1
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
2
|
Panes JD, Saavedra P, Pineda B, Escobar K, Cuevas ME, Moraga-Cid G, Fuentealba J, Rivas CI, Rezaei H, Muñoz-Montesino C. PrP C as a Transducer of Physiological and Pathological Signals. Front Mol Neurosci 2021; 14:762918. [PMID: 34880726 PMCID: PMC8648500 DOI: 10.3389/fnmol.2021.762918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
After the discovery of prion phenomenon, the physiological role of the cellular prion protein (PrP C ) remained elusive. In the past decades, molecular and cellular analysis has shed some light regarding interactions and functions of PrP C in health and disease. PrP C , which is located mainly at the plasma membrane of neuronal cells attached by a glycosylphosphatidylinositol (GPI) anchor, can act as a receptor or transducer from external signaling. Although the precise role of PrP C remains elusive, a variety of functions have been proposed for this protein, namely, neuronal excitability and viability. Although many issues must be solved to clearly define the role of PrP C , its connection to the central nervous system (CNS) and to several misfolding-associated diseases makes PrP C an interesting pharmacological target. In a physiological context, several reports have proposed that PrP C modulates synaptic transmission, interacting with various proteins, namely, ion pumps, channels, and metabotropic receptors. PrP C has also been implicated in the pathophysiological cell signaling induced by β-amyloid peptide that leads to synaptic dysfunction in the context of Alzheimer's disease (AD), as a mediator of Aβ-induced cell toxicity. Additionally, it has been implicated in other proteinopathies as well. In this review, we aimed to analyze the role of PrP C as a transducer of physiological and pathological signaling.
Collapse
Affiliation(s)
- Jessica D Panes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paulina Saavedra
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Benjamin Pineda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Kathleen Escobar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Magdalena E Cuevas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Coralia I Rivas
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Human Rezaei
- Virologie et Immunologie Moléculaires (VIM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Jouy-en-Josas, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, France.,Université Paris-Saclay, Jouy-en-Josas, France
| | - Carola Muñoz-Montesino
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Crestini A, Santilli F, Martellucci S, Carbone E, Sorice M, Piscopo P, Mattei V. Prions and Neurodegenerative Diseases: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 85:503-518. [PMID: 34864675 DOI: 10.3233/jad-215171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer's disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy
| | - Elena Carbone
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Rieti, Italy.,Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| |
Collapse
|
4
|
Sanchez-Varo R, Sanchez-Mejias E, Fernandez-Valenzuela JJ, De Castro V, Mejias-Ortega M, Gomez-Arboledas A, Jimenez S, Sanchez-Mico MV, Trujillo-Estrada L, Moreno-Gonzalez I, Baglietto-Vargas D, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Plaque-Associated Oligomeric Amyloid-Beta Drives Early Synaptotoxicity in APP/PS1 Mice Hippocampus: Ultrastructural Pathology Analysis. Front Neurosci 2021; 15:752594. [PMID: 34803589 PMCID: PMC8600261 DOI: 10.3389/fnins.2021.752594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.
Collapse
Affiliation(s)
- Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Jose Fernandez-Valenzuela
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Vanessa De Castro
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Marina Mejias-Ortega
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sebastian Jimenez
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Maria Virtudes Sanchez-Mico
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX, United States
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.,Centro de Investigación Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
5
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem 2021; 296:100499. [PMID: 33667547 PMCID: PMC8042448 DOI: 10.1016/j.jbc.2021.100499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid β (Aβ) protein aggregates. Binding of Aβ oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer’s disease, while an N-terminal soluble fragment of huPrP can sequester Aβ oligomers and reduce their toxicity. Synthetic oligomeric Aβ species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aβ oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aβ(1–42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aβ(1–42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial β-strand content. Importantly, not all Aβ(1–42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aβ fibrils suggests that the Aβ oligomer preparation represents a heterogeneous mixture of β-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aβ to adopt variable β-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aβ oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aβ(1–42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous β-strand-rich assemblies.
Collapse
|
7
|
Grayson JD, Baumgartner MP, Santos Souza CD, Dawes SJ, El Idrissi IG, Louth JC, Stimpson S, Mead E, Dunbar C, Wolak J, Sharman G, Evans D, Zhuravleva A, Roldan MS, Colabufo NA, Ning K, Garwood C, Thomas JA, Partridge BM, de la Vega de Leon A, Gillet VJ, Rauter AP, Chen B. Amyloid binding and beyond: a new approach for Alzheimer's disease drug discovery targeting Aβo-PrP C binding and downstream pathways. Chem Sci 2021; 12:3768-3785. [PMID: 34163650 PMCID: PMC8179515 DOI: 10.1039/d0sc04769d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Amyloid β oligomers (Aβo) are the main toxic species in Alzheimer's disease, which have been targeted for single drug treatment with very little success. In this work we report a new approach for identifying functional Aβo binding compounds. A tailored library of 971 fluorine containing compounds was selected by a computational method, developed to generate molecular diversity. These compounds were screened for Aβo binding by a combined 19F and STD NMR technique. Six hits were evaluated in three parallel biochemical and functional assays. Two compounds disrupted Aβo binding to its receptor PrPC in HEK293 cells. They reduced the pFyn levels triggered by Aβo treatment in neuroprogenitor cells derived from human induced pluripotent stem cells (hiPSC). Inhibitory effects on pTau production in cortical neurons derived from hiPSC were also observed. These drug-like compounds connect three of the pillars in Alzheimer's disease pathology, i.e. prion, Aβ and Tau, affecting three different pathways through specific binding to Aβo and are, indeed, promising candidates for further development.
