1
|
Yang L. X-ray scattering based scanning tomography for imaging and structural characterization of cellulose in plants. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:936-947. [PMID: 38917018 PMCID: PMC11226170 DOI: 10.1107/s1600577524004387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
X-ray and neutron scattering have long been used for structural characterization of cellulose in plants. Due to averaging over the illuminated sample volume, these measurements traditionally overlooked the compositional and morphological heterogeneity within the sample. Here, a scanning tomographic imaging method is described, using contrast derived from the X-ray scattering intensity, for virtually sectioning the sample to reveal its internal structure at a resolution of a few micrometres. This method provides a means for retrieving the local scattering signal that corresponds to any voxel within the virtual section, enabling characterization of the local structure using traditional data-analysis methods. This is accomplished through tomographic reconstruction of the spatial distribution of a handful of mathematical components identified by non-negative matrix factorization from the large dataset of X-ray scattering intensity. Joint analysis of multiple datasets, to find similarity between voxels by clustering of the decomposed data, could help elucidate systematic differences between samples, such as those expected from genetic modifications, chemical treatments or fungal decay. The spatial distribution of the microfibril angle can also be analyzed, based on the tomographically reconstructed scattering intensity as a function of the azimuthal angle.
Collapse
Affiliation(s)
- Lin Yang
- National Synchrotron Light Source IIBrookhaven National LaboratoryBldg 745UptonNY11973USA
| |
Collapse
|
2
|
Zhao X, Dong Z, Zhang C, Gupta H, Wu Z, Hua W, Zhang J, Huang P, Dong Y, Zhang Y. A step towards 6D WAXD tensor tomography. IUCRJ 2024; 11:502-509. [PMID: 38727172 PMCID: PMC11220869 DOI: 10.1107/s2052252524003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/24/2024] [Indexed: 07/04/2024]
Abstract
X-ray scattering/diffraction tensor tomography techniques are promising methods to acquire the 3D texture information of heterogeneous biological tissues at micrometre resolution. However, the methods suffer from a long overall acquisition time due to multi-dimensional scanning across real and reciprocal space. Here, a new approach is introduced to obtain 3D reciprocal information of each illuminated scanning volume using mathematic modeling, which is equivalent to a physical scanning procedure for collecting the full reciprocal information required for voxel reconstruction. The virtual reciprocal scanning scheme was validated by a simulated 6D wide-angle X-ray diffraction tomography experiment. The theoretical validation of the method represents an important technological advancement for 6D diffraction tensor tomography and a crucial step towards pervasive applications in the characterization of heterogeneous materials.
Collapse
Affiliation(s)
- Xiaoyi Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
- Spallation Neutron Source Science Center, Dongguan523803, People’s Republic of China
| | - Zheng Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
- Spallation Neutron Source Science Center, Dongguan523803, People’s Republic of China
| | - Chenglong Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
| | - Himadri Gupta
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUnited Kingdom
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wenqiang Hua
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204People’s Republic of China
| | - Junrong Zhang
- Spallation Neutron Source Science Center, Dongguan523803, People’s Republic of China
- Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| | - Pengyu Huang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300192, People’s Republic of China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Yi Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)Beijing100049People’s Republic of China
- University of Chinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
3
|
Mürer FK, Tekseth KR, Chattopadhyay B, Olstad K, Akram MN, Breiby DW. Multimodal 2D and 3D microscopic mapping of growth cartilage by computational imaging techniques - a short review including new research. Biomed Phys Eng Express 2024; 10:045041. [PMID: 38744257 DOI: 10.1088/2057-1976/ad4b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.
