1
|
Zheng J, Luo W, Kong C, Xie W, Chen X, Qiu J, Wang K, Wei H, Zhou Y. Impact of aerobic exercise on brain metabolism: Insights from spatial metabolomic analysis. Behav Brain Res 2025; 478:115339. [PMID: 39549874 DOI: 10.1016/j.bbr.2024.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Exercise is acknowledged for its beneficial effects on brain health; however, the intricate underlying molecular mechanisms remain poorly understood. AIMS This study aimed to explore aerobic exercise-induced metabolic alterations in the brain. METHODS We conducted an eight-week treadmill running exercise program in two-month-old male C57/BL6J mice. Body weight, serum lipid, glucose levels, and spatial cognition were measured. Spatial metabolomic analysis was performed to compare the metabolomic profiles across different brain regions. Immunohistochemical methods were used to compare the expression of carnitine palmitoyltransferase 1c (CPT1c). RESULTS Exercise induced significant changes in the analysed metabolomic profiles. There were 904 differentially expressed metabolites (DEMs) detected in the whole brain section. Notable alterations in lipid profiles were observed, and among the 292 lipids detected, there were 74 (25.34 %), 85 (29.11 %), and 78 (26.71 %) lipids differentially expressed in the hippocampus, thalamus, and hypothalamus of the Exe group, respectively. Lipid metabolism related pathways and enzymes were also altered, with L-carnitine and CPT1c upregulated in the three regions (p<0.05), and epinephrine levels decreased in the hippocampus (p<0.05). Furthermore, the vitamin B6 metabolism pathway was altered in the hypothalamus. CONCLUSIONS This study highlighted the significant changes in lipid metabolism induced by involuntary exercise in the brains of young male mice. Exercise also altered epinephrine levels and the vitamin B12 metabolic pathway in specific brain regions, which indicated the multifaceted effects of exercise on the brain.
Collapse
Affiliation(s)
- Jiaping Zheng
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Wei Luo
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Chenghua Kong
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wenhuo Xie
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiuyun Chen
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Jiaxian Qiu
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Kexin Wang
- Department of Rehabilitation Medicine, School of Health, Fujian Medical University, Fuzhou, China
| | - Hong Wei
- Cadre Healthcare Office, Fujian Provincial Hospital, Fuzhou, China.
| | - Yu Zhou
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Lu X, Chen Y, Shi Y, Shi Y, Su X, Chen P, Wu D, Shi H. Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention. Exp Gerontol 2025; 200:112685. [PMID: 39818278 DOI: 10.1016/j.exger.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging. This review provides a comprehensive summary of different forms of exercise for older adults and the multifaceted role of exercise in anti-aging, focusing on the biological functions and sources of these exerkines. We further explore how exerkines combat aging-related diseases, such as type 2 diabetes and osteoporosis. By stimulating the secretion of these exerkines, exercise supports healthy longevity by promoting tissue homeostasis and metabolic balance. Additionally, the integration of exercise-induced exerkines into therapeutic strategies represents a promising approach to mitigating age-related pathologies at the molecular level. As our understanding deepens, it may pave the way for personalized interventions leveraging physical activity to enhance healthspan and improve quality of life.
Collapse
Affiliation(s)
- Xuan Lu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Ying Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China
| | - Yue Shi
- School of Athletic, Shanghai University of Sport, Shanghai 200438, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peijie Chen
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Die Wu
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China.
| | - Hui Shi
- Shanghai anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
5
|
Fernández de la Torre M, Fiuza-Luces C, Laine-Menéndez S, Delmiro A, Arenas J, Martín MÁ, Lucia A, Morán M. Pathophysiology of Cerebellar Degeneration in Mitochondrial Disorders: Insights from the Harlequin Mouse. Int J Mol Sci 2023; 24:10973. [PMID: 37446148 DOI: 10.3390/ijms241310973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
By means of a proteomic approach, we assessed the pathways involved in cerebellar neurodegeneration in a mouse model (Harlequin, Hq) of mitochondrial disorder. A differential proteomic profile study (iTRAQ) was performed in cerebellum homogenates of male Hq and wild-type (WT) mice 8 weeks after the onset of clear symptoms of ataxia in the Hq mice (aged 5.2 ± 0.2 and 5.3 ± 0.1 months for WT and Hq, respectively), followed by a biochemical validation of the most relevant changes. Additional groups of 2-, 3- and 6-month-old WT and Hq mice were analyzed to assess the disease progression on the proteins altered in the proteomic study. The proteomic analysis showed that beyond the expected deregulation of oxidative phosphorylation, the cerebellum of Hq mice showed a marked astroglial activation together with alterations in Ca2+ homeostasis and neurotransmission, with an up- and downregulation of GABAergic and glutamatergic neurotransmission, respectively, and the downregulation of cerebellar "long-term depression", a synaptic plasticity phenomenon that is a major player in the error-driven learning that occurs in the cerebellar cortex. Our study provides novel insights into the mechanisms associated with cerebellar degeneration in the Hq mouse model, including a complex deregulation of neuroinflammation, oxidative phosphorylation and glutamate, GABA and amino acids' metabolism.
