1
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. Neuroimage 2025; 310:121154. [PMID: 40101866 DOI: 10.1016/j.neuroimage.2025.121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 02/05/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVE Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, including ingestion and metabolic control. To date, no study has investigated how brain connections during exposure to food cues are association with peripheral insulin sensitivity in children. METHODS We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with lower and higher ISI, adjusted for age and BMIz. RESULTS Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on mean brain responses to food cues. CONCLUSIONS In response to food cues, children with lower peripheral insulin sensitivity exhibited distinctive patterns of neural connectivity, notably in the insula's functional connections, when contrasted with their counterparts with higher peripheral insulin sensitivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany.
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Teixeira MR, Silva T, Felício RDFM, Bozza PT, Zembrzuski VM, de Mello Neto CB, da Fonseca ACP, Kohlrausch FB, Salum KCR. Exploring the genetic contribution in obesity: An overview of dopaminergic system genes. Behav Brain Res 2025; 480:115401. [PMID: 39689745 DOI: 10.1016/j.bbr.2024.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Obesity is a widespread global health concern that affects a significant portion of the population and is associated with reduced quality of life, morbidity, and mortality. It is considered a pandemic, with its prevalence constantly rising in Western countries. As a result, numerous studies have focused on understanding the elements that contribute to obesity. Researchers have focused on neurotransmitters in the brain to develop weight management drugs that regulate food intake. This review explores the literature on genetic influences on dopaminergic processes to determine whether genetic variation has an association with obesity in reward-responsive regions, including mesolimbic efferent and mesocortical areas. Various neurotransmitters play an essential role in regulating food intake, such as dopamine which controls through mesolimbic circuits in the brain that modulate food reward. Appetite stimulation, including primary reinforcers such as food, leads to an increase in dopamine release in the reward centers of the brain. This release is related to motivation and reinforcement, which determines the motivational weighting of the reinforcer. Changes in dopamine expression can lead to hedonic eating behaviors and contribute to the development of obesity. Genetic polymorphisms have been investigated due to their potential role in modulating the risk of obesity and eating behaviors. Therefore, it is crucial to assess the impact of genetic alterations that disrupt this pathway on the obesity phenotype.
Collapse
Affiliation(s)
- Myrela Ribeiro Teixeira
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Tamara Silva
- Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Rafaela de Freitas Martins Felício
- Congenital Malformation Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil
| | - Verônica Marques Zembrzuski
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil
| | - Cicero Brasileiro de Mello Neto
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil; Postgraduate Program in Science and Biotechnology, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Ana Carolina Proença da Fonseca
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Genetics Laboratory, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil; Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Rio de Janeiro, RJ 21040‑360, Brazil; Postgraduate Program in Translational Biomedicine, Grande Rio University/AFYA, Professor José de Souza Herdy Street, 1160 - Jardim Vinte e Cinco de Agosto, Duque de Caxias, RJ 25071-202, Brazil
| | - Fabiana Barzotto Kohlrausch
- Human Genetics Laboratory, Department of General Biology, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niterói, RJ 24210-201, Brazil
| | - Kaio Cezar Rodrigues Salum
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), 4365 Brazil Avenue, Leônidas Deane Pavilion, Rio de Janeiro, RJ 21040-360, Brazil; Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Professor Rodolpho Paulo Rocco Street, 255, University City, Rio de Janeiro, RJ 21941-617, Brazil.
| |
Collapse
|
3
|
Stice E, Yokum S, Gau J, Shaw H. Neural risk factors that predict the future onset of binge eating or compensatory weight control behaviors: A prospective 4-year fMRI study. Psychol Med 2025; 55:e48. [PMID: 39957503 PMCID: PMC12055025 DOI: 10.1017/s0033291724003337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND We conducted a prospective study to advance knowledge of biological factors that predict the future onset of binge eating and compensatory weight control behaviors because few biological risk factors for eating pathology have been identified. METHODS Adolescent girls free of binge eating or compensatory behaviors (N = 88; Mage = 14.5; [SD = 0.9]) completed functional magnetic resonance imaging tasks assessing individual differences in neural responsivity hypothesized to increase risk for onset of binge eating and compensatory behaviors, along with additional self-report measures, and were assessed over a 4-year follow-up. RESULTS Elevated responsivity of regions implicated in attention and valuation (dorsal anterior cingulate cortex; ventromedial prefrontal cortex) to thin models and lower responsivity of a reward valuation region (caudate) to anticipated milkshake tastes (which correlated with feeling fat) predicted the future onset of binge eating or compensatory behaviors over 4-year follow-up. Parental history of binge eating and compensatory behaviors, emotionality, weight/shape overvaluation, feeling fat, and elevated BMI also predicted the future onset of binge eating or compensatory behaviors. CONCLUSIONS The evidence that elevated attentional bias for, and valuation of the thin ideal, in combination with lower valuation of high-calorie foods, predicted the future onset of eating-disordered behaviors are novel findings. The evidence that weight/shape overvaluation, feeling fat, elevated body mass, emotionality, and parental history of eating pathology predicted the future onset of eating-disordered behaviors extend past findings.
Collapse
Affiliation(s)
- Eric Stice
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | | | | | - Heather Shaw
- Department of Psychiatry and Behavioral Sciences, Stanford University
| |
Collapse
|
4
|
Yeum D, Renier TJ, Carlson DD, Ballarino GA, Lansigan RK, Meyer ML, Loos RJF, Emond JA, Masterson TD, Gilbert-Diamond D. Genetic associations with neural reward responsivity to food cues in children. Front Nutr 2024; 11:1387514. [PMID: 39385774 PMCID: PMC11461328 DOI: 10.3389/fnut.2024.1387514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Objective To test associations of candidate obesity-related single nucleotide polymorphisms (SNPs) and obesity polygenic risk scores (PRS) with neural reward reactivity to food cues. Methods After consuming a pre-load meal, 9-12-year-old children completed a functional magnetic resonance imaging (fMRI) paradigm with exposure to food and non-food commercials. Genetic exposures included FTO rs9939609, MC4R rs571312, and a pediatric-specific obesity PRS. A targeted region-of-interest (ROI) analysis for 7 bilateral reward regions and a whole-brain analysis were conducted. Independent associations between each genetic factor and reward responsivity to food cues in each ROI were evaluated using linear models. Results Analyses included 151 children (M = 10.9 years). Each FTO rs9939609 obesity risk allele was related to a higher food-cue-related response in the right lateral hypothalamus after controlling for covariates including the current BMI Z-score (p < 0.01), however, the association did not remain significant after applying the multiple testing correction. MC4R rs571312 and the PRS were not related to heightened food-cue-related reward responsivity in any examined regions. The whole-brain analysis did not identify additional regions of food-cue-related response related to the examined genetic factors. Conclusion Children genetically at risk for obesity, as indicated by the FTO genotype, may be predisposed to higher food-cue-related reward responsivity in the lateral hypothalamus in the sated state, which, in turn, could contribute to overconsumption. Clinical trial registration https://clinicaltrials.gov/study/NCT03766191, identifier NCT03766191.
Collapse
Affiliation(s)
- Dabin Yeum
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Timothy J. Renier
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Delaina D. Carlson
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Grace A. Ballarino
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Reina K. Lansigan
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| | - Ruth J. F. Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty for Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer A. Emond
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Travis D. Masterson
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
5
|
Speakman JR, Gao L, Hu S. The carbohydrate insulin model is always correct: a point worth reiterating even when commenting on studies that do not concern it. Obesity (Silver Spring) 2024; 32:1229-1230. [PMID: 38708662 DOI: 10.1002/oby.24053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Affiliation(s)
- John R Speakman
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Lin Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sumei Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
6
|
Zhou G, Lane G, Kahnt T, Zelano C. Structural Connectivity between Olfactory Tubercle and Ventrolateral Periaqueductal Gray Implicated in Human Feeding Behavior. J Neurosci 2024; 44:e2342232024. [PMID: 38755004 PMCID: PMC11209663 DOI: 10.1523/jneurosci.2342-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024] Open
Abstract
The olfactory tubercle (TUB), also called the tubular striatum, receives direct input from the olfactory bulb and, along with the nucleus accumbens, is one of the two principal components of the ventral striatum. As a key component of the reward system, the ventral striatum is involved in feeding behavior, but the vast majority of research on this structure has focused on the nucleus accumbens, leaving the TUB's role in feeding behavior understudied. Given the importance of olfaction in food seeking and consumption, olfactory input to the striatum should be an important contributor to motivated feeding behavior. Yet the TUB is vastly understudied in humans, with very little understanding of its structural organization and connectivity. In this study, we analyzed macrostructural variations between the TUB and the whole brain and explored the relationship between TUB structural pathways and feeding behavior, using body mass index (BMI) as a proxy in females and males. We identified a unique structural covariance between the TUB and the periaqueductal gray (PAG), which has recently been implicated in the suppression of feeding. We further show that the integrity of the white matter tract between the two regions is negatively correlated with BMI. Our findings highlight a potential role for the TUB-PAG pathway in the regulation of feeding behavior in humans.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland 21224
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
7
|
Semeia L, Veit R, Zhao S, Luo S, Angelo B, Birkenfeld AL, Preissl H, Xiang AH, Kullmann S, Page KA. Influence of insulin sensitivity on food cue evoked functional brain connectivity in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579924. [PMID: 38405878 PMCID: PMC10888780 DOI: 10.1101/2024.02.12.579924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Objective Insulin resistance during childhood is a risk factor for developing type 2 diabetes and other health problems later in life. Studies in adults have shown that insulin resistance affects regional and network activity in the brain which are vital for behavior, e.g. ingestion and metabolic control. To date, no study has investigated whether brain responses to food cues in children are associated with peripheral insulin sensitivity. Methods We included 53 children (36 girls) between the age of 7-11 years, who underwent an oral Glucose Tolerance Test (oGTT) to estimate peripheral insulin sensitivity (ISI). Brain responses were measured using functional magnetic resonance imaging (fMRI) before and after glucose ingestion. We compared food-cue task-based activity and functional connectivity (FC) between children with low and high ISI, adjusted for age and BMIz. Results Independent of prandial state (i.e., glucose ingestion), children with lower ISI showed higher FC between the anterior insula and caudate and lower FC between the posterior insula and mid temporal cortex than children with higher ISI. Sex differences were found based on prandial state and peripheral insulin sensitivity in the insular FC. No differences were found on whole-brain food-cue reactivity. Conclusions Children with low peripheral insulin sensitivity showed differences in food cue evoked response particularly in insula functional connectivity. These differences might influence eating behavior and future risk of developing diabetes.