Collapse
Affiliation(s)
- Fredrik K Mürer
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- SINTEF Helgeland AS, Halvor Heyerdahls vei 33, 8626 Mo i Rana, Norway
| | - Kim R Tekseth
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Basab Chattopadhyay
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kristin Olstad
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU), Equine section, PO Box 5003, 1432 Ås, Norway
| | - Muhammad Nadeem Akram
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| | - Dag W Breiby
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| |
Collapse
|
4
|
Haas S, Sun X, Conceição ALC, Horbach J, Pfeffer S. The new small-angle X-ray scattering beamline for materials research at PETRA III: SAXSMAT beamline P62. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1156-1167. [PMID: 37860939 PMCID: PMC10624033 DOI: 10.1107/s1600577523008603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
The SAXSMAT beamline P62 (Small-Angle X-ray Scattering beamline for Materials Research) is a new beamline at the high-energy storage ring PETRA III at DESY. This beamline is dedicated to combined small- and wide-angle X-ray scattering (SAXS/WAXS) techniques for both soft and hard condensed matter systems. It works mainly in transmission geometry. The beamline covers an energy range from 3.5 keV to 35.0 keV, which fulfills the requirements of the user community to perform anomalous scattering experiments. Mirrors are used to reduce the intensity of higher harmonics. Furthermore, the mirrors and 2D compound refracting lenses can focus the beam down to a few micrometres at the sample position. This option with the high photon flux enables also SAXS/WAXS tensor tomography experiments to be performed at this new beamline in a relatively short time. The first SAXS/WAXS pattern was collected in August 2021, while the first user experiment was carried out two months later. Since January 2022 the beamline has been in regular user operation mode. In this paper the beamline optics and the SAXS/WAXS instrument are described and two examples are briefly shown.
Collapse
Affiliation(s)
- S. Haas
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - X. Sun
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - A. L. C. Conceição
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - J. Horbach
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - S. Pfeffer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
5
|
Nielsen LC, Erhart P, Guizar-Sicairos M, Liebi M. Small-angle scattering tensor tomography algorithm for robust reconstruction of complex textures. Acta Crystallogr A Found Adv 2023; 79:515-526. [PMID: 37855136 PMCID: PMC10626654 DOI: 10.1107/s205327332300863x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023] Open
Abstract
The development of small-angle scattering tensor tomography has enabled the study of anisotropic nanostructures in a volume-resolved manner. It is of great value to have reconstruction methods that can handle many different nanostructural symmetries. For such a method to be employed by researchers from a wide range of backgrounds, it is crucial that its reliance on prior knowledge about the system is minimized, and that it is robust under various conditions. Here, a method is presented that employs band-limited spherical functions to enable the reconstruction of reciprocal-space maps of a wide variety of nanostructures. This method has been thoroughly tested and compared with existing methods in its ability to retrieve known reciprocal-space maps, as well as its robustness to changes in initial conditions, using both simulations and experimental data. It has also been evaluated for its computational performance. The anchoring of this method in a framework of integral geometry and linear algebra highlights its possibilities and limitations.
Collapse
Affiliation(s)
- Leonard C. Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Manuel Guizar-Sicairos
- Paul Scherrer Institute (PSI), Villigen, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
- Paul Scherrer Institute (PSI), Villigen, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
6
|
Omori NE, Bobitan AD, Vamvakeros A, Beale AM, Jacques SDM. Recent developments in X-ray diffraction/scattering computed tomography for materials science. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220350. [PMID: 37691470 PMCID: PMC10493554 DOI: 10.1098/rsta.2022.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023]
Abstract
X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Naomi E. Omori
- Finden Limited, Merchant House, 5 East St Helens Street,Abingdon OX14 5EG, UK
| | - Antonia D. Bobitan
- Finden Limited, Merchant House, 5 East St Helens Street,Abingdon OX14 5EG, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, UK
| | - Antonis Vamvakeros
- Finden Limited, Merchant House, 5 East St Helens Street,Abingdon OX14 5EG, UK
- Dyson School of Design Engineering, Imperial College London, London SW7 2DB, UK
| | - Andrew M. Beale
- Finden Limited, Merchant House, 5 East St Helens Street,Abingdon OX14 5EG, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0FA, UK
| | - Simon D. M. Jacques
- Finden Limited, Merchant House, 5 East St Helens Street,Abingdon OX14 5EG, UK
| |
Collapse
|
7
|
San Martín Molina I, Fratini M, Campi G, Burghammer M, Grünewald TA, Salo RA, Narvaez O, Aggarwal M, Tohka J, Sierra A. A multiscale tissue assessment in a rat model of mild traumatic brain injury. J Neuropathol Exp Neurol 2022; 82:71-83. [PMID: 36331507 PMCID: PMC9764078 DOI: 10.1093/jnen/nlac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SμXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SμXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SμXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.