Collapse
Affiliation(s)
- Miguel Fernández de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
| | - Aitor Delmiro
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Bioquímica Clínica, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| | - Miguel Ángel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
- Servicio de Genética, Hospital Universitario "12 de Octubre", 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, 28670 Madrid, Spain
- Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), 28029 Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), 28041 Madrid, Spain
- Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, 28029 Madrid, Spain
| |
Collapse
|
6
|
Limper CB, Bondah N, Zhu D, Villanueva AN, Chukwukere UK, Huang W, August A. Effective differentiation of double negative thymocytes requires high fidelity replication of mitochondrial DNA in an age dependent manner. Front Immunol 2023; 14:1128626. [PMID: 37020546 PMCID: PMC10067910 DOI: 10.3389/fimmu.2023.1128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
One of the most proliferative periods for T cells occurs during their development in the thymus. Increased DNA replication can result in increased DNA mutations in the nuclear genome, but also in mitochondrial genomes. A high frequency of mitochondrial DNA mutations can lead to abnormal mitochondrial function and have negative implications on human health. Furthermore, aging is accompanied by an increase in such mutations through oxidative damage and replication errors. Increased mitochondrial DNA mutations cause loss of mitochondrial protein function, and decrease energy production, substrates, and metabolites. Here we have evaluated the effect of increased mitochondrial DNA mutations on T cell development in the thymus. Using mice carrying a mutant mitochondrial DNA polymerase γ (PolG) that causes increased mitochondrial DNA mutations, we show that high fidelity replication of mitochondrial DNA is pivotal for proper T cell development. Reducing the fidelity of mitochondrial DNA replication results in a premature age-dependent reduction in the total number of CD4/CD8 double negative and double positive thymocytes. Analysis of mitochondrial density in thymocyte subpopulations suggests that this may be due to reduced proliferation in specific double negative stages. Taken together, this work suggests that T cell development is regulated by the ability of mitochondria to faithfully replicate their DNA.
Collapse
Affiliation(s)
- Candice B. Limper
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Narda Bondah
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Daphne Zhu
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Alanis N. Villanueva
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Uchenna K. Chukwukere
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Avery August
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
- Cornell Center for Health Equity, Cornell University, Ithaca, NY, United States
- *Correspondence: Avery August,
| |
Collapse
|
7
|
Coleman C, Martin I. Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2321-2338. [PMID: 36278358 PMCID: PMC9837701 DOI: 10.3233/jpd-223363] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aging is the greatest risk factor for Parkinson's disease (PD), suggesting that mechanisms driving the aging process promote PD neurodegeneration. Several lines of evidence support a role for aging in PD. First, hallmarks of brain aging such as mitochondrial dysfunction and oxidative stress, loss of protein homeostasis, and neuroinflammation are centrally implicated in PD development. Second, mutations that cause monogenic PD are present from conception, yet typically only cause disease following a period of aging. Third, lifespan-extending genetic, dietary, or pharmacological interventions frequently attenuate PD-related neurodegeneration. These observations support a central role for aging in disease development and suggest that new discoveries in the biology of aging could be leveraged to elucidate novel mechanisms of PD pathophysiology. A recent rapid growth in our understanding of conserved molecular pathways that govern model organism lifespan and healthspan has highlighted a key role for metabolism and nutrient sensing pathways. Uncovering how metabolic pathways involving NAD+ consumption, insulin, and mTOR signaling link to the development of PD is underway and implicates metabolism in disease etiology. Here, we assess areas of convergence between nervous system aging and PD, evaluate the link between metabolism, aging, and PD and address the potential of metabolic interventions to slow or halt the onset of PD-related neurodegeneration drawing on evidence from cellular and animal models.
