1
|
Hou J, Hess JL, Zhang C, van Rooij JGJ, Hearn GC, Fan CC, Faraone SV, Fennema-Notestine C, Lin SJ, Escott-Price V, Seshadri S, Holmans P, Tsuang MT, Kremen WS, Gaiteri C, Glatt SJ. Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33019. [PMID: 39679839 PMCID: PMC12048288 DOI: 10.1002/ajmg.b.33019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The comprehensive genome-wide nature of transcriptome studies in Alzheimer's disease (AD) should provide a reliable description of disease molecular states. However, the genes and molecular systems nominated by transcriptomic studies do not always overlap. Even when results do align, it is not clear if those observations represent true consensus across many studies. A couple of sources of variation have been proposed to explain this variability, including tissue-of-origin and cohort type, but its basis remains uncertain. To address this variability and extract reliable results, we utilized all publicly available blood or brain transcriptomic datasets of AD, comprised of 24 brain studies with 4007 samples from six different brain regions, and eight blood studies with 1566 samples. We identified a consensus of AD-associated genes across brain regions and AD-associated gene-sets across blood and brain, generalizable machine learning and linear scoring classifiers, and significant contributors to biological diversity in AD datasets. While AD-associated genes did not significantly overlap between blood and brain, our findings highlighted 15 dysregulated processes shared across blood and brain in AD. The top five most significantly dysregulated processes were DNA replication, metabolism of proteins, protein localization, cell cycle, and programmed cell death. Conversely, addressing the discord across studies, we found that large-scale gene co-regulation patterns can account for a significant fraction of variability in AD datasets. Overall, this study ranked and characterized a compilation of genes and molecular systems consistently identified across a large assembly of AD transcriptome studies in blood and brain, providing potential candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiahui Hou
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gentry C Hearn
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Shu-Ju Lin
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Valentina Escott-Price
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Chris Gaiteri
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Pomerleau F, Sulkowski BA, Suhail C, Quintero JE, Littrell OM, Murphy MP, Huettl P, Gerhardt GA. Age-related differences in resting glutamate levels and glutamate uptake in the hippocampus and frontal cortex of C57BL/6 mice. Neurobiol Aging 2025; 150:146-156. [PMID: 40121724 PMCID: PMC11981836 DOI: 10.1016/j.neurobiolaging.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
In normal aging, little is known in human and animal models about functional changes to glutamate neuronal systems that may contribute to age-related cognitive differences. The present studies investigated glutamate neuronal signaling in the hippocampus (dentate gyrus) and frontal cortex (infralimbic) of young adult (3-8 months), middle-aged (10-13 months), and aged (15-27 months) male and female C57BL/6 mice using microelectrode electrode array (MEA) recording technology to measure second-by-second resting levels of glutamate in anesthetized mice. Glutamate regulation was investigated in vivo by inhibiting the uptake of glutamate by local application of the competitive non-transportable blocker of excitatory amino acid transporters DL-threo-beta-benzyloxyaspartate (TBOA). Resting levels of glutamate and TBOA-induced changes in extracellular glutamate concentration were reliably measured in the hippocampus and frontal cortex of young adult, middle-aged, and aged mice and were seen to significantly increase in aging in the hippocampus. In the frontal cortex we observed an increase only in the middle-aged animals. TBOA produced robust changes in extracellular glutamate in the hippocampus and frontal cortex which showed significant changes in the kinetics of the signals in the middle-aged mice. Interestingly, the variance of the resting glutamate levels in the hippocampus of aged female mice was greater than in aged male mice, supporting a possible age-related gender difference in glutamate function. Taken together, these data support that glutamate signaling in the hippocampus and frontal cortex of aged mice is affected in normal aging with changes in glial regulation of glutamate uptake observed from the TBOA effects in the middle-aged mice.
Collapse
Affiliation(s)
- Francois Pomerleau
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA.
| | - Brittany A Sulkowski
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Cocanut Suhail
- Department of Pharmaceutical Sciences, University of Kentucky, 789 S. Limestone, Lexington, KY 40508, USA
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - O Meagan Littrell
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - M Paul Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Sanders Brown Center on Aging, University of Kentucky Medical Center, 800 S. Limestone, Lexington, KY 40536, USA
| | - Peter Huettl
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Neurosurgery, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40508, USA; Neurorestoration Center, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA; Center for Microelectrode Technology, University of Kentucky Medical Center, 780 Rose St, Lexington, KY 40536-0298, USA
| |
Collapse
|
3
|
Wang H, Chao L, Shen S, You P, Li L, Chen X, Hong Z, Chai Y. Exploring the pharmacological mechanism of Bu-Wang San on Alzheimer's disease through multiple GEO datasets of the human hippocampus, network pharmacology, and metabolomics based on GC-MS and UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2025:119994. [PMID: 40389089 DOI: 10.1016/j.jep.2025.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Wang San (BWS) is a prominent traditional Chinese medicine known for calming the mind and promoting intelligence. It has been reported to improve learning and memory, enhance memory ability, and promote synaptic plasticity. However, the complexity of the material basis and the diversity of therapeutic targets of BWS on Alzheimer's disease (AD) have not been elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic material basis and the mechanism of BWS in AD treatment by comprehensively analyzing multiple GEO datasets of the human hippocampus, network pharmacology, and multi-platform metabolomics validation. MATERIALS AND METHODS Three GEO datasets of the human hippocampus were utilized to identify AD-associated targets using weighted gene co-expression network analysis (WGCNA) and differential analysis. Network pharmacology analyses were performed to investigate BWS's therapeutic material basis and predict the therapeutic targets of BWS on AD. A rat model was induced through the concurrent administration of AlCl3 and D-galactose to validate BWS's therapeutic potential and underlying mechanisms in AD. To validate the results of GEO data mining and network pharmacology, a comprehensive metabolomics approach integrating gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was conducted on rat serum samples to uncover potential metabolic alterations and their associated pathways. RESULTS A total of 6367 genes were selected as AD drug targets through WGCNA analysis and enrichment analysis of disease-associated gene expression profiles in the GEO database. Network pharmacology was performed in this study for the identification of potential interactions between the components of BWS and its targets, TP53, STAT3, EGFR, MAOA, NOS3, PPARG, PRKCA, MAPK8, AChE, ARG1, among others, which were among the top 25 highest probable targets of BWS acting on AD. The multi-platform metabolomics indicated that amino sugar and nucleotide sugar metabolism, glycine, serine and threonine metabolism pathways, and other pathways may be associated with the AD model based on AlCl3 and D-galactose. The comparison of differential metabolites between the AD model group and the BWS intervention group revealed that 66 of the 97 differential metabolites exhibited a pullback trend, indicating a potential therapeutic effect of BWS on these metabolites. CONCLUSION This study builds a systematic strategy combining GEO datasets, network pharmacology, and multi-platform metabolomics and provides valuable insights into the pharmacological mechanism of BWS on AD. The results suggest that BWS may exert its therapeutic effects on AD by modulating the amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, glycine, serine and threonine metabolism pathway and acting on the drug targets of ARG1, MAOA, AChE, XDH, GAD2, et al. This strategy provides a deep understanding of the molecular mechanisms of herbal medicine in treating AD at a systematic level.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Piaoxue You
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China
| | - Ling Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Abyadeh M, Kaya A. Multiomics from Alzheimer's Brains and Mesenchymal Stem Cell-Derived Extracellular Vesicles Identifies Therapeutic Potential of Specific Subpopulations to Target Mitochondrial Proteostasis. J Cent Nerv Syst Dis 2025; 17:11795735251336302. [PMID: 40297324 PMCID: PMC12035200 DOI: 10.1177/11795735251336302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Alzheimer's disease (AD) is characterized by complex molecular alterations that complicate its pathogenesis and contribute to the lack of effective treatments. Mesenchymal stem cell-derived extracellular vesicles (EVs) have shown promise in AD models, but results across different EV subpopulations remain inconsistent. Objectives This study investigates proteomic and transcriptomic data from publicly available postmortem AD brain datasets to identify molecular changes at both the gene and protein levels. These findings are then compared with the proteomes of various EV subpopulations, differing in size and distribution, to determine the most promising subtype for compensating molecular degeneration in AD. Design We conducted a comprehensive analysis of 788 brain samples, including 481 AD cases and 307 healthy controls, examining protein and mRNA levels to uncover AD-associated molecular changes. These findings were then compared with the proteomes of different EV subpopulations to identify potential therapeutic candidates. Methods A multi-omics approach was employed, integrating proteomic and transcriptomic data analysis, miRNA and transcription factor profiling, protein-protein network construction, hub gene identification, and enrichment analyses. This approach aimed to explore molecular changes in AD brains and pinpoint the most relevant EV subpopulations for therapeutic intervention. Results We identified common alterations in the cAMP signaling pathway and coagulation cascade at both the protein and mRNA levels. Distinct changes in energy metabolism were observed at the protein level but not at the mRNA level. A specific EV subtype, characterized by a broader size distribution obtained through high-speed centrifugation, was identified as capable of compensating for dysregulated mitochondrial proteostasis in AD brains. Network biology analyses further highlighted potential regulators of key therapeutic proteins within this EV subtype. Conclusion This study underscores the critical role of proteomic alterations in AD and identifies a promising EV subpopulation, enriched with proteins targeting mitochondrial proteostasis, as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
5
|
Briller S, Ben David G, Amir Y, Atzmon G, Somekh J. A computational framework for detecting inter-tissue gene-expression coordination changes with aging. Sci Rep 2025; 15:11014. [PMID: 40164681 PMCID: PMC11958765 DOI: 10.1038/s41598-025-94043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Aging is a complex and systematic biological process that involves multiple genes and biological pathways across different tissues. While existing studies focus on tissue-specific aging factors, the inter-tissue interplay between molecular pathways during aging remains insufficiently explored. To bridge this gap, we propose a novel computational framework to identify the effect of aging on the coordinated patterns of gene-expression across multiple tissues. Our framework includes (1) an adjusted multi-tissue weighted gene co-expression network analysis, (2) differential network connectivity analysis between age groups and (3) machine learning models, XGBoost and Random Forest (RF) fed by gene expression levels and lower-dimensional pathway score space, to identify unique key inter-tissue genes and biological pathways for classifying aging. We applied our approach to three representative tissues: Adipose-Subcutaneous, Muscle-Skeletal and Brain-Cortex. The RF model demonstrated the best performance in predicting age group (AUC < 88%) highlighting key genes involved in inter-tissue coordination processes in aging. We also identified the inter-tissue involvement of lipid metabolism, immune system, and cell communication pathways during aging and detected distinct aging pathways manifested between tissues. The proposed framework highlights the importance of inter-tissue coordination processes underlying aging and provides valuable insights into aging mechanisms which can further assist in the development of therapeutic strategies promoting healthy aging.