Collapse
Affiliation(s)
| | - Michela Fratini
- Institute of Nanotechnology-CNR c/o Physics Department, Sapienza University of Rome, Rome, Italy,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Tilman A Grünewald
- European Synchrotron Radiation Facility, Grenoble Cedex, France,Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Raimo A Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Omar Narvaez
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- Send correspondence to: Alejandra Sierra, PhD, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland (Kuopio Campus), PO Box 1627, Neulaniementie 2, FI-70211 Kuopio, Finland; E-mail:
| |
Collapse
|
8
|
Yang L, Liu J, Chodankar S, Antonelli S, DiFabio J. Scanning structural mapping at the Life Science X-ray Scattering Beamline. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:540-548. [PMID: 35254319 PMCID: PMC8900859 DOI: 10.1107/s1600577521013266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
This work describes the instrumentation and software for microbeam scattering and structural mapping at the Life Science X-ray Scattering (LiX) beamline at NSLS-II. Using a two-stage focusing scheme, an adjustable beam size between a few micrometres and a fraction of a millimetre is produced at the sample position. Scattering data at small and wide angles are collected simultaneously on multiple Pilatus detectors. A recent addition of an in-vacuum Pilatus 900k detector, with the detector modules arranged in a C-shaped configuration, has improved the azimuthal angle coverage in the wide-angle data. As an option, fluorescence data can be collected simultaneously. Fly scans have been implemented to minimize the time interval between scattering patterns and to avoid unnecessary radiation damage to the sample. For weakly scattering samples, an in-vacuum sample environment has been developed here to minimize background scattering. Data processing for these measurements is highly sample-specific. To establish a generalized data process workflow, first the data are reduced to reciprocal coordinates at the time of data collection. The users can then quantify features of their choosing from these intermediate data and construct structural maps. As examples, results from in-vacuum mapping of onion epidermal cell walls and 2D tomographic sectioning of an intact poplar stem are presented.
Collapse
Affiliation(s)
- Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, 745 Brookhaven Avenue, Upton, NY 11973, USA
| | - Jiliang Liu
- National Synchrotron Light Source II, Brookhaven National Laboratory, 745 Brookhaven Avenue, Upton, NY 11973, USA
| | - Shirish Chodankar
- National Synchrotron Light Source II, Brookhaven National Laboratory, 745 Brookhaven Avenue, Upton, NY 11973, USA
| | - Stephen Antonelli
- National Synchrotron Light Source II, Brookhaven National Laboratory, 745 Brookhaven Avenue, Upton, NY 11973, USA
| | - Jonathan DiFabio
- National Synchrotron Light Source II, Brookhaven National Laboratory, 745 Brookhaven Avenue, Upton, NY 11973, USA
| |
Collapse
|
9
|
Chourrout M, Rositi H, Ong E, Hubert V, Paccalet A, Foucault L, Autret A, Fayard B, Olivier C, Bolbos R, Peyrin F, Crola-da-Silva C, Meyronet D, Raineteau O, Elleaume H, Brun E, Chauveau F, Wiart M. Brain virtual histology with X-ray phase-contrast tomography Part I: whole-brain myelin mapping in white-matter injury models. BIOMEDICAL OPTICS EXPRESS 2022; 13:1620-1639. [PMID: 35415001 PMCID: PMC8973191 DOI: 10.1364/boe.438832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments. The purpose of this study was to propose an approach that enables myelin fibers to be mapped in the whole rodent brain with microscopic resolution and without the need for strenuous staining. With this aim, we coupled in-line (propagation-based) X-ray phase-contrast tomography (XPCT) to ethanol-induced brain sample dehydration. We here provide the proof-of-concept that this approach enhances myelinated axons in rodent and human brain tissue. In addition, we demonstrated that white-matter injuries could be detected and quantified with this approach, using three animal models: ischemic stroke, premature birth and multiple sclerosis. Furthermore, in analogy to diffusion tensor imaging (DTI), we retrieved fiber directions and DTI-like diffusion metrics from our XPCT data to quantitatively characterize white-matter microstructure. Finally, we showed that this non-destructive approach was compatible with subsequent complementary brain sample analysis by conventional histology. In-line XPCT might thus become a novel gold-standard for investigating white-matter injury in the intact brain. This is Part I of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part II shows how in-line XPCT enables the whole-brain 3D morphometric analysis of amyloid- β (A β ) plaques.
