1
|
Xie B, Yu J, Chen C, Shen T. Protein Arginine Methyltransferases from Regulatory Function to Clinical Implication in Central Nervous System. Cell Mol Neurobiol 2025; 45:41. [PMID: 40366461 DOI: 10.1007/s10571-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/16/2025] [Indexed: 05/15/2025]
Abstract
Arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is a regulatory key mechanism involved in various cellular processes such as gene expression, RNA processing, DNA damage repair. Increasing evidence highlights the crucial role of PRMTs in human diseases, including cancer, cardiovascular and metabolic diseases. Here, this review focuses on the latest findings regarding PRMTs in the central nervous system (CNS), emphasizing their regulatory roles in neural stem cells, neurons, and glial cells. Additionally, we examine the connection between PRMTs dysregulation and neurological diseases affecting the CNS, including brain tumors, neurodegenerative diseases, and neurodevelopmental disorders. Therefore, this review aims to deepen our understanding of PRMTs-mediated arginine methylation in CNS and open avenues for developing novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Bin Xie
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jing Yu
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chao Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ting Shen
- School of Life Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Fatima G, Ashiquzzaman A, Kim SS, Kim YR, Kwon HS, Chung E. Vascular and glymphatic dysfunction as drivers of cognitive impairment in Alzheimer's disease: Insights from computational approaches. Neurobiol Dis 2025; 208:106877. [PMID: 40107629 DOI: 10.1016/j.nbd.2025.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is driven by complex interactions between vascular dysfunction, glymphatic system impairment, and neuroinflammation. Vascular aging, characterized by arterial stiffness and reduced cerebral blood flow (CBF), disrupts the pulsatile forces necessary for glymphatic clearance, exacerbating amyloid-beta (Aβ) accumulation and cognitive decline. This review synthesizes insights into the mechanistic crosstalk between these systems and explores their contributions to AD pathogenesis. Emerging machine learning (ML) tools, such as DeepLabCut and Motion sequencing (MoSeq), offer innovative solutions for analyzing multimodal data and enhancing diagnostic precision. Integrating ML with imaging and behavioral analyses bridges gaps in understanding vascular-glymphatic dysfunction. Future research must prioritize these interactions to develop early diagnostics and targeted interventions, advancing our understanding of neurovascular health in AD.
Collapse
Affiliation(s)
- Gehan Fatima
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Akm Ashiquzzaman
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Sang Seong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea
| | - Young Ro Kim
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Hyuk-Sang Kwon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea; AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Rep. of Korea; Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Rep. of Korea.
| |
Collapse
|
3
|
Xu J, Shen R, Qian M, Zhou Z, Xie B, Jiang Y, Yu Y, Dong W. Ferroptosis in Alzheimer's Disease: The Regulatory Role of Glial Cells. J Integr Neurosci 2025; 24:25845. [PMID: 40302253 DOI: 10.31083/jin25845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the formation of amyloid plaques, neurofibrillary tangles and progressive cognitive decline. Amyloid-beta peptide (Aβ) monoclonal antibody therapeutic clinical trials have nearly failed, raising significant concerns about other etiological hypotheses about AD. Recent evidence suggests that AD patients also exhibit persistent neuronal loss and neuronal death accompanied by brain iron deposition or overload-related oxidative stress. Ferroptosis is a type of cell death that depends on iron, unlike autophagy and apoptosis. Inhibiting neuronal ferroptosis function is effective in improving cognitive impairment in AD. Notably, new research shows that ferroptosis in AD is crucially dependent on glial cell activation. This review examines the relationship between the imbalance of iron metabolism, the regulation of iron homeostasis in glial cells and neuronal death in AD pathology. Finally, the review summarizes some current drug research in AD targeting iron homeostasis, many novel iron-chelating compounds and natural compounds showing potential AD-modifying properties that may provide therapeutic targets for treating AD.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Mengting Qian
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Zhengjun Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 646000 Luzhou, Sichuan, China
| |
Collapse
|
4
|
Bharati AJ, Zende R, Deka MJ, Kalita K, Garai S, Reddy Mannem M, Sankaranarayanan K. Polyoxometalates as effective inhibitors of insulin amyloid fibrils: a promising therapeutic avenue. J Biomol Struct Dyn 2025:1-8. [PMID: 40205887 DOI: 10.1080/07391102.2025.2487192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 04/11/2025]
Abstract
Insulin is listed on the WHO model list of essential medicines for a basic healthcare system. Due to its usage at regular intervals on diabetic patients, a disease condition called injection amyloidosis exists due to the propensity of insulin to form fibrils. Hence, it is essential to understand the aggregation of the protein insulin and understand the role of fibrillation of the protein insulin and possible inhibition. In this particular investigation, insulin fibrils were produced in a controlled environment. The study focused on exploring the potential of a special class of inorganic nanomaterials known as polyoxometalates (POMs) to inhibit the formation of these insulin amyloid fibrils. Four specific POMs-phosphomolybdic acid (PMA), silicomolybdic acid (SMA), tungstosilicic acid (TSA), and phosphotungstic acid (PTA)-were selected for assessing the inhibition of fibril formation by POMs using the Thioflavin T (ThT) assay. The molecular docking study also shows the binding sites of POMs with insulin. The results provided promising insights into the inhibitory effects of POMs on insulin amyloid fibrils. This investigation opens up potential avenues for exploring the application of Keggin POMs in the context of neurodegeneration.