Collapse
Affiliation(s)
- Shaked Briller
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Gil Ben David
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Yam Amir
- Department of Human Biology, University of Haifa, Haifa, Israel
- Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa, Israel
| | - Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Stein-O'Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional signatures of hippocampal tau pathology in primary age-related tauopathy and Alzheimer's disease. Cell Rep 2025; 44:115422. [PMID: 40085647 PMCID: PMC12019863 DOI: 10.1016/j.celrep.2025.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
In primary age-related tauopathy (PART) and Alzheimer's disease (AD), tau aggregates share a similar structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, transcriptional similarities between PART and AD and gene expression changes within tau-pathology-bearing neurons are largely unknown. Using GeoMx spatial transcriptomics, mRNA was quantified in hippocampal neurons with and without tau pathology in PART and AD. Synaptic genes were down-regulated in disease overall but up-regulated in tau-pathology-positive neurons. Two transcriptional signatures were associated with intraneuronal tau, both validated in a cortical AD dataset. Genes in the up-regulated signature were enriched in calcium regulation and synaptic function. Notably, transcriptional changes associated with intraneuronal tau in PART and AD were similar, suggesting a possible mechanistic relationship. These findings highlight the power of molecular analysis stratified by pathology and provide insight into common pathways associated with tau pathology in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O'Brien
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ernest M Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA
| | - Meaghan Morris
- Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Pashaei E, Pashaei E, Aydin N. Biomarker Identification for Alzheimer's Disease Using a Multi-Filter Gene Selection Approach. Int J Mol Sci 2025; 26:1816. [PMID: 40076442 PMCID: PMC11898513 DOI: 10.3390/ijms26051816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
There is still a lack of effective therapies for Alzheimer's disease (AD), the leading cause of dementia and cognitive decline. Identifying reliable biomarkers and therapeutic targets is crucial for advancing AD research. In this study, we developed an aggregative multi-filter gene selection approach to identify AD biomarkers. This method integrates hub gene ranking techniques, such as degree and bottleneck, with feature selection algorithms, including Random Forest and Double Input Symmetrical Relevance, and applies ranking aggregation to improve accuracy and robustness. Five publicly available AD-related microarray datasets (GSE48350, GSE36980, GSE132903, GSE118553, and GSE5281), covering diverse brain regions like the hippocampus and frontal cortex, were analyzed, yielding 803 overlapping differentially expressed genes from 464 AD and 492 normal cases. An independent dataset (GSE109887) was used for external validation. The approach identified 50 prioritized genes, achieving an AUC of 86.8 in logistic regression on the validation dataset, highlighting their predictive value. Pathway analysis revealed involvement in critical biological processes such as synaptic vesicle cycles, neurodegeneration, and cognitive function. These findings provide insights into potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Elnaz Pashaei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Elham Pashaei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nizamettin Aydin
- Department of Computer Engineering, Faculty of Computer and Informatics Engineering, Istanbul Technical University, Istanbul 34467, Türkiye;
| |
Collapse
|
8
|
Hosseinpouri A, Sadegh K, Zarei-Behjani Z, Dehghan Z, Karbalaei R. Identification of critical genes and drug repurposing targets in entorhinal cortex of Alzheimer's disease. Neurogenetics 2025; 26:27. [PMID: 39928227 DOI: 10.1007/s10048-025-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is a slow brain degeneration disorder in which the accumulation of beta-amyloid precursor plaque and an intracellular neurofibrillary tangle of hyper-phosphorylated tau proteins in the brain have been implicated in neurodegeneration. In this study, we identified the most important genes that are unique and sensitive in the entorhinal region of the brain to target AD effectively. At first, microarrays data are selected and constructed protein-protein interaction network (PPIN) and gene regulatory network (GRN) from differentially expressed genes (DEGs) using Cytoscape software. Then, networks analysis was performed to determine hubs, bottlenecks, clusters, and signaling pathways in AD. Finally, critical genes were selected as targets for repurposing drugs. Analyzing the constructed PPIN and GRN identified CD44, ELF1, HSP90AB1, NOC4L, BYSL, RRP7A, SLC17A6, and RUVBL2 as critical genes that are dysregulated in the entorhinal region of AD suffering patients. The functional enrichment analysis revealed that DEG nodes are involved in the synaptic vesicle cycle, glutamatergic synapse, PI3K-Akt signaling pathway, retrograde endocannabinoid signaling, endocrine and other factor-regulated calcium reabsorption, ribosome biogenesis in eukaryotes, and nicotine addiction. Gentamicin, isoproterenol, and tumor necrosis factor are repurposing new drugs that target CD44, which plays an important role in the development of AD. Following our model validation using the existing experimental data, our model based on previous experimental reports suggested critical molecules and candidate drugs involved in AD for further investigations in vitro and in vivo.
Collapse
Affiliation(s)
- Arghavan Hosseinpouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Sadegh
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Karbalaei
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
9
|
Coleman PD, Delvaux E, Kordower JH, Boehringer A, Huseby CJ. Massive changes in gene expression and their cause(s) can be a unifying principle in the pathobiology of Alzheimer's disease. Alzheimers Dement 2025; 21:e14555. [PMID: 39912452 PMCID: PMC11851168 DOI: 10.1002/alz.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/10/2024] [Accepted: 12/25/2024] [Indexed: 02/07/2025]
Abstract
Understanding of the biology of Alzheimer's disease (AD) has long been fragmented, with various investigators concentrating on amyloid beta (Aβ) or tau, inflammation, cell death pathways, misfolded proteins, glia, and more. Yet data from multiple authors has repeatedly shown altered expression of myriad genes related to these seemingly disparate phenomena. In 2022, Morgan et al. organized the massive data on changes in AD in a meticulous survey of the literature and related these changes to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Their data showed that 91% of the known KEGG pathways are involved in AD and that many of these pathways are represented by the known cellular/molecular phenomena of AD. Such data then raise the fundamental question: What mechanism(s) may be responsible for such widespread changes in gene expression? We review evidence for a unifying model based on sequestrations in stress granules and alteration of nucleocytoplasmic transport in AD. HIGHLIGHTS: In Alzheimer's disease (AD), critical changes take place in neurons before the appearance of plaques or tangles. Addressing these early changes provides a path to early detection and effective intervention in AD.
Collapse
Affiliation(s)
- Paul D. Coleman
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Elaine Delvaux
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Jeffrey H. Kordower
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Ashley Boehringer
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| | - Carol J. Huseby
- Banner Neurodegenerative Disease Research CenterBiodesign InstituteArizona State UniversityTempeArizonaUSA
| |
Collapse
|
10
|
Capilla-López MD, Deprada A, Andrade-Talavera Y, Martínez-Gallego I, Coatl-Cuaya H, Sotillo P, Rodríguez-Alvarez J, Rodríguez-Moreno A, Parra-Damas A, Saura CA. Synaptic vulnerability to amyloid-β and tau pathologies differentially disrupts emotional and memory neural circuits. Mol Psychiatry 2025:10.1038/s41380-025-02901-9. [PMID: 39885298 DOI: 10.1038/s41380-025-02901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions. Early memory deficits were associated with hippocampal tau pathology in Tau and APP/Tau mice, whereas anxiety and fear appeared linked to intracellular Aβ in the basolateral amygdala (BLA) of APP and APP/Tau mice. Transcriptome hippocampal profiling revealed gene changes affecting myelination and RNA processing in Tau mice, and inflammation and synaptic-related pathways in APP/Tau mice at 6 months. At 9 months, we detected common and region-specific changes in astrocytic, microglia and 63 AD-associated genes in the hippocampus and BLA of APP/Tau mice. Spatial learning deficits were associated with synaptic tau accumulation and synapse disruption in the hippocampus of Tau and APP/Tau mice, whereas emotional disturbances were linked to Aβ pathology but not synaptic tau in the BLA. Interestingly, Aβ and tau exhibited synergistic detrimental effects in long-term potentiation (LTP) in the hippocampus but they counteract with each other to mitigate LTP impairments in the amygdala. These findings indicate that Aβ and tau pathologies cause region-specific effects and synergize to induce synaptic dysfunction and immune responses, contributing to the differing vulnerability of memory and emotional neural circuits in AD.
