 DOI: 10.1177/0271678x251328537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 05/03/2025]
Abstract
Cerebrovascular morphology plays a critical role in brain health, influencing cerebral blood flow (CBF) and contributing to the pathogenesis of various neurological diseases. This review examines the anatomical structure of the cerebrovascular network and its variations in healthy and diseased populations and highlights age-related changes and their implications in various neurological conditions. Normal variations, including the completeness and anatomical anomalies of the Circle of Willis and collateral circulation, are discussed in relation to their impact on CBF and susceptibility to ischemic events. Age-related changes in the cerebrovascular system, such as alterations in vessel geometry and density, are explored for their contributions to age-related neurological disorders, including Alzheimer's disease and vascular dementia. Advances in medical imaging and computational methods have enabled automatic quantitative assessment of cerebrovascular structures, facilitating the identification of pathological changes in both acute and chronic cerebrovascular disorders. Emerging technologies, including machine learning and computational fluid dynamics, offer new tools for predicting disease risk and patient outcomes based on vascular morphology. This review underscores the importance of understanding cerebrovascular remodeling for early diagnosis and the development of novel therapeutic approaches in brain diseases.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Mechanical Engineering, University of California, Riverside, USA
| | - Lucy Q Zhang
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Ramani Balu
- Vascular Neurology and Neurocritical Care, Inova Neuroscience and Spine Institute, Inova Fairfax Medical Campus, Falls Church, VA, USA
- Department of Medical Education, University of Virginia, Inova Campus, Falls Church, VA, USA
| | - Noushin Yahyavi-Firouz-Abadi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kaveh Laksari
- Department of Mechanical Engineering, University of California, Riverside, USA
| | - Pouya Tahsili-Fahadan
- Vascular Neurology and Neurocritical Care, Inova Neuroscience and Spine Institute, Inova Fairfax Medical Campus, Falls Church, VA, USA
- Department of Medical Education, University of Virginia, Inova Campus, Falls Church, VA, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Chien A, Vinuela F, Szeder V, Colby G, Jahan R, Wang A, Tateshima S, Duckwiler G, Salamon N. Cerebrovascular longitudinal atlas: Changes in cerebral arteries in unruptured intracranial aneurysm patients followed with MRA. Neuroimage Clin 2025; 46:103766. [PMID: 40107139 PMCID: PMC11960659 DOI: 10.1016/j.nicl.2025.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Patterns of change in cerebrovascular (CV) morphology associated with aging are highly relevant to the incidence and progression of CV disease, particularly stroke. Intracranial aneurysms (IA), a leading cause of hemorrhagic stroke, are linked with factors such as blood flow, arterial stiffness, and inflammation that may also drive other changes in CV morphology. We worked with a cohort of longitudinally-imaged IA patients to construct the first longitudinal atlas of CV morphology and studied its relationship with disease. METHODS 110 IA patients, ranging from 19 to 84 years old at IA detection, were monitored using 3D magnetic resonance angiography (MRA) for a mean of 6.11 (2.60) years with 3.6 (1.3) scans per patient. Using 405 image studies, we applied a machine learning diffeomorphic shape analysis to construct a longitudinal atlas of the cerebral arteries which defined a general trajectory of CV morphological change vs. age. This was paired with a centerline analysis to verify changes in individual arteries. RESULTS Patient characteristics influenced the speed of CV shape change (e.g. diabetes mellitus, faster, p = 0.016), while other factors mapped to older CV age (e.g. hypertension, p = 0.0004). In parallel, we found that groups including autosomal dominant polycystic kidney disease (p = 0.0004), sex (p = 0.005), smoking (p = 0.046), and IA growth (p = 0.020) shared CV morphology characteristics. The centerline analysis validated changes consistent with the longitudinal atlas. CONCLUSION A general CV trajectory of increasing artery length and tortuosity over a period of several decades was found. Although specific IA characteristics were not found to significantly affect this trajectory, these changes in the CV may contribute to increases in IA risk with aging. While our longitudinal findings were consistent with previous cross-sectional studies of individuals without IA, it remains to be determined whether the pattern of morphological change we observed is representative of aging within the general population. The model we developed provides a basis for integrating CV morphological change into understanding of aging and disease.
Collapse
Affiliation(s)
- Aichi Chien
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Magnetic Resonance Research Labs, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Fernando Vinuela
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Viktor Szeder
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Geoffrey Colby
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reza Jahan
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anthony Wang
- Dept. of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Satoshi Tateshima
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gary Duckwiler
- Div. of Interventional Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Noriko Salamon
- Div. of Neuroradiology, Dept. of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Feron J, Segaert K, Rahman F, Fosstveit SH, Joyce KE, Gilani A, Lohne-Seiler H, Berntsen S, Mullinger KJ, Lucas SJE. Determinants of cerebral blood flow and arterial transit time in healthy older adults. Aging (Albany NY) 2024; 16:12473-12497. [PMID: 39302230 PMCID: PMC11466485 DOI: 10.18632/aging.206112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/02/2024] [Indexed: 09/22/2024]
Abstract
Cerebral blood flow (CBF) and arterial transit time (ATT), markers of brain vascular health, worsen with age. The primary aim of this cross-sectional study was to identify modifiable determinants of CBF and ATT in healthy older adults (n = 78, aged 60-81 years). Associations between cardiorespiratory fitness and CBF or ATT were of particular interest because the impact of cardiorespiratory fitness is not clear within existing literature. Secondly, this study assessed whether CBF or ATT relate to cognitive function in older adults. Multiple post-labelling delay pseudo-continuous arterial spin labelling estimated resting CBF and ATT in grey matter. Results from multiple linear regressions found higher BMI was associated with lower global CBF (β = -0.35, P = 0.008) and a longer global ATT (β = 0.30, P = 0.017), global ATT lengthened with increasing age (β = 0.43, P = 0.004), and higher cardiorespiratory fitness was associated with longer ATT in parietal (β = 0.44, P = 0.004) and occipital (β = 0.45, P = 0.003) regions. Global or regional CBF or ATT were not associated with processing speed, working memory, or attention. In conclusion, preventing excessive weight gain may help attenuate age-related declines in brain vascular health. ATT may be more sensitive to age-related decline than CBF, and therefore useful for early detection and management of cerebrovascular impairment. Finally, cardiorespiratory fitness appears to have little effect on CBF but may induce longer ATT in specific regions.
Collapse
Affiliation(s)
- Jack Feron
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Katrien Segaert
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Foyzul Rahman
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- College of Psychology, Birmingham City University, Birmingham, UK
| | - Sindre H. Fosstveit
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Kelsey E. Joyce
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Ahmed Gilani
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Hilde Lohne-Seiler
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Sveinung Berntsen
- Department of Sport Science and Physical Education, University of Agder, Kristiansand, Norway
| | - Karen J Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Davies A, Gurung D, Ladthavorlaphatt K, Mankoo A, Panerai RB, Robinson TG, Minhas JS, Beishon LC. The effect of CO 2 on the age dependence of neurovascular coupling. J Appl Physiol (1985) 2024; 137:445-459. [PMID: 38961823 DOI: 10.1152/japplphysiol.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Prior studies have identified variable effects of aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states during cognitive paradigms. Seventy-eight participants (18-78 yr), with well-controlled comorbidities, underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation), and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) was used to stimulate NVC. Peak percentage and absolute change in MCAv/PCAv, were compared between CO2 conditions and age groups (≤30, 31-60, and >60 yr). For the VS task, in poikilocapnia, younger adults had a lower NVC response compared with older adults [mean difference (MD): -7.92% (standard deviation (SD): 2.37), P = 0.004], but comparable between younger and middle-aged groups. In hypercapnia, both younger [MD: -4.75% (SD: 1.56), P = 0.009] and middle [MD: -4.58% (SD: 1.69), P = 0.023] age groups had lower NVC responses compared with older adults. Finally, in hypocapnia, both older [MD: 5.92% (SD: 2.21), P = 0.025] and middle [MD: 5.44% (SD: 2.27), P = 0.049] age groups had greater NVC responses, compared with younger adults. In conclusion, the magnitude of NVC response suppression from baseline during hyper- and hypocapnia, did not differ significantly between age groups. However, the middle age group demonstrated a different NVC response while under hypercapnic conditions, compared with hypocapnia.NEW & NOTEWORTHY This study describes the effects of age on neurovascular coupling under altered CO2 conditions. We demonstrated that both hypercapnia and hypocapnia suppress neurovascular coupling (NVC) responses. Furthermore, that middle age exhibits an NVC response comparable with younger adults under hypercapnia, and older adults under hypocapnia.
Collapse
Affiliation(s)
- Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Dewarkar Gurung
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Kannaphob Ladthavorlaphatt
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Alex Mankoo
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| |
Collapse
|
5
|
Yoon HS, Oh J, Kim YC. Assessing Machine Learning Models for Predicting Age with Intracranial Vessel Tortuosity and Thickness Information. Brain Sci 2023; 13:1512. [PMID: 38002472 PMCID: PMC10669197 DOI: 10.3390/brainsci13111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to develop and validate machine learning (ML) models that predict age using intracranial vessels' tortuosity and diameter features derived from magnetic resonance angiography (MRA) data. A total of 171 subjects' three-dimensional (3D) time-of-flight MRA image data were considered for analysis. After annotations of two endpoints in each arterial segment, tortuosity features such as the sum of the angle metrics, triangular index, relative length, and product of the angle distance, as well as the vessels' diameter features, were extracted and used to train and validate the ML models for age prediction. Features extracted from the right and left internal carotid arteries (ICA) and basilar arteries were considered as the inputs to train and validate six ML regression models with a four-fold cross validation. The random forest regression model resulted in the lowest root mean square error of 14.9 years and the highest average coefficient of determination of 0.186. The linear regression model showed the lowest average mean absolute percentage error (MAPE) and the highest average Pearson correlation coefficient (0.532). The mean diameter of the right ICA vessel segment was the most important feature contributing to prediction of age in two out of the four regression models considered. An ML of tortuosity descriptors and diameter features extracted from MRA data showed a modest correlation between real age and ML-predicted age. Further studies are warranted for the assessment of the model's age predictions in patients with intracranial vessel diseases.