Collapse
Affiliation(s)
- James D Grayson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Matthew P Baumgartner
- Computational Chemistry and Cheminformatics, Eli Lilly and Company, Lilly Biotechnology Center San Diego CA 92121 USA
| | | | - Samuel J Dawes
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
- Faculty of Biological Sciences, University of Leeds Leeds LS2 9JT UK
| | | | - Jennifer C Louth
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Sasha Stimpson
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | - Emma Mead
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Charlotte Dunbar
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Joanna Wolak
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - Gary Sharman
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | - David Evans
- Computational Chemistry and Chemoinformatics, Eli Lilly and Company Erl Wood Windlesham GU20 6PH UK
| | | | | | - Nicola Antonio Colabufo
- Univ Bari, Biofordrug Via Edoardo Orabona 4 I-70125 Bari Italy
- Univ Bari, Dipartimento Farm Sci Farmaco Via Edoardo Orabona 4 I-70125 Bari Italy
| | - Ke Ning
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - Claire Garwood
- Sheffield Institute of Translational Neuroscience, University of Sheffield Sheffield S10 2HQ UK
| | - James A Thomas
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| | | | | | | | - Amélia P Rauter
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa ED C8, 5 piso 1749-016 Lisboa Portugal
| | - Beining Chen
- Department of Chemistry, University of Sheffield Brookhill Sheffield S3 7HF UK
| |
Collapse
|
8
|
Wang X, Li L, Gu X, Yu B, Jiang M. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Mikrochim Acta 2021; 188:49. [PMID: 33495901 DOI: 10.1007/s00604-021-04704-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/09/2021] [Indexed: 11/28/2022]
Abstract
The aggregation of amyloid-β oligomers (AβOs) with extremely strong neurotoxicity has been proved to be the main pathogenesis of Alzheimer's disease (AD). For sensitive quantification of AβOs, a switchable electrochemical aptasensor is proposed. Metal organic framework carrying Au nanoparticles (AuNPs@CuMOF) has been used to label signaling displaced-probe (SD), which formed triple helix switch (THS) by hybridizing with label-free anti-AβOs aptamer (Apt) on the electrodeposited palladium electrode (EPd). Thus, a relatively strong response of differential pulse voltammetry (DPV) was produced (switch on). With the specific binding between AβOs and Apt, the DPV response obviously decreased, owing to destroyed structure of THS and the separation of AuNPs@CuMOF/SD from the EPd (switch off). The mode of "switch on-off" can dramatically enhance the AβOs-dependent DPV intensity change. As a result, the switchable EA exhibited excellent selectivity and sensitivity with the linear range from 0.5 fM to 500 fM and the detection limit of 0.25 fM. When evaluating the AβOs of artificial cerebrospinal fluid (aCSF) samples, the switchable EA exhibited desirable feasibility, and the results are basically consistent with the enzyme linked immunosorbent assay (ELISA). The work could provide a potential tool of the AD diagnosis and a bright future in clinical applications.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Linyu Li
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xuan Gu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Bingjia Yu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Jiang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| |
Collapse
|
9
|
Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Peters C, Bascuñán D, Burgos CF, Bobadilla C, González-Sanmiguel J, Boopathi S, Riffo N, Fernández-Pérez EJ, Tarnok ME, Aguilar LF, Gonzalez W, Aguayo LG. Characterization of a new molecule capable of inhibiting several steps of the amyloid cascade in Alzheimer's disease. Neurobiol Dis 2020; 141:104938. [PMID: 32434047 DOI: 10.1016/j.nbd.2020.104938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. METHODS Based on our previous study that showed that an Aβ-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aβ), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. RESULTS In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aβ peptide. Additionally, in vitro assays showed that M30 blocked Aβ aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aβ in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. DISCUSSION Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. SIGNIFICANCE Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aβ-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aβ. Because Aβ toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.
Collapse
Affiliation(s)
- Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Catalina Bobadilla
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Subramanian Boopathi
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile
| | - Nicolás Riffo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - María Elena Tarnok
- Laboratory of Photophysics and Molecular Spectroscopy, Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Felipe Aguilar
- Laboratory of Photophysics and Molecular Spectroscopy, Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Wendy Gonzalez
- The Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
11
|
Fontana IC, Zimmer AR, Rocha AS, Gosmann G, Souza DO, Lourenco MV, Ferreira ST, Zimmer ER. Amyloid-β oligomers in cellular models of Alzheimer's disease. J Neurochem 2020; 155:348-369. [PMID: 32320074 DOI: 10.1111/jnc.15030] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/21/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Amyloid-β (Aβ) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aβ fibrils that give rise to plaque formation, Aβ aggregates into non-fibrillar soluble oligomers (AβOs). Soluble AβOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AβOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AβOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AβOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Aline R Zimmer
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia S Rocha
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Grace Gosmann
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Pharmacology, UFRGS, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics,, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
12
|
Godoy PA, Ramírez-Molina O, Fuentealba J. Exploring the Role of P2X Receptors in Alzheimer's Disease. Front Pharmacol 2019; 10:1330. [PMID: 31787900 PMCID: PMC6854869 DOI: 10.3389/fphar.2019.01330] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Several studies have pointed to soluble oligomers of beta amyloid peptide (SOAβ) as the principal neurotoxic agents responsible for the generation of synaptotoxic events that can explain the main symptoms of Alzheimer’s disease (AD). Among the toxic features associated with SOAβ, one of the most notorious is the formation of a non-selective pore-like structure in the plasma membrane, which may partly explain the overload of intracellular Ca2+. There is evidence that the pore causes leakage of key intracellular compounds, such as adenosine triphosphate (ATP), to the extracellular milieu. Extracellular ATP activates P2X receptors (P2XR), which are ligand-gated ion channels (LGICs) widely expressed in both neuron and glial cells and act as neuromodulators of synaptic activity by promoting Ca2+ entry and facilitating neurotransmitter release. There is abundant evidence correlating the overexpression of these receptors to neurodegenerative diseases, including AD, thus opening the possibility that P2XR could potentiate the toxic mechanisms induced by SOAβ and contribute to intracellular Ca2+ overload in neurons and other mechanisms related to glial activation and inflammation. In this review, we correlate scientific evidence related to the main toxic effects induced by SOAβ and those that are mediated by purinergic P2XR. The data suggest that these purinergic receptors participate in the deleterious cellular and molecular effects of SOAβ that lead to the pathogenesis of AD. This information sheds light on the participation of new components in SOAβ toxicity that could be interesting as pharmacological targets for the development of molecular or chemical compounds able to modulate them.