Collapse
Affiliation(s)
- Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Irene Martínez-Gallego
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Heriberto Coatl-Cuaya
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Paula Sotillo
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Sevilla, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
11
|
Studer M, Heinemann D, Gutbrod K, Henke K. Forgetting is comparable between healthy young and old people. Sci Rep 2024; 14:31176. [PMID: 39732797 DOI: 10.1038/s41598-024-82570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Aging is typically associated with declines in episodic memory, executive functions, and sleep quality. Therefore, the sleep-dependent stabilization of episodic memory is suspected to decline during aging. This might reflect in accelerated long-term forgetting, which refers to normal learning and retention over hours, yet an abnormal retention over nights and days. Accelerated long-term forgetting has been observed in dementia, mild cognitive impairment, and in people with memory complaints. Here, we explored whether accelerated long-term forgetting also manifests in healthy aging. We investigated verbal episodic memory in 236 healthy men and women between 18 and 77 years of age. All participants were mentally intact in terms of executive functions, working memory, episodic memory, verbal intelligence, and mood. We related their forgetting rates over one week following learning to their subjective sleep quality and executive functions. Fifteen words were freely recalled and then recognized among 30 distractor words at 30 min and again at one week following learning. Although the healthy older adults compared to the healthy younger adults reported a diminished sleep efficiency and learned fewer words, they exhibited no disproportionate forgetting over days. Hence, accelerated long-term forgetting is not present in healthy aging but might be a first sign of memory dysfunction due to neuropathology.
Collapse
Affiliation(s)
- Martina Studer
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital Basel (UKBB), Basel, Switzerland.
- Department of Clinical Research, University of Basel, Basel, Switzerland.
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department of Psychology, University of Basel, Basel, Switzerland.
| | - Dörthe Heinemann
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Neurozentrum Bern, Bern, Switzerland
| | - Klemens Gutbrod
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Neurozentrum Bern, Bern, Switzerland
| | - Katharina Henke
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Ball BK, Hyun Park J, Proctor EA, Brubaker DK. Cross-disease modeling of peripheral blood identifies biomarkers of type 2 diabetes predictive of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627991. [PMID: 39713369 PMCID: PMC11661382 DOI: 10.1101/2024.12.11.627991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Type 2 diabetes (T2D) is a significant risk factor for Alzheimer's disease (AD). Despite multiple studies reporting this connection, the mechanism by which T2D exacerbates AD is poorly understood. It is challenging to design studies that address co-occurring and comorbid diseases, limiting the number of existing evidence bases. To address this challenge, we expanded the applications of a computational framework called Translatable Components Regression (TransComp-R), initially designed for cross-species translation modeling, to perform cross-disease modeling to identify biological programs of T2D that may exacerbate AD pathology. Using TransComp-R, we combined peripheral blood-derived T2D and AD human transcriptomic data to identify T2D principal components predictive of AD status. Our model revealed genes enriched for biological pathways associated with inflammation, metabolism, and signaling pathways from T2D principal components predictive of AD. The same T2D PC predictive of AD outcomes unveiled sex-based differences across the AD datasets. We performed a gene expression correlational analysis to identify therapeutic hypotheses tailored to the T2D-AD axis. We identified six T2D and two dementia medications that induced gene expression profiles associated with a non-T2D or non-AD state. Finally, we assessed our blood-based T2DxAD biomarker signature in post-mortem human AD and control brain gene expression data from the hippocampus, entorhinal cortex, superior frontal gyrus, and postcentral gyrus. Using partial least squares discriminant analysis, we identified a subset of genes from our cross-disease blood-based biomarker panel that significantly separated AD and control brain samples. Our methodological advance in cross-disease modeling identified biological programs in T2D that may predict the future onset of AD in this population. This, paired with our therapeutic gene expression correlational analysis, also revealed alogliptin, a T2D medication that may help prevent the onset of AD in T2D patients.
Collapse
Affiliation(s)
- Brendan K. Ball
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Hyun Park
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Penn State University, State College, PA, USA
- Center for Neural Engineering, Penn State University, State College, PA, USA
- Department of Engineering Science & Mechanics, Penn State University, State College, PA, USA
| | - Douglas K. Brubaker
- Center for Global Health & Diseases, Department of Pathology, School of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Blood Heart Lung Immunology Research Center, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
13
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
14
|
Zaretsky A, Venzor AG, Eremenko E, Stein D, Smirnov D, Rabuah Y, Dryer R, Kriukov D, Kaluski-Kopatch S, Einav M, Khrameeva E, Toiber D. SIRT6-dependent functional switch via K494 modifications of RE-1 silencing transcription factor. Cell Death Dis 2024; 15:798. [PMID: 39511137 PMCID: PMC11543946 DOI: 10.1038/s41419-024-07160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RE-1 silencing transcription factor (REST) is a key repressor of neural genes. REST is upregulated under stress signals, aging and neurodegenerative diseases, but although it is upregulated, its function is lost in Alzheimer's Disease. However, why it becomes inactive remains unclear. Here, we show that the NAD-dependent deacetylase SIRT6 regulates REST expression, location and activity. In the absence of SIRT6, REST is overexpressed but mislocalized, leading to a partial loss of its activity and causing it to become toxic. SIRT6 deficiency abrogates REST and EZH2 interaction, perturbs the location of REST to the heterochromatin Lamin B ring, and leads to REST target gene overexpression. SIRT6 reintroduction or REST methyl-mimic K494M expression rescues this phenotype, while an acetyl-mimic mutant loses its function even in WT cells. Our studies define a novel regulatory switch where, depending on SIRT6 presence, the function of REST is regulated by post-translational modifications on K494 (Ac/me), affecting neuronal gene expression. In WT cells (left), REST functions as a repressor due to its methylation, which allows proper localization and interaction with EZH2. In SIRT6 KO cells (right), REST is overexpressed, but it is mislocalized and acetylated instead of methylated, impairing its interaction with EZH2. REST localizes in the cytoplasm in autophagosomes. The overall increase in REST without SIRT6 results in non-functional and toxic REST proteins. During aging, SIRT6 declines in the brain, while REST is upregulated to protect it. In pathological aging, where SIRT6 levels are very low, the increase in REST without SIRT6 results in non-functional and toxic REST.
Collapse
Affiliation(s)
- Adam Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Alfredo Garcia Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dmitrii Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Yuval Rabuah
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Rebecca Dryer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dmitrii Kriukov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Shai Kaluski-Kopatch
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
15
|
Ghosh P, Fontanella RA, Scisciola L, Taktaz F, Pesapane A, Basilicata MG, Tortorella G, Matacchione G, Capuano A, Vietri MT, Selvaggi F, Paolisso G, Barbieri M. Obesity-induced neuronal senescence: Unraveling the pathophysiological links. Ageing Res Rev 2024; 101:102533. [PMID: 39368666 DOI: 10.1016/j.arr.2024.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Obesity is one of the most prevalent and increasing metabolic disorders and is considered one of the twelve risk factors for dementia. Numerous studies have demonstrated that obesity induces pathophysiological changes leading to cognitive decline; however, the underlying molecular mechanisms are yet to be fully elucidated. Various biochemical processes, including chronic inflammation, oxidative stress, insulin resistance, dysregulation of lipid metabolism, disruption of the blood-brain barrier, and the release of adipokines have been reported to contribute to the accumulation of senescent neurons during obesity. These senescent cells dysregulate neuronal health and function by exhibiting a senescence-associated secretory phenotype, inducing neuronal inflammation, deregulating cellular homeostasis, causing mitochondrial dysfunction, and promoting microglial infiltration. These factors act as major risks for the occurrence of neurodegenerative diseases and cognitive decline. This review aims to focus on how obesity upregulates neuronal senescence and explores both pharmacological and non-pharmacological interventions for preventing cognitive impairments, thus offering new insights into potential therapeutic strategies.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Annalisa Capuano
- Department of Experimental Medicine - Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples 80138, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio, Naples 80138, Italy; UOC Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naple 80138, Italy
| | - Francesco Selvaggi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
16
|
Wu CC, Meyer DN, Haimbaugh A, Baker TR. Implications of Lead (Pb)-Induced Transcriptomic and Phenotypic Alterations in the Aged Zebrafish ( Danio rerio). TOXICS 2024; 12:745. [PMID: 39453165 PMCID: PMC11511149 DOI: 10.3390/toxics12100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Lead (Pb) is a well-known neurotoxin with established adverse effects on the neurological functions of children and younger adults, including motor, learning, and memory abilities. However, its potential impact on older adults has received less attention. Using the zebrafish model, our study aims to characterize the dose-response relationship between environmentally relevant Pb exposure levels and their effects on changes in behavior and transcriptomics during the geriatric periods. We exposed two-year-old zebrafish to waterborne lead acetate (1, 10, 100, 1000, or 10,000 µg/L) or a vehicle (DMSO) for 5 days. While lower concentrations (1-100 µg/L) reflect environmentally relevant Pb levels, higher concentrations (1000-10,000 µg/L) were included to assess acute toxicity under extreme exposure scenarios. We conducted adult behavior assessment to evaluate the locomotor activity following exposure. The same individual fish were subsequently sacrificed for brain dissection after a day of recovery in the aquatic system. RNA extraction and sequencing were then performed to evaluate the Pb-induced transcriptomic changes. Higher (1000-10,000 ug/L) Pb levels induced hyperactive locomotor patterns in aged zebrafish, while lower (10-100 ug/L) Pb levels resulted in the lowest locomotor activity compared to the control group. Exposure to 100 µg/L led to the highest number of differentially expressed genes (DEGs), while 10,000 µg/L induced larger fold changes in both directions. The neurological pathways impacted by Pb exposure include functions related to neurotransmission, such as cytoskeletal regulation and synaptogenesis, and oxidative stress response, such as mitochondrial dysfunction and downregulation of heat shock protein genes. These findings emphasize a U-shape dose-response relationship with Pb concentrations in locomotor activity and transcriptomic changes in the aging brain.