Collapse
Affiliation(s)
| | | | - Yoon-Chul Kim
- Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju 26493, Republic of Korea; (H.-S.Y.); (J.O.)
| |
Collapse
|
6
|
Deshpande A, Elliott J, Jiang B, Tahsili-Fahadan P, Kidwell C, Wintermark M, Laksari K. End to end stroke triage using cerebrovascular morphology and machine learning. Front Neurol 2023; 14:1217796. [PMID: 37941573 PMCID: PMC10628321 DOI: 10.3389/fneur.2023.1217796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/20/2023] [Indexed: 11/10/2023] Open
Abstract
Background Rapid and accurate triage of acute ischemic stroke (AIS) is essential for early revascularization and improved patient outcomes. Response to acute reperfusion therapies varies significantly based on patient-specific cerebrovascular anatomy that governs cerebral blood flow. We present an end-to-end machine learning approach for automatic stroke triage. Methods Employing a validated convolutional neural network (CNN) segmentation model for image processing, we extract each patient's cerebrovasculature and its morphological features from baseline non-invasive angiography scans. These features are used to detect occlusion's presence and the site automatically, and for the first time, to estimate collateral circulation without manual intervention. We then use the extracted cerebrovascular features along with commonly used clinical and imaging parameters to predict the 90 days functional outcome for each patient. Results The CNN model achieved a segmentation accuracy of 94% based on the Dice similarity coefficient (DSC). The automatic stroke detection algorithm had a sensitivity and specificity of 92% and 94%, respectively. The models for occlusion site detection and automatic collateral grading reached 96% and 87.2% accuracy, respectively. Incorporating the automatically extracted cerebrovascular features significantly improved the 90 days outcome prediction accuracy from 0.63 to 0.83. Conclusion The fast, automatic, and comprehensive model presented here can improve stroke diagnosis, aid collateral assessment, and enhance prognostication for treatment decisions, using cerebrovascular morphology.
Collapse
Affiliation(s)
- Aditi Deshpande
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Jordan Elliott
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Bin Jiang
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Pouya Tahsili-Fahadan
- Department of Medical Education, University of Virginia, Inova Campus, Falls Church, VA, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chelsea Kidwell
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Max Wintermark
- Department of Neuroradiology, MD Anderson Center, University of Texas, Houston, TX, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
8
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Zhang L, Guo J, Liu Y, Sun S, Liu B, Yang Q, Tao J, Tian XL, Pu J, Hong H, Wang M, Chen HZ, Ren J, Wang X, Liang Z, Wang Y, Huang K, Zhang W, Qu J, Ju Z, Liu GH, Pei G, Li J, Zhang C. A framework of biomarkers for vascular aging: a consensus statement by the Aging Biomarker Consortium. LIFE MEDICINE 2023; 2:lnad033. [PMID: 40040784 PMCID: PMC11879419 DOI: 10.1093/lifemedi/lnad033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 03/06/2025]
Abstract
Aging of the vasculature, which is integral to the functioning of literally all human organs, serves as a fundamental physiological basis for age-related alterations as well as a shared etiological mechanism for various chronic diseases prevalent in the elderly population. China, home to the world's largest aging population, faces an escalating challenge in addressing the prevention and management of these age-related conditions. To meet this challenge, the Aging Biomarker Consortium of China has developed an expert consensus on biomarkers of vascular aging (VA) by synthesizing literature and insights from scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with VA and presents a systemic framework to classify them into three dimensions: functional, structural, and humoral. Within each dimension, the expert panel recommends the most clinically relevant VA biomarkers. For the functional domain, biomarkers reflecting vascular stiffness and endothelial function are highlighted. The structural dimension encompasses metrics for vascular structure, microvascular structure, and distribution. Additionally, proinflammatory factors are emphasized as biomarkers with the humoral dimension. The aim of this expert consensus is to establish a foundation for assessing the extent of VA and conducting research related to VA, with the ultimate goal of improving the vascular health of the elderly in China and globally.
Collapse
Affiliation(s)
| | - Le Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yuehong Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shimin Sun
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena 07743, Germany
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun-Yat-sen University, Guangzhou 510080, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang 330031, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai 200127, China
| | - Huashan Hong
- Department of Geriatrics, Fujian Key Laboratory of Vascular Aging, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhen Liang
- Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Turrini S, Wong B, Eldaief M, Press DZ, Sinclair DA, Koch G, Avenanti A, Santarnecchi E. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res Rev 2023; 88:101939. [PMID: 37116664 DOI: 10.1016/j.arr.2023.101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
As the global population faces a progressive shift towards a higher median age, understanding the mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of cognitive abilities. The first part of the present review aims to provide a comprehensive look at the anatomical changes the healthy brain endures with advanced age, while also summarizing up to date findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related decline as an impairment of four main cognitive factors and relating them to their neural substrate previously described; different cognitive trajectories displayed by typical Alzheimer's Disease patients and successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed.
Collapse
Affiliation(s)
- Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Bonnie Wong
- Neuropsychology Program, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA , USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Z Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of ageing Research, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Stroke Unit, Department of Systems Medicine, University of Tor Vergata, Rome, Italy; Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Wei W, Lao H, Tan Y, Liang S, Ye Z, Qin C, Tang Y. Vascular tortuosity is related to reduced thalamic volume after middle cerebral artery occlusion. Heliyon 2023; 9:e15581. [PMID: 37159683 PMCID: PMC10163615 DOI: 10.1016/j.heliyon.2023.e15581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
The mechanisms underlying secondary brain injury in remote areas remains unclear. This study aimed to investigate the relationship between vascular tortuosity and thalamic volume. METHODS In this study, we retrospectively analyzed sixty-five patients with unilateral middle cerebral artery occlusion (MCAO) who underwent magnetic resonance angiography. We compared the vascular tortuosity in patients with MCAO and controls, and analyzed the relationship between vascular tortuosity and thalamic volume. RESULTS Compared with controls, the MCAO group exhibited a significantly smaller thalamus volume on the affected side (5874 ± 183 mm3 vs. 5635 ± 383 mm3, p < 0.0001). The vascular tortuosity of the posterior cerebral artery (PCA) was higher in the MCAO group than in the controls (82.8 ± 17.3 vs. 76.7 ± 17.3, p = 0.040). Logistic regression analysis revealed that PCA tortuosity was an independent risk factor for reduced thalamic volume after MCAO (p = 0.034). In the subgroup analysis, only the 4-7-day group was not statistically different in thalamic volume between the MCAO and control groups. In the MCAO group, patients older than 60 years and female patients had a more tortuous PCA. CONCLUSION Reduced thalamic volume after MCAO was associated with a tortuous PCA. After MCAO, PCA tortuosity increased more significantly in patients aged >60 years and in female patients.
Collapse
Affiliation(s)
- Wenxin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huan Lao
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, Guangxi 530000, China
| | - Yafu Tan
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Shushu Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ziming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| | - Yanyan Tang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Corresponding author.
| |
Collapse
|
12
|
Mun J, Kang HM, Park C. Cerebral chronic hypoperfusion in mice causes premature aging of the cerebrovasculature. Brain Res Bull 2023; 195:47-54. [PMID: 36775041 DOI: 10.1016/j.brainresbull.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Chronic cerebral hypoperfusion (CCH) is the main characteristic of an aged brain showing cerebrovascular alterations. Our previous study that the morphological changes in the pial arteries accompany a decrease in the cerebral blood flow in aged mouse brains, and it raises the question of whether artificial CCH can induce the same changes in brain vessel morphology. Here, we examined the effect of CCH on cerebrovascular morphology. Using a microcoil-induced chronic cerebral hypoperfusion (MCH) model, we induced CCH for 8 and 12 weeks. The cerebrovasculature morphology was evaluated using three-dimensional vessel analysis and compared with that of aging mice. We found the morphological changes in brain vessels of MCH mice, indicating that the CCH can induce cerebrovascular alteration. However, the changes in brain vessel morphology in the MCH mice were different in detail from those in the aging mice. Aging mice showed an increase in vessel tortuosity and thinned string vessels; MCH mice mainly showed thinned string vessels. This suggests that CCH may be a cause of age-related cerebrovascular alterations.
Collapse
Affiliation(s)
- Juyeon Mun
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, the Republic of Korea
| | - Hye-Min Kang
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, the Republic of Korea
| | - Chan Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
13
|
Koueik J, Wesley UV, Dempsey RJ. Pathophysiology, cellular and molecular mechanisms of large and small vessel diseases. Neurochem Int 2023; 164:105499. [PMID: 36746322 DOI: 10.1016/j.neuint.2023.105499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/07/2023]
Abstract
Cerebrovascular disease (CVD) is the second most common cause of cognitive impairment and dementia in aged population. CVD presents in a myriad number of clinical ways based on the functional location of pathology. While primary clinical emphasis has been placed on motor, speech and visual deficits, vascular cognitive decline is a vastly under recognized and devastating condition afflicting millions of Americans. CVD, a disease of the blood vessels that supply blood to brain involves an integration between small and large vessels. Cerebral large vessel diseases (LVD) are associated with atherosclerosis, artery-to-artery embolism, intracardiac embolism and a large vessel stroke leading to substantial functional disability. Cerebral small vessel disease (SVD) is critically involved in stroke, brain hemorrhages, cognitive decline and functional loss in elderly patients. An evolving understanding of cellular and molecular mechanisms emphasizes that inflammatory vascular changes contribute to systemic pathologic conditions of the central nervous systems (CNS), with specific clinical presentations including, cognitive decline. Advances in an understanding of pathophysiology of disease processes and therapeutic interventions may help improve outcomes. This review will focus on large and small vessels diseases and their relationship to vascular cognitive decline, atherosclerosis, stroke, and inflammatory neurodegeneration. We will also emphasize the molecular and cellular mechanisms, as well as genetic and epigenetic factors associated with LVD and SVD.
Collapse
Affiliation(s)
- Joyce Koueik
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Umadevi V Wesley
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53792, USA.
| |
Collapse
|
14
|
Abstract
Stroke is a leading cause of long-term disability and fifth leading cause of death. Acute ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage, the 3 subtypes of strokes, have varying treatment modalities. Common themes in management advocate for early interventions to reduce morbidity and mortality but not all perception is supported through randomized controlled trials. Each stroke subtype has varying premorbid-related and ictus-related outcome predictive models that have differing sensitivities and specificities.