Collapse
Affiliation(s)
- Pamela Andrea Godoy
- Neuroactive Compounds Screening Laboratory,Departamento de Fisiología, Facultad de Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oscar Ramírez-Molina
- Neuroactive Compounds Screening Laboratory,Departamento de Fisiología, Facultad de Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Neuroactive Compounds Screening Laboratory,Departamento de Fisiología, Facultad de Cs. Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
13
|
Mookherjee D, Majumder P, Mukherjee R, Chatterjee D, Kaul Z, Das S, Sougrat R, Chakrabarti S, Chakrabarti O. Cytosolic aggregates in presence of non‐translocated proteins perturb endoplasmic reticulum structure and dynamics. Traffic 2019; 20:943-960. [DOI: 10.1111/tra.12694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Debdatto Mookherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Priyanka Majumder
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Life Sciences, School of Natural SciencesShiv Nadar University Dadri UP India
| | - Rukmini Mukherjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Buchmann Institute for Molecular Life Sciences Frankfurt Am Main Germany
| | - Debmita Chatterjee
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
| | - Zenia Kaul
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Department of Microbiology, Immunology, and Cancer BiologyUniversity of Virginia School of Medicine Charlottesville Virginia
| | - Subhrangshu Das
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Rachid Sougrat
- Imaging and Characterization Lab4700 King Abdullah University of Science and Technology Thuwal Kingdom of Saudi Arabia
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics DivisionCSIR‐Indian Institute of Chemical Biology Kolkata India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics DivisionSaha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
14
|
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 2019; 64:S567-S610. [PMID: 29843241 PMCID: PMC6004937 DOI: 10.3233/jad-179941] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The amyloid-β oligomer (AβO) hypothesis was introduced in 1998. It proposed that the brain damage leading to Alzheimer’s disease (AD) was instigated by soluble, ligand-like AβOs. This hypothesis was based on the discovery that fibril-free synthetic preparations of AβOs were potent CNS neurotoxins that rapidly inhibited long-term potentiation and, with time, caused selective nerve cell death (Lambert et al., 1998). The mechanism was attributed to disrupted signaling involving the tyrosine-protein kinase Fyn, mediated by an unknown toxin receptor. Over 4,000 articles concerning AβOs have been published since then, including more than 400 reviews. AβOs have been shown to accumulate in an AD-dependent manner in human and animal model brain tissue and, experimentally, to impair learning and memory and instigate major facets of AD neuropathology, including tau pathology, synapse deterioration and loss, inflammation, and oxidative damage. As reviewed by Hayden and Teplow in 2013, the AβO hypothesis “has all but supplanted the amyloid cascade.” Despite the emerging understanding of the role played by AβOs in AD pathogenesis, AβOs have not yet received the clinical attention given to amyloid plaques, which have been at the core of major attempts at therapeutics and diagnostics but are no longer regarded as the most pathogenic form of Aβ. However, if the momentum of AβO research continues, particularly efforts to elucidate key aspects of structure, a clear path to a successful disease modifying therapy can be envisioned. Ensuring that lessons learned from recent, late-stage clinical failures are applied appropriately throughout therapeutic development will further enable the likelihood of a successful therapy in the near-term.