Collapse
Affiliation(s)
- Matthieu Chourrout
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- Co-first authors
| | - Hugo Rositi
- Univ-Clermont Auvergne; CNRS;
SIGMA Clermont; Institut Pascal,
Clermont-Ferrand, France
- Co-first authors
| | - Elodie Ong
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- Univ-Lyon, Hospices Civils de
Lyon, Lyon, France
| | - Violaine Hubert
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Alexandre Paccalet
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | - Louis Foucault
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | | | | | - Cécile Olivier
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | | | - Françoise Peyrin
- Univ-Lyon, INSA-Lyon,
Université Claude Bernard Lyon 1,
CNRS, Inserm, CREATIS UMR5220, U1206, F-69621, France
| | - Claire Crola-da-Silva
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
| | | | - Olivier Raineteau
- Univ-Lyon, Université
Claude Bernard Lyon 1, Inserm, Stem Cell and Brain
Research Institute U1208, 69500 Bron, France
| | - Héléne Elleaume
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Emmanuel Brun
- Université Grenoble
Alpes, Inserm UA7 Strobe, Grenoble, France
| | - Fabien Chauveau
- Univ-Lyon, Lyon Neuroscience
Research Center, CNRS UMR5292, Inserm U1028,
Université Claude Bernard Lyon 1, Lyon, France
- CNRS, Lyon,
France
- Co-last authors
| | - Marlene Wiart
- Univ-Lyon, CarMeN
laboratory, Inserm U1060, INRA U1397, Université
Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical
School, F-69600, Oullins, France
- CNRS, Lyon,
France
- Co-last authors
| |
Collapse
|
10
|
Yang L. Scattering measurements on lipid membrane structures. Methods Enzymol 2022; 677:385-415. [DOI: 10.1016/bs.mie.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Eckermann M, van der Meer F, Cloetens P, Ruhwedel T, Möbius W, Stadelmann C, Salditt T. Three-dimensional virtual histology of the cerebral cortex based on phase-contrast X-ray tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7582-7598. [PMID: 35003854 PMCID: PMC8713656 DOI: 10.1364/boe.434885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/09/2023]
Abstract
In this work, we optimize the setups and experimental parameters of X-ray phase-contrast computed-tomography for the three-dimensional imaging of the cyto- and myeloarchitecture of cerebral cortex, including both human and murine tissue. We present examples for different optical configurations using state-of-the art synchrotron instruments for holographic tomography, as well as compact laboratory setups for phase-contrast tomography in the direct contrast (edge-enhancement) regime. Apart from unstained and paraffin-embedded tissue, we tested hydrated tissue, as well as heavy metal stained and resin-embedded tissue using two different protocols. Further, we show that the image quality achieved allows to assess the neuropathology of multiple sclerosis in a biopsy sample collected during surgery.
Collapse
Affiliation(s)
- Marina Eckermann
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | | | - Peter Cloetens
- ESRF, the European Synchrotron, 71, avenue des Martyrs, 38043 Grenoble Cedex 9, France
| | - Torben Ruhwedel
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Wiebke Möbius
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Max-Planck-Institut für experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Christine Stadelmann
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Institut für Neuropathologie, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| |
Collapse
|
12
|
Nanostructure-specific X-ray tomography reveals myelin levels, integrity and axon orientations in mouse and human nervous tissue. Nat Commun 2021; 12:2941. [PMID: 34011929 PMCID: PMC8134484 DOI: 10.1038/s41467-021-22719-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/24/2021] [Indexed: 01/05/2023] Open
Abstract
Myelin insulates neuronal axons and enables fast signal transmission, constituting a key component of brain development, aging and disease. Yet, myelin-specific imaging of macroscopic samples remains a challenge. Here, we exploit myelin’s nanostructural periodicity, and use small-angle X-ray scattering tensor tomography (SAXS-TT) to simultaneously quantify myelin levels, nanostructural integrity and axon orientations in nervous tissue. Proof-of-principle is demonstrated in whole mouse brain, mouse spinal cord and human white and gray matter samples. Outcomes are validated by 2D/3D histology and compared to MRI measurements sensitive to myelin and axon orientations. Specificity to nanostructure is exemplified by concomitantly imaging different myelin types with distinct periodicities. Finally, we illustrate the method’s sensitivity towards myelin-related diseases by quantifying myelin alterations in dysmyelinated mouse brain. This non-destructive, stain-free molecular imaging approach enables quantitative studies of myelination within and across samples during development, aging, disease and treatment, and is applicable to other ordered biomolecules or nanostructures. Small-angle X-ray scattering (SAXS) combines the high tissue penetration of X-rays with specificity to periodic nanostructures. The authors use SAXS tensor tomography (SAXS-TT) on intact mouse and human brain tissue samples, to quantify myelin levels and determine myelin integrity, myelinated axon orientation, and fibre tracts non-destructively.