Collapse
|
15
|
Mouches P, Wilms M, Aulakh A, Langner S, Forkert ND. Multimodal brain age prediction fusing morphometric and imaging data and association with cardiovascular risk factors. Front Neurol 2022; 13:979774. [PMID: 36588902 PMCID: PMC9794870 DOI: 10.3389/fneur.2022.979774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The difference between the chronological and biological brain age, called the brain age gap (BAG), has been identified as a promising biomarker to detect deviation from normal brain aging and to indicate the presence of neurodegenerative diseases. Moreover, the BAG has been shown to encode biological information about general health, which can be measured through cardiovascular risk factors. Current approaches for biological brain age estimation, and therefore BAG estimation, either depend on hand-crafted, morphological measurements extracted from brain magnetic resonance imaging (MRI) or on direct analysis of brain MRI images. The former can be processed with traditional machine learning models while the latter is commonly processed with convolutional neural networks (CNNs). Using a multimodal setting, this study aims to compare both approaches in terms of biological brain age prediction accuracy and biological information captured in the BAG. Methods T1-weighted MRI, containing brain tissue information, and magnetic resonance angiography (MRA), providing information about brain arteries, from 1,658 predominantly healthy adults were used. The volumes, surface areas, and cortical thickness of brain structures were extracted from the T1-weighted MRI data, while artery density and thickness within the major blood flow territories and thickness of the major arteries were extracted from MRA data. Independent multilayer perceptron and CNN models were trained to estimate the brain age from the hand-crafted features and image data, respectively. Next, both approaches were fused to assess the benefits of combining image data and hand-crafted features for brain age prediction. Results The combined model achieved a mean absolute error of 4 years between the chronological and predicted biological brain age. Among the independent models, the lowest mean absolute error was observed for the CNN using T1-weighted MRI data (4.2 years). When evaluating the BAGs obtained using the different approaches and imaging modalities, diverging associations between cardiovascular risk factors were found. For example, BAGs obtained from the CNN models showed an association with systolic blood pressure, while BAGs obtained from hand-crafted measurements showed greater associations with obesity markers. Discussion In conclusion, the use of more diverse sources of data can improve brain age estimation modeling and capture more diverse biological deviations from normal aging.
Collapse
Affiliation(s)
- Pauline Mouches
- Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Radiology, University of Calgary, Calgary, AB, Canada,*Correspondence: Pauline Mouches
| | - Matthias Wilms
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Agampreet Aulakh
- Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D. Forkert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Radiology, University of Calgary, Calgary, AB, Canada,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Yang J, Chang S, Chen IA, Kura S, Rosen GA, Saltiel NA, Huber BR, Varadarajan D, Balbastre Y, Magnain C, Chen SC, Fischl B, McKee AC, Boas DA, Wang H. Volumetric Characterization of Microvasculature in Ex Vivo Human Brain Samples By Serial Sectioning Optical Coherence Tomography. IEEE Trans Biomed Eng 2022; 69:3645-3656. [PMID: 35560084 PMCID: PMC9888394 DOI: 10.1109/tbme.2022.3175072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast. METHODS We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples. RESULTS We demonstrated the automatic extraction of the vessels down to a 20 μm in diameter using a filtering strategy followed by a graphing representation and characterization of the geometrical properties of microvascular network in 3D. We also showed the ability to extend this processing strategy to extract axonal fiber bundles from the volumetric OCT image. CONCLUSION This method provides a viable tool for quantitative characterization of volumetric microvascular network as well as the axonal bundle properties in normal and pathological tissues of the ex vivo human brain.
Collapse
|
17
|
Zhang B, Yang Z, Li J, Wang B, Shi H, Wang H, Li Y. Modification of cerebrovascular morphologies during different stages of life. J Cereb Blood Flow Metab 2022; 42:2151-2160. [PMID: 35775187 PMCID: PMC9580171 DOI: 10.1177/0271678x221111609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To expand previous understanding of age-related vascular changes, we examined the association between aging and characteristics of cerebral arteries among 1133 participants aged 35 to 75 years recruited from Shanghai, China. Characteristics of the cerebral vessels including arterial branch density, mean radius, and mean tortuosity were quantified using MR angiography. The radius, tortuosity, and length of the basilar artery (BA) and the M1 segment of middle cerebral artery (MCA) were also accessed. Linear regression model was used to examine the association between age and vasculature features. The sample was divided into four subgroups by age and the association was analyzed in each subgroup. Age was found to be a significant predictor for cerebrovascular modifications after adjusting for vascular risk factors. Further analysis in subgroup revealed that the associations were due to the predominate effect of the vascular modifications happened during the younger years (35-54 years). The radius of either BA or MCA was associated with aging only in subjects aged 45-54 years. In conclusion, rapid alterations in all three morphological features assessed have been noticed to be associated with aging in the 45-54 subgroup, suggesting the potential importance of the 5th decade for early preservation method for vascular aging.
Collapse
Affiliation(s)
- Boyu Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, China
| | - Zidong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, China
| | - Jing Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, China
| | - Huazheng Shi
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Ministry of Education, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Dumais F, Caceres MP, Janelle F, Seifeldine K, Arès-Bruneau N, Gutierrez J, Bocti C, Whittingstall K. eICAB: A novel deep learning pipeline for Circle of Willis multiclass segmentation and analysis. Neuroimage 2022; 260:119425. [PMID: 35809887 DOI: 10.1016/j.neuroimage.2022.119425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/22/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The accurate segmentation, labeling and quantification of cerebral blood vessels on MR imaging is important for basic and clinical research, yet results are not generalizable, and often require user intervention. New methods are needed to automate this process. PURPOSE To automatically segment, label and quantify Circle of Willis (CW) arteries on Magnetic Resonance Angiography images using deep convolutional neural networks. MATERIALS AND METHODS MRA images were pooled from three public and private databases. A total of 116 subjects (mean age 56 years ± 21 [standard deviation]; 72 women) were used to make up the training set (N=101) and the testing set (N=15). In each image, fourteen arterial segments making up or surrounding the CW were manually annotated and validated by a clinical expert. Convolutional neural network (CNN) models were trained on a training set to be finally combined in an ensemble to develop eICAB. Model performances were evaluated using (1) quantitative analysis (dice score on test set) and (2) qualitative analysis (external datasets, N=121). The reliability was assessed using multiple MRAs of healthy participants (ICC of vessel diameters and volumes on test-retest). RESULTS Qualitative analysis showed that eICAB correctly predicted the large, medium and small arteries in 99±0.4%, 97±1% and 88±7% of all images, respectively. For quantitative assessment, the average dice score coefficients for the large (ICAs, BA), medium (ACAs, MCAs, PCAs-P2), and small (AComm, PComm, PCAs-P1) vessels were 0.76±0.07, 0.76±0.08 and 0.41±0.27, respectively. These results were similar and, in some cases, statistically better (p<0.05) than inter-expert annotation variability and robust to image SNR. Finally, test-retest analysis showed that the model yielded high diameter and volume reliability (ICC=0.99). CONCLUSION We have developed a quick and reliable open-source CNN-based method capable of accurately segmenting and labeling the CW in MRA images. This method is largely independent of image quality. In the future, we foresee this approach as a critical step towards fully automated analysis of MRA databases in basic and clinical research.
Collapse
Affiliation(s)
- Félix Dumais
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada.
| | - Marco Perez Caceres
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Félix Janelle
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Kassem Seifeldine
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada
| | - Noémie Arès-Bruneau
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jose Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christian Bocti
- Department of Medecine, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Center on Aging, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada; Department of Neurology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kevin Whittingstall
- Department of Radiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
19
|
Deshpande A, Elliott J, Kari N, Jiang B, Michel P, Toosizadeh N, Fahadan PT, Kidwell C, Wintermark M, Laksari K. Novel imaging markers for altered cerebrovascular morphology in aging, stroke, and Alzheimer's disease. J Neuroimaging 2022; 32:956-967. [PMID: 35838658 PMCID: PMC9474631 DOI: 10.1111/jon.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered brain vasculature is a key phenomenon in several neurologic disorders. This paper presents a quantitative assessment of the anatomical variations in the Circle of Willis (CoW) and vascular morphology in healthy aging, acute ischemic stroke (AIS) and Alzheimer's Disease (AD). METHODS We used our novel automatic method to segment and extract geometric features of the cerebral vasculature from MR angiography scans of 175 healthy subjects, which were used to create a probabilistic atlas of cerebrovasculature and to study normal aging and intersubject variations in CoW anatomy. Subsequently, we quantified and analyzed vascular alterations in 45AIS and 50 AD patients, two prominent cerebrovascular and neurodegenerative disorders. RESULTS In the sampled cohort, we determined that the CoW is fully formed in only 35% of healthy adults and found significantly (p < .05) increased tortuosity and fractality, with increasing age and also with disease in both AIS and AD. We also found significantly lower vessel length, volume, and number of branches in AIS patients, as expected. The AD cerebral vessels exhibited significantly smaller diameter and more complex branching patterns, compared to age-matched healthy adults. These changes were significantly heightened (p < .05) among healthy, early onset mild AD, and moderate/severe dementia groups. CONCLUSION Although our study does not include longitudinal data due to paucity of such datasets, the specific geometric features and quantitative comparisons demonstrate the potential for using vascular morphology as a noninvasive imaging biomarker for neurologic disorders.
Collapse
Affiliation(s)
| | - Jordan Elliott
- Department of Biomedical Engineering, University of Arizona
| | - Nitya Kari
- Department of Biomedical Engineering, University of Arizona
| | - Bin Jiang
- Department of Radiology, Stanford University
| | - Patrik Michel
- Department of Neurology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona
- Arizona Center on Aging, Department of Medicine, University of Arizona
| | - Pouya Tahsili Fahadan
- Neuroscience Intensive Care Unit, Medical Critical Care Service and Department of Medical Education, University of Virginia School of Medicine, Inova Fairfax Medical Campus
- Departments of Neurology, Johns Hopkins University School of Medicine
| | | | | | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona
- Department of Aerospace and Mechanical Engineering, University of Arizona
| |
Collapse
|
20
|
Yedavalli VS, Quon JL, Tong E, van Staalduinen EK, Mouches P, Kim LH, Steinberg GK, Grant GA, Yeom KW, Forkert ND. Intracranial Artery Morphology in Pediatric Moya Moya Disease and Moya Moya Syndrome. Neurosurgery 2022; 91:710-716. [PMID: 36084178 DOI: 10.1227/neu.0000000000002099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Moya Moya disease (MMD) and Moya Moya syndrome (MMS) are cerebrovascular disorders, which affect the internal carotid arteries (ICAs). Diagnosis and surveillance of MMD/MMS in children mostly rely on qualitative evaluation of vascular imaging, especially MR angiography (MRA). OBJECTIVE To quantitatively characterize arterial differences in pediatric patients with MMD/MMS compared with normal controls. METHODS MRA data sets from 17 presurgery MMD/MMS (10M/7F, mean age = 10.0 years) patients were retrospectively collected and compared with MRA data sets of 98 children with normal vessel morphology (49 male patients; mean age = 10.6 years). Using a level set segmentation method with anisotropic energy weights, the cerebral arteries were automatically extracted and used to compute the radius of the ICA, middle cerebral artery (MCA), anterior cerebral artery (ACA), posterior cerebral artery (PCA), and basilar artery (BA). Moreover, the density and the average radius of all arteries in the MCA, ACA, and PCA flow territories were quantified. RESULTS Statistical analysis revealed significant differences comparing children with MMD/MMS and those with normal vasculature (P < .001), whereas post hoc analyses identified significantly smaller radii of the ICA, MCA-M1, MCA-M2, and ACA (P < .001) in the MMD/MMS group. No significant differences were found for the radii of the PCA and BA or any artery density and average artery radius measurement in the flow territories (P > .05). CONCLUSION His study describes the results of an automatic approach for quantitative characterization of the cerebrovascular system in patients with MMD/MMS with promising preliminary results for quantitative surveillance in pediatric MMD/MMS management.