Collapse
Affiliation(s)
- Chia-Chen Wu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001, Daxue Rd, East District, Hsinchu City 300093, Taiwan;
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
| | - Danielle N. Meyer
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Alex Haimbaugh
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Tracie R. Baker
- Department of Environmental and Global Health, University of Florida, 1225 Center Drive, Gainesville, FL 32610, USA; (D.N.M.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
- UF Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Wang J, Chen L, Wang Z, Zhang S, Ding D, Lin G, Zhang H, Boda VK, Kong D, Ortyl TC, Wang X, Lu L, Zhou FM, Bezprozvanny I, Du J, Wu Z, Li W, Liao FF. TRPC3 suppression ameliorates synaptic dysfunctions and memory deficits in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.611061. [PMID: 39345364 PMCID: PMC11430068 DOI: 10.1101/2024.09.16.611061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Transient receptor potential canonical (TRPC) channels are widely expressed in the brain; however, their precise roles in neurodegeneration, such as Alzheimer's disease (AD) remain elusive. Bioinformatic analysis of the published single-cell RNA-seq data collected from AD patient cohorts indicates that the Trpc3 gene is uniquely upregulated in excitatory neurons. TRPC3 expression is also upregulated in post-mortem AD brains, and in both acute and chronic mouse models of AD. Functional screening of TRPC3 antagonists resulted in a lead inhibitor JW-65, which completely rescued Aβ-induced neurotoxicity, impaired synaptic plasticity (e.g., LTP), and learning memory in acute and chronic experimental AD models. In cultured rat hippocampal neurons, we found that treatment with soluble β-amyloid oligomers (AβOs) induces rapid and sustained upregulation of the TRPC3 expression selectively in excitatory neurons. This aberrantly upregulated TRPC3 contributes to AβOs-induced Ca 2+ overload through the calcium entry and store-release mechanisms. The neuroprotective action of JW-65 is primarily mediated via restoring AβOs-impaired Ca 2+ /calmodulin-mediated signaling pathways, including calmodulin kinases CaMKII/IV and calcineurin (CaN). The synaptic protective mechanism via TRPC3 inhibition was further supported by hippocampal RNA-seq data from the symptomatic 5xFAD mice after chronic treatment with JW-65. Overall, these findings not only validate TRPC3 as a novel therapeutic target for treating synaptic dysfunction of AD but most importantly, disclose a distinct role of upregulated TRPC3 in AD pathogenesis in mediating Ca 2+ dyshomeostasis.
Collapse
|
18
|
de Ávila C, Suazo C, Nolz J, Nicholas Cochran J, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. Neurobiol Aging 2024; 141:160-170. [PMID: 38964013 DOI: 10.1016/j.neurobiolaging.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Eric Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
19
|
López-Cerdán A, Andreu Z, Hidalgo MR, Soler-Sáez I, de la Iglesia-Vayá M, Mikozami A, Guerini FR, García-García F. An integrated approach to identifying sex-specific genes, transcription factors, and pathways relevant to Alzheimer's disease. Neurobiol Dis 2024; 199:106605. [PMID: 39009097 DOI: 10.1016/j.nbd.2024.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Age represents a significant risk factor for the development of Alzheimer's disease (AD); however, recent research has documented an influencing role of sex in several features of AD. Understanding the impact of sex on specific molecular mechanisms associated with AD remains a critical challenge to creating tailored therapeutic interventions. METHODS The exploration of the sex-based differential impact on disease (SDID) in AD used a systematic review to first select transcriptomic studies of AD with data regarding sex in the period covering 2002 to 2021 with a focus on the primary brain regions affected by AD - the cortex (CT) and the hippocampus (HP). A differential expression analysis for each study and two tissue-specific meta-analyses were then performed. Focusing on the CT due to the presence of significant SDID-related alterations, a comprehensive functional characterization was conducted: protein-protein network interaction and over-representation analyses to explore biological processes and pathways and a VIPER analysis to estimate transcription factor activity. RESULTS We selected 8 CT and 5 HP studies from the Gene Expression Omnibus (GEO) repository for tissue-specific meta-analyses. We detected 389 significantly altered genes in the SDID comparison in the CT. Generally, female AD patients displayed more affected genes than males; we grouped said genes into six subsets according to their expression profile in female and male AD patients. Only subset I (repressed genes in female AD patients) displayed significant results during functional profiling. Female AD patients demonstrated more significant impairments in biological processes related to the regulation and organization of synapsis and pathways linked to neurotransmitters (glutamate and GABA) and protein folding, Aβ aggregation, and accumulation compared to male AD patients. These findings could partly explain why we observe more pronounced cognitive decline in female AD patients. Finally, we detected 23 transcription factors with different activation patterns according to sex, with some associated with AD for the first time. All results generated during this study are readily available through an open web resource Metafun-AD (https://bioinfo.cipf.es/metafun-ad/). CONCLUSION Our meta-analyses indicate the existence of differences in AD-related mechanisms in female and male patients. These sex-based differences will represent the basis for new hypotheses and could significantly impact precision medicine and improve diagnosis and clinical outcomes in AD patients.
Collapse
Affiliation(s)
- Adolfo López-Cerdán
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain; Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - María de la Iglesia-Vayá
- Biomedical Imaging Unit FISABIO-CIPF, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana, 46012, Valencia, Spain
| | - Akiko Mikozami
- Oral Health/Brain Health/Total health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | - Francisco García-García
- Computational Biomedicine Laboratory, Principe Felipe Research Center (CIPF), 46012, Valencia, Spain.
| |
Collapse
|
20
|
Nguyen DPQ, Pham S, Jallow AW, Ho NT, Le B, Quang HT, Lin YF, Lin YF. Multiple Transcriptomic Analyses Explore Potential Synaptic Biomarker Rabphilin-3A for Alzheimer's Disease. Sci Rep 2024; 14:18717. [PMID: 39134564 PMCID: PMC11319786 DOI: 10.1038/s41598-024-66693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder afflicting the elderly population worldwide. The identification of potential gene candidates for AD holds promises for diagnostic biomarkers and therapeutic targets. Employing a comprehensive strategy, this study integrated transcriptomic data from diverse data sources, including microarray and single-cell datasets from blood and tissue samples, enabling a detailed exploration of gene expression dynamics. Through this thorough investigation, 19 notable candidate genes were found with consistent expression changes across both blood and tissue datasets, suggesting their potential as biomarkers for AD. In addition, single cell sequencing analysis further highlighted their specific expression in excitatory and inhibitory neurons, the primary functional units in the brain, underscoring their relevance to AD pathology. Moreover, the functional enrichment analysis revealed that three of the candidate genes were downregulated in synaptic signaling pathway. Further validation experiments significantly showed reduced levels of rabphilin-3A (RPH3A) in 3xTg-AD model mice, implying its role in disease pathogenesis. Given its role in neurotransmitter exocytosis and synaptic function, further investigation into RPH3A and its interactions with neurotrophic proteins may provide valuable insights into the complex molecular mechanisms underlying synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Son Pham
- BioTuring Inc., San Diego, CA, 92121, USA
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
| | | | - Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hung Tran Quang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan.
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City, 110, Taiwan.
| |
Collapse
|
21
|
Chujan S, Cholpraipimolrat W, Satayavivad J. Integrated Transcriptomics and Network Analysis Identified Altered Neural Mechanisms in Frontal Aging Brain-Associated Alzheimer's Disease. Biochem Genet 2024; 62:2382-2398. [PMID: 37934339 DOI: 10.1007/s10528-023-10549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The late stage of AD typically develops after 60 years of age and AD pathogenesis can be detected predominately in the frontal lobe, which is responsible for memory. Multiple alterations in cellular mechanisms have been associated with AD, but there is no clear information on AD pathogenesis during brain aging. This study aimed to explore the differentially expressed genes (DEGs) in the frontal lobe of aging brains and to identify shared crucial mechanisms in the aging brain linked to AD pathogenesis. Three datasets were downloaded from the Gene Expression Omnibus (GEO). Biological function analysis was performed by DAVID and KEGG databases. An AD patient's cohort (GSE150696) was collected for verification of the enriched pathway. The results demonstrated that multiple neurochemical synapsis and regulation of the cytoskeleton are linked to AD pathogenesis during aging. Taken together, this study contributes to our further understanding of neural alterations during aging in AD that could be used to develop therapeutics for early intervention to prevent or slow progression.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand.
| |
Collapse
|
22
|
Soares C, Da Ros LU, Machado LS, Rocha A, Lazzarotto G, Carello-Collar G, De Bastiani MA, Ferrari-Souza JP, Lussier FZ, Souza DO, Rosa-Neto P, Pascoal TA, Bellaver B, Zimmer ER. The glutamatergic system in Alzheimer's disease: a systematic review with meta-analysis. Mol Psychiatry 2024; 29:2261-2273. [PMID: 38366114 DOI: 10.1038/s41380-024-02473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.