Collapse
Affiliation(s)
- Lorenzo Semeia
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Sixiu Zhao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Germany
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Engin A. The Unrestrained Overeating Behavior and Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:167-198. [PMID: 39287852 DOI: 10.1007/978-3-031-63657-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity-related co-morbidities decrease life quality, reduce working ability, and lead to early death. In the adult population, eating addiction manifests with excessive food consumption and the unrestrained overeating behavior, which is associated with increased risk of morbidity and mortality and defined as the binge eating disorder (BED). This hedonic intake is correlated with fat preference and the total amount of dietary fat consumption is the most potent risk factor for weight gain. Long-term BED leads to greater sensitivity to the rewarding effects of palatable foods and results in obesity fatefully. Increased plasma concentrations of non-esterified free fatty acids and lipid-overloaded hypertrophic adipocytes may cause insulin resistance. In addition to dietary intake of high-fat diet, sedentary lifestyle leads to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Lipid-induced apoptosis, ceramide accumulation, reactive oxygen species overproduction, endoplasmic reticulum stress, and mitochondrial dysfunction play role in the pathogenesis of lipotoxicity. Food addiction and BED originate from complex action of dopaminergic, opioid, and cannabinoid systems. BED may also be associated with both obesity and major depressive disorder. For preventing morbidity and mortality, as well as decreasing the impact of obesity-related comorbidities in appropriately selected patients, opiate receptor antagonists and antidepressant combination are recommended. Pharmacotherapy alongside behavioral management improves quality of life and reduces the obesity risk; however, the number of licensed drugs is very few. Thus, stereotactic treatment is recommended to break down the refractory obesity and binge eating in obese patient. As recent applications in the field of non-invasive neuromodulation, transcranial magnetic stimulation and transcranial direct current stimulation are thought to be important in image-guided deep brain stimulation in humans. Chronic overnutrition most likely provides repetitive and persistent signals that up-regulate inhibitor of nuclear factor kappa B (NF-κB) kinase beta subunit/NF-κB (IKKβ/NF-κB) in the hypothalamus before the onset of obesity. However, how the mechanisms of high-fat diet-induced peripheral signals affect the hypothalamic arcuate nucleus remain largely unknown.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
9
|
Chen L, Thapaliya G, Papantoni A, Benson L, Carnell S. Neural correlates of appetite in adolescents. Appetite 2023; 191:107076. [PMID: 37806450 PMCID: PMC10997743 DOI: 10.1016/j.appet.2023.107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Appetitive characteristics are associated with child adiposity, but their biological underpinnings are unclear. We sought to investigate the neural correlates of psychometric and behavioral measures of appetitive characteristics in youth. Adolescents (14-18y; 39F, 37M) varying in familial obesity risk and body weight (20% with overweight, 24% with obesity) viewed pictures of high energy-density (ED) foods, low-ED foods and non-foods during fMRI scanning on two separate days. On one day participants consumed a 474 ml preload of water (0 kcal, fasted) and on another (counter-balanced) 474 ml milkshake (480 kcal, fed), before scanning. A multi-item ad libitum meal (ALM) followed scanning. Parents completed Child Eating Behavior Questionnaire (CEBQ) sub-scales assessing food approach and food self-regulation. Caloric compensation was calculated as the percentage of preload intake compensated for by down-regulation of ALM intake in the fed vs. fasted condition. Analyses correcting for multiple comparisons demonstrated that, for the fasted condition, higher CEBQ Food Responsiveness scores were associated with greater activation to high-ED (vs. low-ED) foods in regions implicated in food reward (insula, rolandic operculum, putamen). In addition, higher caloric compensation was associated with greater fed vs. fasted activations in response to foods (vs. non-foods) in thalamus and supramarginal gyrus. Uncorrected analyses provided further support for associations of different measures of appetitive characteristics with brain responses to food cues in each condition. Measures of appetitive characteristics demonstrated overlapping and distinct associations with patterns of brain activation elicited by food cues in fasted and fed states. Understanding the neural basis of appetitive characteristics could aid development of biobehaviorally-informed obesity interventions.
Collapse
Affiliation(s)
- L Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - G Thapaliya
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - A Papantoni
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - L Benson
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | - S Carnell
- Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
10
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Abstract
Eating behaviours are determined by the integration of interoceptive and environmental inputs. During pregnancy, numerous physiological adaptations take place in the maternal organism to provide an adequate environment for embryonic growth. Among them, whole-body physiological remodelling directly influences eating patterns, commonly causing notable taste perception alterations, food aversions and cravings. Recurrent food cravings for and compulsive eating of highly palatable food can contribute to the development and maintenance of gestational overweight and obesity with potential adverse health consequences for the offspring. Although much is known about how maternal eating habits influence offspring health, the mechanisms that underlie changes in taste perception and food preference during pregnancy (which guide and promote feeding) are only just starting to be elucidated. Given the limited and diffuse understanding of the neurobiology of gestational eating patterns, the aim of this Review is to compile, integrate and discuss the research conducted on this topic in both experimental models and humans. This article sheds light on the mechanisms that drive changes in female feeding behaviours during distinct physiological states. Understanding these processes is crucial to improve gestational parent health and decrease the burden of metabolic and food-related diseases in future generations.
Collapse
Affiliation(s)
- Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Blum K, Gold MS, Cadet JL, Gondre-Lewis MC, McLaughlin T, Braverman ER, Elman I, Paul Carney B, Cortese R, Abijo T, Bagchi D, Giordano J, Dennen CA, Baron D, Thanos PK, Soni D, Makale MT, Makale M, Murphy KT, Jafari N, Sunder K, Zeine F, Ceccanti M, Bowirrat A, Badgaiyan RD. Invited Expert Opinion- Bioinformatic and Limitation Directives to Help Adopt Genetic Addiction Risk Screening and Identify Preaddictive Reward Dysregulation: Required Analytic Evidence to Induce Dopamine Homeostatsis. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i8.4211. [PMID: 37885438 PMCID: PMC10601302 DOI: 10.18103/mra.v11i8.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Addiction, albeit some disbelievers like Mark Lewis [1], is a chronic, relapsing brain disease, resulting in unwanted loss of control over both substance and non- substance behavioral addictions leading to serious adverse consequences [2]. Addiction scientists and clinicians face an incredible challenge in combatting the current opioid and alcohol use disorder (AUD) pandemic throughout the world. Provisional data from the Centers for Disease Control and Prevention (CDC) shows that from July 2021-2022, over 100,000 individuals living in the United States (US) died from a drug overdose, and 77,237 of those deaths were related to opioid use [3]. This number is expected to rise, and according to the US Surgeon General it is highly conceivable that by 2025 approximately 165,000 Americans will die from an opioid overdose. Alcohol abuse, according to data from the World Health Organization (WHO), results in 3 million deaths worldwide every year, which represents 5.3% of all deaths globally [4].