Collapse
Affiliation(s)
- Erika N Cline
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Maíra Assunção Bicca
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Kirsten L Viola
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - William L Klein
- Department of Neurobiology, Cognitive Neurology and Alzheimer's Disease Center, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
15
|
Nowakowski M, Czapla-Masztafiak J, Zhukov I, Zhukova L, Kozak M, Kwiatek WM. Electronic properties of a PrP C-Cu(ii) complex as a marker of 5-fold Cu(ii) coordination. Metallomics 2019; 11:632-642. [PMID: 30756103 DOI: 10.1039/c8mt00339d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human prion protein is a subject of extensive study, related in particular to the molecular basis of neurodegenerative disease development and prevention. This protein has two main domains: the membrane C-terminal, structured domain as well as the unstructured N-terminal domain. While PrPC (23-231) has up to eight Cu(ii) binding sites in the N-terminal domain, it includes a characteristic, conservative octarepeat region PHGGGWGQ, which was studied by means of X-ray absorption near edge spectroscopy. The measurements were conducted at the SuperXAS beamline (SLS, PSI, Villigen). For the initial 1 : 1 protein-to-Cu(ii) ratio, the two main Cu(ii) binding modes were identified using linear combination fitting and ab initio FEFF calculations for X-ray spectra. Their electronic structures indicated that Cu(ii) coordinated by strong π-donors could effectively suppress the pre-edge structure due to the filling of empty Cu(ii) d-states. The suppression was correlated with the charge transfer effect and filling of the virtual electronic Cu(ii) states. What is more, we showed that the 1s → 4p + LMCT (Ligand-to-Metal-Charge-Transfer) multielectron transition relation with the main edge transition could be used as a marker for preliminary comparison of an unknown organic compound to a reference. The presented results permitted a possible explanation of the mechanism of choosing the preferred Cu(ii) modes in PrPC-Cu(ii) coordination processes and of the complex stability from the electronic point of view.
Collapse
Affiliation(s)
- Michał Nowakowski
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31-342 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
16
|
Julien C, Tomberlin C, Roberts CM, Akram A, Stein GH, Silverman MA, Link CD. In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathol Commun 2018; 6:131. [PMID: 30497524 PMCID: PMC6263551 DOI: 10.1186/s40478-018-0634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to the β-amyloid peptide (Aβ) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aβ oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aβ oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aβ exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aβ induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aβ Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aβ multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aβ-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.
Collapse
|
17
|
Rösener NS, Gremer L, Reinartz E, König A, Brener O, Heise H, Hoyer W, Neudecker P, Willbold D. A d-enantiomeric peptide interferes with heteroassociation of amyloid-β oligomers and prion protein. J Biol Chem 2018; 293:15748-15764. [PMID: 30131337 PMCID: PMC6187637 DOI: 10.1074/jbc.ra118.003116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. One AD hallmark is the aggregation of β-amyloid (Aβ) into soluble oligomers and insoluble fibrils. Several studies have reported that oligomers rather than fibrils are the most toxic species in AD progression. Aβ oligomers bind with high affinity to membrane-associated prion protein (PrP), leading to toxic signaling across the cell membrane, which makes the Aβ-PrP interaction an attractive therapeutic target. Here, probing this interaction in more detail, we found that both full-length, soluble human (hu) PrP(23-230) and huPrP(23-144), lacking the globular C-terminal domain, bind to Aβ oligomers to form large complexes above the megadalton size range. Following purification by sucrose density-gradient ultracentrifugation, the Aβ and huPrP contents in these heteroassemblies were quantified by reversed-phase HPLC. The Aβ:PrP molar ratio in these assemblies exhibited some limited variation depending on the molar ratio of the initial mixture. Specifically, a molar ratio of about four Aβ to one huPrP in the presence of an excess of huPrP(23-230) or huPrP(23-144) suggested that four Aβ units are required to form one huPrP-binding site. Of note, an Aβ-binding all-d-enantiomeric peptide, RD2D3, competed with huPrP for Aβ oligomers and interfered with Aβ-PrP heteroassembly in a concentration-dependent manner. Our results highlight the importance of multivalent epitopes on Aβ oligomers for Aβ-PrP interactions and have yielded an all-d-peptide-based, therapeutically promising agent that competes with PrP for these interactions.
Collapse
Affiliation(s)
- Nadine S Rösener
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Elke Reinartz
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
| | - Anna König
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Oleksandr Brener
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Henrike Heise
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Wolfgang Hoyer
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Philipp Neudecker
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany and
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
18
|
Cascella R, Evangelisti E, Bigi A, Becatti M, Fiorillo C, Stefani M, Chiti F, Cecchi C. Soluble Oligomers Require a Ganglioside to Trigger Neuronal Calcium Overload. J Alzheimers Dis 2018; 60:923-938. [PMID: 28922156 DOI: 10.3233/jad-170340] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An altered distribution of membrane gangliosides (GM), including GM1, has recently been reported in the brains of Alzheimer's disease (AD) patients. Moreover, amyloid-positive synaptosomes obtained from AD brains were found to contain high-density GM1 clusters, suggesting a pathological significance of GM1 increase at presynaptic neuritic terminals in AD. Here, we show that membrane GM1 specifically recruits small soluble oligomers of the 42-residue form of amyloid-β peptide (Aβ42), with intracellular flux of Ca2+ ions in primary rat hippocampal neurons and in human neuroblastoma cells. Specific membrane proteins appear to be involved in the early and transient influx of Ca2+ ions induced by Aβ42 oligomers with high solvent-exposed hydrophobicity (A+), but not in the sustained late influx of the same oligomers and in that induced by Aβ42 oligomers with low solvent-exposed hydrophobicity (A-) in GM1-enriched cells. In addition, A+ oligomers accumulate in proximity of membrane NMDA and AMPA receptors, inducing the early and transient Ca2+ influx, although FRET shows that the interaction is not direct. These results suggest that age-dependent clustering of GM1 within neuronal membranes could induce neurodegeneration in elderly people as a consequence of an increased ability of the lipid bilayers to recruit membrane-permeabilizing oligomers. We also show that both lipid and protein components of the plasma membrane can contribute to neuronal dysfunction, thus expanding the molecular targets for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Elisa Evangelisti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