Collapse
Affiliation(s)
- Vivek S Yedavalli
- Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jennifer L Quon
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Elizabeth Tong
- Department of Radiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Eric K van Staalduinen
- Department of Radiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Mouches
- Department of Radiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Lily H Kim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kristen W Yeom
- Department of Radiology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Nils D Forkert
- Department of Radiology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Zhang B, Huo Y, Yang Z, Lv H, Wang Y, Feng J, Han Y, Wang H. Day to Day Blood Pressure Variability Associated With Cerebral Arterial Dilation and White Matter Hyperintensity. Hypertension 2022; 79:1455-1465. [PMID: 35502669 PMCID: PMC9172904 DOI: 10.1161/hypertensionaha.122.19269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies suggested blood pressure variability (BPV) might help reveal interactions between blood pressure fluctuation and white matter lesions, and the impact of elevated BPV on white matter hyperintensity (WMH) or cerebral arterial dilation is unclear.
Collapse
Affiliation(s)
- Boyu Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence (B.Z., Z.Y., J.F., H.W.), Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China (B.Z., Z.Y., J.F., H.W.)
| | - Yajing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y. Huo, H.L., Y. Han)
| | - Zidong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence (B.Z., Z.Y., J.F., H.W.), Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China (B.Z., Z.Y., J.F., H.W.)
| | - Huihui Lv
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y. Huo, H.L., Y. Han)
| | - Yilin Wang
- Georgetown Preparatory School, Washington DC (Y.W.)
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence (B.Z., Z.Y., J.F., H.W.), Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China (B.Z., Z.Y., J.F., H.W.)
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y. Huo, H.L., Y. Han)
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence (B.Z., Z.Y., J.F., H.W.), Fudan University, Shanghai, China.,Department of Neurology, Zhongshan Hospital (H.W.), Fudan University, Shanghai, China.,Human Phenome Institute (H.W.), Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China (B.Z., Z.Y., J.F., H.W.)
| |
Collapse
|
22
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
23
|
Senthilkumar T, Kumarganesh S, Sivakumar P, Periyarselvam K. Primitive detection of Alzheimer’s disease using neuroimaging: A progression model for Alzheimer’s disease: Their applications, benefits, and drawbacks. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-220628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (A.D.) is the most widespread type of Dementia, and it is not a curable neurodegenerative disease that affects millions of older people. Researchers were able to use their understanding of Alzheimer’s disease risk variables to develop enrichment processes for longitudinal imaging studies. Using this method, they reduced their sample size and study time. This paper describes the primitive detective of Alzheimer’s diseases using Neuroimaging techniques. Several preprocessing methods were used to ensure that the dataset was ready for subsequent feature extraction and categorization. The noise was reduced by converting and averaging many scan frames from real to DCT space. Both sides of the averaged image were filtered and combined into a single shot after being converted to real space. InceptionV3 and DenseNet201 are two pre-trained models used in the suggested model. The PCA approach was used to select the traits, and the resulting explained variance ratio was 0.99The Simons Foundation Autism Research Initiative (SFARI)—Simon’s Simplex Collection (SSC)—and UCI machine learning datasets showed that our method is faster and more successful at identifying complete long-risk patterns when compared to existing methods.
Collapse
Affiliation(s)
- T. Senthilkumar
- GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu, India
| | | | - P. Sivakumar
- GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu, India
| | - K. Periyarselvam
- GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu, India
| |
Collapse
|
24
|
Li L, Ding G, Zhang L, Davoodi-Bojd E, Chopp M, Li Q, Zhang ZG, Jiang Q. Aging-Related Alterations of Glymphatic Transport in Rat: In vivo Magnetic Resonance Imaging and Kinetic Study. Front Aging Neurosci 2022; 14:841798. [PMID: 35360203 PMCID: PMC8960847 DOI: 10.3389/fnagi.2022.841798] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Impaired glymphatic waste clearance function during brain aging leads to the accumulation of metabolic waste and neurotoxic proteins (e.g., amyloid-β, tau) which contribute to neurological disorders. However, how the age-related glymphatic dysfunction exerts its effects on different cerebral regions and affects brain waste clearance remain unclear. Methods We investigated alterations of glymphatic transport in the aged rat brain using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and advanced kinetic modeling. Healthy young (3-4 months) and aged (18-20 months) male rats (n = 12/group) underwent the identical MRI protocol, including T2-weighted imaging and 3D T1-weighted imaging with intracisternal administration of contrast agent (Gd-DTPA). Model-derived parameters of infusion rate and clearance rate, characterizing the kinetics of cerebrospinal fluid (CSF) tracer transport via the glymphatic system, were evaluated in multiple representative brain regions. Changes in the CSF-filled cerebral ventricles were measured using contrast-induced time signal curves (TSCs) in conjunction with structural imaging. Results Compared to the young brain, an overall impairment of glymphatic transport function was detected in the aged brain, evidenced by the decrease in both infusion and clearance rates throughout the brain. Enlarged ventricles in parallel with reduced efficiency in CSF transport through the ventricular regions were present in the aged brain. While the age-related glymphatic dysfunction was widespread, our kinetic quantification demonstrated that its impact differed considerably among cerebral regions with the most severe effect found in olfactory bulb, indicating the heterogeneous and regional preferential alterations of glymphatic function. Conclusion The robust suppression of glymphatic activity in the olfactory bulb, which serves as one of major efflux routes for brain waste clearance, may underlie, in part, age-related neurodegenerative diseases associated with neurotoxic substance accumulation. Our data provide new insight into the cerebral regional vulnerability to brain functional change with aging.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
25
|
Hung SH, Kramer S, Werden E, Campbell BCV, Brodtmann A. Pre-stroke Physical Activity and Cerebral Collateral Circulation in Ischemic Stroke: A Potential Therapeutic Relationship? Front Neurol 2022; 13:804187. [PMID: 35242097 PMCID: PMC8886237 DOI: 10.3389/fneur.2022.804187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Favorable cerebral collateral circulation contributes to hindering penumbral tissue from progressing to infarction and is associated with positive clinical outcomes after stroke. Given its clinical importance, improving cerebral collateral circulation is considered a therapeutic target to reduce burden after stroke. We provide a hypothesis-generating discussion on the potential association between pre-stroke physical activity and cerebral collateral circulation in ischemic stroke. The recruitment of cerebral collaterals in acute ischemic stroke may depend on anatomical variations, capacity of collateral vessels to vasodilate, and individual risk factors. Physical activity is associated with improved cerebral endothelial and vascular function related to vasodilation and angiogenic adaptations, and risk reduction in individual risk factors. More research is needed to understand association between cerebral collateral circulation and physical activity. A presentation of different methodological considerations for measuring cerebral collateral circulation and pre-stroke physical activity in the context of acute ischemic stroke is included. Opportunities for future research into cerebral collateral circulation, physical activity, and stroke recovery is presented.
Collapse
Affiliation(s)
- Stanley Hughwa Hung
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sharon Kramer
- Centre for Quality and Patient Safety Research, Alfred Health Partnership, Melbourne, VIC, Australia.,Faculty of Health, School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
| | - Emilio Werden
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Bruce C V Campbell
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
26
|
Mouches P, Wilms M, Rajashekar D, Langner S, Forkert ND. Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions. Hum Brain Mapp 2022; 43:2554-2566. [PMID: 35138012 PMCID: PMC9057090 DOI: 10.1002/hbm.25805] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Biological brain age predicted using machine learning models based on high-resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural magnetic resonance imaging and angiography datasets from a large database of 2074 adults (21-81 years). Since different imaging modalities can provide complementary information, combining them might allow to identify more complex aging patterns, with angiography data, for instance, showing vascular aging effects complementary to the atrophic brain tissue changes seen in T1-weighted MRI sequences. We used saliency maps to investigate the contribution of cortical, subcortical, and arterial structures to the prediction. Our results show that combining T1-weighted and angiography MR data led to a significantly improved brain age prediction accuracy, with a mean absolute error of 3.85 years comparing the predicted and chronological age. The most predictive brain regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the brain arteries contributing the most to the prediction included the basilar artery, the middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study proposes a framework for brain age prediction using multimodal imaging, which gives accurate predictions and allows identifying the most predictive regions for this task, which can serve as a surrogate for the brain regions that are most affected by aging.
Collapse
Affiliation(s)
- Pauline Mouches
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Program, University of Calgary, Calgary, Alberta, Canada
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Early Diagnosis of Alzheimer’s Disease Using Cerebral Catheter Angiogram Neuroimaging: A Novel Model Based on Deep Learning Approaches. BIG DATA AND COGNITIVE COMPUTING 2021. [DOI: 10.3390/bdcc6010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroimaging refers to the techniques that provide efficient information about the neural structure of the human brain, which is utilized for diagnosis, treatment, and scientific research. The problem of classifying neuroimages is one of the most important steps that are needed by medical staff to diagnose their patients early by investigating the indicators of different neuroimaging types. Early diagnosis of Alzheimer’s disease is of great importance in preventing the deterioration of the patient’s situation. In this research, a novel approach was devised based on a digital subtracted angiogram scan that provides sufficient features of a new biomarker cerebral blood flow. The used dataset was acquired from the database of K.A.U.H hospital and contains digital subtracted angiograms of participants who were diagnosed with Alzheimer’s disease, besides samples of normal controls. Since each scan included multiple frames for the left and right ICA’s, pre-processing steps were applied to make the dataset prepared for the next stages of feature extraction and classification. The multiple frames of scans transformed from real space into DCT space and averaged to remove noises. Then, the averaged image was transformed back to the real space, and both sides filtered with Meijering and concatenated in a single image. The proposed model extracts the features using different pre-trained models: InceptionV3 and DenseNet201. Then, the PCA method was utilized to select the features with 0.99 explained variance ratio, where the combination of selected features from both pre-trained models is fed into machine learning classifiers. Overall, the obtained experimental results are at least as good as other state-of-the-art approaches in the literature and more efficient according to the recent medical standards with a 99.14% level of accuracy, considering the difference in dataset samples and the used cerebral blood flow biomarker.