Collapse
Affiliation(s)
- Carolina Soares
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lucas Uglione Da Ros
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luiza Santos Machado
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia Rocha
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gabriela Lazzarotto
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marco A De Bastiani
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Firoza Z Lussier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Douglas Research Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil.
- Department of Biochemistry, UFRGS, Porto Alegre, Brazil.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Brain Institute of Rio Grande do Sul - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
23
|
Nguyen DPQ, Jallow AW, Lin YF, Lin YF. Exploring the Potential Role of Oligodendrocyte-Associated PIP4K2A in Alzheimer's Disease Complicated with Type 2 Diabetes Mellitus via Multi-Omic Analysis. Int J Mol Sci 2024; 25:6640. [PMID: 38928345 PMCID: PMC11204139 DOI: 10.3390/ijms25126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are two common diseases that affect the elderly population worldwide. The identification of common genes associated with AD and T2DM holds promise for potential biomarkers and intriguing pathogenesis of these two complicated diseases. This study utilized a comprehensive approach by integrating transcriptome data from multiple cohorts, encompassing both AD and T2DM. The analysis incorporated various data types, including blood and tissue samples as well as single-cell datasets, allowing for a detailed assessment of gene expression patterns. From the brain region-specific single-cell analysis, PIP4K2A, which encodes phosphatidylinositol-5-phosphate 4-kinase type 2 alpha, was found to be expressed mainly in oligodendrocytes compared to other cell types. Elevated levels of PIP4K2A in AD and T2DM patients' blood were found to be associated with key cellular processes such as vesicle-mediated transport, negative regulation of autophagosome assembly, and cytosolic transport. The identification of PIP4K2A's potential roles in the cellular processes of AD and T2DM offers valuable insights into the development of biomarkers for diagnosis and therapy, especially in the complication of these two diseases.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue City 49120, Vietnam
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University—Shuang Ho Hospital, New Taipei City 235, Taiwan;
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan; (D.P.Q.N.); (A.W.J.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City 110, Taiwan
| |
Collapse
|
24
|
Lee S, Jang K, Lee H, Jo YS, Kwon D, Park G, Bae S, Kwon YW, Jang J, Oh Y, Lee C, Yoon JH. Multi-proteomic analyses of 5xFAD mice reveal new molecular signatures of early-stage Alzheimer's disease. Aging Cell 2024; 23:e14137. [PMID: 38436501 PMCID: PMC11166370 DOI: 10.1111/acel.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
An early diagnosis of Alzheimer's disease is crucial as treatment efficacy is limited to the early stages. However, the current diagnostic methods are limited to mid or later stages of disease development owing to the limitations of clinical examinations and amyloid plaque imaging. Therefore, this study aimed to identify molecular signatures including blood plasma extracellular vesicle biomarker proteins associated with Alzheimer's disease to aid early-stage diagnosis. The hippocampus, cortex, and blood plasma extracellular vesicles of 3- and 6-month-old 5xFAD mice were analyzed using quantitative proteomics. Subsequent bioinformatics and biochemical analyses were performed to compare the molecular signatures between wild type and 5xFAD mice across different brain regions and age groups to elucidate disease pathology. There was a unique signature of significantly altered proteins in the hippocampal and cortical proteomes of 3- and 6-month-old mice. The plasma extracellular vesicle proteomes exhibited distinct informatic features compared with the other proteomes. Furthermore, the regulation of several canonical pathways (including phosphatidylinositol 3-kinase/protein kinase B signaling) differed between the hippocampus and cortex. Twelve potential biomarkers for the detection of early-stage Alzheimer's disease were identified and validated using plasma extracellular vesicles from stage-divided patients. Finally, integrin α-IIb, creatine kinase M-type, filamin C, glutamine γ-glutamyltransferase 2, and lysosomal α-mannosidase were selected as distinguishing biomarkers for healthy individuals and early-stage Alzheimer's disease patients using machine learning modeling with approximately 79% accuracy. Our study identified novel early-stage molecular signatures associated with the progression of Alzheimer's disease, thereby providing novel insights into its pathogenesis.
Collapse
Affiliation(s)
- Seulah Lee
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Kuk‐In Jang
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Hagyeong Lee
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Yeon Suk Jo
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
- Department of Brain‐Cognitive ScienceDaegu‐Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Dayoung Kwon
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Geuna Park
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Sungwon Bae
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Yang Woo Kwon
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Jin‐Hyeok Jang
- Department of Brain‐Cognitive ScienceDaegu‐Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Yong‐Seok Oh
- Department of Brain‐Cognitive ScienceDaegu‐Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Chany Lee
- Cognitive Science Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research GroupKorea Brain Research InstituteDaeguRepublic of Korea
| |
Collapse
|
25
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
26
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
27
|
Mitra S, Bp K, C R S, Saikumar NV, Philip P, Narayanan M. Alzheimer's disease rewires gene coexpression networks coupling different brain regions. NPJ Syst Biol Appl 2024; 10:50. [PMID: 38724582 PMCID: PMC11082197 DOI: 10.1038/s41540-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Connectome studies have shown how Alzheimer's disease (AD) disrupts functional and structural connectivity among brain regions. But the molecular basis of such disruptions is less studied, with most genomic/transcriptomic studies performing within-brain-region analyses. To inspect how AD rewires the correlation structure among genes in different brain regions, we performed an Inter-brain-region Differential Correlation (Inter-DC) analysis of RNA-seq data from Mount Sinai Brain Bank on four brain regions (frontal pole, superior temporal gyrus, parahippocampal gyrus and inferior frontal gyrus, comprising 264 AD and 372 control human post-mortem samples). An Inter-DC network was assembled from all pairs of genes across two brain regions that gained (or lost) correlation strength in the AD group relative to controls at FDR 1%. The differentially correlated (DC) genes in this network complemented known differentially expressed genes in AD, and likely reflects cell-intrinsic changes since we adjusted for cell compositional effects. Each brain region used a distinctive set of DC genes when coupling with other regions, with parahippocampal gyrus showing the most rewiring, consistent with its known vulnerability to AD. The Inter-DC network revealed master dysregulation hubs in AD (at genes ZKSCAN1, SLC5A3, RCC1, IL17RB, PLK4, etc.), inter-region gene modules enriched for known AD pathways (synaptic signaling, endocytosis, etc.), and candidate signaling molecules that could mediate region-region communication. The Inter-DC network generated in this study is a valuable resource of gene pairs, pathways and signaling molecules whose inter-brain-region functional coupling is disrupted in AD, thereby offering a new perspective of AD etiology.
Collapse
Affiliation(s)
- Sanga Mitra
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Kailash Bp
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Srivatsan C R
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Naga Venkata Saikumar
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Philge Philip
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India
| | - Manikandan Narayanan
- Bioinformatics and Integrative Data Science group, Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India.
- Centre for Integrative Biology and Systems Medicine, IIT Madras, Chennai, India.
- Robert Bosch Centre for Data Science and Artificial Intelligence, IIT Madras, Chennai, India.
- Sudha Gopalakrishnan Brain Centre, IIT Madras, Chennai, India.
| |
Collapse
|
28
|
Wu C, Tu T, Xie M, Wang Y, Yan B, Gong Y, Zhang J, Zhou X, Xie Z. Spatially resolved transcriptome of the aging mouse brain. Aging Cell 2024; 23:e14109. [PMID: 38372175 PMCID: PMC11113349 DOI: 10.1111/acel.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Brain aging is associated with cognitive decline, memory loss and many neurodegenerative disorders. The mammalian brain has distinct structural regions that perform specific functions. However, our understanding in gene expression and cell types within the context of the spatial organization of the mammalian aging brain is limited. Here we generated spatial transcriptomic maps of young and old mouse brains. We identified 27 distinguished brain spatial domains, including layer-specific subregions that are difficult to dissect individually. We comprehensively characterized spatial-specific changes in gene expression in the aging brain, particularly for isocortex, the hippocampal formation, brainstem and fiber tracts, and validated some gene expression differences by qPCR and immunohistochemistry. We identified aging-related genes and pathways that vary in a coordinated manner across spatial regions and parsed the spatial features of aging-related signals, providing important clues to understand genes with specific functions in different brain regions during aging. Combined with single-cell transcriptomics data, we characterized the spatial distribution of brain cell types. The proportion of immature neurons decreased in the DG region with aging, indicating that the formation of new neurons is blocked. Finally, we detected changes in information interactions between regions and found specific pathways were deregulated with aging, including classic signaling WNT and layer-specific signaling COLLAGEN. In summary, we established a spatial molecular atlas of the aging mouse brain (http://sysbio.gzzoc.com/Mouse-Brain-Aging/), which provides important resources and novel insights into the molecular mechanism of brain aging.