Collapse
|
13
|
Choi M, Dahal E, Badano A. Feasibility of imaging amyloid in the brain using small-angle x-ray scattering. Biomed Phys Eng Express 2020; 7. [PMID: 34037540 DOI: 10.1088/2057-1976/ab501c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022]
Abstract
Small-angle x-ray scattering (SAXS) imaging may have the potential to imageβ-amyloid plaquesin vivoin the brain without tracers for assessment of Alzheimer's disease (AD). We use a laboratory SAXS system for planar imaging of AD model and control mouse brains slices to detect regions with high density of amyloid plaques. These regions were validated with histology methods. Using Monte Carlo techniques, we simulate SAXS computed tomography (SAXS-CT) system to study the potential of selectively differentiating amyloid targets in mouse and human head phantoms with detailed anatomy. We found contrast between amyloid and brain tissue at smallq(below 0.8 nm-1) in the neocortex region of the transgenic brain slices as supported by histology. We observed similar behavior through planar SAXS imaging of an amyloid-like fibril deposit with a 0.8 mm diameter at a known location on a wild type mouse brain. In our SAXS-CT simulations, we found that 33-keV x rays provide increase plaque visibility in the mouse head for targets of at least 0.1 mm in diameter, while in the human head, 70-keV x rays were capable of detecting plaques as small as 2 mm. To increase radiation efficiency, we used a weighted-sum image visualization approach allowing the dose deposited by 70-keV x rays per SAXS-CT slice of the human head to be reduced by a factor of 10 to 71 mGy for gray matter and 63 mGy for white matter. The findings suggest that a dedicated SAXS-CT system forin vivoamyloid imaging in small animals and humans can be successfully developed with further system optimization to detect regions with amyloid plaques in the brain with a safe level of radiation dose.
Collapse
Affiliation(s)
- Mina Choi
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Eshan Dahal
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| | - Aldo Badano
- Center for Devices and Radiological Health, FDA, Silver Spring, MD, United States of America.,Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States of America
| |
Collapse
|
14
|
Dahal E, Ghammraoui B, Badano A. Feasibility of a label-free X-ray method to estimate brain amyloid load in small animals. J Neurosci Methods 2020; 343:108822. [PMID: 32574641 DOI: 10.1016/j.jneumeth.2020.108822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Amyloid plaque in the brain is associated with a wide range of neurodegenerative diseases such as Alzheimer's and Parkinson's and defined as aggregates of amyloid fibrils rich in β-sheet structures. NEW METHOD We report a label-free method based on small-angle X-ray scattering (SAXS) to estimate amyloid load in an intact mouse head with skull. The method is based on recording and analyzing the X rays elastically scattered from the β-sheets of amyloid plaques in a mouse head at angles smaller than 10° and energies between 30 and 45 keV. The method is demonstrated by acquiring the spectral SAXS data of an amyloid model and an excised head from a wild-type mouse for 600 s. RESULTS We captured the distinct scattering peaks of the amyloid plaques at momentum transfer (q) of 6 and 13 nm-1 associated with β-sheet structure. We first show linear correlation between the mass fraction of the amyloid target and the area under the peak (AUP) of the scattering curve. We report results for estimating amyloid load in a fixed mouse head by recovering the characteristic scattering signal from the amyloid target situated at various locations. The coefficient of variation in the amyloid load estimate is found to be less than 10%. COMPARISON WITH EXISTING METHODS There are no previously described label-free X-ray methods for the estimation of amyloid load in an intact head. CONCLUSIONS We demonstrated the feasibility of a label-free method based on SAXS to potentially estimate brain amyloid in small animals.