Collapse
Affiliation(s)
- Ashim Jyoti Bharati
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| | - Ritu Zende
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| | - Manash Jyoti Deka
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| | - Kaberi Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| | - Somenath Garai
- Department of Chemistry, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mounish Reddy Mannem
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology (An Autonomous Institute Under DST, Govt. of India), Guwahati, Assam, India
| |
Collapse
|
5
|
Korte N, Barkaway A, Wells J, Freitas F, Sethi H, Andrews SP, Skidmore J, Stevens B, Attwell D. Inhibiting Ca 2+ channels in Alzheimer's disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia. Nat Neurosci 2024; 27:2086-2100. [PMID: 39294491 PMCID: PMC11537984 DOI: 10.1038/s41593-024-01753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/06/2024] [Indexed: 09/20/2024]
Abstract
Early in Alzheimer's disease (AD), pericytes constrict capillaries, increasing their hydraulic resistance and trapping of immune cells and, thus, decreasing cerebral blood flow (CBF). Therapeutic approaches to attenuate pericyte-mediated constriction in AD are lacking. Here, using in vivo two-photon imaging with laser Doppler and speckle flowmetry and magnetic resonance imaging, we show that Ca2+ entry via L-type voltage-gated calcium channels (CaVs) controls the contractile tone of pericytes. In AD model mice, we identifed pericytes throughout the capillary bed as key drivers of an immune reactive oxygen species (ROS)-evoked and pericyte intracellular calcium concentration ([Ca2+]i)-mediated decrease in microvascular flow. Blocking CaVs with nimodipine early in disease progression improved CBF, reduced leukocyte stalling at pericyte somata and attenuated brain hypoxia. Amyloid β (Aβ)-evoked pericyte contraction in human cortical tissue was also greatly reduced by CaV block. Lowering pericyte [Ca2+]i early in AD may, thus, offer a therapeutic strategy to enhance brain energy supply and possibly cognitive function in AD.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anna Barkaway
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Stephen P Andrews
- ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - John Skidmore
- ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, UK
| | - Beth Stevens
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center, Broad Institute, Cambridge, MA, USA
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK.
| |
Collapse
|
6
|
Nelson RB, Rose KN, Menniti FS, Zorn SH. Hiding in plain sight: Do recruited dendritic cells surround amyloid plaques in Alzheimer's disease? Biochem Pharmacol 2024; 228:116258. [PMID: 38705533 DOI: 10.1016/j.bcp.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Robert B Nelson
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.
| | - Kenneth N Rose
- MindImmune Therapeutics, Inc., Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| | - Stevin H Zorn
- MindImmune Therapeutics, Inc., Kingston, RI; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI; Dept of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI
| |
Collapse
|
7
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
8
|
Zhang Y, Bi K, Zhou L, Wang J, Huang L, Sun Y, Peng G, Wu W. Advances in Blood Biomarkers for Alzheimer's Disease: Ultra-Sensitive Detection Technologies and Impact on Clinical Diagnosis. Degener Neurol Neuromuscul Dis 2024; 14:85-102. [PMID: 39100640 PMCID: PMC11297492 DOI: 10.2147/dnnd.s471174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease has escalated into a critical public health concern, marked by its neurodegenerative nature that progressively diminishes cognitive abilities. Recognized as a continuously advancing and presently incurable condition, AD underscores the necessity for early-stage diagnosis and interventions aimed at delaying the decline in mental function. Despite the proven efficacy of cerebrospinal fluid and positron emission tomography in diagnosing AD, their broader utility is constrained by significant costs and the invasive nature of these procedures. Consequently, the innovation of blood biomarkers such as Amyloid-beta, phosphorylated-tau, total-tau et al, distinguished by their high sensitivity, minimal invasiveness, accessibility, and cost-efficiency, emerges as a promising avenue for AD diagnosis. The advent of ultra-sensitive detection methodologies, including single-molecule enzyme-linked immunosorbent assay and immunoprecipitation-mass spectrometry, has revolutionized the detection of AD plasma biomarkers, supplanting previous low-sensitivity techniques. This rapid advancement in detection technology facilitates the more accurate quantification of pathological brain proteins and AD-associated biomarkers in the bloodstream. This manuscript meticulously reviews the landscape of current research on immunological markers for AD, anchored in the National Institute on Aging-Alzheimer's Association AT(N) research framework. It highlights a selection of forefront ultra-sensitive detection technologies now integral to assessing AD blood immunological markers. Additionally, this review examines the crucial pre-analytical processing steps for AD blood samples that significantly impact research outcomes and addresses the practical challenges faced during clinical testing. These discussions are crucial for enhancing our comprehension and refining the diagnostic precision of AD using blood-based biomarkers. The review aims to shed light on potential avenues for innovation and improvement in the techniques employed for detecting and investigating AD, thereby contributing to the broader field of neurodegenerative disease research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Linfu Zhou
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Lingtong Huang
- Department of Critical Care Units, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yan Sun
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guoping Peng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Clemons GA, Silva ACE, Acosta CH, Udo MSB, Tesic V, Rodgers KM, Wu CYC, Citadin CT, Lee RHC, Neumann JT, Allani S, Prentice H, Zhang Q, Lin HW. Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer's disease. J Cell Physiol 2024; 239:e30858. [PMID: 36036549 PMCID: PMC9971360 DOI: 10.1002/jcp.30858] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/17/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of mortality, disability, and long-term care burden in the United States, with women comprising the majority of AD diagnoses. While AD-related dementia is associated with tau and amyloid beta accumulation, concurrent derangements in cerebral blood flow have been observed alongside these proteinopathies in humans and rodent models. The homeostatic production of nitric oxide synthases (NOS) becomes uncoupled in AD which leads to decreased NO-mediated vasodilation and oxidative stress via the production of peroxynitrite (ONOO-∙) superoxide species. Here, we investigate the role of the novel protein arginine methyltransferase 4 (PRMT4) enzyme function and its downstream product asymmetric dimethyl arginine (ADMA) as it relates to NOS dysregulation and cerebral blood flow in AD. ADMA (type-1 PRMT product) has been shown to bind NOS as a noncanonic ligand causing enzymatic dysfunction. Our results from RT-qPCR and protein analyses suggest that aged (9-12 months) female mice bearing tau- and amyloid beta-producing transgenic mutations (3xTg-AD) express higher levels of PRMT4 in the hippocampus when compared to age- and sex-matched C57BL6/J mice. In addition, we performed studies to quantify the expression and activity of different NOS isoforms. Furthermore, laser speckle contrast imaging analysis was indicative that 3xTg-AD mice have dysfunctional NOS activity, resulting in reduced production of NO metabolites, enhanced production of free-radical ONOO-, and decreased cerebral blood flow. Notably, the aforementioned phenomena can be reversed via pharmacologic PRMT4 inhibition. Together, these findings implicate the potential importance of PRMT4 signaling in the pathogenesis of Alzheimer's-related cerebrovascular derangement.