Collapse
Affiliation(s)
- Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Tianxiang Tu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
29
|
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1345498. [PMID: 38689734 PMCID: PMC11058985 DOI: 10.3389/fendo.2024.1345498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | | | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
30
|
Gammie SC, Messing A, Hill MA, Kelm-Nelson CA, Hagemann TL. Large-scale gene expression changes in APP/PSEN1 and GFAP mutation models exhibit high congruence with Alzheimer's disease. PLoS One 2024; 19:e0291995. [PMID: 38236817 PMCID: PMC10796008 DOI: 10.1371/journal.pone.0291995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/10/2023] [Indexed: 01/22/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with both genetic and non-genetic causes. Animal research models are available for a multitude of diseases and conditions affecting the central nervous system (CNS), and large-scale CNS gene expression data exist for many of these. Although there are several models specifically for AD, each recapitulates different aspects of the human disease. In this study we evaluate over 500 animal models to identify those with CNS gene expression patterns matching human AD datasets. Approaches included a hypergeometric based scoring system that rewards congruent gene expression patterns but penalizes discordant gene expression patterns. The top two models identified were APP/PS1 transgenic mice expressing mutant APP and PSEN1, and mice carrying a GFAP mutation that is causative of Alexander disease, a primary disorder of astrocytes in the CNS. The APP/PS1 and GFAP models both matched over 500 genes moving in the same direction as in human AD, and both had elevated GFAP expression and were highly congruent with one another. Also scoring highly were the 5XFAD model (with five mutations in APP and PSEN1) and mice carrying CK-p25, APP, and MAPT mutations. Animals with the APOE3 and 4 mutations combined with traumatic brain injury ranked highly. Bulbectomized rats scored high, suggesting anosmia could be causative of AD-like gene expression. Other matching models included the SOD1G93A strain and knockouts for SNORD116 (Prader-Willi mutation), GRID2, INSM1, XBP1, and CSTB. Many top models demonstrated increased expression of GFAP, and results were similar across multiple human AD datasets. Heatmap and Uniform Manifold Approximation Plot results were consistent with hypergeometric ranking. Finally, some gene manipulation models, including for TYROBP and ATG7, were identified with reversed AD patterns, suggesting possible neuroprotective effects. This study provides insight for the pathobiology of AD and the potential utility of available animal models.
Collapse
Affiliation(s)
- Stephen C. Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Albee Messing
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mason A. Hill
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cynthia A. Kelm-Nelson
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tracy L. Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
31
|
Almeida MF, Farizatto KLG, Almeida RS, Bahr BA. Lifestyle strategies to promote proteostasis and reduce the risk of Alzheimer's disease and other proteinopathies. Ageing Res Rev 2024; 93:102162. [PMID: 38070831 DOI: 10.1016/j.arr.2023.102162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Unhealthy lifestyle choices, poor diet, and aging can have negative influences on cognition, gradually increasing the risk for mild cognitive impairment (MCI) and the continuum comprising early dementia. Aging is the greatest risk factor for age-related dementias such as Alzheimer's disease, and the aging process is known to be influenced by life events that can positively or negatively affect age-related diseases. Remarkably, life experiences that make the brain vulnerable to dementia, such as seizure episodes, neurotoxin exposures, metabolic disorders, and trauma-inducing events (e.g. traumatic injuries or mild neurotrauma from a fall or blast exposure), have been associated with negative effects on proteostasis and synaptic integrity. Functional compromise of the autophagy-lysosomal pathway, a major contributor to proteostasis, has been implicated in Alzheimer's disease, Parkinson's disease, obesity-related pathology, Huntington's disease, as well as in synaptic degeneration which is the best correlate of cognitive decline. Correspondingly, pharmacological and non-pharmacological strategies that positively modulate lysosomal proteases are recognized as synaptoprotective through degradative clearance of pathogenic proteins. Here, we discuss life-associated vulnerabilities that influence key hallmarks of brain aging and the increased burden of age-related dementias. Additionally, we discuss exercise and diet among the lifestyle strategies that regulate proteostasis as well as synaptic integrity, leading to evident prevention of cognitive deficits during brain aging in pre-clinical models.
Collapse
Affiliation(s)
- Michael F Almeida
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology & Marine Biology, and the Integrative, Comparative & Marine Biology Program, University of North Carolina - Wilmington, Wilmington, NC 28409, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA
| | - Renato S Almeida
- Department of Biosciences, University of Taubate, Taubate, SP 12020-270, Brazil
| | - Ben A Bahr
- Biotechnology Research and Training Center, University of North Carolina - Pembroke, Pembroke, NC 28372, USA; Department of Biology, University of North Carolina - Pembroke, Pembroke, NC 28372, USA.
| |
Collapse
|
32
|
Song T, Chen Y, Li C, Yao Y, Ma S, Shang Y, Cheng J. Identification of Molecular Correlations of GSDMD with Pyroptosis inAlzheimer's Disease. Comb Chem High Throughput Screen 2024; 27:2125-2139. [PMID: 39099451 DOI: 10.2174/0113862073285497240226061936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 08/06/2024]
Abstract
AIM An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD). METHODS The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 μmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression. RESULTS A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression. CONCLUSION The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.
Collapse
Affiliation(s)
- Tangtang Song
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yan Chen
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Chen Li
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yinhui Yao
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
- Affiliated Hospital of Chengde Medical College, Chengde, 067000, P.R. China
| | - Shuai Ma
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P.R. China
| | - Jianjun Cheng
- Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, P.R. China
| |
Collapse
|
33
|
Liharska L, Charney A. Transcriptomics : Approaches to Quantifying Gene Expression and Their Application to Studying the Human Brain. Curr Top Behav Neurosci 2024; 68:129-176. [PMID: 38972894 DOI: 10.1007/7854_2024_466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
To date, the field of transcriptomics has been characterized by rapid methods development and technological advancement, with new technologies continuously rendering older ones obsolete.This chapter traces the evolution of approaches to quantifying gene expression and provides an overall view of the current state of the field of transcriptomics, its applications to the study of the human brain, and its place in the broader emerging multiomics landscape.
Collapse
Affiliation(s)
- Lora Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
34
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
35
|
Li Q, Wang L, Tang C, Wang X, Yu Z, Ping X, Ding M, Zheng L. Adipose Tissue Exosome circ_sxc Mediates the Modulatory of Adiposomes on Brain Aging by Inhibiting Brain dme-miR-87-3p. Mol Neurobiol 2024; 61:224-238. [PMID: 37597108 DOI: 10.1007/s12035-023-03516-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/21/2023]
Abstract
Aging of the brain usually leads to the decline of neurological processes and is a major risk factor for various neurodegenerative diseases, including sleep disturbances and cognitive decline. Adipose tissue exosomes, as adipocyte-derived vesicles, may mediate the regulatory processes of adipose tissue on other organs, including the brain; however, the regulatory mechanisms remain unclear. We analyzed the sleep-wake behavior of young (10 days) and old (40 days) Drosophila and found that older Drosophila showed increased sleep fragmentation, which is similar to mammalian aging characteristics. To investigate the cross-tissue regulatory mechanisms of adiposity on brain aging, we extracted 10-day and 40-day Drosophila adipose tissue exosomes and identified circRNAs with age-dependent expression differences by RNA-seq and differential analysis. Furthermore, by combining data from 3 datasets of the GEO database (GSE130158, GSE24992, and GSE184559), circ_sxc that was significantly downregulated with age was finally screened out. Moreover, dme-miR-87-3p, a conserved target of circ_sxc, accumulates in the brain with age and exhibits inhibitory effects in predicted binding relationships with neuroreceptor ligand genes. In summary, the current study showed that the Drosophila brain could obtain circ_sxc by uptake of adipose tissue exosomes which crossed the blood-brain barrier. And circ_sxc suppressed brain miR-87-3p expression through sponge adsorption, which in turn regulated the expression of neurological receptor ligand proteins (5-HT1B, GABA-B-R1, Rdl, Rh7, qvr, NaCP60E) and ensured brain neuronal synaptic signaling normal function of synaptic signaling. However, with aging, this regulatory mechanism is dysregulated by the downregulation of the adipose exosome circ_sxc, which contributes to the brain exhibiting sleep disturbances and other "aging" features.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Zhengwen Yu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xu Ping
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
36
|
Vitorakis N, Piperi C. Insights into the Role of Histone Methylation in Brain Aging and Potential Therapeutic Interventions. Int J Mol Sci 2023; 24:17339. [PMID: 38139167 PMCID: PMC10744334 DOI: 10.3390/ijms242417339] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetic mechanisms play a primary role in the cellular damage associated with brain aging. Histone posttranslational modifications represent intrinsic molecular alterations essential for proper physiological functioning, while divergent expression and activity have been detected in several aspects of brain aging. Aberrant histone methylation has been involved in neural stem cell (NSC) quiescence, microglial deficits, inflammatory processes, memory impairment, cognitive decline, neurodegenerative diseases, and schizophrenia. Herein, we provide an overview of recent studies on epigenetic regulation of brain tissue aging, mainly focusing on the role of histone methylation in different cellular and functional aspects of the aging process. Emerging targeting strategies of histone methylation are further explored, including neuroprotective drugs, natural compounds, and lifestyle modifications with therapeutic potential towards the aging process of the brain.