Collapse
Affiliation(s)
- Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Guizar-Sicairos M, Georgiadis M, Liebi M. Validation study of small-angle X-ray scattering tensor tomography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:779-787. [PMID: 32381781 PMCID: PMC7206543 DOI: 10.1107/s1600577520003860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Small-angle scattering tensor tomography (SASTT) is a recently developed technique able to tomographically reconstruct the 3D reciprocal space from voxels within a bulk volume. SASTT extends the concept of X-ray computed tomography, which typically reconstructs scalar values, by reconstructing a tensor per voxel, which represents the local nanostructure 3D organization. In this study, the nanostructure orientation in a human trabecular-bone sample obtained by SASTT was validated by sectioning the sample and using 3D scanning small-angle X-ray scattering (3D sSAXS) to measure and analyze the orientation from single voxels within each thin section. Besides the presence of cutting artefacts from the slicing process, the nanostructure orientations obtained with the two independent methods were in good agreement, as quantified with the absolute value of the dot product calculated between the nanostructure main orientations obtained in each voxel. The average dot product per voxel over the full sample containing over 10 000 voxels was 0.84, and in six slices, in which fewer cutting artefacts were observed, the dot product increased to 0.91. In addition, SAXS tensor tomography not only yields orientation information but can also reconstruct the full 3D reciprocal-space map. It is shown that the measured anisotropic scattering for individual voxels was reproduced from the SASTT reconstruction in each voxel of the 3D sample. The scattering curves along different 3D directions are validated with data from single voxels, demonstrating SASTT's potential for a separate analysis of nanostructure orientation and structural information from the angle-dependent intensity distribution.
Collapse
Affiliation(s)
| | - Marios Georgiadis
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland
- Stanford Medicine, Stanford University, Stanford, CA 94305, USA
| | - Marianne Liebi
- Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
16
|
Georgiadis M, Schroeter A, Gao Z, Guizar-Sicairos M, Novikov DS, Fieremans E, Rudin M. Retrieving neuronal orientations using 3D scanning SAXS and comparison with diffusion MRI. Neuroimage 2019; 204:116214. [PMID: 31568873 DOI: 10.1016/j.neuroimage.2019.116214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
While diffusion MRI (dMRI) is currently the method of choice to non-invasively probe tissue microstructure and study structural connectivity in the brain, its spatial resolution is limited and its results need structural validation. Current ex vivo methods employed to provide 3D fiber orientations have limitations, including tissue-distorting sample preparation, small field of view or inability to quantify 3D fiber orientation distributions. 3D fiber orientation in tissue sections can be obtained from 3D scanning small-angle X-ray scattering (3D sSAXS) by analyzing the anisotropy of scattering signals. Here we adapt the 3D sSAXS method for use in brain tissue, exploiting the high sensitivity of the SAXS signal to the ordered molecular structure of myelin. We extend the characterization of anisotropy from vectors to tensors, employ the Funk-Radon-Transform for converting scattering information to real space fiber orientations, and demonstrate the feasibility of the method in thin sections of mouse brain with minimal sample preparation. We obtain a second rank tensor representing the fiber orientation distribution function (fODF) for every voxel, thereby generating fODF maps. Finally, we illustrate the potential of 3D sSAXS by comparing the result with diffusion MRI fiber orientations in the same mouse brain. We show a remarkably good correspondence, considering the orthogonality of the two methods, i.e. the different physical processes underlying the two signals. 3D sSAXS can serve as validation method for microstructural MRI, and can provide novel microstructural insights for the nervous system, given the method's orthogonality to dMRI, high sensitivity to myelin sheath's orientation and abundance, and the possibility to extract myelin-specific signal and to perform micrometer-resolution scanning.
Collapse
Affiliation(s)
- Marios Georgiadis
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA; Department of Radiology, Stanford Medicine, USA.
| | - Aileen Schroeter
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zirui Gao
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Paul Scherrer Institute, Villigen, Switzerland
| | | | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, USA
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Gao Z, Guizar-Sicairos M, Lutz-Bueno V, Schröter A, Liebi M, Rudin M, Georgiadis M. High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm. Acta Crystallogr A Found Adv 2019; 75:223-238. [PMID: 30821257 PMCID: PMC6396401 DOI: 10.1107/s2053273318017394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/08/2018] [Indexed: 11/10/2022] Open
Abstract
The recent advent of tensor tomography techniques has enabled tomographic investigations of the 3D nanostructure organization of biological and material science samples. These techniques extended the concept of conventional X-ray tomography by reconstructing not only a scalar value such as the attenuation coefficient per voxel, but also a set of parameters that capture the local anisotropy of nanostructures within every voxel of the sample. Tensor tomography data sets are intrinsically large as each pixel of a conventional X-ray projection is substituted by a scattering pattern, and projections have to be recorded at different sample angular orientations with several tilts of the rotation axis with respect to the X-ray propagation direction. Currently available reconstruction approaches for such large data sets are computationally expensive. Here, a novel, fast reconstruction algorithm, named iterative reconstruction tensor tomography (IRTT), is presented to simplify and accelerate tensor tomography reconstructions. IRTT is based on a second-rank tensor model to describe the anisotropy of the nanostructure in every voxel and on an iterative error backpropagation reconstruction algorithm to achieve high convergence speed. The feasibility and accuracy of IRTT are demonstrated by reconstructing the nanostructure anisotropy of three samples: a carbon fiber knot, a human bone trabecula specimen and a fixed mouse brain. Results and reconstruction speed were compared with those obtained by the small-angle scattering tensor tomography (SASTT) reconstruction method introduced by Liebi et al. [Nature (2015), 527, 349-352]. The principal orientation of the nanostructure within each voxel revealed a high level of agreement between the two methods. Yet, for identical data sets and computer hardware used, IRTT was shown to be more than an order of magnitude faster. IRTT was found to yield robust results, it does not require prior knowledge of the sample for initializing parameters, and can be used in cases where simple anisotropy metrics are sufficient, i.e. the tensor approximation adequately captures the level of anisotropy and the dominant orientation within a voxel. In addition, by greatly accelerating the reconstruction, IRTT is particularly suitable for handling large tomographic data sets of samples with internal structure or as a real-time analysis tool during the experiment for online feedback during data acquisition. Alternatively, the IRTT results might be used as an initial guess for models capturing a higher complexity of structural anisotropy such as spherical harmonics based SASTT in Liebi et al. (2015), improving both overall convergence speed and robustness of the reconstruction.