Collapse
Affiliation(s)
- Garrett A Clemons
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | - Christina H Acosta
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Mariana Sayuri Berto Udo
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Vesna Tesic
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Krista M Rodgers
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Cristiane T Citadin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Jake T Neumann
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia, USA
| | - Shailaja Allani
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida, USA
| | - Howard Prentice
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Tsering W, Prokop S. Neuritic Plaques - Gateways to Understanding Alzheimer's Disease. Mol Neurobiol 2024; 61:2808-2821. [PMID: 37940777 PMCID: PMC11043180 DOI: 10.1007/s12035-023-03736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023]
Abstract
Extracellular deposits of amyloid-β (Aβ) in the form of plaques are one of the main pathological hallmarks of Alzheimer's disease (AD). Over the years, many different Aβ plaque morphologies such as neuritic plaques, dense cored plaques, cotton wool plaques, coarse-grain plaques, and diffuse plaques have been described in AD postmortem brain tissues, but correlation of a given plaque type with AD progression or AD symptoms is not clear. Furthermore, the exact trigger causing the development of one Aβ plaque morphological subtype over the other is still unknown. Here, we review the current knowledge about neuritic plaques, a subset of Aβ plaques surrounded by swollen or dystrophic neurites, which represent the most detrimental and consequential Aβ plaque morphology. Neuritic plaques have been associated with local immune activation, neuronal network dysfunction, and cognitive decline. Given that neuritic plaques are at the interface of Aβ deposition, tau aggregation, and local immune activation, we argue that understanding the exact mechanism of neuritic plaque formation is crucial to develop targeted therapies for AD.
Collapse
Affiliation(s)
- Wangchen Tsering
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, USA.
- Department of Pathology, University of Florida, Gainesville, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, USA.
| |
Collapse
|
11
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Chavoshinezhad S, Beirami E, Izadpanah E, Feligioni M, Hassanzadeh K. Molecular mechanism and potential therapeutic targets of necroptosis and ferroptosis in Alzheimer's disease. Biomed Pharmacother 2023; 168:115656. [PMID: 37844354 DOI: 10.1016/j.biopha.2023.115656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative condition, is defined by neurofibrillary tangles, amyloid plaques, and gradual cognitive decline. Regardless of the advances in understanding AD's pathogenesis and progression, its causes are still contested, and there are currently no efficient therapies for the illness. The post-mortem analyses revealed widespread neuronal loss in multiple brain regions in AD, evidenced by a decrease in neuronal density and correlated with the disease's progression and cognitive deterioration. AD's neurodegeneration is complicated, and different types of neuronal cell death, alone or in combination, play crucial roles in this process. Recently, the involvement of non-apoptotic programmed cell death in the neurodegenerative mechanisms of AD has received a lot of attention. Aberrant activation of necroptosis and ferroptosis, two newly discovered forms of regulated non-apoptotic cell death, is thought to contribute to neuronal cell death in AD. In this review, we first address the main features of necroptosis and ferroptosis, cellular signaling cascades, and the mechanisms involved in AD pathology. Then, we discuss the latest therapies targeting necroptosis and ferroptosis in AD animal/cell models and human research to provide vital information for AD treatment.
Collapse
Affiliation(s)
- Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Esmael Izadpanah
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy; Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, 20144 Milan, Italy.
| | - Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
13
|
Passaro ML, Matarazzo F, Abbadessa G, Pezone A, Porcellini A, Tranfa F, Rinaldi M, Costagliola C. Glaucoma as a Tauopathy-Is It the Missing Piece in the Glaucoma Puzzle? J Clin Med 2023; 12:6900. [PMID: 37959365 PMCID: PMC10650423 DOI: 10.3390/jcm12216900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disorder affecting the visual system which can result in vision loss and blindness. The pathogenetic mechanisms underlying glaucomatous optic neuropathy are ultimately enigmatic, prompting ongoing investigations into its potential shared pathogenesis with other neurodegenerative neurological disorders. Tauopathies represent a subclass of neurodegenerative diseases characterized by the abnormal deposition of tau protein within the brain and consequent microtubule destabilization. The extended spectrum of tauopathies includes conditions such as frontotemporal dementias, progressive supranuclear palsy, chronic traumatic encephalopathy, and Alzheimer's disease. Notably, recent decades have witnessed emerging documentation of tau inclusion among glaucoma patients, providing substantiation that this ocular disease may similarly manifest features of tauopathies. These studies found that: (i) aggregated tau inclusions are present in the somatodendritic compartment of RGCs in glaucoma patients; (ii) the etiology of the disease may affect tau splicing, phosphorylation, oligomerization, and subcellular localization; and (iii) short interfering RNA against tau, administered intraocularly, significantly decreased retinal tau accumulation and enhanced RGC somas and axon survival, demonstrating a crucial role for tau modifications in ocular hypertension-induced neuronal injury. Here, we examine the most recent evidence surrounding the interplay between tau protein dysregulation and glaucomatous neurodegeneration. We explore the novel perspective of glaucoma as a tau-associated disorder and open avenues for cross-disciplinary collaboration and new treatment strategies.
Collapse
Affiliation(s)
- Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | | | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Antonio Pezone
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Antonio Porcellini
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (A.P.); (A.P.)
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples “Federico II”, 80131 Naples, Italy; (M.L.P.); (F.T.); (C.C.)