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
- Division of Addiction Research & Education, Center for Sports, Exercise & Psychiatry, Western University Health Sciences, Pomona, CA., USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT.,USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH, USA
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
- Department of Nutrigenomic Research, Victory Nutrition International, Inc., Bonita Springs, FL, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO., USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD., USA
| | - Marjorie C. Gondre-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Thomas McLaughlin
- Division of Nutrigenomics Research, TranspliceGen Therapeutics, Inc., Austin, Tx., 78701, USA
| | - Eric R Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX., USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA., USA
| | - B. Paul Carney
- Division Pediatric Neurology, University of Missouri, School of Medicine, Columbia, MO., USA
| | - Rene Cortese
- Department of Child Health – Child Health Research Institute, & Department of Obstetrics, Gynecology and Women’s Health School of Medicine, University of Missouri, MO., USA
| | - Tomilowo Abijo
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC., USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - John Giordano
- Division of Personalized Mental Illness Treatment & Research, Ketamine Infusion Clinics of South Florida, Pompano Beach, Fl., USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA., USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miles Makale
- Department of Psychology, UC San Diego, Health Sciences Drive, La Jolla, CA, 92093, USA
| | | | - Nicole Jafari
- Department of Human Development, California State University at long Beach, Long Beach, CA., USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA., USA
| | - Keerthy Sunder
- Department of Psychiatry, Menifee Global Medical Center, Palm Desert, CA., USA
- Sunder Foundation, Palm Springs, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA., USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA., USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, Rome, Italy
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX., USA
- Department of Psychiatry, Mt Sinai University School of Medicine, New York, NY., USA
| |
Collapse
|
13
|
Kim JS, Williams KC, Kirkland RA, Schade R, Freeman KG, Cawthon CR, Rautmann AW, Smith JM, Edwards GL, Glenn TC, Holmes PV, de Lartigue G, de La Serre CB. The gut-brain axis mediates bacterial driven modulation of reward signaling. Mol Metab 2023; 75:101764. [PMID: 37380023 PMCID: PMC10372379 DOI: 10.1016/j.molmet.2023.101764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
Collapse
Affiliation(s)
- Jiyoung S Kim
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | - Ruth Schade
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | | | | | - Gaylen L Edwards
- Department of Physiology and Pharmacology, University of Georgia, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, USA
| | | | - Guillaume de Lartigue
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, USA
| | | |
Collapse
|
14
|
Arrue A, Olivas O, Erkoreka L, Alvarez FJ, Arnaiz A, Varela N, Bilbao A, Rodríguez JJ, Moreno-Calle MT, Gordo E, Marín E, Garcia-Cano J, Saez E, Gonzalez-Torres MÁ, Zumárraga M, Basterreche N. Multilocus Genetic Profile Reflecting Low Dopaminergic Signaling Is Directly Associated with Obesity and Cardiometabolic Disorders Due to Antipsychotic Treatment. Pharmaceutics 2023; 15:2134. [PMID: 37631349 PMCID: PMC10459305 DOI: 10.3390/pharmaceutics15082134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Treatment with second-generation antipsychotics (SGAs) can cause obesity and other cardiometabolic disorders linked to D2 receptor (DRD2) and to genotypes affecting dopaminergic (DA) activity, within reward circuits. We explored the relationship of cardiometabolic alterations with single genetic polymorphisms DRD2 rs1799732 (NG_008841.1:g.4750dup -> C), DRD2 rs6277 (NG_008841.1:g.67543C>T), COMT rs4680 (NG_011526.1:g.27009G>A), and VNTR in both DRD4 NC_000011.10 (637269-640706) and DAT1 NC_000005.10 (1392794-1445440), as well as with a multilocus genetic profile score (MLGP). A total of 285 psychiatric patients treated with SGAs for at least three months were selected. Cardiometabolic parameters were classified according to ATP-III and WHO criteria. Blood samples were taken for routinely biochemical assays and PCR genotyping. Obesity (BMI, waist (W)), high diastolic blood pressure (DBP), and hypertriglyceridemia (HTG) were present in those genetic variants related to low dopaminergic activity: InsIns genotype in rs1799732 (BMI: OR: 2.91 [1.42-5.94]), DRD4-VNTR-L allele (W: OR: 1.73 [1.04-2.87]) and 9R9R variant in DAT1-VNTR (W: OR: 2.73 [1.16-6.40]; high DBP: OR: 3.33 [1.54-7.31]; HTG: OR: 4.38 [1.85-10.36]). A low MLGP score indicated a higher risk of suffering cardiometabolic disorders (BMI: OR: 1.23 [1.05-1.45]; W: OR: 1.18 [1.03-1.34]; high DBP: OR: 1.22 [1.06-1.41]; HTG: OR: 1.20 [1.04-1.39]). The MLGP score was more sensitive for detecting the risk of suffering these alterations. Low dopaminergic system function would contribute to increased obesity, BDP, and HTG following long-term SGA treatment.
Collapse
Affiliation(s)
- Aurora Arrue
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Olga Olivas
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Bizkaia Mental Health Network, Zaldibar Hospital, Osakidetza Basque Health Service, 48250 Zaldibar, Spain
| | - Leire Erkoreka
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Francisco Jose Alvarez
- Research Unit, Cruces University Hospital, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Ainara Arnaiz
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Erandio Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48950 Erandio, Spain
| | - Noemi Varela
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Uribe Mental Health Center, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48990 Getxo, Spain
| | - Ainhoa Bilbao
- Animal Research Facility, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jose-Julio Rodríguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Functional Neuroanatomy, BioCruces Bizkaia Health Research Institute, Ikerbasque Basque Foundation for Science, 48903 Barakaldo, Spain
| | - María Teresa Moreno-Calle
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
| | - Estibaliz Gordo
- Bizkaia Mental Health Network, Zamudio Hospital, Osakidetza Basque Health Service, 48170 Zamudio, Spain
| | - Elena Marín
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Bizkaia Mental Health Network, Bermeo Hospital, Osakidetza Basque Health Service, 48370 Bermeo, Spain
| | - Javier Garcia-Cano
- Alternatives to Hospitalization in Bilbao, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Bilbao, Spain
| | - Estela Saez
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Department of Psychiatry, Galdakao-Usánsolo University Hospital, Osakidetza Basque Health Service, 48960 Galdakao, Spain
| | - Miguel Ángel Gonzalez-Torres
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Integrative Research Group in Mental Health, BioCruces Bizkaia Health Research Institute, 48013 Bilbao, Spain
- Department of Psychiatry, Basurto University Hospital, Osakidetza Basque Health Service, 48013 Bilbao, Spain
| | - Mercedes Zumárraga
- Mental Health Network Group, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.O.); (L.E.)
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza Basque Health Service, 48903 Barakaldo, Spain
| | - Nieves Basterreche
- Functional Neuroanatomy, BioCruces Bizkaia Health Research Institute, Ikerbasque Basque Foundation for Science, 48903 Barakaldo, Spain
- Integrative Research Group in Mental Health, BioCruces Bizkaia Health Research Institute, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Zhang Y, Ji W, Jiang F, Wu F, Li G, Hu Y, Zhang W, Wang J, Fan X, Wei X, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Associations among body mass index, working memory performance, gray matter volume, and brain activation in healthy children. Cereb Cortex 2023; 33:6335-6344. [PMID: 36573454 PMCID: PMC10422922 DOI: 10.1093/cercor/bhac507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
To investigate the neural mechanisms underlying the association between poorer working memory performance and higher body mass index (BMI) in children. We employed structural-(sMRI) and functional magnetic resonance imaging (fMRI) with a 2-back working memory task to examine brain abnormalities and their associations with BMI and working memory performance in 232 children with overweight/obesity (OW/OB) and 244 normal weight children (NW) from the Adolescent Brain Cognitive Development dataset. OW/OB had lower working memory accuracy, which was associated with higher BMI. They showed smaller gray matter (GM) volumes in the left superior frontal gyrus (SFG_L), dorsal anterior cingulate cortex, medial orbital frontal cortex, and medial superior frontal gyrus, which were associated with lower working memory accuracy. During the working memory task, OW/OB relative to NW showed weaker activation in the left superior temporal pole, amygdala, insula, and bilateral caudate. In addition, caudate activation mediated the relationship between higher BMI and lower working memory accuracy. Higher BMI is associated with smaller GM volumes and weaker brain activation in regions involved with working memory. Task-related caudate dysfunction may account for lower working memory accuracy in children with higher BMI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Xiao Fan
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| | - Xiaorong Wei
- Kindergarten affiliated to Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, No. 2, Chongwen Road, Chongqing 400065, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, No. 2, Chongwen Road, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, 10 Center Drive, MSC1013, Building 10, Room B2L304, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, No. 266, Xifeng Road, Xi'an, Shaanxi 710126, China
| |
Collapse
|
16
|
Jiang F, Li G, Ji W, Zhang Y, Wu F, Hu Y, Zhang W, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Obesity is associated with decreased gray matter volume in children: a longitudinal study. Cereb Cortex 2023; 33:3674-3682. [PMID: 35989308 PMCID: PMC10068275 DOI: 10.1093/cercor/bhac300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Childhood obesity has become a global health problem. Previous studies showed that childhood obesity is associated with brain structural differences relative to controls. However, few studies have been performed with longitudinal evaluations of brain structural developmental trajectories in childhood obesity. We employed voxel-based morphometry (VBM) analysis to assess gray matter (GM) volume at baseline and 2-year follow-up in 258 obese children (OB) and 265 normal weight children (NW), recruited as part of the National Institutes of Health Adolescent Brain and Cognitive Development study. Significant group × time effects on GM volume were observed in the prefrontal lobe, thalamus, right precentral gyrus, caudate, and parahippocampal gyrus/amygdala. OB compared with NW had greater reductions in GM volume in these regions over the 2-year period. Body mass index (BMI) was negatively correlated with GM volume in prefrontal lobe and with matrix reasoning ability at baseline and 2-year follow-up. In OB, Picture Test was positively correlated with GM volume in the left orbital region of the inferior frontal gyrus (OFCinf_L) at baseline and was negatively correlated with reductions in OFCinf_L volume (2-year follow-up vs. baseline). These findings indicate that childhood obesity is associated with GM volume reduction in regions involved with reward evaluation, executive function, and cognitive performance.
Collapse
Affiliation(s)
- Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| |
Collapse
|
17
|
Poghosyan V, Ioannou S, Al-Amri KM, Al-Mashhadi SA, Al-Mohammed F, Al-Otaibi T, Al-Saeed W. Spatiotemporal profile of altered neural reactivity to food images in obesity: Reward system is altered automatically and predicts efficacy of weight loss intervention. Front Neurosci 2023; 17:948063. [PMID: 36845430 PMCID: PMC9944082 DOI: 10.3389/fnins.2023.948063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Obesity presents a significant public health problem. Brain plays a central role in etiology and maintenance of obesity. Prior neuroimaging studies have found that individuals with obesity exhibit altered neural responses to images of food within the brain reward system and related brain networks. However, little is known about the dynamics of these neural responses or their relationship to later weight change. In particular, it is unknown if in obesity, the altered reward response to food images emerges early and automatically, or later, in the controlled stage of processing. It also remains unclear if the pretreatment reward system reactivity to food images is predictive of subsequent weight loss intervention outcome. Methods In this study, we presented high-calorie and low-calorie food, and nonfood images to individuals with obesity, who were then prescribed lifestyle changes, and matched normal-weight controls, and examined neural reactivity using magnetoencephalography (MEG). We performed whole-brain analysis to explore and characterize large-scale dynamics of brain systems affected in obesity, and tested two specific hypotheses: (1) in obese individuals, the altered reward system reactivity to food images occurs early and automatically, and (2) pretreatment reward system reactivity predicts the outcome of lifestyle weight loss intervention, with reduced activity associated with successful weight loss. Results We identified a distributed set of brain regions and their precise temporal dynamics that showed altered response patterns in obesity. Specifically, we found reduced neural reactivity to food images in brain networks of reward and cognitive control, and elevated reactivity in regions of attentional control and visual processing. The hypoactivity in reward system emerged early, in the automatic stage of processing (< 150 ms post-stimulus). Reduced reward and attention responsivity, and elevated neural cognitive control were predictive of weight loss after six months in treatment. Discussion In summary, we have identified, for the first time with high temporal resolution, the large-scale dynamics of brain reactivity to food images in obese versus normal-weight individuals, and have confirmed both our hypotheses. These findings have important implications for our understanding of neurocognition and eating behavior in obesity, and can facilitate development of novel integrated treatment strategies, including tailored cognitive-behavioral and pharmacological therapies.