Collapse
Affiliation(s)
- Zirui Gao
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | | | | | - Aileen Schröter
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Marianne Liebi
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Marios Georgiadis
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
- New York University Medical Center, New York, NY 10016, USA
| |
Collapse
|
18
|
Khimchenko A, Bikis C, Pacureanu A, Hieber SE, Thalmann P, Deyhle H, Schweighauser G, Hench J, Frank S, Müller‐Gerbl M, Schulz G, Cloetens P, Müller B. Hard X-Ray Nanoholotomography: Large-Scale, Label-Free, 3D Neuroimaging beyond Optical Limit. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700694. [PMID: 29938163 PMCID: PMC6010902 DOI: 10.1002/advs.201700694] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/17/2018] [Indexed: 05/22/2023]
Abstract
There have been great efforts on the nanoscale 3D probing of brain tissues to image subcellular morphologies. However, limitations in terms of tissue coverage, anisotropic resolution, stain dependence, and complex sample preparation all hinder achieving a better understanding of the human brain functioning in the subcellular context. Herein, X-ray nanoholotomography is introduced as an emerging synchrotron radiation-based technology for large-scale, label-free, direct imaging with isotropic voxel sizes down to 25 nm, exhibiting a spatial resolution down to 88 nm. The procedure is nondestructive as it does not require physical slicing. Hence, it allows subsequent imaging by complementary techniques, including histology. The feasibility of this 3D imaging approach is demonstrated on human cerebellum and neocortex specimens derived from paraffin-embedded tissue blocks. The obtained results are compared to hematoxylin and eosin stained histological sections and showcase the ability for rapid hierarchical neuroimaging and automatic rebuilding of the neuronal architecture at the level of a single cell nucleolus. The findings indicate that nanoholotomography can complement microscopy not only by large isotropic volumetric data but also by morphological details on the sub-100 nm level, addressing many of the present challenges in brain tissue characterization and probably becoming an important tool in nanoanatomy.