| |
Collapse
|
14
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Tarawneh R. Microvascular Contributions to Alzheimer Disease Pathogenesis: Is Alzheimer Disease Primarily an Endotheliopathy? Biomolecules 2023; 13:830. [PMID: 37238700 PMCID: PMC10216678 DOI: 10.3390/biom13050830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer disease (AD) models are based on the notion that abnormal protein aggregation is the primary event in AD, which begins a decade or longer prior to symptom onset, and culminates in neurodegeneration; however, emerging evidence from animal and clinical studies suggests that reduced blood flow due to capillary loss and endothelial dysfunction are early and primary events in AD pathogenesis, which may precede amyloid and tau aggregation, and contribute to neuronal and synaptic injury via direct and indirect mechanisms. Recent data from clinical studies suggests that endothelial dysfunction is closely associated with cognitive outcomes in AD and that therapeutic strategies which promote endothelial repair in early AD may offer a potential opportunity to prevent or slow disease progression. This review examines evidence from clinical, imaging, neuropathological, and animal studies supporting vascular contributions to the onset and progression of AD pathology. Together, these observations support the notion that the onset of AD may be primarily influenced by vascular, rather than neurodegenerative, mechanisms and emphasize the importance of further investigations into the vascular hypothesis of AD.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
16
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
17
|
Madsen LS, Parbo P, Ismail R, Gottrup H, Østergaard L, Brooks DJ, Eskildsen SF. Capillary dysfunction correlates with cortical amyloid load in early Alzheimer's disease. Neurobiol Aging 2023; 123:1-9. [PMID: 36610198 DOI: 10.1016/j.neurobiolaging.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alterations in cerebral perfusion is increasingly considered to play a crucial role in Alzheimer's disease (AD) and together with accumulated amyloid-β, deficiencies in the brain microvascular circulation may result in local hypoxia. Here, we studied alterations in cerebral circulation and the correlation between amyloid-β load and cerebral perfusion in prodromal AD (pAD). Using dynamic susceptibility contrast MRI and PET, we evaluated cerebral perfusion and amyloid-β levels in 19 individuals with mild cognitive impairment (MCI) and high amyloid-β load (pAD-MCI), 13 MCI individuals without AD pathology and 21 healthy controls. The pAD-MCI group showed significantly lower microvascular blood flow and significantly higher heterogeneity of microvascular blood transit times (p < 0.01) compared with the other 2 groups. Additionally, in the pAD-MCI group raised amyloid-β levels correlated with decreased microvascular blood flow and increased heterogeneity of microvascular blood flow in frontal and temporal areas (p < 0.01). These results indicate a close connection between levels of amyloid-β deposition and brain microvascular perfusion in pAD. A vicious cycle may be established where amyloid-β load and deficiencies in brain perfusion may reinforce each other.
Collapse
Affiliation(s)
- Lasse S Madsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Peter Parbo
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine, Sygehus Lillebaelt, Kolding, Denmark
| | - Hanne Gottrup
- Dementia Clinic, Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle, UK
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
19
|
Fu H, Li J, Du P, Jin W, Gao G, Cui D. Senile plaques in Alzheimer's disease arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture. FEBS Lett 2022; 597:1007-1040. [PMID: 36448495 DOI: 10.1002/1873-3468.14549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Senile plaques are a pathological hallmark of Alzheimer's disease (AD), yet the mechanism underlying their generation remains unknown. Beta-amyloid peptide (Aβ) is a major component of senile plaques. We analysed AD brain tissues with histochemistry, immunohistochemistry and fluorescence imaging to examine the neural, vascular or blood Aβ contribution to senile plaque development. We found little neural marker co-expression with plaque Aβ, while co-expression of blood markers, such as Haemin and ApoE, was abundant. The plaque cores were structured with vascular and glial proteins outside and blood metabolites inside, co-localizing with a characteristic of Hoechst staining-independent blue autofluorescence. Erythrocyte-interacting Aβ is linked to coagulation, elevated calcium and blue autofluorescence, and it is associated with intravascular haemolysis, atherosclerosis, cerebral amyloid angiopathy, microaneurysm, and often with Cathepsin D co-expression. We identified microaneurysms as major sites of amyloid formation. Our data suggest that senile plaques arise from Aβ- and Cathepsin D-enriched mixtures leaking out during intravascular haemolysis and microaneurysm rupture.
Collapse
Affiliation(s)
- Hualin Fu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Jilong Li
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China
| | - Peng Du
- Department of Colorectal Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China.,National Center for Translational Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
20
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Transferrin-functionalized liposomes loaded with vitamin VB12 for Alzheimer's disease therapy. Int J Pharm 2022; 626:122167. [PMID: 36075524 DOI: 10.1016/j.ijpharm.2022.122167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Despite the efforts of the pharmaceutical and research sectors, Alzheimer's disease (AD) remains incurable, imposing the demand for new effective strategies. Vitamin B12 (VB12) has aroused interest due to its in vitro anti-amyloidogenic properties. However, the high molecular weight and hydrophilicity of VB12 are the main obstacles to its clinical application by hindering its passage through the blood-brain barrier (BBB). In recent years, drug delivery systems (DDSs) capable of transporting molecules across the BBB have gained attention for their effective brain delivery. In this work, VB12-loaded liposomes functionalized with transferrin (Tf) were produced, envisaging the dual-targeting of VB12 to the BBB and neuronal cells, due to the overexpression of Tf receptors in these cells. The produced liposomes presented sizes smaller than 200 nm, with low polydispersity and neutral zeta potential, being suitable for brain delivery. The nanoparticles exhibited an adequate encapsulation efficiency, a sustained release of VB12 for 9 days, and physical stability at storage conditions for up to 2 months. The developed nanosystem was capable of delaying the formation of Aβ fibrils and disrupting mature fibrils, highlighting its great potential for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Stéphanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria C Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Lin J, Li H, Guo J, Xu Y, Li H, Yan J, Wang Y, Chen H, Yuan Z. Potential of fluorescent nanoprobe in diagnosis and treatment of Alzheimer's disease. Nanomedicine (Lond) 2022; 17:1191-1211. [PMID: 36154269 DOI: 10.2217/nnm-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is well known for its insidious nature, slow progression and high incidence as a neurodegenerative disease. In the past, diagnosis of AD mainly depended on analysis of a patient's cognitive ability and behavior. Without a unified standard for analysis methods, this is prone to produce incorrect diagnoses. Currently, definitive diagnosis mainly relies on histopathological examination. Because of the advantages of precision, noninvasiveness, low toxicity and high spatiotemporal resolution, fluorescent nanoprobes are suitable for the early diagnosis of AD. This review summarizes the research progress of different kinds of fluorescent nanoprobes for AD diagnosis and therapy in recent years and provides an outlook on the development prospects of fluorescent nanoprobes.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hanhan Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jingxuan Guo
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Jun Yan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Yuxin Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| |
Collapse
|
22
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
23
|
Capillary function progressively deteriorates in prodromal Alzheimer's disease: A longitudinal MRI perfusion study. AGING BRAIN 2022; 2:100035. [PMID: 36908896 PMCID: PMC9997144 DOI: 10.1016/j.nbas.2022.100035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular risk factors are associated with the development of Alzheimer's disease (AD), and increasing evidence suggests that cerebral microvascular dysfunction plays a vital role in the disease progression. Using magnetic resonance imaging, we investigated the two-year changes of the cerebral microvascular blood flow in 11 mild cognitively impaired (MCI) patients with prodromal AD compared to 12 MCI patients without evidence of AD and 10 cognitively intact age-matched controls. The pAD-MCI patients displayed widespread deterioration in microvascular cerebral perfusion associated with capillary dysfunction. No such changes were observed in the other two groups, suggesting that the dysfunction in capillary perfusion is linked to the AD pathophysiology. The observed capillary dysfunction may limit local oxygenation in AD leading to downstream β-amyloid aggregation, tau hyperphosphorylation, neuroinflammation and neuronal dysfunction. The findings are in agreement with the capillary dysfunction hypothesis of AD, suggesting that increasing heterogeneity of capillary blood flow is a primary pathological event in AD.