Collapse
Affiliation(s)
- Colin Coleman
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA
| | - Ian Martin
- Department of Neurology, Jungers Center for Neurosciences, Oregon Health and Science University, Portland, OR, USA,Correspondence to: Ian Martin, Jungers Center for Neurosciences Research, Department of Neurology - Mail Code L623, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; E-mail:
| |
Collapse
|
8
|
Guo Y, Wang S, Chao X, Li D, Wang Y, Guo Q, Chen T. Multi-omics studies reveal ameliorating effects of physical exercise on neurodegenerative diseases. Front Aging Neurosci 2022; 14:1026688. [PMID: 36389059 PMCID: PMC9659972 DOI: 10.3389/fnagi.2022.1026688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, are heavy burdens to global health and economic development worldwide. Mounting evidence suggests that exercise, a type of non-invasive intervention, has a positive impact on the life quality of elderly with neurodegenerative diseases. X-omics are powerful tools for mapping global biochemical changes in disease and treatment. METHOD Three major databases were searched related to current studies in exercise intervention on neurodegenerative diseases using omics tools, including metabolomics, metagenomics, genomics, transcriptomics, and proteomics. RESULT We summarized the omics features and potential mechanisms associated with exercise and neurodegenerative diseases in the current studies. Three main mechanisms by which exercise affects neurodegenerative diseases were summed up, including adult neurogenesis, brain-derived neurotrophic factor (BDNF) signaling, and short-chain fatty acids (SCFAs) metabolism. CONCLUSION Overall, there is compelling evidence that exercise intervention is a feasible way of preventing the onset and alleviating the severity of neurodegenerative diseases. These studies highlight the importance of exercise as a complementary approach to the treatment and intervention of neurodegenerative diseases in addition to traditional treatments. More mechanisms on exercise interventions for neurodegenerative diseases, the specification of exercise prescriptions, and differentiated exercise programs should be explored so that they can actually be applied to the clinic.
Collapse
Affiliation(s)
- Yuhuai Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaowen Chao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ding Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
9
|
Alvarez Villela M, Dunworth SA, Kraft BD, Harlan NP, Natoli MJ, Suliman HB, Moon RE. Effects of high-intensity interval training with hyperbaric oxygen. Front Physiol 2022; 13:963799. [PMID: 36060678 PMCID: PMC9437248 DOI: 10.3389/fphys.2022.963799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperbaric Oxygen (HBO2) has been proposed as a pre-conditioning method to enhance exercise performance. Most prior studies testing this effect have been limited by inadequate methodologies. Its potential efficacy and mechanism of action remain unknown. We hypothesized that HBO2 could enhance aerobic capacity by inducing mitochondrial biogenesis via redox signaling in skeletal muscle. HBO2 was administered in combination with high-intensity interval training (HIIT), a potent redox stimulus known to induce mitochondrial biogenesis. Aerobic capacity was tested during acute hypobaric hypoxia seeking to shift the limiting site of whole body V̇O2 from convection to diffusion, more closely isolating any effect of improved oxidative capacity. Healthy volunteers were screened with sea-level (SL) V̇O2peak testing. Seventeen subjects were enrolled (10 men, 7 women, ages 26.5±1.3 years, BMI 24.6±0.6 kg m−2, V̇O2peak SL = 43.4±2.1). Each completed 6 HIIT sessions over 2 weeks randomized to breathing normobaric air, “HIIT+Air” (PiO2 = 0.21 ATM) or HBO2 (PiO2 = 1.4 ATM) during training, “HIIT+HBO2” group. Training workloads were individualized based on V̇O2peak SL test. Vastus Lateralis (VL) muscle biopsies were performed before and after HIIT in both groups. Baseline and post-training V̇O2peak tests were conducted in a hypobaric chamber at PiO2 = 0.12 ATM. HIIT significantly increased V̇O2peak in both groups: HIIT+HBO2 31.4±1.5 to 35.2±1.2 ml kg−1·min−1 and HIIT+Air 29.0±3.1 to 33.2±2.5 ml kg−1·min−1 (p = 0.005) without an additional effect of HBO2 (p = 0.9 for interaction of HIIT x HBO2). Subjects randomized to HIIT+HBO2 displayed higher skeletal muscle mRNA levels of PPARGC1A, a regulator of mitochondrial biogenesis, and HK2 and SLC2A4, regulators of glucose utilization and storage. All other tested markers of mitochondrial biogenesis showed no additional effect of HBO2 to HIIT. When combined with HIIT, short-term modest HBO2 (1.4 ATA) has does not increase whole-body V̇O2peak during acute hypobaric hypoxia. (ClinicalTrials.gov Identifier: NCT02356900; https://clinicaltrials.gov/ct2/show/NCT02356900).