Collapse
Affiliation(s)
- Vahe Poghosyan
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia,*Correspondence: Vahe Poghosyan,
| | - Stephanos Ioannou
- Department of Physiological Sciences, Alfaisal University, Riyadh, Saudi Arabia
| | - Khalid M. Al-Amri
- Obesity, Endocrinology and Metabolism Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Sufana A. Al-Mashhadi
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fedaa Al-Mohammed
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Tahani Al-Otaibi
- Department of Neurophysiology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wjoud Al-Saeed
- Research Unit, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Yeum D, Jimenez CA, Emond JA, Meyer ML, Lansigan RK, Carlson DD, Ballarino GA, Gilbert-Diamond D, Masterson TD. Differential neural reward reactivity in response to food advertising medium in children. Front Neurosci 2023; 17:1052384. [PMID: 36816130 PMCID: PMC9933514 DOI: 10.3389/fnins.2023.1052384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Food cues including food advertisements (ads) activate brain regions related to motivation and reward. These responses are known to correlate with eating behaviors and future weight gain. The objective of this study was to compare brain responses to food ads by different types of ad mediums, dynamic (video) and static (images), to better understand how medium type impacts food cue response. Methods Children aged 9-12 years old were recruited to complete a functional magnetic resonance imaging (fMRI) paradigm that included both food and non-food dynamic and static ads. Anatomical and functional images were preprocessed using the fMRIPrep pipeline. A whole-brain analysis and a targeted region-of-interest (ROI) analysis for reward regions (nucleus accumbens, orbitofrontal cortex, amygdala, insula, hypothalamus, ventral tegmental area, substantia nigra) were conducted. Individual neural responses to dynamic and static conditions were compared using a paired t-test. Linear mixed-effects models were then constructed to test the differential response by ad condition after controlling for age, sex, BMI-z, physical activity, and % of kcal consumed of a participant's estimated energy expenditure in the pre-load prior to the MRI scan. Results A total of 115 children (mean=10.9 years) completed the fMRI paradigm. From the ROI analyses, the right and left hemispheres of the amygdala and insula, and the right hemisphere of the ventral tegmental area and substantia nigra showed significantly higher responses for the dynamic food ad medium after controlling for covariates and a false discovery rate correction. From the whole-brain analysis, 21 clusters showed significant differential responses between food ad medium including the precuneus, middle temporal gyrus, superior temporal gyrus, and inferior frontal gyrus, and all regions remained significant after controlling for covariates. Discussion Advertising medium has unique effects on neural response to food cues. Further research is needed to understand how this differential activation by ad medium ultimately affects eating behaviors and weight outcomes.
Collapse
Affiliation(s)
- Dabin Yeum
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Courtney A. Jimenez
- Department of Psychological and Brain Science at Dartmouth College, Hanover, NH, United States
| | - Jennifer A. Emond
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Meghan L. Meyer
- Department of Psychology, Columbia University, New York, NY, United States
| | - Reina K. Lansigan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Delaina D. Carlson
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Grace A. Ballarino
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Pediatrics, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH, United States
| | - Travis D. Masterson
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Neurobehavioral markers of food preference and reward in fasted and fed states and their association with eating behaviors in young Chinese adults. Food Qual Prefer 2023. [DOI: 10.1016/j.foodqual.2022.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
O'Connor RM, Kenny PJ. Utility of 'substance use disorder' as a heuristic for understanding overeating and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110580. [PMID: 35636576 DOI: 10.1016/j.pnpbp.2022.110580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Rates of obesity and obesity-associated diseases have increased dramatically in countries with developed economies. Substance use disorders (SUDs) are characterized by the persistent use of the substance despite negative consequences. It has been hypothesized that overconsumption of palatable energy dense food can elicit SUD-like maladaptive behaviors that contribute to persistent caloric intake beyond homeostatic need even in the face of negative consequences. Palatable food and drugs of abuse act on many of the same motivation-related circuits in the brain, and can induce, at least superficially, similar molecular, cellular, and physiological adaptations on these circuits. As such, applying knowledge about the neurobiological mechanisms of SUDs may serve as useful heuristic to better understand the persistent overconsumption of palatable food that contributes to obesity. However, many important differences exist between the actions of drugs of abuse and palatable food in the brain. This warrants caution when attributing weight gain and obesity to the manifestation of a putative SUD-related behavioral disorder. Here, we describe similarities and differences between compulsive drug use in SUDs and overconsumption in obesity and consider the merit of the concept of "food addiction".
Collapse
Affiliation(s)
- Richard M O'Connor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
21
|
Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022; 23:719-731. [PMID: 35380355 PMCID: PMC9307542 DOI: 10.1007/s11154-022-09720-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Functional neuroimaging has become a widely used tool in obesity and eating disorder research to explore the alterations in neurobiology that underlie overeating and binge eating behaviors. Current and traditional neurobiological models underscore the importance of impairments in brain systems supporting reward, cognitive control, attention, and emotion regulation as primary drivers for overeating. Due to the technical limitations of standard field strength functional magnetic resonance imaging (fMRI) scanners, human neuroimaging research to date has focused largely on cortical and basal ganglia effects on appetitive behaviors. The present review draws on animal and human research to highlight how neural signaling encoding energy regulation, reward-learning, and habit formation converge on hypothalamic, brainstem, thalamic, and striatal regions to contribute to overeating in humans. We also consider the role of regions such as the mediodorsal thalamus, ventral striatum, lateral hypothalamus and locus coeruleus in supporting habit formation, inhibitory control of food craving, and attentional biases. Through these discussions, we present proposals on how the neurobiology underlying these processes could be examined using functional neuroimaging and highlight how ultra-high field 7-Tesla (7 T) fMRI may be leveraged to elucidate the potential functional alterations in subcortical networks. Focus is given to how interactions of these regions with peripheral endocannabinoids and neuropeptides, such as orexin, could be explored. Technical and methodological aspects regarding the use of ultra-high field 7 T fMRI to study eating behaviors are also reviewed.
Collapse
Affiliation(s)
- Po-Han Kung
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Neuroscience Program, L'Hospitalet de Llobregat, Spain
- CIBERSAM, Carlos III Health Institute, Madrid, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
de Wouters d’Oplinter A, Huwart SJP, Cani PD, Everard A. Gut microbes and food reward: From the gut to the brain. Front Neurosci 2022; 16:947240. [PMID: 35958993 PMCID: PMC9358980 DOI: 10.3389/fnins.2022.947240] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Inappropriate food intake behavior is one of the main drivers for fat mass development leading to obesity. Importantly the gut microbiota-mediated signals have emerged as key actors regulating food intake acting mainly on the hypothalamus, and thereby controlling hunger or satiety/satiation feelings. However, food intake is also controlled by the hedonic and reward systems leading to food intake based on pleasure (i.e., non-homeostatic control of food intake). This review focus on both the homeostatic and the non-homeostatic controls of food intake and the implication of the gut microbiota on the control of these systems. The gut-brain axis is involved in the communications between the gut microbes and the brain to modulate host food intake behaviors through systemic and nervous pathways. Therefore, here we describe several mediators of the gut-brain axis including gastrointestinal hormones, neurotransmitters, bioactive lipids as well as bacterial metabolites and compounds. The modulation of gut-brain axis by gut microbes is deeply addressed in the context of host food intake with a specific focus on hedonic feeding. Finally, we also discuss possible gut microbiota-based therapeutic approaches that could lead to potential clinical applications to restore food reward alterations. Therapeutic applications to tackle these dysregulations is of utmost importance since most of the available solutions to treat obesity present low success rate.
Collapse
|
23
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, "the answer is blowin' in the wind," and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
24
|
Portella AK, Papantoni A, Joseph AT, Chen L, Lee RS, Silveira PP, Dube L, Carnell S. Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys. Sci Rep 2021; 11:24094. [PMID: 34916545 PMCID: PMC8677785 DOI: 10.1038/s41598-021-02797-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
The dopamine receptor 4 (DRD4) in the prefrontal cortex (PFC) acts to modulate behaviours including cognitive control and motivation, and has been implicated in behavioral inhibition and responsivity to food cues. Adolescence is a sensitive period for the development of habitual eating behaviors and obesity risk, with potential mediation by development of the PFC. We previously found that genetic variations influencing DRD4 function or expression were associated with measures of laboratory and real-world eating behavior in girls and boys. Here we investigated brain responses to high energy–density (ED) and low-ED food cues using an fMRI task conducted in the satiated state. We used the gene-based association method PrediXcan to estimate tissue-specific DRD4 gene expression in prefrontal brain areas from individual genotypes. Among girls, those with lower vs. higher predicted prefrontal DRD4 expression showed lesser activation to high-ED and low-ED vs. non-food cues in a distributed network of regions implicated in attention and sensorimotor processing including middle frontal gyrus, and lesser activation to low-ED vs non-food cues in key regions implicated in valuation including orbitofrontal cortex and ventromedial PFC. In contrast, males with lower vs. higher predicted prefrontal DRD4 expression showed minimal differences in food cue response, namely relatively greater activation to high-ED and low-ED vs. non-food cues in the inferior parietal lobule. Our data suggest sex-specific effects of prefrontal DRD4 on brain food responsiveness in adolescence, with modulation of distributed regions relevant to cognitive control and motivation observable in female adolescents.