19
|
Zhang HY, Liu YH, Fu Y, Chen PC, Lu R, Li JX, Chen MH, Yang HC, Zhang YS. [Effect of intrahippocampal injection of anti-cellular prion protein monoclonal antibody on cognitive deficits in APPswe/PSEN1 dE9 transgenic mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:443-449. [PMID: 29735445 PMCID: PMC6765653 DOI: 10.3969/j.issn.1673-4254.2018.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To study the effects of intrahippocampal injection of cellular prion protein (PrPC) antibody on cognitive deficits of APPswe/PSEN1dE9 transgenic mice. METHODS Eight-month-old male APPswe/PSEN1dE9 transgenic mice were subjected to bilateral intrahippocampal injection of a single dose (2 µL) of anti-PrPC monoclonal antibody (EP1802Y) or PBS, with wild-type C57Bl/6J mice serving as the control group. After two months, the mice were tested for cognitive behaviors using open filed (OF) test, Morris water maze (MWM) test, fear conditioning (FC) test, and novel object recognition (NOR) test, and immunohistochemistry was used to examine the changes in hippocampal expression of Aβ1-42. RESULTS The EP1802Y-treated and PBS-treated mice showed no significantly differences in the performance in OF test in terms of central activity time or total distance of activity (P>0.05), nor in NOR test in terms of novel object recognition index (P>0.05). In MWM test, the EP1802Y-treated and PBS-treated mice showed significantly reduced crossings of the hidden platform as compared with the wild-type mice (P<0.05), but EP1802Y-treated mice had a significantly shorter swimming distance to find the platform than PBS-treated mice (P<0.05). No significant differences were found in the results of FC test among the 3 groups. Immunohistochemistry revealed a significantly reduced expression of Aβ1-42 in the hippocampus of EP1802Y-treated mice. CONCLUSION Intrahippocampal injection of PrPC antibody can improve cognitive deficits of APPswe/PSEN1dE9 transgenic mice, which sheds light on a novel therapeutic approach for Alzheimer's disease that targets PrPC to lower the toxicity of Aβ oligomer.
Collapse
Affiliation(s)
- Hai-Ying Zhang
- Department of Anatomy, Hainan Medical University, Haikou 571101, China. E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Purro SA, Nicoll AJ, Collinge J. Prion Protein as a Toxic Acceptor of Amyloid-β Oligomers. Biol Psychiatry 2018; 83:358-368. [PMID: 29331212 DOI: 10.1016/j.biopsych.2017.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023]
Abstract
The initial report that cellular prion protein (PrPC) mediates toxicity of amyloid-β species linked to Alzheimer's disease was initially treated with scepticism, but growing evidence supports this claim. That there is a high-affinity interaction is now clear, and its molecular basis is being unraveled, while recent studies have identified possible downstream toxic mechanisms. Determination of the clinical significance of such interactions between PrPC and disease-associated amyloid-β species will require experimental medicine studies in humans. Trials of compounds that inhibit PrP-dependent amyloid-β toxicity are commencing in humans, and although it is clear that only a fraction of Alzheimer's disease toxicity could be governed by PrPC, a partial, but still therapeutically useful, role in human disease may soon be testable.
Collapse
Affiliation(s)
- Silvia A Purro
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom
| | - Andrew J Nicoll
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom; Elkington and Fife LLP, Kent, United Kingdom.
| | - John Collinge
- Medical Research Council Prion Unit, Institute of Prion Diseases, University College London (UCL), London, United Kingdom.
| |
Collapse
|
21
|
Peters C, Sepúlveda FJ, Fernández-Pérez EJ, Peoples RW, Aguayo LG. The Level of NMDA Receptor in the Membrane Modulates Amyloid-β Association and Perforation. J Alzheimers Dis 2018; 53:197-207. [PMID: 27163827 DOI: 10.3233/jad-160170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects mostly the elderly. The main histopathological markers are the senile plaques formed by amyloid-β peptide (Aβ) aggregates that can perforate the plasma membrane of cells, increasing the intracellular calcium levels and releasing synaptic vesicles that finally lead to a delayed synaptic failure. Several membrane proteins and lipids interact with Aβ affecting its toxicity in neurons. Here, we focus on NMDA receptors (NMDARs) as proteins that could be modulating the association and neurotoxic perforation induced by Aβ on the plasma membrane. In fact, our results showed that decreasing NMDARs, using enzymatic or siRNA approaches, increased the association of Aβ to the neurons. Furthermore, overexpression of NMDARs also resulted in an enhanced association between NMDA and Aβ. Functionally, the reduction in membrane NMDARs augmented the process of membrane perforation. On the other hand, overexpressing NMDARs had a protective effect because Aβ was now unable to cause membrane perforation, suggesting a complex relationship between Aβ and NMDARs. Because previous studies have recognized that Aβ oligomers are able to increase membrane permeability and produce amyloid pores, the present study supports the conclusion that NMDARs play a critical protective role on Aβ actions in hippocampal neurons. These results could explain the lack of correlation between brain Aβ burden and clinically observed dementia.
Collapse
Affiliation(s)
- Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| | | | - Robert W Peoples
- Laboratory of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Chile
| |
Collapse
|
22
|
Vidal F, Vásquez P, Cayumán FR, Díaz C, Fuentealba J, Aguayo LG, Yévenes GE, Alderete J, Guzmán L. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization. NANOMATERIALS 2017; 8:nano8010007. [PMID: 29295581 PMCID: PMC5791094 DOI: 10.3390/nano8010007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/16/2022]
Abstract
One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM) dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4) in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25) and polyethylene glycol (PPEG25). G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.