Collapse
Affiliation(s)
- Miguel Alvarez Villela
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Sophia A. Dunworth
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Bryan D. Kraft
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Nicole P. Harlan
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael J. Natoli
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Hagir B. Suliman
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
| | - Richard E. Moon
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, NC, United States
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, NC, United States
- *Correspondence: Richard E. Moon,
| |
Collapse
|
10
|
Diamantidou D, Deda O, Zervos I, Taitzoglou I, Gika H, Theodoridis G, Michopoulos F. Hepatic Metabolic Profiling of Lifelong Exercise Training Rats. J Proteome Res 2022; 21:2075-2084. [PMID: 35939535 DOI: 10.1021/acs.jproteome.2c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regular physical exercise has been investigated as a primary preventive measure of several chronic diseases and premature death. Moreover, it has been shown to synchronize responses across multiple organs. In particular, hepatic tissue has proven to be a descriptive matrix to monitor the effect of physical activity. In this study, we performed an untargeted metabolomics-based analysis of hepatic tissue extracts from rats that have undergone either lifelong or chronic exercise training. For this purpose, 56 hepatic samples were collected and were analyzed by UHPLC-TOF-MS in negative ionization mode. This approach involved untargeted metabolite detection on hepatic tissue extracts accompanied by an in-house retention time/accurate mass library enabling confident metabolite identification. Unsupervised (PCA) and supervised (OPLS-DA) multivariate analysis showed significant metabolic perturbation on a panel of 28 metabolites, including amino acids, vitamins, nucleotides, and sugars. The training regime employed in this study resulted in a probable acceleration of the bioenergetic processes (glycolysis, glycogen metabolism), promoted catabolism of purines, and supplied biosynthetic precursors via the pentose phosphate pathway and pentose and glucuronate interconversions. Overall, the applied methodology was able to discriminate the different training schedules based on the rat liver metabolome.
Collapse
Affiliation(s)
- Dimitra Diamantidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.,Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | - Olga Deda
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis Zervos
- Laboratory of Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Taitzoglou
- Laboratory of Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.,Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece
| | | |
Collapse
|
11
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
12
|
Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci 2021; 13:755665. [PMID: 34658846 PMCID: PMC8519401 DOI: 10.3389/fnagi.2021.755665] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Neurons are highly specialized post-mitotic cells that are inherently dependent on mitochondria due to their higher bioenergetic demand. Mitochondrial dysfunction is closely associated with a variety of aging-related neurological disorders, such as Alzheimer’s disease (AD), and the accumulation of dysfunctional and superfluous mitochondria has been reported as an early stage that significantly facilitates the progression of AD. Mitochondrial damage causes bioenergetic deficiency, intracellular calcium imbalance and oxidative stress, thereby aggravating β-amyloid (Aβ) accumulation and Tau hyperphosphorylation, and further leading to cognitive decline and memory loss. Although there is an intricate parallel relationship between mitochondrial dysfunction and AD, their triggering factors, such as Aβ aggregation and hyperphosphorylated Tau protein and action time, are still unclear. Moreover, many studies have confirmed abnormal mitochondrial biosynthesis, dynamics and functions will present once the mitochondrial quality control is impaired, thus leading to aggravated AD pathological changes. Accumulating evidence shows beneficial effects of appropriate exercise on improved mitophagy and mitochondrial function to promote mitochondrial plasticity, reduce oxidative stress, enhance cognitive capacity and reduce the risks of cognitive impairment and dementia in later life. Therefore, stimulating mitophagy and optimizing mitochondrial function through exercise may forestall the neurodegenerative process of AD.
Collapse
Affiliation(s)
- Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cenyi Wang
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Juying Xie
- Affiliated Hospital of Xiangnan University, Chenzhou, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
13
|
Fernández-de la Torre M, Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Arenas J, Martín MA, Turnbull DM, Lucia A, Morán M. Exercise Training and Neurodegeneration in Mitochondrial Disorders: Insights From the Harlequin Mouse. Front Physiol 2020; 11:594223. [PMID: 33363476 PMCID: PMC7752860 DOI: 10.3389/fphys.2020.594223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023] Open
Abstract
Aim Cerebellar neurodegeneration is a main phenotypic manifestation of mitochondrial disorders caused by apoptosis-inducing factor (AIF) deficiency. We assessed the effects of an exercise training intervention at the cerebellum and brain level in a mouse model (Harlequin, Hq) of AIF deficiency. Methods Male wild-type (WT) and Hq mice were assigned to an exercise (Ex) or control (sedentary [Sed]) group (n = 10-12/group). The intervention (aerobic and resistance exercises) was initiated upon the first symptoms of ataxia in Hq mice (∼3 months on average) and lasted 8 weeks. Histological and biochemical analyses of the cerebellum were performed at the end of the training program to assess indicators of mitochondrial deficiency, neuronal death, oxidative stress and neuroinflammation. In brain homogenates analysis of enzyme activities and levels of the oxidative phosphorylation system, oxidative stress and neuroinflammation were performed. Results The mean age of the mice at the end of the intervention period did not differ between groups: 5.2 ± 0.2 (WT-Sed), 5.2 ± 0.1 (WT-Ex), 5.3 ± 0.1 (Hq-Sed), and 5.3 ± 0.1 months (Hq-Ex) (p = 0.489). A significant group effect was found for most variables indicating cerebellar dysfunction in Hq mice compared with WT mice irrespective of training status. However, exercise intervention did not counteract the negative effects of the disease at the cerebellum level (i.e., no differences for Hq-Ex vs. Hq-Sed). On the contrary, in brain, the activity of complex V was higher in both Hq mice groups in comparison with WT animals (p < 0.001), and post hoc analysis also revealed differences between sedentary and trained Hq mice. Conclusion A combined training program initiated when neurological symptoms and neuron death are already apparent is unlikely to promote neuroprotection in the cerebellum of Hq model of mitochondrial disorders, but it induces higher complex V activity in the brain.