Collapse
Affiliation(s)
- Andre K Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada.,Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brazil
| | - Afroditi Papantoni
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoneta T Joseph
- McGill Centre for the Convergence of Health and Economics (MCCHE), McGill University, Montreal, Canada
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The current article discusses five neural vulnerability theories for weight gain and reviews evidence from prospective studies using imaging and behavioral measures reflecting neural function, as well as randomized experiments with humans and animals that are consistent or inconsistent with these theories. RECENT FINDINGS Recent prospective imaging studies examining predictors of weight gain and response to obesity treatment, and repeated-measures imaging studies before and after weight gain and loss have advanced knowledge of etiologic processes and neural plasticity resulting from weight change. Overall, data provide strong support for the incentive sensitization theory of obesity and moderate support for the reward surfeit theory, inhibitory control deficit theory, and dynamic vulnerability model of obesity, which attempted to synthesize the former theories into a single etiologic model. Data provide little support for the reward deficit theory. Important directions for future studies are delineated.
Collapse
Affiliation(s)
- Eric Stice
- Department of Psychiatry, Stanford University, Stanford, CA, 94305, USA.
| | - Sonja Yokum
- Oregon Research Institute, Eugene, OR, 97403, USA
| |
Collapse
|
26
|
Christensen EL, Harding IH, Voigt K, Chong TTJ, Verdejo-Garcia A. Neural underpinnings of food choice and consumption in obesity. Int J Obes (Lond) 2021; 46:194-201. [PMID: 34611286 DOI: 10.1038/s41366-021-00974-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES Obesity is associated with unhealthy food choices. Food selection is driven by the subjective valuation of available options, and the perceived and actual rewards accompanying consumption. These cognitive operations are mediated by brain regions including the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), and ventral striatum (vStr). This study investigated the relationship between body mass index (BMI) and functional activations in the vmPFC, dACC, and vStr during food selection and consumption. SUBJECTS/METHODS After overnight fasting, 26 individuals (BMI: 18-40 kg/m2) performed a food choice task while being scanned with functional magnetic resonance imaging (fMRI). Each trial involved selecting one beverage from a pair of presented options, followed by delivery of a 3 mL aliquot of the selected option using an MR-compatible gustometer. We also tracked subjective preference for each beverage throughout the experiment. RESULTS During food choice, individuals with greater BMI had less activation in the dorsolateral prefrontal cortex when selecting a high-value option and less vmPFC activation upon its consumption. Independent of BMI, during food choice the dACC and anterior insula elicited higher activation when a less preferred beverage was selected. Activation of the dACC and a broader frontoparietal network was also observed when deciding between options more similar in value. During consumption, receipt of a more preferred beverage was associated with greater vmPFC response, and attenuation of the dACC. CONCLUSIONS An individual's preference for a food option modulates the brain activity associated with choosing and consuming it. The relationship between food preference and underlying brain activity is altered in obesity, with reduced engagement of cognition-related regions when presented with a highly valued option, but a blunted response in reward-related regions upon consumption.
Collapse
Affiliation(s)
- Erynn L Christensen
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Katharina Voigt
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Antonio Verdejo-Garcia
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Ronan L, Alexander-Bloch A, Fletcher PC. Childhood Obesity, Cortical Structure, and Executive Function in Healthy Children. Cereb Cortex 2021; 30:2519-2528. [PMID: 31646343 PMCID: PMC7175011 DOI: 10.1093/cercor/bhz257] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of executive function is linked to maturation of prefrontal cortex (PFC) in childhood. Childhood obesity has been associated with changes in brain structure, particularly in PFC, as well as deficits in executive functions. We aimed to determine whether differences in cortical structure mediate the relationship between executive function and childhood obesity. We analyzed MR-derived measures of cortical thickness for 2700 children between the ages of 9 and 11 years, recruited as part of the NIH Adolescent Brain and Cognitive Development (ABCD) study. We related our findings to measures of executive function and body mass index (BMI). In our analysis, increased BMI was associated with significantly reduced mean cortical thickness, as well as specific bilateral reduced cortical thickness in prefrontal cortical regions. This relationship remained after accounting for age, sex, race, parental education, household income, birth-weight, and in-scanner motion. Increased BMI was also associated with lower executive function. Reduced thickness in the rostral medial and superior frontal cortex, the inferior frontal gyrus, and the lateral orbitofrontal cortex partially accounted for reductions in executive function. These results suggest that childhood obesity is associated with compromised executive function. This relationship may be partly explained by BMI-associated reduced cortical thickness in the PFC.
Collapse
Affiliation(s)
- Lisa Ronan
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8HA UK
| | - Aaron Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, PA 19104, USA
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8HA UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK.,The Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories (IMS-MRL), University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
28
|
Le TM, Wang W, Zhornitsky S, Dhingra I, Zhang S, Li CSR. Interdependent Neural Correlates of Reward and Punishment Sensitivity During Rewarded Action and Inhibition of Action. Cereb Cortex 2021; 30:1662-1676. [PMID: 31667492 DOI: 10.1093/cercor/bhz194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Imaging studies have distinguished the brain correlates of approach and avoidance behaviors and suggested the influence of individual differences in trait sensitivity to reward (SR) and punishment (SP) on these neural processes. Theoretical work of reinforcement sensitivity postulates that SR and SP may interdependently regulate behavior. Here, we examined the distinct and interrelated neural substrates underlying rewarded action versus inhibition of action in relation to SR and SP as evaluated by the Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Forty-nine healthy adults performed a reward go/no-go task with approximately 2/3 go and 1/3 no-go trials. Correct go and no-go responses were rewarded and incorrect responses were penalized. The results showed that SR and SP modulated rewarded go and no-go, respectively, both by recruiting the rostral anterior cingulate cortex and left middle frontal gyrus (rACC/left MFG). Importantly, SR and SP influenced these regional activations in opposite directions, thus exhibiting an antagonistic relationship as suggested by the reinforcement sensitivity theory. Furthermore, mediation analysis revealed that heightened SR contributed to higher rewarded go success rate via enhanced rACC/left MFG activity. The findings demonstrate interrelated neural correlates of SR and SP to support the diametric processes of behavioral approach and avoidance.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
29
|
Grimm O, van Rooij D, Hoogman M, Klein M, Buitelaar J, Franke B, Reif A, Plichta MM. Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders. Neurosci Biobehav Rev 2021; 128:165-181. [PMID: 34144113 DOI: 10.1016/j.neubiorev.2021.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023]
Abstract
ADHD is a disorder characterized by changes in the reward system and which is highly comorbid with other mental disorders, suggesting common neurobiological pathways. Transdiagnostic neuroimaging findings could help to understand whether a dysregulated reward pathway might be the actual link between ADHD and its comorbidities. We here synthesize ADHD neuroimaging findings on the reward system with findings in obesity, depression, and substance use disorder including their comorbid appearance regarding neuroanatomical features (structural MRI) and activation patterns (resting-state and functional MRI). We focus on findings from monetary-incentive-delay (MID) and delay-discounting (DD) tasks and then review data on striatal connectivity and volumetry. Next, for better understanding of comorbidity in adult ADHD, we discuss these neuroimaging features in ADHD, obesity, depression and substance use disorder and ask whether ADHD heterogeneity and comorbidity are reflected by a common dysregulation in the reward system. Finally, we highlight conceptual issues related to heterogeneous paradigms, different phenotyping, longitudinal prediction and highlight some promising future directions for using striatal reward functioning as a clinical biomarker.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Martine Hoogman
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Marieke Klein
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Barbara Franke
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Michael M Plichta
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
30
|
Adise S, Allgaier N, Laurent J, Hahn S, Chaarani B, Owens M, Yuan D, Nyugen P, Mackey S, Potter A, Garavan HP. Multimodal brain predictors of current weight and weight gain in children enrolled in the ABCD study ®. Dev Cogn Neurosci 2021; 49:100948. [PMID: 33862325 PMCID: PMC8066422 DOI: 10.1016/j.dcn.2021.100948] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/20/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Multimodal neuroimaging assessments were utilized to identify generalizable brain correlates of current body mass index (BMI) and predictors of pathological weight gain (i.e., beyond normative development) one year later. Multimodal data from children enrolled in the Adolescent Brain Cognitive Development Study® at 9-to-10-years-old, consisted of structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), resting state (rs), and three task-based functional (f) MRI scans assessing reward processing, inhibitory control, and working memory. Cross-validated elastic-net regression revealed widespread structural associations with BMI (e.g., cortical thickness, surface area, subcortical volume, and DTI), which explained 35% of the variance in the training set and generalized well to the test set (R2 = 0.27). Widespread rsfMRI inter- and intra-network correlations were related to BMI (R2train = 0.21; R2test = 0.14), as were regional activations on the working memory task (R2train = 0.20; (R2test = 0.16). However, reward and inhibitory control tasks were unrelated to BMI. Further, pathological weight gain was predicted by structural features (Area Under the Curve (AUC)train = 0.83; AUCtest = 0.83, p < 0.001), but not by fMRI nor rsfMRI. These results establish generalizable brain correlates of current weight and future pathological weight gain. These results also suggest that sMRI may have particular value for identifying children at risk for pathological weight gain.
Collapse
Affiliation(s)
- Shana Adise
- Department of Psychiatry, University of Vermont, Burlington, VT, USA.