Collapse
Affiliation(s)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| |
Collapse
|
37
|
Cao Q, Kumar M, Frazier A, Williams JB, Zhao S, Yan Z. Longitudinal characterization of behavioral, morphological and transcriptomic changes in a tauopathy mouse model. Aging (Albany NY) 2023; 15:11697-11719. [PMID: 37925173 PMCID: PMC10683589 DOI: 10.18632/aging.205057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/02/2023] [Indexed: 11/06/2023]
Abstract
Neurodegenerative disorders, such as Alzheimer's disease (AD), have the gradual onset of neurobiological changes preceding clinical diagnosis by decades. To elucidate how brain dysfunction proceeds in neurodegenerative disorders, we performed longitudinal characterization of behavioral, morphological, and transcriptomic changes in a tauopathy mouse model, P301S transgenic mice. P301S mice exhibited cognitive deficits as early as 3 months old, and deficits in social preference and social cognition at 5-6 months. They had a significant decrease of arborization in basal dendrites of hippocampal pyramidal neurons from 3 months and apical dendrites of PFC pyramidal neurons at 9 months. Transcriptomic analysis of genome-wide changes revealed the enrichment of synaptic gene upregulation at 3 months of age, while most of these synaptic genes were downregulated in PFC and hippocampus of P301S mice at 9 months. These time-dependent changes in gene expression may lead to progressive alterations of neuronal structure and function, resulting in the manifestation of behavioral symptoms in tauopathies.
Collapse
Affiliation(s)
- Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Manasa Kumar
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Allea Frazier
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jamal B. Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Shengkai Zhao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
38
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
39
|
Piergiorge RM, da Silva Francisco Junior R, de Vasconcelos ATR, Santos-Rebouças CB. Multi-layered transcriptomic analysis reveals a pivotal role of FMR1 and other developmental genes in Alzheimer's disease-associated brain ceRNA network. Comput Biol Med 2023; 166:107494. [PMID: 37769462 DOI: 10.1016/j.compbiomed.2023.107494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is an increasingly neurodegenerative disorder that causes progressive cognitive decline and memory impairment. Despite extensive research, the underlying causes of late-onset AD (LOAD) are still in progress. This study aimed to establish a network of competing regulatory interactions involving circular RNAs (circRNAs), microRNAs (miRNAs), RNA-binding proteins (RBPs), and messenger RNAs (mRNAs) connected to LOAD. A systematic analysis of publicly available expression data was conducted to identify integrated differentially expressed genes (DEGs) from the hippocampus of LOAD patients. Subsequently, gene co-expression analysis identified modules comprising highly expressed DEGs that act cooperatively. The competition between co-expressed DEGs and miRNAs/RBPs and the simultaneous interactions between circRNA and miRNA/RBP revealed a complex ceRNA network responsible for post-transcriptional regulation in LOAD. Hippocampal expression data for miRNAs, circRNAs, and RBPs were used to filter relevant relationships for AD. An integrated topological score was used to identify the highly connected hub gene, from which a brain core ceRNA subnetwork was generated. The Fragile X Messenger Ribonucleoprotein 1 (FMR1) coding for the RBP FMRP emerged as the prominent driver gene in this subnetwork. FMRP has been previously related to AD but not in a ceRNA network context. Also, the substantial number of neurodevelopmental genes in the ceRNA subnetwork and their related biological pathways strengthen that AD shares common pathological mechanisms with developmental conditions. Our results enhance the current knowledge about the convergent ceRNA regulatory pathways underlying AD and provide potential targets for identifying early biomarkers and developing novel therapeutic interventions.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Goossens J, Cervantes González A, Dewit N, Lidón L, Fortea J, Alcolea D, Lleó A, Belbin O, Vanmechelen E. Evaluation of cerebrospinal fluid levels of synaptic vesicle protein, VAMP-2, across the sporadic Alzheimer's disease continuum. Alzheimers Res Ther 2023; 15:186. [PMID: 37898760 PMCID: PMC10612328 DOI: 10.1186/s13195-023-01336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Synapse loss is an early event that precedes neuronal death and symptom onset and is considered the best neuropathological correlate of cognitive decline in Alzheimer's disease (AD). Vesicle-associated membrane protein 2 (VAMP-2) has emerged as a promising biomarker of AD-related synapse degeneration in cerebrospinal fluid (CSF). The aim of this study was to explore the CSF profile of VAMP-2 across the AD continuum in relation to core AD biomarkers, other synaptic proteins, neurogranin (Ng) and synaptosomal-associated Protein-25 kDa (SNAP-25) and cognitive performance. METHODS We developed a digital immunoassay on the Single Molecule Array platform to quantify VAMP-2 in CSF and used existing immunoassays to quantify Ng, SNAP-25 and core CSF AD biomarkers. The clinical study included 62 cognitively unimpaired AD biomarker-negative subjects and 152 participants across the AD continuum from the SPIN cohort (Sant Pau Initiative on Neurodegeneration). Cognitive measures of episodic, semantic, executive and visuospatial domains and global cognition were included. Statistical methods included χ2 tests, spearman correlation, and ANCOVA analyses. RESULTS The VAMP-2 assay had a good analytical performance (repeatability 8.9%, intermediate precision 10.3%). Assay antibodies detected native VAMP-2 protein in human brain homogenates. CSF concentrations of VAMP-2, neurogranin and SNAP-25 were lower in preclinical AD stage 1 compared to controls and higher at later AD stages compared to AD stage 1 and were associated with core AD biomarkers, particularly total tau (adj. r2 = 0.62 to 0.78, p < 0.001). All three synaptic proteins were associated with all cognitive domains in individuals on the AD continuum (adj. r2 = 0.04 to 0.19, p < 0.05). CONCLUSIONS Our novel digital immunoassay accurately measures VAMP-2 changes in CSF, which reflect AD biomarkers and cognitive performance across multiple domains.
Collapse
Affiliation(s)
| | - Alba Cervantes González
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nele Dewit
- Medpace Reference Laboratories (A.A.), Flow Cytometry Unit, Louvain, Belgium
| | - Laia Lidón
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Neurology Department and IIB-Sant Pau, Hospital de La Santa Creu I Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain.
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | | |
Collapse
|
41
|
Stein-O’Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295440. [PMID: 37745408 PMCID: PMC10516095 DOI: 10.1101/2023.09.12.23295440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O’Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Single Cell Training and Analysis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Lautrup S, Myrup Holst C, Yde A, Asmussen S, Thinggaard V, Larsen K, Laursen LS, Richner M, Vægter CB, Prieto GA, Berchtold N, Cotman CW, Stevnsner T. The role of aging and brain-derived neurotrophic factor signaling in expression of base excision repair genes in the human brain. Aging Cell 2023; 22:e13905. [PMID: 37334527 PMCID: PMC10497833 DOI: 10.1111/acel.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Department of Clinical Molecular BiologyUniversity of Oslo and Akershus University HospitalLørenskogNorway
| | | | - Anne Yde
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Stine Asmussen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Vibeke Thinggaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Knud Larsen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Mette Richner
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - Christian B. Vægter
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience – DANDRITE, Nordic EMBL Partnership for Molecular MedicineAarhus UniversityAarhusDenmark
| | - G. Aleph Prieto
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Instituto de NeurobiologíaUNAM‐JuriquillaJuriquillaMexico
| | - Nicole Berchtold
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Carl W. Cotman
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Tinna Stevnsner
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| |
Collapse
|
43
|
Liu Z, Xia Q, Zhao X, Zheng F, Xiao J, Ge F, Wang D, Gao X. The Landscape of m6A Regulators in Multiple Brain Regions of Alzheimer's Disease. Mol Neurobiol 2023; 60:5184-5198. [PMID: 37273154 DOI: 10.1007/s12035-023-03409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease research has been conducted for many years, yet no effective cure methods have been found. N6-methyladenosine (m6A) RNA methylation, an essential post-transcriptional regulation mechanism, has been discovered to affect essential neurobiological processes, such as brain cell development and aging, which are closely related to neurodegenerative diseases such as Alzheimer's disease. The relationship between Alzheimer's disease and the m6A mechanism still needs further investigation. Our work evaluated the alteration profile of m6A regulators and their influences on Alzheimer's disease in 4 brain regions: the postcentral gyrus, superior frontal gyrus, hippocampus, and entorhinal cortex. We found that the expression levels of the m6A regulators FTO, ELAVL1, and YTHDF2 were altered in Alzheimer's disease and were related to pathological development and cognitive levels. We also assessed AD-related biological processes influenced by m6A regulators via GSEA and GSVA method. Biological Processes Gene Ontology terms including memory, cognition, and synapse-signaling were found to potentially be affected by m6A regulators in AD. We also found different m6A modification patterns in AD samples among different brain regions, mainly due to differences in m6A readers. Finally, we further evaluated the importance of AD-related regulators based on the WGCNA method, assessed their potential targets based on correlation relationships, and constructed diagnostic models in 3 of all 4 regions using hub regulators, including FTO, YTHDC1, YTHDC2, etc., and their potential targets. This work aims to provide a reference for the follow-up study of m6A and Alzheimer's disease.
Collapse
Affiliation(s)
- ZiJie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
| | - FeiFei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
| | - JiaYing Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
| | - FangLiang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China
| | - DaYong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Basic Medical Institute, Heilongjiang Medical Science Academy, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Translational Medicine Center of Northern China, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, No. 157 Harbin health care road, Nangang District, Harbin, China.