Collapse
|
24
|
Streit WJ, Rotter J, Winter K, Müller W, Khoshbouei H, Bechmann I. Droplet Degeneration of Hippocampal and Cortical Neurons Signifies the Beginning of Neuritic Plaque Formation. J Alzheimers Dis 2021; 85:1701-1720. [PMID: 34958037 DOI: 10.3233/jad-215334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuritic plaques contain neural and microglial elements, and amyloid-β protein (Aβ), but their pathogenesis remains unknown. OBJECTIVE Elucidate neuritic plaque pathogenesis. METHODS Histochemical visualization of hyperphosphorylated-tau positive (p-tau+) structures, microglia, Aβ, and iron. RESULTS Disintegration of large projection neurons in human hippocampus and neocortex presents as droplet degeneration: pretangle neurons break up into spheres of numerous p-tau+ droplets of various sizes, which marks the beginning of neuritic plaques. These droplet spheres develop in the absence of colocalized Aβ deposits but once formed become encased in diffuse Aβ with great specificity. In contrast, neurofibrillary tangles often do not colocalize with Aβ. Double-labelling for p-tau and microglia showed a lack of microglial activation or phagocytosis of p-tau+ degeneration droplets but revealed massive upregulation of ferritin in microglia suggesting presence of high levels of free iron. Perl's Prussian blue produced positive staining of microglia, droplet spheres, and Aβ plaque cores supporting the suggestion that droplet degeneration of pretangle neurons in the hippocampus and cortex represents ferroptosis, which is accompanied by the release of neuronal iron extracellularly. CONCLUSION Age-related iron accumulation and ferroptosis in the CNS likely trigger at least two endogenous mechanisms of neuroprotective iron sequestration and chelation, microglial ferritin expression and Aβ deposition, respectively, both contributing to the formation of neuritic plaques. Since neurofibrillary tangles and Aβ deposits colocalize infrequently, tangle formation likely does not involve release of neuronal iron extracellularly. In human brain, targeted deposition of Aβ occurs specifically in response to ongoing ferroptotic droplet degeneration thereby producing neuritic plaques.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jonas Rotter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Wolf Müller
- Department of Neuropathology, Leipzig University, Leipzig, Germany
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| |
Collapse
|
25
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
26
|
Cerebrovascular alterations in NAFLD: Is it increasing our risk of Alzheimer's disease? Anal Biochem 2021; 636:114387. [PMID: 34537182 DOI: 10.1016/j.ab.2021.114387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/27/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multisystem disease, which has been classified as an emerging epidemic not only confined to liver-related morbidity and mortality. It is also becoming apparent that NAFLD is associated with moderate cerebral dysfunction and cognitive decline. A possible link between NAFLD and Alzheimer's disease (AD) has only recently been proposed due to the multiple shared genes and pathological mechanisms contributing to the development of these conditions. Although AD is a progressive neurodegenerative disease, the exact pathophysiological mechanism remains ambiguous and similarly to NAFLD, currently available pharmacological therapies have mostly failed in clinical trials. In addition to the usual suspects (inflammation, oxidative stress, blood-brain barrier alterations and ageing) that could contribute to the NAFLD-induced development and progression of AD, changes in the vasculature, cerebral perfusion and waste clearance could be the missing link between these two diseases. Here, we review the most recent literature linking NAFLD and AD, focusing on cerebrovascular alterations and the brain's clearance system as risk factors involved in the development and progression of AD, with the aim of promoting further research using neuroimaging techniques and new mechanism-based therapeutic interventions.
Collapse
|
27
|
Gómez-López VM, Viramontes-Pintos A, Ontiveros-Torres MÁ, Garcés-Ramírez L, de la Cruz F, Villanueva-Fierro I, Bravo-Muñoz M, Harrington CR, Martínez-Robles S, Yescas P, Guadarrama-Ortíz P, Hernandes-Alejandro M, Montiel-Sosa F, Pacheco-Herrero M, Luna-Muñoz J. Tau Protein Phosphorylated at Threonine-231 is Expressed Abundantly in the Cerebellum in Prion Encephalopathies. J Alzheimers Dis 2021; 81:769-785. [PMID: 33814431 PMCID: PMC8203236 DOI: 10.3233/jad-201308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Transmissible spongiform encephalopathies (TSEs) are rare neurodegenerative disorders that affect animals and humans. Bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeld-Jakob Disease (CJD) in humans belong to this group. The causative agent of TSEs is called “prion”, which corresponds to a pathological form (PrPSc) of a normal cellular protein (PrPC) expressed in nerve cells. PrPSc is resistant to degradation and can induce abnormal folding of PrPC, and TSEs are characterized by extensive spongiosis and gliosis and the presence of PrPSc amyloid plaques. CJD presents initially with clinical symptoms similar to Alzheimer’s disease (AD). In AD, tau aggregates and amyloid-β protein plaques are associated with memory loss and cognitive impairment in patients. Objective: In this work, we study the role of tau and its relationship with PrPSc plaques in CJD. Methods: Multiple immunostainings with specific antibodies were carried out and analyzed by confocal microscopy. Results: We found increased expression of the glial fibrillary acidic protein (GFAP) and matrix metalloproteinase (MMP-9), and an exacerbated apoptosis in the granular layer in cases with prion disease. In these cases, tau protein phosphorylated at Thr-231 was overexpressed in the axons and dendrites of Purkinje cells and the extensions of parallel fibers in the cerebellum. Conclusion: We conclude that phosphorylation of tau may be a response to a toxic and inflammatory environment generated by the pathological form of prion.