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Jennifer Laurent
- Department of Nursing, University of Vermont, Burlington, VT, USA
| | - Sage Hahn
- Department of Complex Systems, University of Vermont, Burlington, VT, USA
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Max Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - DeKang Yuan
- Department of Complex Systems, University of Vermont, Burlington, VT, USA
| | - Philip Nyugen
- Department of Psychiatry, University of Vermont, Burlington, VT, USA; Department of Complex Systems, University of Vermont, Burlington, VT, USA; Department of Nursing, University of Vermont, Burlington, VT, USA; Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Alexandra Potter
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - Hugh P Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA; Department of Psychological Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
31
|
Heart Rate Variability Reactivity to Food Image Stimuli is Associated with Body Mass Index. Appl Psychophysiol Biofeedback 2021; 46:271-277. [PMID: 34021835 PMCID: PMC8325666 DOI: 10.1007/s10484-021-09514-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 11/29/2022]
Abstract
Appetitive control is driven by the hedonic response to food and affected by several factors. Heart rate variability (HRV) signals have been used to index autonomic activity and arousal levels towards visual stimuli. The current research aimed to examine the influence of body mass index (BMI), disordered eating behaviors, and sex on the HRV reactivity to food in a nonclinical sample. Thirty-eight healthy male and sixty-one healthy female participants completed questionnaires assessing disordered eating symptoms. HRV was recorded when the participants received visual stimuli of high-calorie food, neutral and negative emotional signals. Generalized estimating equation models were used to investigate the associations between HRV, BMI, disordered eating behaviors, and sex across the three stimulus types. Male participants demonstrated a higher ratio of low-frequency power to high-frequency power (LF/HF) than females across all the stimulus types. An increase in LF/HF reactivity to food signals was observed in all the study subjects. The moderation effect of BMI on LF/HF in response to food signals was also observed. Our study suggests that body weight may play a role in the interaction between sympathetic activity and food stimuli; however, how the interaction between sympathetic activity and food stimuli contributes to diet control warrants further investigation.
Collapse
|
32
|
Gordon EL, Lent MR, Merlo LJ. The Effect of Food Composition and Behavior on Neurobiological Response to Food: a Review of Recent Research. Curr Nutr Rep 2021; 9:75-82. [PMID: 32157660 DOI: 10.1007/s13668-020-00305-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Controversy surrounds the construct of food addiction. The current review examines neurobiological evidence for the existence of food addiction as a valid diagnosis. RECENT FINDINGS Recent neuroimaging studies suggest significant overlap in the areas of the brain that are activated in relation to both food and drug addiction. Specifically, areas of the brain implicated in executive functioning (e.g., attention, planning, decision-making, inhibition), pleasure and the experience of reward, and sensory input and motor functioning display increased activation among individuals with symptoms of both food and drug addiction. Proposed symptoms of food addiction mirror those comprising other substance use disorder diagnoses, with similar psychological and behavioral sequelae. Results of neuroimaging studies suggest significant overlap in the areas of the brain that are activated in relation to both food and drug addiction, providing support for continued research into the construct of food addiction.
Collapse
Affiliation(s)
- Eliza L Gordon
- Department of Clinical and Health Psychology, University of Florida, P.O. Box 100165, Gainesville, FL, 32610-0165, USA
| | - Michelle R Lent
- School of Professional and Applied Psychology, Philadelphia College of Osteopathic Medicine, Rowland Hall 532a, 4190 City Avenue, Philadelphia, PA, 19131, USA
| | - Lisa J Merlo
- Department of Psychiatry, University of Florida College of Medicine, McKnight Brain Institute, L4-100K, PO Box 100256, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
Luo S, Angelo BC, Chow T, Monterosso JR, Thompson PM, Xiang AH, Page KA. Associations Between Exposure to Gestational Diabetes Mellitus In Utero and Daily Energy Intake, Brain Responses to Food Cues, and Adiposity in Children. Diabetes Care 2021; 44:1185-1193. [PMID: 33827804 PMCID: PMC8132328 DOI: 10.2337/dc20-3006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Children exposed to gestational diabetes mellitus (GDM) or maternal obesity in utero have an increased propensity to develop obesity. Little is known about the mechanisms underlying this phenomenon. We aimed to examine relationships between exposure to GDM or maternal obesity and daily energy intake (EI), brain responses to food cues within reward regions, and adiposity in children. RESEARCH DESIGN AND METHODS Participants were 159 children ages 7-11 years. Repeated 24-h recalls were conducted to assess mean daily EI. A subset of children (n = 102) completed a food cue task in the MRI scanner. A priori regions of interest included the orbital frontal cortex (OFC), insula, amygdala, ventral striatum, and dorsal striatum. Adiposity measurements, BMI z-scores, percent body fat, waist-to-height ratio (WtHR), and waist-to-hip ratio (WHR) were assessed. RESULTS Exposure to GDM was associated with greater daily EI, and children exposed to GDM diagnosed before 26 weeks gestation had greater OFC food cue reactivity. Children exposed to GDM also had larger WHR. Results remained significant after adjusting for child's age and sex, maternal education and race/ethnicity, maternal prepregnancy BMI, and child's physical activity levels. Furthermore, children who consumed more daily calories had greater WHR, and the relationship between GDM exposure and WHR was attenuated after adjustment for daily EI. Prepregnancy BMI was not significantly related to daily EI or food cue reactivity in reward regions. However, prepregnancy BMI was significantly related to all adiposity measurements; results remained significant for BMI z-scores, WtHR, and WHR after controlling for child's age and sex, maternal education and race/ethnicity, maternal GDM exposure, and child's physical activity levels. CONCLUSIONS Exposure to GDM in utero, in particular before 26 weeks gestation, is associated with increased EI, enhanced OFC food cue reactivity, and increased WHR. Future study with longitudinal follow-up is merited to assess potential pathways of daily EI and food cue reactivity in reward regions on the associations between GDM exposure and childhood adiposity.
Collapse
Affiliation(s)
- Shan Luo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA.,Department of Psychology, University of Southern California, Los Angeles, CA.,Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brendan C Angelo
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA
| | - Ting Chow
- Department of Research and Evaluation, Kaiser Permanente Southern California, Los Angeles, CA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente Southern California, Los Angeles, CA
| | - Kathleen A Page
- Division of Endocrinology, Keck School of Medicine, University of Southern California, Los Angeles, CA .,Diabetes and Obesity Research Institute, University of Southern California, Los Angeles, CA.,Neuroscience Graduate Program, University of Southern California, Los Angeles, CA
| |
Collapse
|
34
|
Abstract
In recent years, plenty of researches have reported in obese individuals with abnormal brain processes implicated in homeostatic regulation, reward, emotion, memory, attention, and executive function in eating behaviors. Thus, treating obesity cannot remain "brainless." Behavioral and psychological interventions activate the food reward, attention, and motivation system, leading to minimal weight loss and high relapse rates. Pharmacotherapy is an effective weight loss method and regulate brain activity but with concerns about its brain function safety problems. Obesity surgery, the most effective therapy currently available for obesity, shows pronounced effects on brain activity, such as deactivation of reward and attention system, and activation of inhibition control toward food cues. In this review, we present an overview of alterations in the brain after the three common weight loss methods.
Collapse
|
35
|
Mason TB, Smith KE, Anderson LM, Hazzard VM. Anhedonia, positive affect dysregulation, and risk and maintenance of binge-eating disorder. Int J Eat Disord 2021; 54:287-292. [PMID: 33295671 PMCID: PMC8673784 DOI: 10.1002/eat.23433] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 11/12/2022]
Abstract
Low positive affect has been identified as an antecedent of binge-eating episodes among individuals with binge-eating disorder (BED), yet positive affect has received far less attention in eating disorders research than its counterpart, negative affect. In this article, we argue that the low levels of positive affect which occur with anhedonia (i.e., loss of interest or pleasure in activities) may contribute to the onset and maintenance of BED. We introduce a theoretical model in which anhedonia increases the risk for BED through its interrelationships with dysregulated eating and weight gain, and we describe potential direct (e.g., reward-related processes) as well as indirect (e.g., influences on depressive symptoms and physical activity) pathways by which anhedonia may lead to adverse eating- and weight-related outcomes. We also propose a momentary maintenance model in which low positive affect and positive affect dysregulation occurring with anhedonia maintain binge eating directly and indirectly through maladaptive health behaviors, such as decreased physical activity, less healthy eating, and fewer social interactions, which in turn maintain anhedonia. We draw upon outside literature to present evidence that aligns with the proposed risk and maintenance models and conclude by outlining avenues for future research-including methodological/measurement, theoretical, and clinical research directions.
Collapse
Affiliation(s)
- Tyler B. Mason
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Kathryn E. Smith
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA
| | - Lisa M. Anderson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN
| | | |
Collapse
|
36
|
Yokum S, Gearhardt AN, Stice E. In Search of the Most Reproducible Neural Vulnerability Factors that Predict Future Weight Gain: Analyses of Data from Six Prospective Studies. Soc Cogn Affect Neurosci 2021; 18:nsab013. [PMID: 33515022 PMCID: PMC9910276 DOI: 10.1093/scan/nsab013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 11/14/2022] Open
Abstract
We tested if we could replicate the main effect relations of elevated striatum and lateral orbitofrontal cortex (OFC) response to high-calorie food stimuli to weight gain reported in past papers in six prospective datasets that used similar fMRI paradigms. Participants in Study 1 (N = 37; M age = 15.5), Study 2 (N = 160; M age = 15.3), Study 3 (N = 130; M age = 15.0), Study 4 (N = 175; M age = 14.3), Study 5 (N = 45; M age = 20.8), and Study 6 (N = 49; M age = 31.1) completed fMRI scans at baseline and had their BMI and body fat (Studies 4 and 6 only) measured at baseline and over follow-ups. Elevated striatal response to palatable food images predicted BMI gain in Studies 1 and 6 and body fat gain in Study 6. Lateral OFC activation did not predict weight gain in any of the six studies. Results provide limited support for the hypothesis that elevated reward region responsivity to palatable food images predicts weight gain. Factors that make replication difficult are discussed and potential solutions considered.
Collapse
Affiliation(s)
- Sonja Yokum
- Oregon Research Institute, Eugene, OR 97403, USA
| | - Ashley N Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric Stice
- Department of Psychiatry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021; 45:101163. [PMID: 33453418 PMCID: PMC7859312 DOI: 10.1016/j.molmet.2021.101163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA) midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by peripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in humans is lacking. METHODS In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI³ 30 kg/m2) volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline. RESULTS In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) = 5.31, p = 0.026, β = 0.19) independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) = 1.93, p = 0.17, β = -0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) = 6.23, p = 0.017, β = -0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way interaction, F(1, 127) = 5.11, p = 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin sensitivity under GLP-1 administration. CONCLUSION We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.