Collapse
Affiliation(s)
- Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Department of Systems Biology, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Instituto de Investigación Sanitaria Hospital '12 de Octubre' ('imas12'), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), U723, Madrid, Spain
| |
Collapse
|
14
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
15
|
Maclaine KD, Stebbings KA, Llano DA, Rhodes JS. Voluntary wheel running has no impact on brain and liver mitochondrial DNA copy number or mutation measures in the PolG mouse model of aging. PLoS One 2020; 15:e0226860. [PMID: 32119683 PMCID: PMC7051064 DOI: 10.1371/journal.pone.0226860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
The mitochondrial theory of aging attributes much of the aging process to mitochondrial DNA damage. The polymerase gamma (PolG) mutant mouse was designed to evaluate this theory and thus carries a mutated proofreading region of polymerase gamma (D257A) that exclusively transcribes the mitochondrial genome. As a result, PolGD257A mice accumulate mitochondrial DNA (mtDNA) mutations that lead to premature aging, as evidenced by hair loss, weight loss, kyphosis, increased rates of apoptosis, organ damage, and an early death, occurring around 12 months of age. Research has shown that exercise decreases skeletal muscle mtDNA mutations and normalizes protein levels in PolG mice. However, brain mtDNA changes with exercise in PolG mice have not been studied. We found no effects of exercise on mtDNA mutations or copy number in either the brain or liver of PolG mice, despite changes to body mass. Our results suggest that mitochondrial mutations play little role in exercise-brain interactions in the PolG model of accelerated aging. In addition to evaluating the effect of exercise on mtDNA outcomes, we also implemented novel methods for both extracting mtDNA and measuring mtDNA mutations, with aims for improving the efficiency and accuracy of these methods.
Collapse
MESH Headings
- Aging, Premature/genetics
- Aging, Premature/pathology
- Aging, Premature/physiopathology
- Aging, Premature/prevention & control
- Animals
- Brain/cytology
- Brain/metabolism
- Brain/pathology
- DNA Copy Number Variations
- DNA Damage/physiology
- DNA Polymerase gamma/genetics
- DNA Polymerase gamma/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/isolation & purification
- DNA, Mitochondrial/metabolism
- Disease Models, Animal
- Humans
- Liver/cytology
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Transgenic
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Mutation
- Physical Conditioning, Animal/physiology
Collapse
Affiliation(s)
- Kendra D. Maclaine
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kevin A. Stebbings
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daniel A. Llano
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justin S. Rhodes
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
16
|
Castro-Portuguez R, Sutphin GL. Kynurenine pathway, NAD + synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp Gerontol 2020; 132:110841. [PMID: 31954874 DOI: 10.1016/j.exger.2020.110841] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor that plays a critical role in mitochondrial energy production as well as many enzymatic redox reactions. Age-associated decline in NAD+ is implicated as a driving factor in several categories of age-associated disease, including metabolic and neurodegenerative disease, as well as deficiency in the mechanisms of cellular defense against oxidative stress. The kynurenine metabolic pathway is the sole de novo NAD+ biosynthetic pathway, generating NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases. Kynurenine pathway interventions can extend lifespan in both fruit flies and nematodes, and altered NAD+ metabolism represents one potential mediating mechanism. Recent studies demonstrate that supplementation with NAD+ or NAD+-precursors increase longevity and promote healthy aging in fruit flies, nematodes, and mice. NAD+ levels and the intrinsic relationship to mitochondrial function have been widely studied in the context of aging. Mitochondrial function and dynamics have both been implicated in longevity determination in a range of organisms from yeast to humans, at least in part due to their intimate link to regulating an organism's cellular energy economy and capacity to resist oxidative stress. Recent findings support the idea that complex communication between the mitochondria and the nucleus orchestrates a series of events and stress responses involving mitophagy, mitochondrial number, mitochondrial unfolded protein response (UPRmt), and mitochondria fission and fusion events. In this review, we discuss how mitochondrial morphological changes and dynamics operate during aging, and how altered metabolism of tryptophan to NAD+ through the kynurenine pathway interacts with these processes.