Collapse
Affiliation(s)
- Vıctor Manuel Gómez-López
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México.,Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Amparo Viramontes-Pintos
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas, Departamento Fisiología, Instituto Politécnico Nacional, CDMX, México
| | - Fidel de la Cruz
- Escuela Nacional de Ciencias Biológicas, Departamento Fisiología, Instituto Politécnico Nacional, CDMX, México
| | | | - Marely Bravo-Muñoz
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Sandra Martínez-Robles
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Petra Yescas
- Genética, Instituto Nacional de Neurología y Neurocirugía, "Manuel Velazco Suerez" CDMX, México
| | - Parménides Guadarrama-Ortíz
- Departamento de Neurocirugía, Centro Especializado en Neurocirugía y Neurociencias, México, (CENNM), CDMX, México
| | - Mario Hernandes-Alejandro
- Departamento de Bioingeniería, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Gustavo A. Madero, México
| | - Francisco Montiel-Sosa
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México
| | - Mar Pacheco-Herrero
- Neuroscience Research Laboratory, Faculty of Health Sciences, Pontificia Universidad Catolica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - José Luna-Muñoz
- National Dementia BioBank. Ciencias Biológicas, Facultad de Estudios Superiores, Cuautitlán, UNAM, Estado de México, México.,National Brain Bank. Universidad Nacional Pedro Henríquez Ureña, Santo Domingo, Dominican Republic
| |
Collapse
|
28
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
29
|
Bailes SM, Lewis LD. Distinct cardiac-locked brain pulsations in Alzheimer's disease. Brain 2021; 144:1941-1942. [PMID: 34244731 PMCID: PMC8370395 DOI: 10.1093/brain/awab247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This scientific commentary refers to ‘Cardiovascular brain impulses in Alzheimer’s disease’ by Rajna et al. (doi:10.1093/brain/awab144).
Collapse
Affiliation(s)
- Sydney M Bailes
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
30
|
Alvarez-Vergara MI, Rosales-Nieves AE, March-Diaz R, Rodriguez-Perinan G, Lara-Ureña N, Ortega-de San Luis C, Sanchez-Garcia MA, Martin-Bornez M, Gómez-Gálvez P, Vicente-Munuera P, Fernandez-Gomez B, Marchena MA, Bullones-Bolanos AS, Davila JC, Gonzalez-Martinez R, Trillo-Contreras JL, Sanchez-Hidalgo AC, Del Toro R, Scholl FG, Herrera E, Trepel M, Körbelin J, Escudero LM, Villadiego J, Echevarria M, de Castro F, Gutierrez A, Rabano A, Vitorica J, Pascual A. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nat Commun 2021; 12:3098. [PMID: 34035282 PMCID: PMC8149638 DOI: 10.1038/s41467-021-23337-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
Collapse
Affiliation(s)
- Maria I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Guiomar Rodriguez-Perinan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College of Dublin, D2, Dublin, Ireland
| | - Manuel A Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Miguel Martin-Bornez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Miguel A Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias, Biomédicas y de la Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Andrea S Bullones-Bolanos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose C Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | - Rocio Gonzalez-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Jose L Trillo-Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Ana C Sanchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Martin Trepel
- Augsburg Medical Center, Department of Hematology and Oncology, Augsburg, Germany
| | - Jakob Körbelin
- Section of Pneumology, Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarria
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | | | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
31
|
Rajna Z, Mattila H, Huotari N, Tuovinen T, Krüger J, Holst SC, Korhonen V, Remes AM, Seppänen T, Hennig J, Nedergaard M, Kiviniemi V. Cardiovascular brain impulses in Alzheimer's disease. Brain 2021; 144:2214-2226. [PMID: 33787890 PMCID: PMC8422353 DOI: 10.1093/brain/awab144] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Accumulation of amyloid-β is a key neuropathological feature in brain of
Alzheimer’s disease patients. Alterations in cerebral haemodynamics,
such as arterial impulse propagation driving the (peri)vascular CSF flux,
predict future Alzheimer’s disease progression. We now present a
non-invasive method to quantify the three-dimensional propagation of
cardiovascular impulses in human brain using ultrafast 10 Hz magnetic
resonance encephalography. This technique revealed spatio-temporal abnormalities
in impulse propagation in Alzheimer’s disease. The arrival latency and
propagation speed both differed in patients with Alzheimer’s disease.
Our mapping of arterial territories revealed Alzheimer’s
disease-specific modifications, including reversed impulse propagation around
the hippocampi and in parietal cortical areas. The findings imply that pervasive
abnormality in (peri)vascular CSF impulse propagation compromises vascular
impulse propagation and subsequently glymphatic brain clearance of
amyloid-β in Alzheimer’s disease.