Collapse
Affiliation(s)
- Ruth Hanssen
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Alina Chloé Kretschmer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Kerstin Albus
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Sharmili Edwin Thanarajah
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Department of Psychiatry, Psychosomatic Medicine, and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 10, 60528, Frankfurt am Main, Germany
| | - Tamara Sitnikow
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Corina Melzer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; University of Cologne Faculty of Medicine, University Hospital Cologne Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany; Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University Hospital Cologne, Gleueler Str. 269, 50935 Cologne, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany
| |
Collapse
|
38
|
Chumachenko SY, Cali RJ, Rosal MC, Allison JJ, Person SJ, Ziedonis D, Nephew BC, Moore CM, Zhang N, King JA, Fulwiler C. Keeping weight off: Mindfulness-Based Stress Reduction alters amygdala functional connectivity during weight loss maintenance in a randomized control trial. PLoS One 2021; 16:e0244847. [PMID: 33428638 PMCID: PMC7799782 DOI: 10.1371/journal.pone.0244847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with significant comorbidities and financial costs. While behavioral interventions produce clinically meaningful weight loss, weight loss maintenance is challenging. The objective was to improve understanding of the neural and psychological mechanisms modified by mindfulness that may predict clinical outcomes. Individuals who intentionally recently lost weight were randomized to Mindfulness-Based Stress Reduction (MBSR) or a control healthy living course. Anthropometric and psychological factors were measured at baseline, 8 weeks and 6 months. Functional connectivity (FC) analysis was performed at baseline and 8 weeks to examine FC changes between regions of interest selected a priori, and independent components identified by independent component analysis. The association of pre-post FC changes with 6-month weight and psychometric outcomes was then analyzed. Significant group x time interaction was found for FC between the amygdala and ventromedial prefrontal cortex, such that FC increased in the MBSR group and decreased in controls. Non-significant changes in weight were observed at 6 months, where the mindfulness group maintained their weight while the controls showed a weight increase of 3.4% in BMI. Change in FC at 8-weeks between ventromedial prefrontal cortex and several ROIs was associated with change in depression symptoms but not weight at 6 months. This pilot study provides preliminary evidence of neural mechanisms that may be involved in MBSR’s impact on weight loss maintenance that may be useful for designing future clinical trials and mechanistic studies.
Collapse
Affiliation(s)
- Serhiy Y. Chumachenko
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Ryan J. Cali
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Milagros C. Rosal
- Department of Quantitative Health Sciences, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Jeroan J. Allison
- Department of Quantitative Health Sciences, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Sharina J. Person
- Department of Quantitative Health Sciences, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Douglas Ziedonis
- Department of Psychiatry, University of California San Diego, San Diego, California, United States of America
| | - Benjamin C. Nephew
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Constance M. Moore
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Jean A. King
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Carl Fulwiler
- Department of Psychiatry, UMass Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
39
|
Du Y, Wang Y, Yu M, Tian X, Liu J. Sex-Specific Functional Connectivity in the Reward Network Related to Distinct Gender Roles. Front Hum Neurosci 2021; 14:593787. [PMID: 33505258 PMCID: PMC7831777 DOI: 10.3389/fnhum.2020.593787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Gender roles are anti-dichotomous and malleable social constructs that should theoretically be constructed independently from biological sex. However, it is unclear whether and how the factor of sex is related to neural mechanisms involved in social constructions of gender roles. Thus, the present study aimed to investigate sex specificity in gender role constructions and the corresponding underlying neural mechanisms. We measured gender role orientation using the Bem Sex-Role Inventory, used a voxel-based global brain connectivity method based on resting-state functional magnetic resonance imaging to characterize the within-network connectivity in the brain reward network, and analyzed how the integration of the reward network is related to gender role scores between sex groups. An omnibus analysis of voxel-wise global brain connectivity values within a two-level linear mixed model revealed that in female participants, femininity scores were positively associated with integration in the posterior orbitofrontal cortex and subcallosal cortex, whereas masculinity scores were positively associated with integration in the frontal pole. By contrast, in male participants, masculinity was negatively correlated with integration in the nucleus accumbens and subcallosal cortex. For the first time, the present study revealed the sex-specific neural mechanisms underlying distinct gender roles, which elucidates the process of gender construction from the perspective of the interaction between reward sensitivity and social reinforcement.
Collapse
Affiliation(s)
- Yin Du
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yinan Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengxia Yu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Tian
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
41
|
Ferrario CR. Why did I eat that? Contributions of individual differences in incentive motivation and nucleus accumbens plasticity to obesity. Physiol Behav 2020; 227:113114. [DOI: 10.1016/j.physbeh.2020.113114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/02/2023]
|
42
|
Stice E, Yokum S, Voelker P. Relation of FTO to BOLD response to receipt and anticipated receipt of food and monetary reward, food images, and weight gain in healthy weight adolescents. Soc Cogn Affect Neurosci 2020; 15:1135-1144. [PMID: 31680145 PMCID: PMC7657457 DOI: 10.1093/scan/nsz081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Although the fat mass and obesity-associated gene (FTO) correlates with elevated body mass, it is unclear how it contributes to overeating. We tested if individuals with the A allele show greater reward region responsivity to receipt and anticipated receipt of food and money and palatable food images. We also tested if these individuals show greater future weight gain. Initially healthy weight adolescents (Study 1, N = 162; Study 2, N = 135) completed different functional magnetic resonance imaging paradigms and had their body mass measured annually over 3 years. Adolescents with the AA or AT genotypes showed less precuneus and superior parietal lobe response and greater cuneus and prefrontal cortex response to milkshake receipt and less putamen response to anticipated milkshake receipt than those with the TT genotype in separate analyses of each sample. Groups did not differ in response to palatable food images, and receipt and anticipated receipt of money, or in weight gain over 3-year follow-up. Results suggest that initially healthy weight adolescents with vs without the FTO A allele show differential responsivity to receipt and anticipated receipt of food but do not differ in neural response to palatable food images and monetary reward and do not show greater future weight gain.
Collapse
Affiliation(s)
- Eric Stice
- Stanford University, Stanford, CA 94305, USA
| | - Sonja Yokum
- Oregon Research Institute, Eugene, OR, 97403, USA
| | | |
Collapse
|
43
|
Morys F, García-García I, Dagher A. Is obesity related to enhanced neural reactivity to visual food cues? A review and meta-analysis. Soc Cogn Affect Neurosci 2020; 18:nsaa113. [PMID: 32785578 PMCID: PMC9997070 DOI: 10.1093/scan/nsaa113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 01/10/2023] Open
Abstract
Theoretical work suggests that obesity is related to enhanced incentive salience of food cues. However, evidence from both behavioral and neuroimaging studies on the topic is mixed. In this work we review the literature on cue reactivity in obesity and perform a preregistered meta-analysis of studies investigating effects of obesity on brain responses to passive food pictures viewing. Further, we examine whether age influences brain responses to food cues in obesity. In the meta-analysis we included 13 studies of children and adults that investigated group differences (obese vs. lean) in responses to food vs. non-food pictures viewing. While we found no significant differences in the overall meta-analysis, we show that age significantly influences brain response differences to food cues in the left insula and the left fusiform gyrus. In the left insula, obese vs. lean brain differences in response to food cues decreased with age, while in the left fusiform gyrus the pattern was opposite. Our results suggest that there is little evidence for obesity-related differences in responses to food cues and that such differences might be mediated by additional factors that are often not considered.
Collapse
Affiliation(s)
- Filip Morys
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Isabel García-García
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
44
|
Patte KA, Davis CA, Levitan RD, Kaplan AS, Carter-Major J, Kennedy JL. A Behavioral Genetic Model of the Mechanisms Underlying the Link Between Obesity and Symptoms of ADHD. J Atten Disord 2020; 24:1425-1436. [PMID: 26794671 DOI: 10.1177/1087054715618793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: The ADHD-obesity link has been suggested to result from a shared underlying basis of suboptimal dopamine (DA); however, this theory conflicts evidence that an amplified DA signal increases the risk for overeating and weight gain. A model was tested in which ADHD symptoms, predicted by hypodopaminergic functioning in the prefrontal cortex, in combination with an enhanced appetitive drive, predict hedonic eating and, in turn, higher body mass index (BMI). Method: DRD2 and DRD4 markers were genotyped. The model was tested using structural equation modeling in a nonclinical sample (N = 421 adults). Results: The model was a good fit to the data. Controlling for education, all parameter estimates were significant, except for the DRD4-ADHD symptom pathway. The significant indirect effect indicates that overeating mediated the ADHD symptoms-BMI association. Conclusion: Results support the hypothesis that overeating and elevated DA in the ventral striatum-representative of a greater reward response-contribute to the ADHD symptom-obesity relationship.
Collapse
Affiliation(s)
| | - Caroline A Davis
- York University, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Robert D Levitan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | | | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| |
Collapse
|
45
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
46
|
Genetic variation of the dopamine D2 receptor gene: association with the reinforcing value of food and eating in the absence of hunger in Chilean children. NUTR HOSP 2020; 34:524-533. [PMID: 32090582 DOI: 10.20960/nh.02897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: food is a powerful reinforcer that motivates people to eat. The TaqI A1 polymorphism (rs1800497; T>C) downstream of the dopamine D2 receptor (DRD2) gene has been associated with diminished DRD2 receptor density, higher food reinforcement, and impaired eating behavior in adults. Objective: to evaluate the association between the rs1800497 polymorphism and the reinforcing value of food and eating in the absence of hunger in Chilean children. Material and method: nineteen Chilean children (aged 8-12 years) who were carriers of the A1-allele and 19 age- and gender-matched non-carriers (A2-allele) were evaluated on the reinforcing value of food and eating in the absence of hunger. Anthropometric measures were performed by standard procedures. Briefly, children received a standard pre-load lunch followed by an ad-libitum exposure to palatable foods. Results: no differences were found between A1-allele carriers and non-carriers, whether obese or non-obese, in ad libitum energy intake, macronutrient consumption, or the relative reinforcing value of food (p > 0.05). In obese children, A1 carriers reported significantly lower satiety and fullness before lunch (p < 0.05). However, in children with normal weight A1 carriers were found to exhibit trends for greater satiety and fullness before lunch when compared to non-carriers, but this trend reversed after lunch such that carriers exhibited lower satiety and fullness (p = 0.06). Conclusions: although TaqI A1 may play an important role in some eating behavior-related traits such as satiety and fullness, especially in obese children, our findings indicate that this polymorphism does not appear to affect eating in the absence of hunger or food reinforcement in children.