Collapse
|
28
|
Seker FB, Fan Z, Gesierich B, Gaubert M, Sienel RI, Plesnila N. Neurovascular Reactivity in the Aging Mouse Brain Assessed by Laser Speckle Contrast Imaging and 2-Photon Microscopy: Quantification by an Investigator-Independent Analysis Tool. Front Neurol 2021; 12:745770. [PMID: 34858312 PMCID: PMC8631776 DOI: 10.3389/fneur.2021.745770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
The brain has a high energy demand but little to no energy stores. Therefore, proper brain function relies on the delivery of glucose and oxygen by the cerebral vasculature. The regulation of cerebral blood flow (CBF) occurs at the level of the cerebral capillaries and is driven by a fast and efficient crosstalk between neurons and vessels, a process termed neurovascular coupling (NVC). Experimentally NVC is mainly triggered by sensory stimulation and assessed by measuring either CBF by laser Doppler fluxmetry, laser speckle contrast imaging (LSCI), intrinsic optical imaging, BOLD fMRI, near infrared spectroscopy (NIRS) or functional ultrasound imaging (fUS). Since these techniques have relatively low spatial resolution, diameters of cerebral vessels are mainly assessed by 2-photon microscopy (2-PM). Results of studies on NVC rely on stable animal physiology, high-quality data acquisition, and unbiased data analysis, criteria, which are not easy to achieve. In the current study, we assessed NVC using two different imaging modalities, i.e., LSCI and 2-PM, and analyzed our data using an investigator-independent Matlab-based analysis tool, after manually defining the area of analysis in LSCI and vessels to measure in 2-PM. By investigating NVC in 6–8 weeks, 1-, and 2-year-old mice, we found that NVC was maximal in 1-year old mice and was significantly reduced in aged mice. These findings suggest that NVC is differently affected during the aging process. Most interestingly, specifically pial arterioles, seem to be distinctly affected by the aging. The main finding of our study is that the automated analysis tool works very efficiently in terms of time and accuracy. In fact, the tool reduces the analysis time of one animal from approximately 23 h to about 2 s while basically making no mistakes. In summary, we developed an experimental workflow, which allows us to reliably measure NVC with high spatial and temporal resolution in young and aged mice and to analyze these data in an investigator-independent manner.
Collapse
Affiliation(s)
- Fatma Burcu Seker
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Ziyu Fan
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Malo Gaubert
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Rebecca Isabella Sienel
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital and University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
MacDonald ME, Pike GB. MRI of healthy brain aging: A review. NMR IN BIOMEDICINE 2021; 34:e4564. [PMID: 34096114 DOI: 10.1002/nbm.4564] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
We present a review of the characterization of healthy brain aging using MRI with an emphasis on morphology, lesions, and quantitative MR parameters. A scope review found 6612 articles encompassing the keywords "Brain Aging" and "Magnetic Resonance"; papers involving functional MRI or not involving imaging of healthy human brain aging were discarded, leaving 2246 articles. We first consider some of the biogerontological mechanisms of aging, and the consequences of aging in terms of cognition and onset of disease. Morphological changes with aging are reviewed for the whole brain, cerebral cortex, white matter, subcortical gray matter, and other individual structures. In general, volume and cortical thickness decline with age, beginning in mid-life. Prevalent silent lesions such as white matter hyperintensities, microbleeds, and lacunar infarcts are also observed with increasing frequency. The literature regarding quantitative MR parameter changes includes T1 , T2 , T2 *, magnetic susceptibility, spectroscopy, magnetization transfer, diffusion, and blood flow. We summarize the findings on how each of these parameters varies with aging. Finally, we examine how the aforementioned techniques have been used for age prediction. While relatively large in scope, we present a comprehensive review that should provide the reader with sound understanding of what MRI has been able to tell us about how the healthy brain ages.
Collapse
Affiliation(s)
- M Ethan MacDonald
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Graff BJ, Payne SJ, El-Bouri WK. The Ageing Brain: Investigating the Role of Age in Changes to the Human Cerebral Microvasculature With an in silico Model. Front Aging Neurosci 2021; 13:632521. [PMID: 34421568 PMCID: PMC8374868 DOI: 10.3389/fnagi.2021.632521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Ageing causes extensive structural changes to the human cerebral microvasculature, which have a significant effect on capillary bed perfusion and oxygen transport. Current models of brain capillary networks in the literature focus on healthy adult brains and do not capture the effects of ageing, which is critical when studying neurodegenerative diseases. This study builds upon a statistically accurate model of the human cerebral microvasculature based on ex-vivo morphological data. This model is adapted for “healthy” ageing using in-vivo measurements from mice at three distinct age groups—young, middle-aged, and old. From this new model, blood and molecular exchange parameters are calculated such as permeability and surface-area-to-volume ratio, and compared across the three age groups. The ability to alter the model vessel-by-vessel is used to create a continuous gradient of ageing. It was found that surface-area-to-volume ratio reduced in old age by 6% and permeability by 24% from middle-age to old age, and variability within the networks also increased with age. The ageing gradient indicated a threshold in the ageing process around 75 years old, after which small changes have an amplified effect on blood flow properties. This gradient enables comparison of studies measuring cerebral properties at discrete points in time. The response of middle aged and old aged capillary beds to micro-emboli showed a lower robustness of the old age capillary bed to vessel occlusion. As the brain ages, there is thus increased vulnerability of the microvasculature—with a “tipping point” beyond which further remodeling of the microvasculature has exaggerated effects on the brain. When developing in-silico models of the brain, age is a very important consideration to accurately assess risk factors for cognitive decline and isolate early biomarkers of microvascular health.
Collapse
Affiliation(s)
- Barnaby J Graff
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Stephen J Payne
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Wahbi K El-Bouri
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom.,Liverpool Centre for Cardiovascular Science, University of Liverpool & Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Malheiro LFG, Gaio R, Silva MVD, Martins S, Sampaio S, Quelhas-Santos J, Cerqueira A, Sarmento A, Santos L. Reactive hyperemia correlates with the presence of sepsis and glycocalyx degradation in the intensive care unit: a prospective cohort study. Rev Bras Ter Intensiva 2021; 32:363-373. [PMID: 33053025 PMCID: PMC7595718 DOI: 10.5935/0103-507x.20200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Objective To investigate whether reactive hyperemia measured by peripheral arterial tonometry correlates with markers of endothelial dysfunction and may be used to identify sepsis in critical illness. Methods A prospective study was performed using a cohort of critically ill patients. Endothelial dysfunction was assessed on admission by quantifying reactive hyperemia-peripheral arterial tonometry and plasma levels of endothelin-1, soluble E-selectin, endocan and syndecan-1. Septic patients were compared to patients without evidence of infection. Results Fifty-eight septic patients were compared to 28 controls. The natural logarithm of reactive hyperemia-peripheral arterial tonometry was negatively correlated with cardiovascular comorbidities, disease severity and plasma levels of soluble E-selectin (p = 0.024) and syndecan-1 (p < 0.001). The natural logarithm of reactive hyperemia-peripheral arterial tonometry was lower in septic patients than in controls (0.53 ± 0.48 versus 0.69 ± 0.42, respectively). When adjusted for age, the multivariable model predicted that each 0.1-unit decrease in natural logarithm of reactive hyperemia-peripheral arterial tonometry increased the odds for infection by 14.6%. m. Conclusion Reactive hyperemia-peripheral arterial tonometry is closely related to soluble E-selectin and syndecan-1, suggesting an association between endothelial activation, glycocalyx degradation and vascular reactivity. Reactive hyperemia-peripheral arterial tonometry appears to be compromised in critically ill patients, especially those with sepsis.
Collapse
Affiliation(s)
- Luís Filipe Gomes Malheiro
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Rita Gaio
- Departamento de Matemática, Faculdade de Ciências, Universidade do Porto - Porto, Portugal
| | - Manuel Vaz da Silva
- Departamento de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Sandra Martins
- Departamento de Patologia Clínica, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Susana Sampaio
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Janete Quelhas-Santos
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Ana Cerqueira
- Departamento de Nefrologia, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| | - Lurdes Santos
- Serviço de Doenças Infecciosas, Centro Hospitalar de São João, Faculdade de Medicina, Universidade do Porto - Porto, Portugal
| |
Collapse
|
32
|
Mouches P, Langner S, Domin M, Hill MD, Forkert ND. Influence of cardiovascular risk-factors on morphological changes of cerebral arteries in healthy adults across the life span. Sci Rep 2021; 11:12236. [PMID: 34112870 PMCID: PMC8192575 DOI: 10.1038/s41598-021-91669-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cerebral artery morphological alterations have been associated with several cerebrovascular and neurological diseases, whereas these structures are known to be highly variable among healthy individuals. To date, the knowledge about the influence of cardiovascular risk factors on the morphology of cerebral arteries is rather limited. The aim of this work was to investigate the impact of cardiovascular risk factors on the regional cerebroarterial radius and density. Time-of-Flight magnetic resonance angiography from 1722 healthy adults (21-82 years) were used to extract region-specific measurements describing the main cerebral artery morphology. Multivariate statistical analysis was conducted to quantify the impact of cardiovascular risk factors, including clinical and life behavioural factors, on each region-specific artery measurement. Increased age, blood pressure, and markers of obesity were significantly associated with decreased artery radius and density in most regions, with aging having the greatest impact. Additionally, females showed significantly higher artery density while males showed higher artery radius. Smoking and alcohol consumption did not show any significant association with the artery morphology. The results of this study improve the understanding of the impact of aging, clinical factors, and life behavioural factors on cerebrovascular morphology and can help to identify potential risk factors for cerebrovascular and neurological diseases.
Collapse
Affiliation(s)
- Pauline Mouches
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Martin Domin
- Functional Imaging Unit, Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael D Hill
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Chen L, Shaw DWW, Dager SR, Corrigan NM, Chu B, Kleinhans NM, Kuhl PK, Hwang JN, Yuan C. Quantitative Assessment of the Intracranial Vasculature of Infants and Adults Using iCafe (Intracranial Artery Feature Extraction). Front Neurol 2021; 12:668298. [PMID: 34122310 PMCID: PMC8193571 DOI: 10.3389/fneur.2021.668298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Comprehensive quantification of intracranial artery features may help to assess and understand regional variations of blood supply during early brain development and aging. We analyzed vasculature features of 27 healthy infants during natural sleep, 13 infants at 7-months (7.3 ± 1.0 month), and 14 infants at 12-months (11.7 ± 0.4 month), and 13 older healthy, awake adults (62.8 ± 8.7 years) to investigate age-related vascular differences as a preliminary study of vascular changes associated with brain development. 3D time-of-flight (TOF) magnetic resonance angiography (MRA) acquisitions were processed in iCafe, a technique to quantify arterial features (http://icafe.clatfd.cn), to characterize intracranial vasculature. Overall, adult subjects were found to have increased ACA length, tortuosity, and vasculature density compared to both 7-month-old and 12-month-old infants, as well as MCA length compared to 7-month-old infants. No brain laterality differences were observed for any vascular measures in either infant or adult age groups. Reduced skull and brain sharpness, indicative of increased head motion and brain/vascular pulsation, respectively, were observed in infants but not correlated with length, tortuosity, or vasculature density measures. Quantitative analysis of TOF MRA using iCafe may provide an objective approach for systematic study of infant brain vascular development and for clinical assessment of adult and pediatric brain vascular diseases.