Collapse
Affiliation(s)
- Raul Castro-Portuguez
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA
| | - George L Sutphin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, 85721, AZ, USA; Department of Molecular and Cellular Biology, University of Arizona, Tucson, 85721, AZ, USA.
| |
Collapse
|
17
|
Ross JM, Coppotelli G, Branca RM, Kim KM, Lehtiö J, Sinclair DA, Olson L. Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell 2019; 18:e13029. [PMID: 31489782 PMCID: PMC6826127 DOI: 10.1111/acel.13029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/23/2019] [Accepted: 08/04/2019] [Indexed: 12/13/2022] Open
Abstract
The accumulation of mitochondrial DNA (mtDNA) mutations is a suspected driver of aging and age‐related diseases, but forestalling these changes has been a major challenge. One of the best‐studied models is the prematurely aging mtDNA mutator mouse, which carries a homozygous knock‐in of a proofreading deficient version of the catalytic subunit of mtDNA polymerase‐γ (PolgA). We investigated how voluntary exercise affects the progression of aging phenotypes in this mouse, focusing on mitochondrial and protein homeostasis in both brain and peripheral tissues. Voluntary exercise significantly ameliorated several aspects of the premature aging phenotype, including decreased locomotor activity, alopecia, and kyphosis, but did not have major effects on the decreased lifespan of mtDNA mutator mice. Exercise also decreased the mtDNA mutation load. In‐depth tissue proteomics revealed that exercise normalized the levels of about half the proteins, with the majority involved in mitochondrial function and nuclear–mitochondrial crosstalk. There was also a specific increase in the nuclear‐encoded proteins needed for the tricarboxylic acid cycle and complex II, but not in mitochondrial‐encoded oxidative phosphorylation proteins, as well as normalization of enzymes involved in coenzyme Q biosynthesis. Furthermore, we found tissue‐specific alterations, with brain coping better as compared to muscle and with motor cortex being better protected than striatum, in response to mitochondrial dysfunction. We conclude that voluntary exercise counteracts aging in mtDNA mutator mice by counteracting protein dysregulation in muscle and brain, decreasing the mtDNA mutation burden in muscle, and delaying overt aging phenotypes.
Collapse
Affiliation(s)
- Jaime M. Ross
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Giuseppe Coppotelli
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Rui M. Branca
- Department of Oncology‐Pathology, Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - Kyung M. Kim
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Janne Lehtiö
- Department of Oncology‐Pathology, Science for Life Laboratory Karolinska Institutet Stockholm Sweden
| | - David A. Sinclair
- Department of Genetics Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School Boston MA USA
| | - Lars Olson
- Department of Neuroscience, Biomedicum Karolinska Institutet Stockholm Sweden
| |
Collapse
|
18
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
19
|
Fiuza-Luces C, Valenzuela PL, Laine-Menéndez S, Fernández-de la Torre M, Bermejo-Gómez V, Rufián-Vázquez L, Arenas J, Martín MA, Lucia A, Morán M. Physical Exercise and Mitochondrial Disease: Insights From a Mouse Model. Front Neurol 2019; 10:790. [PMID: 31402893 PMCID: PMC6673140 DOI: 10.3389/fneur.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: Mitochondrial diseases (MD) are among the most prevalent neuromuscular disorders. Unfortunately, no curative treatment is yet available. This study analyzed the effects of exercise training in an animal model of respiratory chain complex I deficiency, the Harlequin (Hq) mouse, which replicates the clinical features of this condition. Methods: Male heterozygous Harlequin (Hq/Y) mice were assigned to an “exercise” (n = 10) or a “sedentary” control group (n = 11), with the former being submitted to an 8 week combined exercise training intervention (aerobic + resistance training performed five times/week). Aerobic fitness, grip strength, and balance were assessed at the beginning and at the end of the intervention period in all the Hq mice. Muscle biochemical analyses (with results expressed as percentage of reference data from age/sex-matched sedentary wild-type mice [n = 12]) were performed at the end of the aforementioned period for the assessment of major molecular signaling pathways involved in muscle anabolism (mTOR activation) and mitochondrial biogenesis (proliferator activated receptor gamma co-activator 1α [PGC-1α] levels), and enzyme activity and levels of respiratory chain complexes, and antioxidant enzyme levels. Results: Exercise training resulted in significant improvements in aerobic fitness (−33 ± 13 m and 83 ± 43 m for the difference post- vs. pre-intervention in total distance covered in the treadmill tests in control and exercise group, respectively, p = 0.014) and muscle strength (2 ± 4 g vs. 17 ± 6 g for the difference post vs. pre-intervention, p = 0.037) compared to the control group. Higher levels of ribosomal protein S6 kinase beta-1 phosphorylated at threonine 389 (156 ± 30% vs. 249 ± 30%, p = 0.028) and PGC-1α (82 ± 7% vs. 126 ± 19% p = 0.032) were observed in the exercise-trained mice compared with the control group. A higher activity of respiratory chain complexes I (75 ± 4% vs. 95 ± 6%, p = 0.019), III (79 ± 5% vs. 97 ± 4%, p = 0.031), and V (77 ± 9% vs. 105 ± 9%, p = 0.024) was also found with exercise training. Exercised mice presented with lower catalase levels (204 ± 22% vs. 141 ± 23%, p = 0.036). Conclusion: In a mouse model of MD, a training intervention combining aerobic and resistance exercise increased aerobic fitness and muscle strength, and mild improvements were found for activated signaling pathways involved in muscle mitochondrial biogenesis and anabolism, OXPHOS complex activity, and redox status in muscle tissue.