Collapse
Affiliation(s)
- Felipe Vidal
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Pilar Vásquez
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Francisca R Cayumán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Carola Díaz
- Laboratory of Biomaterials and Molecular Design, Department of Organic Chemistry, Faculty of Chemical Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Jorge Fuentealba
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Luis G Aguayo
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Gonzalo E Yévenes
- Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Joel Alderete
- Laboratory of Biomaterials and Molecular Design, Department of Organic Chemistry, Faculty of Chemical Sciences, University of Concepcion, Concepción 4070386, Chile.
| | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences, University of Concepcion, Concepción 4070386, Chile.
| |
Collapse
|
23
|
Sáez-Orellana F, Fuentes-Fuentes MC, Godoy PA, Silva-Grecchi T, Panes JD, Guzmán L, Yévenes GE, Gavilán J, Egan TM, Aguayo LG, Fuentealba J. P2X receptor overexpression induced by soluble oligomers of amyloid beta peptide potentiates synaptic failure and neuronal dyshomeostasis in cellular models of Alzheimer's disease. Neuropharmacology 2017; 128:366-378. [PMID: 29079292 DOI: 10.1016/j.neuropharm.2017.10.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/13/2017] [Accepted: 10/21/2017] [Indexed: 12/17/2022]
Abstract
The most common cause of dementia is Alzheimer's disease. The etiology of the disease is unknown, although considerable evidence suggests a critical role for the soluble oligomers of amyloid beta peptide (Aβ). Because Aβ increases the expression of purinergic receptors (P2XRs) in vitro and in vivo, we studied the functional correlation between long-term exposure to Aβ and the ability of P2XRs to modulate network synaptic tone. We used electrophysiological recordings and Ca2+ microfluorimetry to assess the effects of chronic exposure (24 h) to Aβ oligomers (0.5 μM) together with known inhibitors of P2XRs, such as PPADS and apyrase on synaptic function. Changes in the expression of P2XR were quantified using RT-qPCR. We observed changes in the expression of P2X1R, P2X7R and an increase in P2X2R; and also in protein levels in PC12 cells (143%) and hippocampal neurons (120%) with Aβ. In parallel, the reduction on the frequency and amplitude of mEPSCs (72% and 35%, respectively) were prevented by P2XR inhibition using a low PPADS concentration. Additionally, the current amplitude and intracellular Ca2+ signals evoked by extracellular ATP were increased (70% and 75%, respectively), suggesting an over activation of purinergic neurotransmission in cells pre-treated with Aβ. Taken together, our findings suggest that Aβ disrupts the main components of synaptic transmission at both pre- and post-synaptic sites, and induces changes in the expression of key P2XRs, especially P2X2R; changing the neuromodulator function of the purinergic tone that could involve the P2X2R as a key factor for cytotoxic mechanisms. These results identify novel targets for the treatment of dementia and other diseases characterized by increased purinergic transmission.
Collapse
Affiliation(s)
- Francisco Sáez-Orellana
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - María C Fuentes-Fuentes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Pamela A Godoy
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Tiare Silva-Grecchi
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jessica D Panes
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Molecular Neurobiology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E Yévenes
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Javiera Gavilán
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Terrance M Egan
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - Luis G Aguayo
- Neuropharmacology Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Neuroactive Compounds Screening Laboratory, Physiology Department, Biological Sciences Faculty, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
24
|
Hales CM, Dammer EB, Deng Q, Duong DM, Gearing M, Troncoso JC, Thambisetty M, Lah JJ, Shulman JM, Levey AI, Seyfried NT. Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics 2017; 16:3042-3053. [PMID: 27718298 DOI: 10.1002/pmic.201600057] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
Abstract
Despite a key role of amyloid-beta (Aβ) in Alzheimer's disease (AD), mechanisms that link Aβ plaques to tau neurofibrillary tangles and cognitive decline still remain poorly understood. The purpose of this study was to quantify proteins in the sarkosyl-insoluble brain proteome correlated with Aβ and tau insolubility in the asymptomatic phase of AD (AsymAD) and through mild cognitive impairment (MCI) and symptomatic AD. Employing label-free mass spectrometry-based proteomics, we quantified 2711 sarkosyl-insoluble proteins across the prefrontal cortex from 35 individual cases representing control, AsymAD, MCI and AD. Significant enrichment of Aβ and tau in AD was observed, which correlated with neuropathological measurements of plaque and tau tangle density, respectively. Pairwise correlation coefficients were also determined for all quantified proteins to Aβ and tau, across the 35 cases. Notably, six of the ten most correlated proteins to Aβ were U1 small nuclear ribonucleoproteins (U1 snRNPs). Three of these U1 snRNPs (U1A, SmD and U1-70K) also correlated with tau consistent with their association with tangle pathology in AD. Thus, proteins that cross-correlate with both Aβ and tau, including specific U1 snRNPs, may have potential mechanistic roles in linking Aβ plaques to tau tangle pathology during AD progression.