Collapse
Affiliation(s)
- Li Chen
- University of Washington, Seattle, WA, United States
| | | | | | | | | | | | | | | | - Chun Yuan
- University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy. J Neurooncol 2021; 153:143-152. [PMID: 33893923 DOI: 10.1007/s11060-021-03753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Although radiation therapy (RT) is a common treatment for pediatric brain tumors, it is associated with detrimental long-term effects such as impaired cognition, vascular injury, and increased stroke risk. This study aimed to develop metrics that describe vascular injury and relate them to the presence of cerebral microbleeds (CMBs) and cognitive performance scores. METHODS Twenty-five young adult survivors of pediatric brain tumors treated with either whole-brain (n = 12), whole-ventricular (n = 7), or no RT (n = 6) underwent 7T MRI and neurocognitive testing. Simultaneously acquired MR angiography and susceptibility-weighted images were used to segment CMBs and vessels and quantify their radii and volume. RESULTS Patients treated with whole-brain RT had significantly lower arterial volumes (p = 0.003) and a higher proportion of smaller vessels (p = 0.003) compared to the whole-ventricular RT and non-irradiated control patients. Normalized arterial volume decreased with increasing CMB count (R = - 0.66, p = 0.003), and decreasing trends were observed with time since RT and at longitudinal follow-up. Global cognition and verbal memory significantly decreased with smaller normalized arterial volume (p ≤ 0.05). CONCLUSIONS Arterial volume is reduced with increasing CMB presence and is influenced by the total brain volume exposed to radiation. This work highlights the potential use of vascular-derived metrics as non-invasive markers of treatment-induced injury and cognitive impairment in pediatric brain tumor patients.
Collapse
|
35
|
Isherwood SJS, Bazin PL, Alkemade A, Forstmann BU. Quantity and quality: Normative open-access neuroimaging databases. PLoS One 2021; 16:e0248341. [PMID: 33705468 PMCID: PMC7951909 DOI: 10.1371/journal.pone.0248341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
The focus of this article is to compare twenty normative and open-access neuroimaging databases based on quantitative measures of image quality, namely, signal-to-noise (SNR) and contrast-to-noise ratios (CNR). We further the analysis through discussing to what extent these databases can be used for the visualization of deeper regions of the brain, such as the subcortex, as well as provide an overview of the types of inferences that can be drawn. A quantitative comparison of contrasts including T1-weighted (T1w) and T2-weighted (T2w) images are summarized, providing evidence for the benefit of ultra-high field MRI. Our analysis suggests a decline in SNR in the caudate nuclei with increasing age, in T1w, T2w, qT1 and qT2* contrasts, potentially indicative of complex structural age-dependent changes. A similar decline was found in the corpus callosum of the T1w, qT1 and qT2* contrasts, though this relationship is not as extensive as within the caudate nuclei. These declines were accompanied by a declining CNR over age in all image contrasts. A positive correlation was found between scan time and the estimated SNR as well as a negative correlation between scan time and spatial resolution. Image quality as well as the number and types of contrasts acquired by these databases are important factors to take into account when selecting structural data for reuse. This article highlights the opportunities and pitfalls associated with sampling existing databases, and provides a quantitative backing for their usage.
Collapse
Affiliation(s)
- Scott Jie Shen Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre-Louis Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anneke Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - Birte Uta Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Gould A, Chen Z, Geleri DB, Balu N, Zhou Z, Chen L, Chu B, Pimentel K, Canton G, Hatsukami T, Yuan C. Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow. Magn Reson Imaging 2021; 79:20-27. [PMID: 33689778 DOI: 10.1016/j.mri.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE To explore feasibility of using the vessel length on time-of-flight (TOF) or simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) MRA as an imaging biomarker for brain blood flow, by using arterial spin labeling (ASL) perfusion imaging and 3D phase contrast (PC) quantitative flow imaging as references. METHODS In a population of thirty subjects with carotid atherosclerotic disease, the visible intracranial arteries on TOF and SNAP were semi-automatically traced and the total length of the distal segments was calculated with a dedicated software named iCafe. ASL blood flow was calculated automatically using the recommended hemodynamic model. PC blood flow was obtained by generating cross-sectional arterial images and semi-automatically drawing the lumen contours. Pearson correlation coefficients were used to assess the associations between the different whole-brain or hemispheric blood flow measurements. RESULTS Under the imaging protocol used in this study, TOF vessel length was larger than SNAP vessel length (P < 0.001). Both whole-brain TOF and SNAP vessel length showed a correlation with whole brain ASL and 3D PC blood flow measurements, and the correlation coefficients were higher for SNAP vessel length (TOF vs ASL: R = 0.554, P = 0.002; SNAP vs ASL: R = 0.711, P < 0.001; TOF vs 3D PC: R = 0.358, P = 0.052; SNAP vs 3D PC: R = 0.425, P = 0.019). Similar correlation results were observed for the hemispheric measurements. Hemispheric asymmetry index of SNAP vessel length also showed a significant correlation with hemispheric asymmetry index of ASL cerebral blood flow (R = 0.770, P < 0.001). CONCLUSION The results suggest that length of the visible intracranial arteries on TOF or SNAP MRA can serve as a potential imaging marker for brain blood flow.
Collapse
Affiliation(s)
- Anders Gould
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Zhensen Chen
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States.
| | - Duygu Baylam Geleri
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Niranjan Balu
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Zechen Zhou
- Philips Research North America, Cambridge, MA, United States
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Baocheng Chu
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Kristi Pimentel
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Gador Canton
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Thomas Hatsukami
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Chun Yuan
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
37
|
Hartung G, Badr S, Moeini M, Lesage F, Kleinfeld D, Alaraj A, Linninger A. Voxelized simulation of cerebral oxygen perfusion elucidates hypoxia in aged mouse cortex. PLoS Comput Biol 2021; 17:e1008584. [PMID: 33507970 PMCID: PMC7842915 DOI: 10.1371/journal.pcbi.1008584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Departures of normal blood flow and metabolite distribution from the cerebral microvasculature into neuronal tissue have been implicated with age-related neurodegeneration. Mathematical models informed by spatially and temporally distributed neuroimage data are becoming instrumental for reconstructing a coherent picture of normal and pathological oxygen delivery throughout the brain. Unfortunately, current mathematical models of cerebral blood flow and oxygen exchange become excessively large in size. They further suffer from boundary effects due to incomplete or physiologically inaccurate computational domains, numerical instabilities due to enormous length scale differences, and convergence problems associated with condition number deterioration at fine mesh resolutions. Our proposed simple finite volume discretization scheme for blood and oxygen microperfusion simulations does not require expensive mesh generation leading to the critical benefit that it drastically reduces matrix size and bandwidth of the coupled oxygen transfer problem. The compact problem formulation yields rapid and stable convergence. Moreover, boundary effects can effectively be suppressed by generating very large replica of the cortical microcirculation in silico using an image-based cerebrovascular network synthesis algorithm, so that boundaries of the perfusion simulations are far removed from the regions of interest. Massive simulations over sizeable portions of the cortex with feature resolution down to the micron scale become tractable with even modest computer resources. The feasibility and accuracy of the novel method is demonstrated and validated with in vivo oxygen perfusion data in cohorts of young and aged mice. Our oxygen exchange simulations quantify steep gradients near penetrating blood vessels and point towards pathological changes that might cause neurodegeneration in aged brains. This research aims to explain mechanistic interactions between anatomical structures and how they might change in diseases or with age. Rigorous quantification of age-related changes is of significant interest because it might aide in the search for imaging biomarkers for dementia and Alzheimer’s disease. Brain function critically depends on the maintenance of physiological blood supply and metabolism in the cortex. Disturbances to adequate perfusion have been linked to age-related neurodegeneration. However, the precise correlation between age-related hemodynamic changes and the resulting decline in oxygen delivery is not well understood and has not been quantified. Therefore, we introduce a new compact, and therefore highly scalable, computational method for predicting the physiological relationship between hemodynamics and cortical oxygen perfusion for large sections of the cortical microcirculation. We demonstrate the novel mesh generation-free (MGF), multi-scale simulation approach through realistic in vivo case studies of cortical microperfusion in the mouse brain. We further validate mechanistic correlations and a quantitative relationship between blood flow and brain oxygenation using experimental data from cohorts of young, middle aged and old mouse brains. Our computational approach overcomes size and performance limitations of previous unstructured meshing techniques to enable the prediction of oxygen tension with a spatial resolution of least two orders of magnitude higher than previously possible. Our simulation results support the hypothesis that structural changes in the microvasculature induce hypoxic pockets in the aged brain that are absent in the healthy, young mouse.
Collapse
Affiliation(s)
- Grant Hartung
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Shoale Badr
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mohammad Moeini
- Polytechnique Montréal, Department of Electrical Engineering, Montreal, Canada
| | - Frédéric Lesage
- Polytechnique Montréal, Department of Electrical Engineering, Montreal, Canada
| | - David Kleinfeld
- Department of Physics, University of California San Diego, San Diego, California, United States of America
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andreas Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
38
|
Brummer AB, Hunt D, Savage V. Improving Blood Vessel Tortuosity Measurements via Highly Sampled Numerical Integration of the Frenet-Serret Equations. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:297-309. [PMID: 32956050 DOI: 10.1109/tmi.2020.3025467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Measures of vascular tortuosity-how curved and twisted a vessel is-are associated with a variety of vascular diseases. Consequently, measurements of vessel tortuosity that are accurate and comparable across modality, resolution, and size are greatly needed. Yet in practice, precise and consistent measurements are problematic-mismeasurements, inability to calculate, or contradictory and inconsistent measurements occur within and across studies. Here, we present a new method of measuring vessel tortuosity that ensures improved accuracy. Our method relies on numerical integration of the Frenet-Serret equations. By reconstructing the three-dimensional vessel coordinates from tortuosity measurements, we explain how to identify and use a minimally-sufficient sampling rate based on vessel radius while avoiding errors associated with oversampling and overfitting. Our work identifies a key failing in current practices of filtering asymptotic measurements and highlights inconsistencies and redundancies between existing tortuosity metrics. We demonstrate our method by applying it to manually constructed vessel phantoms with known measures of tortuousity, and 9,000 vessels from medical image data spanning human cerebral, coronary, and pulmonary vascular trees, and the carotid, abdominal, renal, and iliac arteries.