Collapse
|
47
|
Portella AK, Papantoni A, Paquet C, Moore S, Rosch KS, Mostofsky S, Lee RS, Smith KR, Levitan R, Silveira PP, Carnell S, Dube L. Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents. PLoS One 2020; 15:e0234601. [PMID: 32589693 PMCID: PMC7319347 DOI: 10.1371/journal.pone.0234601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Body weight is substantially determined by eating behaviors, which are themselves driven by biological factors interacting with the environment. Previous studies in young children suggest that genetic influences on dopamine function may confer differential susceptibility to the environment in such a way that increases behavioral obesity risk in a lower socioeconomic status (SES) environment but decreases it in a higher SES environment. We aimed to test if this pattern of effect could also be observed in adolescence, another critical period for development in brain and behavior, using a novel measure of predicted expression of the dopamine receptor 4 (DRD4) gene in prefrontal cortex. In a sample of 76 adolescents (37 boys and 39 girls from Baltimore, Maryland/US, aged 14-18y), we estimated individual levels of DRD4 gene expression (PredDRD4) in prefrontal cortex from individual genomic data using PrediXcan, and tested interactions with a composite SES score derived from their annual household income, maternal education, food insecurity, perceived resource availability, and receipt of public assistance. Primary outcomes were snack intake during a multi-item ad libitum meal test, and food-related impulsivity assessed using a food-adapted go/no-go task. A linear regression model adjusted for sex, BMI z-score, and genetic ethnicity demonstrated a PredDRD4 by composite SES score interaction for snack intake (p = 0.009), such that adolescents who had lower PredDRD4 levels exhibited greater snack intake in the lower SES group, but lesser snack intake in the higher SES group. Exploratory analysis revealed a similar pattern for scores on the Perceived Stress Scale (p = 0.001) such that the low PredDRD4 group reported higher stress in the lower SES group, but less stress in the higher SES group, suggesting that PredDRD4 may act in part by affecting perceptions of the environment. These results are consistent with a differential susceptibility model in which genes influencing environmental responsiveness interact with environments varying in obesogenicity to confer behavioral obesity risk in a less favorable environment, but behavioral obesity protection in a favorable one.
Collapse
Affiliation(s)
- Andre Krumel Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
- Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brasil
| | - Afroditi Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine Paquet
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Spencer Moore
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Keri Shiels Rosch
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stewart Mostofsky
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Levitan
- Centre for Addition and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| |
Collapse
|
48
|
Nock NL, Jiang H, Borato L, Alberts J, Dimitropoulos A. Insights to the neural response to food cues in class III compared with class I and II obese adults using a sample of endometrial cancer survivors seeking weight loss. Nutr Diabetes 2020; 10:21. [PMID: 32541652 PMCID: PMC7296040 DOI: 10.1038/s41387-020-0124-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022] Open
Abstract
Background The rates of severe or Class III obesity (BMI ≥ 40.0 kg/m2) and endometrial cancer (EC) incidence and mortality have been increasing significantly in the United States. Adults with severe obesity are more likely to die and women with severe obesity have a higher risk of EC development and mortality than those with Class I/II obesity (BMI: 30–<40 kg/m2). However, no prior studies have evaluated the neural response to food cues by obesity severity/class in adults with or without cancer. Methods We conducted a functional magnetic resonance imaging visual food cue task in 85 obese Stage I EC survivors who were seeking weight loss in a lifestyle intervention at baseline. We evaluated the neural response to high-calorie vs. non-food images after an overnight fast (fasted state) and after eating a standardized meal (fed state), and grouped patients by obesity class (Class I/II: n = 38; Class III: n = 47). Results In the fasted state, we found increased activation in several regions including the dorsolateral prefrontal cortex (DLPFC) in Class III and Class I/II patients (whole brain cluster corrected (WBCC), p < 0.05), which was significantly higher in Class III vs. Class I/II (p < 0.05). We found decreased activation in the insula in the fasted state, which was significantly lower in Class I/II vs. Class III (p = 0.03). In the fed state, we found increased activation in the DLPFC in Class III and Class I/II (WBCC, p < 0.05). The increased activation in cognitive control/inhibition regions (DLPFC) is consistent with the summative literature; however, the decreased activation in taste information processing regions (insula) was unexpected. Conclusions Our results provide novel insights on food cue response between different classes of obesity and highlight the importance of targeting the DLPFC in weight loss interventions, particularly in severely obese patients. Additional studies examining food-related neural circuitry between different classes of obesity are needed.
Collapse
Affiliation(s)
- Nora L Nock
- Departments of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Cleveland, OH, USA.
| | - Huangqi Jiang
- Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lauren Borato
- Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jay Alberts
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
49
|
Wijdeveld M, Nieuwdorp M, IJzerman R. The interaction between microbiome and host central nervous system: the gut-brain axis as a potential new therapeutic target in the treatment of obesity and cardiometabolic disease. Expert Opin Ther Targets 2020; 24:639-653. [PMID: 32441559 DOI: 10.1080/14728222.2020.1761958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The role of the intestinal microbiota in host cardiometabolic health and disease has gained significant attention over recent decades. Previous studies have shown effects on metabolic health through gut microbiota modulation; this suggests diverse interaction pathways that constitute the communication between gut microbiota and host central nervous system, the so-called gut-brain axis. AREAS COVERED This article provides an overview of the various mechanisms that may mediate the gut-brain axis. It places an emphasis on cardiometabolic health, including effects of short-chain fatty acids (SCFA), alterations in neurotransmitters and gut peptides and microbial effects on chronic inflammation and immune function. Moreover, this paper sheds light on whether these mechanisms afford therapeutic targets to promote metabolic health. To this end, a PubMed search with the terms 'gut microbiota,' 'obesity' and 'insulin sensitivity' was performed. EXPERT OPINION Many properties of the human gut microbiome are associated with the central regulation of appetite and metabolic status. Some of these relationships are causal and there are positive effects from certain intervention methods. Microbial manipulation may offer a means to prevent or treat obesity and associated co-morbidities. However, to establish direct causal relations between altered gut microbiota and metabolic disease, clinical intervention studies are necessary.
Collapse
Affiliation(s)
- Madelief Wijdeveld
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| | - Richard IJzerman
- Department of Endocrinology, Amsterdam University Medical Centers , Amsterdam, The Netherlands
| |
Collapse
|
50
|
Smith KE, Mason TB, Schaefer LM, Juarascio A, Dvorak R, Weinbach N, Crosby RD, Wonderlich SA. Examining intra-individual variability in food-related inhibitory control and negative affect as predictors of binge eating using ecological momentary assessment. J Psychiatr Res 2020; 120:137-143. [PMID: 31677551 PMCID: PMC6901112 DOI: 10.1016/j.jpsychires.2019.10.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
Binge eating presents in the context of several eating disorders (EDs) and has been shown to be associated with negative affectivity and inhibitory control deficits. While considerable ecological momentary assessment (EMA) work in EDs has demonstrated the importance of intra-individual variability in affect in predicting binge episodes, no research has considered how fluctuations in inhibitory control and negative affect together influence binge eating, or the extent to which these relationships may differ across ED diagnoses. Therefore, the present EMA study assessed the extent to which daily inhibitory control moderated momentary associations between negative affect and binge eating, and whether the presence of regular compensatory behaviors influenced these associations. Participants were 40 women reporting regular binge eating (anorexia nervosa binge-purge type [AN-BP], bulimia nervosa [BN], binge-eating disorder [BED]/subthreshold BED) who completed a 10-day EMA protocol that included measures of affect, eating, and a daily ambulatory Go/No-go task that included palatable food and neutral stimuli. Results of generalized estimating equations indicated greater between-person food-related inhibitory control deficits were associated with greater binge likelihood, and there was a three-way interaction between momentary negative affect, daily food-related inhibitory control, and compensatory behavior group. For individuals with BN or AN-BP, the relationship between momentary negative affect and subsequent binge eating was stronger on days characterized by reduced inhibitory control, whereas no main or interactive effects of negative affect or inhibitory control were observed for those with BED/subthreshold BED. Together these results demonstrate the importance of intra-individual variability in executive functioning and affective processes that underlie binge eating, as well as meaningful individual differences in these momentary associations.
Collapse
Affiliation(s)
- Kathryn E. Smith
- Center for Biobehavioral Research, Sanford Research, Fargo, North Dakota, USA,Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, North Dakota, USA
| | - Tyler B. Mason
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Lauren M. Schaefer
- Center for Biobehavioral Research, Sanford Research, Fargo, North Dakota, USA
| | - Adrienne Juarascio
- Department of Psychology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Robert Dvorak
- Department of Psychology, University of Central Florida, Orlando, Florida, USA
| | - Noam Weinbach
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Ross D. Crosby
- Center for Biobehavioral Research, Sanford Research, Fargo, North Dakota, USA,Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, North Dakota, USA
| | - Stephen A. Wonderlich
- Center for Biobehavioral Research, Sanford Research, Fargo, North Dakota, USA,Department of Psychiatry and Behavioral Science, University of North Dakota School of Medicine and Health Sciences, Fargo, North Dakota, USA
| |
Collapse
|