Collapse
Affiliation(s)
- Zalán Rajna
- Center for Machine Vision and Signal Analysis, University of Oulu, 90570 Oulu, Finland
| | - Heli Mattila
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90570 Oulu, Finland
| | - Niko Huotari
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90570 Oulu, Finland
| | - Timo Tuovinen
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90570 Oulu, Finland
| | - Johanna Krüger
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90570 Oulu, Finland
| | - Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Vesa Korhonen
- Department of Diagnostic Radiology, Medical Research Center, Oulu University Hospital, 90220 Oulu, Finland
| | - Anne M Remes
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, 90570 Oulu, Finland
| | - Tapio Seppänen
- Center for Machine Vision and Signal Analysis, University of Oulu, 90570 Oulu, Finland
| | - Jürgen Hennig
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Vesa Kiviniemi
- Oulu Functional Neuroimaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, 90570 Oulu, Finland
| |
Collapse
|
32
|
Vidal C, Zhang L. An Analysis of the Neurological and Molecular Alterations Underlying the Pathogenesis of Alzheimer's Disease. Cells 2021; 10:cells10030546. [PMID: 33806317 PMCID: PMC7998384 DOI: 10.3390/cells10030546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by amyloid beta (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Unfortunately, despite decades of studies being performed on these histological alterations, there is no effective treatment or cure for AD. Identifying the molecular characteristics of the disease is imperative to understanding the pathogenesis of AD. Furthermore, uncovering the key causative alterations of AD can be valuable in developing models for AD treatment. Several alterations have been implicated in driving this disease, including blood–brain barrier dysfunction, hypoxia, mitochondrial dysfunction, oxidative stress, glucose hypometabolism, and altered heme homeostasis. Although these alterations have all been associated with the progression of AD, the root cause of AD has not been identified. Intriguingly, recent studies have pinpointed dysfunctional heme metabolism as a culprit of the development of AD. Heme has been shown to be central in neuronal function, mitochondrial respiration, and oxidative stress. Therefore, dysregulation of heme homeostasis may play a pivotal role in the manifestation of AD and its various alterations. This review will discuss the most common neurological and molecular alterations associated with AD and point out the critical role heme plays in the development of this disease.
Collapse
Affiliation(s)
| | - Li Zhang
- Correspondence: ; Tel.: +1-972-883-5757
| |
Collapse
|
33
|
Kapasi A, Leurgans SE, Arvanitakis Z, Barnes LL, Bennett DA, Schneider JA. Aβ (Amyloid Beta) and Tau Tangle Pathology Modifies the Association Between Small Vessel Disease and Cortical Microinfarcts. Stroke 2021; 52:1012-1021. [PMID: 33567873 DOI: 10.1161/strokeaha.120.031073] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE There is increasing recognition of the importance of cortical microinfarcts to overall brain health, cognition, and Alzheimer dementia. Cerebral small vessel pathologies are associated with microinfarcts and frequently coexist with Alzheimer disease; however, the extent to which Aβ (amyloid beta) and tau pathology modulates microvascular pathogenesis is not fully understood. Study objective was to examine the relationship of small vessel pathologies, arteriolosclerosis, and cerebral amyloid angiopathy, with cortical microinfarcts in people with differing levels of Aβ or tau tangle burden. METHODS Participants were 1489 autopsied older people (mean age at death, 89 years; 67% women) from 1 of 3 ongoing clinical-pathological cohort studies of aging. Neuropathological evaluation identified cortical Aβ and tau tangle burden using immunohistochemistry in 8 brain regions, provided semiquantitative grading of cerebral vessel pathologies, and identified the presence of cortical microinfarcts. Logistic regression models adjusted for demographics and atherosclerosis and examined whether Aβ or tau tangle burden modified relations between small vessel pathologies and cortical microinfarcts. RESULTS Cortical microinfarcts were present in 17% of older people, moderate-to-severe cerebral amyloid angiopathy pathology in 36%, and arteriolosclerosis in 34%. In logistic regression models, we found interactions with Aβ and tau tangles, reflecting that the association between arteriolosclerosis and cortical microinfarcts was stronger in the context of greater Aβ (estimate, 0.15; SE=0.07; P=0.02) and tau tangle burden (estimate, 0.13; SE=0.06; P=0.02). Interactions also emerged for cerebral amyloid angiopathy, suggesting that the association between cerebral amyloid angiopathy and cortical microinfarcts is more robust in the presence of higher Aβ (estimate, 0.27; SE=0.07; P<0.001) and tangle burden (estimate, 0.16; SE=0.06; P=0.005). CONCLUSIONS These findings suggest that in the presence of elevated Aβ or tangle pathology, small vessel pathologies are associated with greater microvascular tissue injury, highlighting a potential link between neurodegenerative and vascular mechanisms.
Collapse
Affiliation(s)
- A Kapasi
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL
| | - S E Leurgans
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - Z Arvanitakis
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - L L Barnes
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Behavioral Sciences (L.L.B.), Rush University Medical Center, Chicago, IL
| | - D A Bennett
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| | - J A Schneider
- Rush Alzheimer's Disease Center (A.K., S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Pathology (A.K., J.A.S.), Rush University Medical Center, Chicago, IL.,Department of Neurological Sciences (S.E.L., Z.A., L.L.B., D.A.B., J.A.S.), Rush University Medical Center, Chicago, IL
| |
Collapse
|
34
|
Cikic S, Chandra PK, Harman JC, Rutkai I, Katakam PV, Guidry JJ, Gidday JM, Busija DW. Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. J Cereb Blood Flow Metab 2021; 41:397-412. [PMID: 32241204 PMCID: PMC8370005 DOI: 10.1177/0271678x20915127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Proteomics Core Facility, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
35
|
Gleason A, Bush AI. Iron and Ferroptosis as Therapeutic Targets in Alzheimer's Disease. Neurotherapeutics 2021; 18:252-264. [PMID: 33111259 PMCID: PMC8116360 DOI: 10.1007/s13311-020-00954-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD), one of the most common neurodegenerative diseases worldwide, has a devastating personal, familial, and societal impact. In spite of profound investment and effort, numerous clinical trials targeting amyloid-β, which is thought to have a causative role in the disease, have not yielded any clinically meaningful success to date. Iron is an essential cofactor in many physiological processes in the brain. An extensive body of work links iron dyshomeostasis with multiple aspects of the pathophysiology of AD. In particular, regional iron load appears to be a risk factor for more rapid cognitive decline. Existing iron-chelating agents have been in use for decades for other indications, and there are preliminary data that some of these could be effective in AD. Many novel iron-chelating compounds are under development, some with in vivo data showing potential Alzheimer's disease-modifying properties. This heretofore underexplored therapeutic class has considerable promise and could yield much-needed agents that slow neurodegeneration in AD.