Collapse
Affiliation(s)
- Carmen Fiuza-Luces
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Pedro L Valenzuela
- Physiology Unit, Systems Biology Department, University of Alcalá, Madrid, Spain
| | - Sara Laine-Menéndez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel Fernández-de la Torre
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Verónica Bermejo-Gómez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Laura Rufián-Vázquez
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Joaquín Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Miguel A Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sports Sciences, European University of Madrid, Madrid, Spain.,Spanish Network for Biomedical Research in Fragility and Healthy Aging (CIBERFES), Madrid, Spain
| | - María Morán
- Mitochondrial and Neuromuscular Diseases Laboratory, Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
20
|
Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci 2019; 98:109-120. [PMID: 31216425 DOI: 10.1016/j.mcn.2019.06.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.
Collapse
Affiliation(s)
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
Saneto RP. An update on Alpers-Huttenlocher syndrome: pathophysiology of disease and rational treatment designs. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Russell P. Saneto
- Department of Neurology, Division of Pediatric Neurology, University of Washington and Seattle Children’s Hospital, Seattle, WA, USA
- Neuroscience Institute, Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA, USA
| |
Collapse
|
22
|
Faraci C, Annis S, Jin J, Li H, Khrapko K, Woods DC. Impact of exercise on oocyte quality in the POLG mitochondrial DNA mutator mouse. Reproduction 2018; 156:185-194. [PMID: 29875308 PMCID: PMC6074767 DOI: 10.1530/rep-18-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
The mtDNA 'mutator' mouse, also called the 'POLG' mouse, is a well-characterized model frequently used for studies of progeroid aging. Harboring a mutation in the proofreading domain of the mitochondrial polymerase, polymerase-γ (Polg), POLG mice acquire mtDNA mutations at an accelerated rate. This results in premature mitochondrial dysfunction and a systemic aging phenotype. Previous work has demonstrated that the progeroid phenotype in POLG is attenuated following endurance exercise, the only reported intervention to extend health span and lifespan of these mice. Herein, oocyte quality was evaluated in sedentary and exercised POLG mice. In mice homozygous for the Polg mutation, litter size is dramatically reduced as compared to heterozygous Polg mice. Following ovarian hyper-stimulation, oocytes were retrieved until 9 months of age in exercised and sedentary groups, with no oocytes ovulated thereafter. Although ovulated oocyte numbers were not impacted by exercise, we did find a modest improvement in both the ovarian follicle reserve and in oocyte quality based on meiotic spindle assembly, chromosomal segregation and mitochondrial distribution at 7 months of age in exercised POLG mice as compared to sedentary counterparts. Of note, analysis of mtDNA mutational load revealed no differences between exercised and sedentary groups. Collectively, these data indicate that exercise differentially influences somatic tissues of the POLG mouse as compared to oocytes, highlighting important mechanistic differences between mitochondrial regulatory mechanisms in the soma and the germline.