Collapse
|
39
|
Hill LK, Hoang DM, Chiriboga LA, Wisniewski T, Sadowski MJ, Wadghiri YZ. Detection of Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography. Front Aging Neurosci 2020; 12:585218. [PMID: 33192479 PMCID: PMC7606987 DOI: 10.3389/fnagi.2020.585218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Microvascular rarefaction, or the decrease in vascular density, has been described in the cerebrovasculature of aging humans, rats, and, more recently, mice in the presence and absence of age-dependent diseases. Given the wide use of mice in modeling age-dependent human diseases of the cerebrovasculature, visualization, and quantification of the global murine cerebrovasculature is necessary for establishing the baseline changes that occur with aging. To provide in vivo whole-brain imaging of the cerebrovasculature in aging C57BL/6 mice longitudinally, contrast-enhanced magnetic resonance angiography (CE-MRA) was employed using a house-made gadolinium-bearing micellar blood pool agent. Enhancement in the vascular space permitted quantification of the detectable, or apparent, cerebral blood volume (aCBV), which was analyzed over 2 years of aging and compared to histological analysis of the cerebrovascular density. A significant loss in the aCBV was detected by CE-MRA over the aging period. Histological analysis via vessel-probing immunohistochemistry confirmed a significant loss in the cerebrovascular density over the same 2-year aging period, validating the CE-MRA findings. While these techniques use widely different methods of assessment and spatial resolutions, their comparable findings in detected vascular loss corroborate the growing body of literature describing vascular rarefaction aging. These findings suggest that such age-dependent changes can contribute to cerebrovascular and neurodegenerative diseases, which are modeled using wild-type and transgenic laboratory rodents.
Collapse
Affiliation(s)
- Lindsay K. Hill
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Dung Minh Hoang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| | - Luis A. Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
| | - Thomas Wisniewski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
| | - Martin J. Sadowski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Youssef Z. Wadghiri
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
40
|
Chen Z, Chen L, Shirakawa M, Liu W, Ortega D, Chen J, Balu N, Trouard T, Hatsukami TS, Zhou W, Yuan C. Intracranial vascular feature changes in time of flight MR angiography in patients undergoing carotid revascularization surgery. Magn Reson Imaging 2020; 75:45-50. [PMID: 33068670 DOI: 10.1016/j.mri.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To characterize the intracranial vascular features extracted from time of flight (TOF) images and their changes from baseline to follow-up in patients undergoing carotid revascularization, using arterial spin labeling (ASL) cerebral blood flow (CBF) measurement as a reference. METHODS In this retrospective study, brain TOF and ASL images of 99 subjects, acquired before, within 48 h, and/or 6 months after, carotid revascularization surgery were analyzed. TOF images were analyzed using a custom software (iCafe) to quantify intracranial vascular features, including total vessel length, total vessel volume, and number of branches. Mean whole-brain CBF was calculated from ASL images. ASL scans showing low ASL signal in the entire flow territory of an internal carotid artery (ICA), which may be caused by labeling failure, were excluded. Changes and correlations between time points were analyzed separately for TOF intracranial vascular features and ASL CBF. RESULTS Similar to ASL CBF, TOF vascular features (i.e. total vessel length, total vessel volume and number of branches) increased dramatically from baseline to post-surgery, then returned to a level slightly higher than the baseline in long-term follow-up (All P < 0.05). Correlation between time points was observed for all three TOF vascular features but not for ASL CBF. CONCLUSION Intracranial vascular features, including total vessel length, total vessel volume and number of branches, extracted from TOF images are useful in detecting brain blood flow changes induced by carotid revascularization surgery.
Collapse
Affiliation(s)
- Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, USA.
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Manabu Shirakawa
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Wenjin Liu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Dakota Ortega
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Jinmei Chen
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Theodore Trouard
- Department of Biomedical Engineering, The University of Arizona, Tuscon, AZ, USA
| | | | - Wei Zhou
- Department of Surgery, The University of Arizona, Tuscon, AZ, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
41
|
Stephen R, Solomon A, Ngandu T, Levälahti E, Rinne JO, Kemppainen N, Parkkola R, Antikainen R, Strandberg T, Kivipelto M, Soininen H, Liu Y. White Matter Changes on Diffusion Tensor Imaging in the FINGER Randomized Controlled Trial. J Alzheimers Dis 2020; 78:75-86. [PMID: 32925045 PMCID: PMC7683078 DOI: 10.3233/jad-200423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Early pathological changes in white matter microstructure can be studied using the diffusion tensor imaging (DTI). It is not only important to study these subtle pathological changes leading to cognitive decline, but also to ascertain how an intervention would impact the white matter microstructure and cognition in persons at-risk of dementia. Objectives: To study the impact of a multidomain lifestyle intervention on white matter and cognitive changes during the 2-year Finnish Geriatric Intervention Study to prevent Cognitive Impairment and Disability (FINGER), a randomized controlled trial in at-risk older individuals (age 60–77 years) from the general population. Methods: This exploratory study consisted of a subsample of 60 FINGER participants. Participants were randomized to either a multidomain intervention (diet, exercise, cognitive training, and vascular risk management, n = 34) or control group (general health advice, n = 26). All underwent baseline and 2-year brain DTI. Changes in fractional anisotropy (FA), diffusivity along domain (F1) and non-domain (F2) diffusion orientations, mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity (RD), and their correlations with cognitive changes during the 2-year multidomain intervention were analyzed. Results: FA decreased, and cognition improved more in the intervention group compared to the control group (p < 0.05), with no significant intergroup differences for changes in F1, F2, MD, AxD, or RD. The cognitive changes were significantly positively related to FA change, and negatively related to RD change in the control group, but not in the intervention group. Conclusion: The 2-year multidomain FINGER intervention may modulate white matter microstructural alterations.
Collapse
Affiliation(s)
- Ruth Stephen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Esko Levälahti
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha O Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Nina Kemppainen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Riitta Antikainen
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and Oulu City Hospital, Oulu, Finland
| | - Timo Strandberg
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Department of Medicine, Geriatric Clinic, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Miia Kivipelto
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Hilkka Soininen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Yawu Liu
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | | |
Collapse
|
42
|
Simpson LN, Schneble EJ, Griffin ED, Obayashi JT, Setran PA, Ross DA, Pettersson DR, Pollock JM. Morphological changes of the dorsal contour of the corpus callosum during the first two years of life. Pediatr Radiol 2020; 50:543-549. [PMID: 31840188 DOI: 10.1007/s00247-019-04585-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND In the medicolegal literature, focal concavities or notching of the corpus callosum has been thought to be associated with fetal alcohol spectrum disorders. Recent work suggests corpus callosum notching is a dynamic and normal anatomical feature, although it has not yet been defined in early life or infancy. OBJECTIVE Our purpose was to characterize the dorsal contour of the corpus callosum during the first 2 years of life by defining the prevalence, onset and trajectory of notching on midsagittal T1-weighted images. MATERIALS AND METHODS We reviewed retrospectively 1,157 consecutive patients between birth and 2 years of age. Corpus callosum morphology was evaluated and described. A notch was defined as a dorsal concavity of at least 1 mm in depth along the dorsal surface of the corpus callosum. Patient age as well as notch depth, location, number and presence of the pericallosal artery in the notch were noted. RESULTS Two hundred thirty-three notches were identified in 549 patients: 36 anterior, 194 posterior and 3 patients with undulations. A statistically significant (R2=0.53, Beta=0.021, P=0.002) positive correlation between posterior notch prevalence and age in months was noted. A positive correlation between age and depth of the posterior notch was also statistically significant (r=0.32, n=179, P≤0.001). A trend for increased anterior notch prevalence with age was identified with significant correlation between visualized pericallosal artery indentation and anterior notching (r=0.20, n=138, P=0.016). Sub-analysis of the first month of life showed corpus callosum notching was not present. CONCLUSION The presence of posterior notching increased significantly with age and was more frequent than that of anterior notching. Corpus callosum notching was absent in the first week of life, building on prior studies suggesting corpus callosum notching is acquired. This study provides baseline data on normative corpus callosum notching trajectories by age group during early life, a helpful correlate when associating corpus callosum morphology with disease.
Collapse
Affiliation(s)
- Lauren N Simpson
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Erika J Schneble
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Elena D Griffin
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - James T Obayashi
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Phillip A Setran
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Donald A Ross
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA.,Operative Care Division, Portland Veterans Administration Hospital, Portland, OR, USA
| | - David R Pettersson
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA
| | - Jeffrey M Pollock
- Department of Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., CR 135, Portland, OR, 97239, USA.
| |
Collapse
|
43
|
Tomoto T, Riley J, Turner M, Zhang R, Tarumi T. Cerebral vasomotor reactivity during hypo- and hypercapnia across the adult lifespan. J Cereb Blood Flow Metab 2020; 40:600-610. [PMID: 30764704 PMCID: PMC7026853 DOI: 10.1177/0271678x19828327] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Age is the strongest risk factor for cerebrovascular disease; however, age-related changes in cerebrovascular function are still not well understood. The objective of this study was to measure cerebral vasomotor reactivity (CVMR) during hypo- and hypercapnia across the adult lifespan. One hundred fifty-three healthy participants (21-80 years) underwent measurements of cerebral blood flow velocity (CBFV) via transcranial Doppler, mean arterial pressure (MAP) via plethysmograph, and end-tidal CO2 (EtCO2) via capnography during hyperventilation (hypocapnia) and a modified rebreathing protocol (hypercapnia). Cerebrovascular conductance (CVCi) and resistance (CVRi) indices were calculated from the ratios of CBFV and MAP. CVMRs were assessed by the slopes of CBFV and CVCi in response to changes in EtCO2. The baseline CBFV and CVCi decreased and CVRi increased with age. Advanced age was associated with progressive declines in CVMR during hypocapnia indicating reduced cerebral vasoconstriction, but increases in CVMR during hypercapnia indicating increased vasodilation. A negative correlation between hypo- and hypercapnic CVMRs was observed across all subjects (CBFV%/ EtCO2: r = -0.419, CVCi%/ EtCO2: r = -0.442, P < 0.0001). Collectively, these findings suggest that aging is associated with decreases in CBFV, increases in cerebrovascular resistance, reduced vasoconstriction during hypocapnia, but increased vasodilatory responsiveness during hypercapnia.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Riley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | - Marcel Turner
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
44
|
Nam Y, Jang J, Lee HY, Choi Y, Shin NY, Ryu KH, Kim DH, Jung SL, Ahn KJ, Kim BS. Estimating age-related changes in in vivo cerebral magnetic resonance angiography using convolutional neural network. Neurobiol Aging 2019; 87:125-131. [PMID: 31918953 DOI: 10.1016/j.neurobiolaging.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023]
Abstract
Although age-related changes of cerebral arteries were observed in in vivo magnetic resonance angiography (MRA), standard tools or methods measuring those changes were limited. In this study, we developed and evaluated a model to measure age-related changes in the cerebral arteries from 3D MRA using a 3D deep convolutional neural network. From participants without any medical abnormality, training (n = 800) and validation sets (n = 88) of 3D MRA were built. After preprocessing and data augmentation, a 3D convolutional neural network was trained to estimate each subject's chronological age from in vivo MRA data. There was good correlation between chronological age and predicted age (r = 0.83) in an independent test set (n = 354). The predicted age difference (PAD) of the test set was 2.41 ± 6.22. Interaction term between age and sex was significant for PAD (p = 0.008). After correcting for age and interaction term, men showed higher PAD (p < 0.001). Hypertension was associated with higher PAD with marginal significance (p = 0.073). We suggested that PAD might be a potential measurement of cerebral vascular aging.