Collapse
Affiliation(s)
- Andrew Gleason
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
36
|
Zhou W, Shen B, Shen WQ, Chen H, Zheng YF, Fei JJ. Dysfunction of the Glymphatic System Might Be Related to Iron Deposition in the Normal Aging Brain. Front Aging Neurosci 2020; 12:559603. [PMID: 33408625 PMCID: PMC7779624 DOI: 10.3389/fnagi.2020.559603] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: The study aims to detect the potential relationship between iron deposition and the function of the glymphatic system in the normal aging brain. Methods: We recruited 213 healthy participants. We evaluated the function of the glymphatic system using the index for diffusivity along the perivascular space (ALPS-index), assessed iron deposition on quantitative susceptibility mapping (QSM), and analyzed their relationship. Results: The mean age of participants was 60.1 ± 7.3, and 107 (50.2%) were female. The mean ALPS-index was 1.4 ± 0.2. The QSM values of the caudate nucleus, putamen, globus pallidus, thalamus, red nucleus, substantia nigra, and dentate nucleus were all related to the ALPS-index (all P < 0.001). Conclusions: The main finding of the current study is that the regional brain iron deposition was related to the function of the glymphatic system. Advances in knowledge: We first evaluated the relationship between deposition of brain iron and the dysfunction of the glymphatic system.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Bo Shen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Wei-Qiang Shen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Hao Chen
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Yi-Feng Zheng
- Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Jing-Jing Fei
- Department of Internal Medicine, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
37
|
Korte N, Nortley R, Attwell D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol 2020; 140:793-810. [PMID: 32865691 PMCID: PMC7666276 DOI: 10.1007/s00401-020-02215-w] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Therapies targeting late events in Alzheimer's disease (AD), including aggregation of amyloid beta (Aβ) and hyperphosphorylated tau, have largely failed, probably because they are given after significant neuronal damage has occurred. Biomarkers suggest that the earliest event in AD is a decrease of cerebral blood flow (CBF). This is caused by constriction of capillaries by contractile pericytes, probably evoked by oligomeric Aβ. CBF is also reduced by neutrophil trapping in capillaries and clot formation, perhaps secondary to the capillary constriction. The fall in CBF potentiates neurodegeneration by upregulating the BACE1 enzyme that makes Aβ and by promoting tau hyperphosphorylation. Surprisingly, therefore, CBF reduction may play a crucial role in driving cognitive decline by initiating the amyloid cascade itself, or being caused by and amplifying Aβ production. Here, we review developments in this area that are neglected in current approaches to AD, with the aim of promoting novel mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
38
|
Paasila PJ, Davies DS, Sutherland GT, Goldsbury C. Clustering of activated microglia occurs before the formation of dystrophic neurites in the evolution of Aβ plaques in Alzheimer's disease. FREE NEUROPATHOLOGY 2020; 1:20. [PMID: 34396367 PMCID: PMC8360389 DOI: 10.17879/freeneuropathology-2020-2845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is a late-onset disease that has proved difficult to model. Microglia are implicated in AD, but reports vary on precisely when and how in the sequence of pathological changes they become involved. Here, post-mortem human tissue from two differentially affected regions of the AD brain and from non-demented individuals with a high load of AD-type pathology (high pathology controls) was used to model the disease time course in order to determine how microglial activation relates temporally to the deposition of hallmark amyloid-β (Aβ) and hyperphosphorylated microtubule associated protein tau pathology. Immunofluorescence against the pan-microglial marker, ionised calcium-binding adapter molecule 1 (IBA1), Aβ and tau, was performed in the primary motor cortex (PMC), a region relatively spared of AD pathological changes, and compared to the severely affected inferior temporal cortex (ITC) in the same cases. Unlike the ITC, the PMC in the AD cases was spared of any degenerative changes in cortical thickness and the density of Betz cells and total neurons. The clustering of activated microglia was greatest in the PMC of AD cases and high pathology controls compared to the ITC. This suggests microglial activation is most prominent in the early phases of AD pathophysiology. Nascent tau inclusions were found in neuritic plaques in the PMC but were more numerous in the ITC of the same case. This shows that tau positive neuritic plaques begin early in AD which is likely of pathogenic importance, however major tau deposition follows the accumulation of Aβ and clustering of activated microglia. Importantly, findings presented here demonstrate that different states of microglial activation, corresponding to regional accumulations of Aβ and tau, are present simultaneously in the same individual; an important factor for consideration if targeting these cells for therapeutic intervention.
Collapse
Affiliation(s)
- Patrick Jarmo Paasila
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Danielle Suzanne Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Greg Trevor Sutherland
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
39
|
Song D, Li G, Hong Y, Zhang P, Zhu J, Yang L, Huang J. miR‑199a decreases Neuritin expression involved in the development of Alzheimer's disease in APP/PS1 mice. Int J Mol Med 2020; 46:384-396. [PMID: 32626916 PMCID: PMC7255456 DOI: 10.3892/ijmm.2020.4602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 01/16/2023] Open
Abstract
Neuritin plays an important role in neural development and plasticity. A recent study demonstrated that increasing Neuritin levels attenuated synaptic damage in mice with Alzheimer's disease (AD), which exhibit a decreased Neuritin expression. However, it remains unclear as to whether Neuritin expression is regulated by microRNAs (miRNAs or miRs) in AD. In the present study, it was found that miR-199a decreased Neuritin expression and was therefore involved in the development of AD. Subsequently, differentially expressed miRNAs in AD from datasets and the literature were recruited, and those that could bind Neuritin were predicted using bioinformatics analysis. The present study then focused on the candidate miRNAs that were highly associated with Neuritin and were upregulated in AD. The expression patterns of the candidate miRNAs and Neuritin in the hippocampus and cortex of APP/PS1 (AD model) mice at different stages were then detected and analyzed. It was found that miR-199a expression was significantly increased in the early stages of AD and was negatively associated with Neuritin expression. Furthermore, it was revealed that the decreased Neuritin expression was due to the direct targeting of the Neuritin 3′-UTR by miR-199a. Finally, the association between the spatial memory capacity of APP/PS1 mice and the changes in miR-199a and Neuritin expression protein was investigated. On the whole, the data of the present study suggest that miR-199a is involved in the development of AD by regulating Neuritin expression.
Collapse
Affiliation(s)
- Dandan Song
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Guoxiang Li
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Yu Hong
- Department of Prevention Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Pan Zhang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Jingling Zhu
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| | - Lei Yang
- Department of Prevention Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, P.R. China
| | - Jin Huang
- The Key Laboratory of Xinjiang Endemic and Ethnic Diseases and Department of Biochemistry, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|