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Basic Medical Institute, Heilongjiang Medical Science Academy, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Translational Medicine Center of Northern China, No. 157 Harbin health care road, Nangang District, Harbin, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, No. 157 Harbin health care road, Nangang District, Harbin, China.
| |
Collapse
|
44
|
de Ávila C, Suazo C, Nolz J, Cochran JN, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 gene expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553279. [PMID: 37645898 PMCID: PMC10462057 DOI: 10.1101/2023.08.14.553279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify the molecular networks that underpin the sex-associated risk of AD. Recent efforts have identified PIN1 as a key regulator of tau phosphorylation signaling pathway. Pin1 is the only gene, to date, that when deleted can cause both tau and Aβ-related pathologies in an age-dependent manner. We analyzed multiple brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels, in an aging and AD cohort, which revealed reduced PIN1 levels driven by females. Then, we validated this observation in an independent dataset (ROS/MAP) which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function, in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again, driven predominantly by female subjects. Our results show that while both male and female AD patients show decreased PIN1 expression, changes occur before the onset of clinical symptoms of AD in females and correlate to early events associated with AD risk (e.g., synaptic dysfunction). These changes are specific to neurons, and may be a potential prognostic marker to assess AD risk in the aging population and even more so in AD females with increased risk of AD.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - J. Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Eric Dammer
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
45
|
Zak N, Moberget T, Bøen E, Boye B, Rygvold TW, Malt UF, Andreassen OA, Andersson S, Westlye LT, Elvsåshagen T. Baseline long-term potentiation-like cortical plasticity is associated with longitudinal cortical thinning in healthy adults and in adults with bipolar disorder type II. Eur J Neurosci 2023; 58:2824-2837. [PMID: 37163975 DOI: 10.1111/ejn.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
The precise neurobiological processes underlying cerebral cortical thinning in aging and psychiatric illnesses remain undetermined, yet aging- and synaptic dysfunction-related loss of synapses are potentially important mechanisms. We used long-term potentiation-like plasticity of the visual evoked potential as an index of synaptic function in the cortex and hypothesized that plasticity at baseline would be negatively associated with future cortical thinning in healthy adults and in adults with bipolar disorder type II. Thirty-two healthy adults and 15 adults with bipolar disorder type II underwent electroencephalography-based measurement of visual evoked potential plasticity and 3T magnetic resonance imaging of the brain at baseline and a follow-up brain scan on average 2.3 years later. The relationships between visual evoked potential plasticity at baseline and longitudinal cortical thickness changes were examined using Freesurfer and the Permutation Analysis of Linear Models tool. The analyses showed a negative association between the plasticity of the N1 visual evoked potential amplitude at baseline and thinning rate in the medial and lateral parietal and medial occipital cortices in healthy adults and in the right medial occipital cortex in the total sample of healthy adults and adults with bipolar disorder type II, indicating greater thinning over time in subjects with less N1 plasticity (pFWER < .05). Although preliminary, the results indicate an association between visual evoked potential plasticity and the future rate of cortical thinning in healthy adults and in bipolar disorder type II, supporting the hypothesis that cortical thinning might be related to synaptic dysfunction.
Collapse
Affiliation(s)
- Nathalia Zak
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
| | - Erlend Bøen
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
| | - Birgitte Boye
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
- Department of Behavioral Medicine, University of Oslo, Oslo, Norway
| | | | - Ulrik F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Education, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Abyadeh M, Yadav VK, Kaya A. Common molecular signatures between coronavirus infection and Alzheimer's disease reveal targets for drug development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544970. [PMID: 37398415 PMCID: PMC10312734 DOI: 10.1101/2023.06.14.544970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vijay K. Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
47
|
El-Agnaf O, Bensmail I, Al-Nesf MAY, Flynn J, Taylor M, Majbour NK, Abdi IY, Vaikath NN, Farooq A, Vemulapalli PB, Schmidt F, Ouararhni K, Al-Siddiqi HH, Arredouani A, Wijten P, Al-Maadheed M, Mohamed-Ali V, Decock J, Abdesselem HB. Uncovering a neurological protein signature for severe COVID-19. Neurobiol Dis 2023; 182:106147. [PMID: 37178811 PMCID: PMC10174474 DOI: 10.1016/j.nbd.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.
Collapse
Affiliation(s)
- Omar El-Agnaf
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maryam A Y Al-Nesf
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | | | | | - Nour K Majbour
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdulaziz Farooq
- Aspetar Hospital, Orthopaedic and Sports Medicine, Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Heba H Al-Siddiqi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
48
|
Zhou X, Cao J, Zhu L, Farrell K, Wang M, Guo L, Yang J, McKenzie A, Crary JF, Cai D, Tu Z, Zhang B. Molecular differences in brain regional vulnerability to aging between males and females. Front Aging Neurosci 2023; 15:1153251. [PMID: 37284017 PMCID: PMC10239962 DOI: 10.3389/fnagi.2023.1153251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
Background Aging-related cognitive decline is associated with brain structural changes and synaptic loss. However, the molecular mechanisms of cognitive decline during normal aging remain elusive. Results Using the GTEx transcriptomic data from 13 brain regions, we identified aging-associated molecular alterations and cell-type compositions in males and females. We further constructed gene co-expression networks and identified aging-associated modules and key regulators shared by both sexes or specific to males or females. A few brain regions such as the hippocampus and the hypothalamus show specific vulnerability in males, while the cerebellar hemisphere and the anterior cingulate cortex regions manifest greater vulnerability in females than in males. Immune response genes are positively correlated with age, whereas those involved in neurogenesis are negatively correlated with age. Aging-associated genes identified in the hippocampus and the frontal cortex are significantly enriched for gene signatures implicated in Alzheimer's disease (AD) pathogenesis. In the hippocampus, a male-specific co-expression module is driven by key synaptic signaling regulators including VSNL1, INA, CHN1 and KCNH1; while in the cortex, a female-specific module is associated with neuron projection morphogenesis, which is driven by key regulators including SRPK2, REPS2 and FXYD1. In the cerebellar hemisphere, a myelination-associated module shared by males and females is driven by key regulators such as MOG, ENPP2, MYRF, ANLN, MAG and PLP1, which have been implicated in the development of AD and other neurodegenerative diseases. Conclusions This integrative network biology study systematically identifies molecular signatures and networks underlying brain regional vulnerability to aging in males and females. The findings pave the way for understanding the molecular mechanisms of gender differences in developing neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research & Development, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research & Development, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Kurt Farrell
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jialiang Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John F. Crary
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research & Development, James J. Peters VA Medical Center, Bronx, NY, United States
- Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zhidong Tu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Zhu M, Hou T, Jia L, Tan Q, Qiu C, Du Y. Development and validation of a 13-gene signature associated with immune function for the detection of Alzheimer's disease. Neurobiol Aging 2023; 125:62-73. [PMID: 36842362 DOI: 10.1016/j.neurobiolaging.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Current knowledge of Alzheimer's disease (AD) etiology and effective therapy remains limited. Thus, the identification of biomarkers is crucial to improve the detection and treatment of patients with AD. Using robust rank aggregation method to analyze the microarray data from Gene Expression Omnibus database, we identified 1138 differentially expressed genes in AD. We then explored 13 hub genes by weighted gene co-expression network analysis, least absolute shrinkage, and selection operator, and logistic regression in the training dataset. The detection model, which composed of CD163, CDC42SE1, CECR6, CSF1R, CYP27A1, EIF4E3, H2AFJ, IFIT2, IL10RA, KIAA1324, PSTPIP1, SLA, and TBC1D2 genes, along with APOE gene, showed that the area under the curve for detecting AD was 0.821 (95% confidence interval [CI] = 0.782-0.861) and the model was validated in ADNI dataset (area under the curve = 0.776; 95%CI = 0.686-0.865). Notably, the 13 genes in the model were highly enriched in immune function. These findings have implications for the detection and therapeutic target of AD.
Collapse
Affiliation(s)
- Min Zhu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihua Tan
- Department of Public Health, Epidemiology and Biostatistics, University of Southern Denmark, Odense, Denmark
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | | |
Collapse
|
50
|
Saura CA, Deprada A, Capilla-López MD, Parra-Damas A. Revealing cell vulnerability in Alzheimer's disease by single-cell transcriptomics. Semin Cell Dev Biol 2023; 139:73-83. [PMID: 35623983 DOI: 10.1016/j.semcdb.2022.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that by affecting specific brain cell types and regions cause severe pathological and functional changes in memory neural circuits. A comprehensive knowledge of the pathogenic mechanisms underlying AD requires a deeper understanding of the cell-specific pathological responses through integrative molecular analyses. Recent application of high-throughput single-cell transcriptomics to postmortem tissue has proved powerful to unravel cell susceptibility and biological networks responding to amyloid and tau pathologies. Here, we review single-cell transcriptomic studies successfully applied to decipher cell-specific gene expression programs and pathways in the brain of AD patients. Transcriptional information reveals both specific and common gene signatures affecting the major cerebral cell types, including astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes. Cell type-specific transcriptomes associated with AD pathology and clinical symptoms are related to common biological networks affecting, among others pathways, synaptic function, inflammation, proteostasis, cell death, oxidative stress, and myelination. The general picture that emerges from systems-level single-cell transcriptomics is a spatiotemporal pattern of cell diversity and biological pathways, and novel cell subpopulations affected in AD brain. We argue that broader implementation of cell transcriptomics in larger AD human cohorts using standardized protocols is fundamental for reliable assessment of temporal and regional cell-type gene profiling. The possibility of applying this methodology for personalized medicine in clinics is still challenging but opens new roads for future diagnosis and treatment in dementia.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|