Collapse
Affiliation(s)
- Yoonho Nam
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Hea Yon Lee
- Department of Health Promotion Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Geriatric Medicine, Department of Internal Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Na Young Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang-Hyun Ryu
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - So-Lyung Jung
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum-Soo Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
45
|
Roeh A, Bunse T, Lembeck M, Handrack M, Pross B, Schoenfeld J, Keeser D, Ertl-Wagner B, Pogarell O, Halle M, Falkai P, Hasan A, Scherr J. Running effects on cognition and plasticity (ReCaP): study protocol of a longitudinal examination of multimodal adaptations of marathon running. Res Sports Med 2019; 28:241-255. [PMID: 31345073 DOI: 10.1080/15438627.2019.1647205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regular moderate physical activity (PA) has been linked to beneficial adaptations in various somatic diseases (e.g. cancer, endocrinological disorders) and a reduction in all-cause mortality from several cardiovascular and neuropsychiatric diseases. This study was designed to investigate acute and prolonged exercise-induced cardio- and neurophysiological responses in endurance runners competing in the Munich Marathon. ReCaP (Running effects on Cognition and Plasticity) is a multimodal and longitudinal experimental study. This study included 100 participants (20-60 years). Six laboratory visits were included during the 3-month period before and the 3-month period after the Munich marathon. The multimodal assessment included laboratory measurements, cardiac and cranial imaging (MRI scans, ultrasound/echocardiography) and neurophysiological methods (EEG and TMS/tDCS), and vessel-analysis (e.g. retinal vessels and wave-reflection analyses) and neurocognitive measurements. The ReCaP study was designed to examine novel exercise-induced cardio- and neurophysiological responses to marathon running at the behavioral, functional and morphological levels. This study will expand our understanding of exercise-induced adaptations and will lead to more individually tailored therapeutic options.
Collapse
Affiliation(s)
- A Roeh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - T Bunse
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Handrack
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - B Pross
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Schoenfeld
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - D Keeser
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - B Ertl-Wagner
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - O Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - M Halle
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Munich, Munich Heart Alliance, Munich, Germany
| | - P Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - A Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - J Scherr
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| |
Collapse
|
46
|
Huang J, Zhao Q, Li M, Duan Q, Zhao Y, Zhang H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model. FASEB J 2019; 33:11194-11209. [PMID: 31295013 DOI: 10.1096/fj.201900756r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Vascular factors play a substantial role in the pathogenesis of glaucoma. Expressed in the vascular endothelium, cytochrome P450 (CYP) 2J2 is one of the CYP epoxygenases that metabolize arachidonic acid to produce epoxyeicosatrienoic acids and exert pleiotropic protective effects on the vasculature. In the present study, we investigated whether endothelium-specific overexpression of CYP2J2 (tie2-CYP2J2-Tr) protects against retinal ganglion cell (RGC) loss induced by glaucoma and in what way retinal vessels are involved in this process. We used a glaucoma model of retinal ischemia-reperfusion (I/R) injury in rats and found that endothelium-specific overexpression of CYP2J2 attenuated RGC loss induced by retinal I/R. Moreover, retinal I/R triggered retinal vascular senescence, indicated by up-regulated senescence-related proteins p53, p16, and β-galactosidase activity. The senescent endothelial cells resulted in pericyte loss and increased endothelial secretion of matrix metallopeptidase 9, which further contributed to RGC loss. CYP2J2 overexpression alleviated vascular senescence, pericyte loss, and matrix metallopeptidase 9 secretion. CYP2J2 suppressed endothelial senescence by down-regulating senescence-associated proteins p53 and p16. These 2 proteins were positively regulated by microRNA-128-3p, which was inhibited by CYP2J2. These results suggest that CYP2J2 protects against endothelial senescence and RGC loss in glaucoma, a discovery that may lead to the development of a potential treatment strategy for glaucoma.-Huang, J., Zhao, Q., Li, M., Duan, Q., Zhao, Y., Zhang, H. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model.
Collapse
Affiliation(s)
- Jingqiu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinshuo Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, California, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, University of California-San Francisco (UCSF), San Francisco, California, USA
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Chen L, Sun J, Hippe DS, Balu N, Yuan Q, Yuan I, Zhao X, Li R, He L, Hatsukami TS, Hwang JN, Yuan C. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe. Neurobiol Aging 2019; 79:59-65. [PMID: 31026623 PMCID: PMC6591051 DOI: 10.1016/j.neurobiolaging.2019.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 01/11/2023]
Abstract
Comprehensive quantification of intracranial artery features may help us assess and understand variations of blood supply during brain development and aging. We analyzed vasculature features of 163 participants (age 56-85 years, mean of 71) from a community study to investigate if any of the features varied with age. Three-dimensional time-of-flight magnetic resonance angiography images of these participants were processed in IntraCranial artery feature extraction technique (a recently developed technique to obtain quantitative features of arteries) to divide intracranial vasculatures into anatomical segments and generate 8 morphometry and intensity features for each segment. Overall, increase in age was found negatively associated with number of branches and average order of intracranial arteries while positively associated with tortuosity, which remained after adjusting for cardiovascular risk factors. The associations with number of branches and average order were consistently found between 3 main intracranial artery regions, whereas the association with tortuosity appeared to be present only in middle cerebral artery/distal arteries. The combination of time-of-flight magnetic resonance angiography and IntraCranial artery feature extraction technique may provide an effective way to study vascular conditions and changes in the aging brain.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Quan Yuan
- Department of Neurology, Xuanwu hospital, Capital Medical University, Beijing, China
| | | | - Xihai Zhao
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Rui Li
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Le He
- Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - Jenq-Neng Hwang
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
48
|
Shaaban CE, Jorgensen DR, Gianaros PJ, Mettenburg J, Rosano C. Cerebrovascular disease: Neuroimaging of cerebral small vessel disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:225-255. [DOI: 10.1016/bs.pmbts.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Li Y, Choi WJ, Wei W, Song S, Zhang Q, Liu J, Wang RK. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography. Neurobiol Aging 2018; 70:148-159. [PMID: 30007164 DOI: 10.1016/j.neurobiolaging.2018.06.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 01/29/2023]
Abstract
Normal aging is associated with significant alterations in brain's vascular structure and function, which can lead to compromised cerebral circulation and increased risk of neurodegeneration. The in vivo examination of cerebral blood flow (CBF), including capillary beds, in aging brains with sufficient spatial detail remains challenging with current imaging modalities. In the present study, we use 3-dimensional (3-D) quantitative optical coherence tomography angiography (OCTA) to examine characteristic differences of the cerebral vasculatures and hemodynamics at the somatosensory cortex between old (16 months old) and young mice (2 months old) in vivo. The quantitative metrics include cortical vascular morphology, CBF, and capillary flow velocity. We show that compared with young mice, the pial arterial tortuosity increases by 14%, the capillary vessel density decreases by 15%, and the CBF reduces by 33% in the old mice. Most importantly, changes in capillary velocity and heterogeneity with aging are quantified for the first time with sufficiently high statistical power between young and old populations, with a 21% (p < 0.05) increase in capillary mean velocity and 19% (p ≤ 0.05) increase in velocity heterogeneity in the latter. Our findings through noninvasive imaging are in line with previous studies of vascular structure modification with aging, with additional quantitative assessment in capillary velocity enabled by advanced OCTA algorithms on a single imaging platform. The results offer OCTA as a promising neuroimaging tool to study vascular aging, which may shed new light on the investigations of vascular factors contributing to the pathophysiology of age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuandong Li
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Woo June Choi
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA; School of Electrical and Electronics Engineering, College of ICT Engineering, Chung-Ang University, Seoul, Korea
| | - Wei Wei
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Shaozhen Song
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Qinqin Zhang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California, San Francisco and SFVAMC, San Francisco, CA, USA
| | - Ruikang K Wang
- Department of Bioengineering, College of Engineering and School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
50
|
Jorgensen DR, Shaaban CE, Wiley CA, Gianaros PJ, Mettenburg J, Rosano C. A population neuroscience approach to the study of cerebral small vessel disease in midlife and late life: an invited review. Am J Physiol Heart Circ Physiol 2018; 314:H1117-H1136. [PMID: 29393657 PMCID: PMC6032084 DOI: 10.1152/ajpheart.00535.2017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Aging in later life engenders numerous changes to the cerebral microvasculature. Such changes can remain clinically silent but are associated with greater risk for negative health outcomes over time. Knowledge is limited about the pathogenesis, prevention, and treatment of potentially detrimental changes in the cerebral microvasculature that occur with advancing age. In this review, we summarize literature on aging of the cerebral microvasculature, and we propose a conceptual framework to fill existing research gaps and advance future work on this heterogeneous phenomenon. We propose that the major gaps in this area are attributable to an incomplete characterization of cerebrovascular pathology, the populations being studied, and the temporality of exposure to risk factors. Specifically, currently available measures of age-related cerebral microvasculature changes are indirect, primarily related to parenchymal damage rather than direct quantification of small vessel damage, limiting the understanding of cerebral small vessel disease (cSVD) itself. Moreover, studies seldom account for variability in the health-related conditions or interactions with risk factors, which are likely determinants of cSVD pathogenesis. Finally, study designs are predominantly cross-sectional and/or have relied on single time point measures, leaving no clear evidence of time trajectories of risk factors or of change in cerebral microvasculature. We argue that more resources should be invested in 1) developing methodological approaches and basic science models to better understand the pathogenic and etiological nature of age-related brain microvascular diseases and 2) implementing state-of-the-science population study designs that account for the temporal evolution of cerebral microvascular changes in diverse populations across the lifespan.
Collapse
Affiliation(s)
- Dana R Jorgensen
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Elizabeth Shaaban
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Peter J Gianaros
- Departments of Psychology and Psychiatry, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|