Collapse
Affiliation(s)
- Christine Faraci
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| | - Sofia Annis
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| | - Joyce Jin
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| | - Housaiyin Li
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| | - Konstantin Khrapko
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| | - Dori C Woods
- Department of BiologyNortheastern University, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Safdar A, Tarnopolsky MA. Exosomes as Mediators of the Systemic Adaptations to Endurance Exercise. Cold Spring Harb Perspect Med 2018; 8:a029827. [PMID: 28490541 PMCID: PMC5830902 DOI: 10.1101/cshperspect.a029827] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Habitual endurance exercise training is associated with multisystemic metabolic adaptations that lower the risk of inactivity-associated disorders such as obesity and type 2 diabetes mellitus (T2DM). Identification of complex systemic signaling networks responsible for these benefits are of great interest because of their therapeutic potential in metabolic diseases; however, specific signals that modulate the multisystemic benefits of exercise in multiple tissues and organs are only recently being discovered. Accumulated evidence suggests that muscle and other tissues have an endocrine function and release peptides and nucleic acids into the circulation in response to acute endurance exercise to mediate the multisystemic adaptations. Factors released from skeletal muscle have been termed myokines and we propose that the total of all factors released in response to endurance exercise (including peptides, nucleic acids, and metabolites) be termed, "exerkines." We propose that many of the exerkines are released within extracellular vesicles called exosomes, which regulate peripheral organ cross talk. Exosomes (30-140 nm) and larger microvesicles [MVs] (100-1000 nm) are subcategories of extracellular vesicles that are released into the circulation. Exosomes contain peptides and several nucleic acids (microRNA [miRNA], messenger RNA [mRNA], mitochondrial DNA [mtDNA]) and are involved in intercellular/tissue exchange of their contents. An acute bout of endurance exercise increases circulating exosomes that are hypothesized to mediate organ cross talk to promote systemic adaptation to endurance exercise. Further support for the role of exosomes (and possibly MVs) in mediating the systemic benefits of exercise comes from the fact that the majority of the previously reported myokines/exerkines are found in extracellular vesicles databases (Vesiclepedia and ExoCarta). We propose that exosomes isolated from athletes following exercise or exosomes bioengineered to incorporate one or many of known exerkines will be therapeutically useful in the treatment of obesity, T2DM, and other aging-associated metabolic disorders.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Department of Pediatrics & Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
24
|
Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol 2017; 455:83-92. [PMID: 27591812 DOI: 10.1016/j.mce.2016.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 01/06/2023]
Abstract
Cellular senescence has gained much attention as a contributor to aging and susceptibility to disease. Senescent cells undergo a stable cell cycle arrest and produce pro-inflammatory cytokines. However, an additional feature of the senescence phenotype is an altered metabolic state. Despite maintaining a non-dividing state, senescent cells display a high metabolic rate. Metabolic changes characteristic of replicative senescence include altered mitochondrial function and perturbations in growth signaling pathways, such as the mTORC1-signaling pathway. Recent evidence has raised the possibility that these metabolic changes may be essential for the induction and maintenance of the senescent state. Interventions such as rapamycin treatment and methionine restriction impact key aspects of metabolism and delay cellular senescence to extend cellular lifespan. Here, we review the metabolic changes and potential metabolic regulators of the senescence program. In addition, we will discuss how lifespan-extending regimens prevent metabolic stress that accompanies and potentially regulates the senescence program.
Collapse
Affiliation(s)
- Timothy Nacarelli
- Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | - Christian Sell
- Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA.
| |
Collapse
|
25
|
Determination of Coenzyme A and Acetyl-Coenzyme A in Biological Samples Using HPLC with UV Detection. Molecules 2017; 22:molecules22091388. [PMID: 28832533 PMCID: PMC6151540 DOI: 10.3390/molecules22091388] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/12/2017] [Indexed: 01/26/2023] Open
Abstract
Coenzyme A (CoA) and acetyl-coenzyme A (acetyl-CoA) play essential roles in cell energy metabolism. Dysregulation of the biosynthesis and functioning of both compounds may contribute to various pathological conditions. We describe here a simple and sensitive HPLC-UV based method for simultaneous determination of CoA and acetyl-CoA in a variety of biological samples, including cells in culture, mouse cortex, and rat plasma, liver, kidney, and brain tissues. The limits of detection for CoA and acetyl-CoA are >10-fold lower than those obtained by previously described HPLC procedures, with coefficients of variation <1% for standard solutions, and 1–3% for deproteinized biological samples. Recovery is 95–97% for liver extracts spiked with Co-A and acetyl-CoA. Many factors may influence the tissue concentrations of CoA and acetyl-CoA (e.g., age, fed, or fasted state). Nevertheless, the values obtained by the present HPLC method for the concentration of CoA and acetyl-CoA in selected rodent tissues are in reasonable agreement with literature values. The concentrations of CoA and acetyl-CoA were found to be very low in rat plasma, but easily measurable by the present HPLC method. The method should be useful for studying cellular energy metabolism under normal and pathological conditions, and during targeted drug therapy treatment.
Collapse
|
26
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
27
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
28
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Metabolic Control of Longevity. Cell 2016; 166:802-821. [DOI: 10.1016/j.cell.2016.07.031] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
|
30
|
Mitophagy plays a central role in mitochondrial ageing. Mamm Genome 2016; 27:381-95. [PMID: 27352213 PMCID: PMC4935730 DOI: 10.1007/s00335-016-9651-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing.
Collapse
|