Collapse
Affiliation(s)
- Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Qiudong Deng
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Experimental Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Madhav Thambisetty
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience, and Molecular & Human Genetics and Program in Developmental Biology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Baylor College of Medicine, Houston, TX, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
25
|
Andreeva TV, Lukiw WJ, Rogaev EI. Biological Basis for Amyloidogenesis in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2017; 82:122-139. [PMID: 28320296 DOI: 10.1134/s0006297917020043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Certain cellular proteins normally soluble in the living organism under certain conditions form aggregates with a specific cross-β sheet structure called amyloid. These intra- or extracellular insoluble aggregates (fibers or plaques) are hallmarks of many neurodegenerative pathologies including Alzheimer's disease (AD), Huntington's disease, Parkinson's disease, prion disease, and other progressive neurological diseases that develop in the aging human central nervous system. Amyloid diseases (amyloidoses) are widespread in the elderly human population, a rapidly expanding demographic in many global populations. Increasing age is the most significant risk factor for neurodegenerative diseases associated with amyloid plaques. To date, nearly three dozen different misfolded proteins targeting brain and other organs have been identified in amyloid diseases and AD, the most prevalent neurodegenerative amyloid disease affecting over 15 million people worldwide. Here we (i) highlight the latest data on mechanisms of amyloid formation and further discuss a hypothesis on the amyloid cascade as a primary mechanism of AD pathogenesis and (ii) review the evolutionary aspects of amyloidosis, which allow new insight on human-specific mechanisms of dementia development.
Collapse
Affiliation(s)
- T V Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | |
Collapse
|
26
|
Peters C, Bascuñán D, Opazo C, Aguayo LG. Differential Membrane Toxicity of Amyloid-β Fragments by Pore Forming Mechanisms. J Alzheimers Dis 2016; 51:689-99. [PMID: 26890761 DOI: 10.3233/jad-150896] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A major characteristic of Alzheimer's disease (AD) is the presence of amyloid-β peptide (Aβ) oligomers and aggregates in the brain. It is known that Aβ oligomers interact with the neuronal membrane and induce perforations that cause an influx of calcium ions and enhance the release of synaptic vesicles leading to a delayed synaptic failure by vesicle depletion. To better understand the mechanism by which Aβ exerts its effect on the plasma membrane, we evaluated three Aβ fragments derived from different regions of Aβ(1-42); Aβ(1-28) from the N-terminal region, Aβ(25-35) from the central region, and Aβ(17-42) from the C-terminal region. The neuronal activities of these fragments were examined with patch clamp, immunofluorescence, transmission electron microscopy, aggregation assays, calcium imaging, and MTT reduction assays. The present results indicate that the fragment Aβ(1-28) contributes to aggregation, an increase in intracellular calcium and synaptotoxicity, but is not involved in membrane perforation; Aβ(25-35) is important for membrane perforation, calcium increase, and synaptotoxicity; and Aβ(17-42) induced mitochondrial toxicity similar to the full length Aβ(1-42), but was unable to induce membrane perforation and calcium increase, supporting the idea that it is less toxic in the non-amyloidogenic pathway.
Collapse
|
27
|
Pinnock EC, Jovanovic K, Pinto MG, Ferreira E, Dias BDC, Penny C, Knackmuss S, Reusch U, Little M, Schatzl HM, Weiss SFT. LRP/LR Antibody Mediated Rescuing of Amyloid-β-Induced Cytotoxicity is Dependent on PrPc in Alzheimer's Disease. J Alzheimers Dis 2016; 49:645-57. [PMID: 26484914 DOI: 10.3233/jad-150482] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neuronal perturbations in Alzheimer's disease are attributed to the formation of extracellular amyloid-β (Aβ) neuritic plaques, composed predominantly of the neurotoxic Aβ42 isoform. Although the plaques have demonstrated a role in synaptic dysfunction, neuronal cytotoxicity has been attributed to soluble Aβ42 oligomers. The 37kDa/67kDa laminin receptor has been implicated in Aβ42 shedding and Aβ42-induced neuronal cytotoxicity, as well as internalization of this neurotoxic peptide. As the cellular prion protein binds to both LRP/LR and Aβ42, the mechanism underlying this cytotoxicity may be indirectly due to the PrPc-Aβ42 interaction with LRP/LR. The effects of this interaction were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assays. PrPc overexpression significantly enhanced Aβ42 cytotoxicity in vitro, while PrP-/- cells were more resistant to the cytotoxic effects of Aβ42 and exhibited significantly less cell death than PrPc expressing N2a cells. Although anti-LRP/LR specific antibody IgG1-iS18 significantly enhanced cell viability in both pSFV1-huPrP1-253 transfected and non-transfected cells treated with exogenous Aβ42, it failed to have any cell rescuing effect in PrP-/- HpL3-4 cells. These results suggest that LRP/LR plays a significant role in Aβ42-PrPc mediated cytotoxicity and that anti-LRP/LR specific antibodies may serve as potential therapeutic tools for Alzheimer's disease.
Collapse
Affiliation(s)
- Emma C Pinnock
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Katarina Jovanovic
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Maxine G Pinto
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| | - Clement Penny
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, Parktown, Republic of South Africa (RSA)
| | | | - Uwe Reusch
- Affimed GmbH, Technologiepark, Heidelberg, Germany
| | | | - Hermann M Schatzl
- Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa (RSA)
| |
Collapse
|
28
|
Astrogliosis: An integral player in the pathogenesis of Alzheimer's disease. Prog Neurobiol 2016; 144:121-41. [PMID: 26797041 DOI: 10.1016/j.pneurobio.2016.01.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease is the main cause of dementia in the elderly and begins with a subtle decline in episodic memory followed by a more general decline in overall cognitive abilities. Though the exact trigger for this cascade of events remains unknown the presence of the misfolded amyloid-beta protein triggers reactive gliosis, a prominent neuropathological feature in the brains of Alzheimer's patients. The cytoskeletal and morphological changes of astrogliosis are its evident features, while changes in oxidative stress defense, cholesterol metabolism, and gene transcription programs are less manifest. However, these latter molecular changes may underlie a disruption in homeostatic regulation that keeps the brain environment balanced. Astrocytes in Alzheimer's disease show changes in glutamate and GABA signaling and recycling, potassium buffering, and in cholinergic, purinergic, and calcium signaling. Ultimately the dysregulation of homeostasis maintained by astrocytes can have grave consequences for the stability of microcircuits within key brain regions. Specifically, altered inhibition influenced by astrocytes can lead to local circuit imbalance with farther reaching consequences for the functioning of larger neuronal networks. Healthy astrocytes have a role in maintaining and modulating normal neuronal communication, synaptic physiology and energy metabolism, astrogliosis interferes with these functions. This review considers the molecular and functional changes occurring during astrogliosis in Alzheimer's disease, and proposes that astrocytes are key players in the development of dementia.
Collapse
|
29
|
Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ. Prion protein scrapie and the normal cellular prion protein. Prion 2016; 10:63-82. [PMID: 26645475 PMCID: PMC4981215 DOI: 10.1080/19336896.2015.1110293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.
Collapse
Affiliation(s)
- Caroline J. Atkinson
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Kai Zhang
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Alan L. Munn
- Laboratory of Yeast Cell Biology, Molecular Basis of Disease Program, Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Adrian Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Ming Q. Wei
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
30
|
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer's disease. Front Cell Neurosci 2015; 9:191. [PMID: 26074767 PMCID: PMC4443025 DOI: 10.3389/fncel.2015.00191] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly, and affects millions of people worldwide. As the number of AD cases continues to increase in both developed and developing countries, finding therapies that effectively halt or reverse disease progression constitutes a major research and public health challenge. Since the identification of the amyloid-β peptide (Aβ) as the major component of the amyloid plaques that are characteristically found in AD brains, a major effort has aimed to determine whether and how Aβ leads to memory loss and cognitive impairment. A large body of evidence accumulated in the past 15 years supports a pivotal role of soluble Aβ oligomers (AβOs) in synapse failure and neuronal dysfunction in AD. Nonetheless, a number of basic questions, including the exact molecular composition of the synaptotoxic oligomers, the identity of the receptor(s) to which they bind, and the signaling pathways that ultimately lead to synapse failure, remain to be definitively answered. Here, we discuss recent advances that have illuminated our understanding of the chemical nature of the toxic species and the deleterious impact they have on synapses, and have culminated in the proposal of an Aβ oligomer hypothesis for Alzheimer’s pathogenesis. We also highlight outstanding questions and challenges in AD research that should be addressed to allow translation of research findings into effective AD therapies.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil ; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Mauricio M Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, RJ, Brazil
| |
Collapse
|
31
|
Sáez-Orellana F, Godoy PA, Bastidas CY, Silva-Grecchi T, Guzmán L, Aguayo LG, Fuentealba J. ATP leakage induces P2XR activation and contributes to acute synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in hippocampal neurons. Neuropharmacology 2015; 100:116-23. [PMID: 25896766 DOI: 10.1016/j.neuropharm.2015.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/10/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023]
Abstract
Recent studies suggest that the toxic effects of Aβ can be attributed to its capability to insert in membranes and form pore-like structures, which are permeable to cations and molecules such as ATP. Our working hypothesis is that Aβ increases extracellular ATP causing activation of P2X receptors and potentiating excitatory synaptic activity. We found that soluble oligomers of β-amyloid peptide increased cytosolic Ca(2+) 4-fold above control (415 ± 28% of control). Also, ATP leakage (157 ± 10% of control) was independent of extracellular Ca(2+), suggesting that ATP traveled from the cytosol through an Aβ pore-mediated efflux and not from exocytotic mechanisms. The subsequent activation of P2XR by ATP can contribute to the cytosolic Ca(2+) increase observed with Aβ. Additionally, we found that β-amyloid oligomers bind preferentially to excitatory neurons inducing an increase in excitatory synaptic current frequency (248.1 ± 32.7%) that was blocked by the use of P2XR antagonists such as PPADS (Aβ + PPADS: 110.9 ± 18.35%) or Apyrase plus DPCPX (Aβ + inhibitors: 98.97 ± 17.4%). Taken together, we suggest that Aβ induces excitotoxicity by binding preferentially to excitatory neuron membranes forming a non-selective pore and by increasing intracellular calcium by itself and through P2XR activation by extracellular ATP leading to an augmention in mEPSC activity. All these effects were blocked with a non-specific P2XR antagonist, indicating that part of the neurotoxicity of Aβ is mediated by P2XR activation and facilitation of excitatory neurotransmitter release. These findings suggest that P2XR can be considered as a potential new target for the development of drugs or pharmacological tools to treat Alzheimer's disease. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- F Sáez-Orellana
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - P A Godoy
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - C Y Bastidas
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - T Silva-Grecchi
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - L Guzmán
- Neurophysiology Laboratory, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - L G Aguayo
- Neurophysiology Laboratory, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - J Fuentealba
- Laboratory of Screening of Neuroactive Compound, Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile; Center for Advanced Research on Biomedicine (CIAB-UdeC), Physiology Department, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|