Collapse
Affiliation(s)
- Anna Khimchenko
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Christos Bikis
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Alexandra Pacureanu
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Simone E. Hieber
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Thalmann
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Hans Deyhle
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Gabriel Schweighauser
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Jürgen Hench
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Stephan Frank
- Institute of PathologyDepartment of NeuropathologyBasel University Hospital4056BaselSwitzerland
| | - Magdalena Müller‐Gerbl
- Musculoskeletal Research GroupDepartment of BiomedicineUniversity of Basel4056BaselSwitzerland
| | - Georg Schulz
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| | - Peter Cloetens
- ID16A‐NI Nano‐Imaging BeamlineEuropean Synchrotron Radiation Facility (ESRF)38043GrenobleFrance
| | - Bert Müller
- Biomaterials Science Center (BMC)Department of Biomedical EngineeringUniversity of Basel4123AllschwilSwitzerland
| |
Collapse
|
19
|
Barbone GE, Bravin A, Romanelli P, Mittone A, Bucci D, Gaaβ T, Le Duc G, Auweter S, Reiser MF, Kraiger MJ, Hrabě de Angelis M, Battaglia G, Coan P. Micro-imaging of Brain Cancer Radiation Therapy Using Phase-contrast Computed Tomography. Int J Radiat Oncol Biol Phys 2018; 101:965-984. [PMID: 29976510 DOI: 10.1016/j.ijrobp.2018.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Experimental neuroimaging provides a wide range of methods for the visualization of brain anatomic morphology down to subcellular detail. Still, each technique-specific detection mechanism presents compromises among the achievable field-of-view size, spatial resolution, and nervous tissue sensitivity, leading to partial sample coverage, unresolved morphologic structures, or sparse labeling of neuronal populations and often also to obligatory sample dissection or other sample invasive manipulations. X-ray phase-contrast imaging computed tomography (PCI-CT) is an experimental imaging method that simultaneously provides micrometric spatial resolution, high soft-tissue sensitivity, and ex vivo full organ rodent brain coverage without any need for sample dissection, staining or labeling, or contrast agent injection. In the present study, we explored the benefits and limitations of PCI-CT use for in vitro imaging of normal and cancerous brain neuromorphology after in vivo treatment with synchrotron-generated x-ray microbeam radiation therapy (MRT), a spatially fractionated experimental high-dose radiosurgery. The goals were visualization of the MRT effects on nervous tissue and a qualitative comparison of the results to the histologic and high-field magnetic resonance imaging findings. METHODS AND MATERIALS MRT was administered in vivo to the brain of both healthy and cancer-bearing rats. At 45 days after treatment, the brain was dissected out and imaged ex vivo using propagation-based PCI-CT. RESULTS PCI-CT visualizes the brain anatomy and microvasculature in 3 dimensions and distinguishes cancerous tissue morphology, necrosis, and intratumor accumulation of iron and calcium deposits. Moreover, PCI-CT detects the effects of MRT throughout the treatment target areas (eg, the formation of micrometer-thick radiation-induced tissue ablation). The observed neurostructures were confirmed by histologic and immunohistochemistry examination and related to the micro-magnetic resonance imaging data. CONCLUSIONS PCI-CT enabled a unique 3D neuroimaging approach for ex vivo studies on small animal models in that it concurrently delivers high-resolution insight of local brain tissue morphology in both normal and cancerous micro-milieu, localizes radiosurgical damage, and highlights the deep microvasculature. This method could assist experimental small animal neurology studies in the postmortem evaluation of neuropathology or treatment effects.
Collapse
Affiliation(s)
- Giacomo E Barbone
- Department of Physics, Ludwig Maximilians University, Garching, Germany
| | - Alberto Bravin
- European Synchrotron Radiation Facility, Grenoble, France
| | | | | | - Domenico Bucci
- Department of Molecular Pathology, Neuropharmacology Section, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Thomas Gaaβ
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | | | - Sigrid Auweter
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Maximilian F Reiser
- Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| | - Markus J Kraiger
- Institute of Experimental Genetics and German Mouse Clinic, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, German Research Center for Environmental Health, Neuherberg, Germany; Department of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, Freising, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Neuropharmacology Section, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Paola Coan
- Department of Physics, Ludwig Maximilians University, Garching, Germany; Department of Clinical Radiology, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
20
|
Nicolas JD, Bernhardt M, Markus A, Alves F, Burghammer M, Salditt T. Scanning X-ray diffraction on cardiac tissue: automatized data analysis and processing. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:1163-1172. [PMID: 29091059 DOI: 10.1107/s1600577517011936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/16/2017] [Indexed: 05/20/2023]
Abstract
A scanning X-ray diffraction study of cardiac tissue has been performed, covering the entire cross section of a mouse heart slice. To this end, moderate focusing by compound refractive lenses to micrometer spot size, continuous scanning, data acquisition by a fast single-photon-counting pixel detector, and fully automated analysis scripts have been combined. It was shown that a surprising amount of structural data can be harvested from such a scan, evaluating the local scattering intensity, interfilament spacing of the muscle tissue, the filament orientation, and the degree of anisotropy. The workflow of data analysis is described and a data analysis toolbox with example data for general use is provided. Since many cardiomyopathies rely on the structural integrity of the sarcomere, the contractile unit of cardiac muscle cells, the present study can be easily extended to characterize tissue from a diseased heart.
Collapse
Affiliation(s)
- Jan David Nicolas
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Marten Bernhardt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Andrea Markus
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Choi M, Ghammraoui B, Badano A. Small-angle X-ray scattering characteristics of mouse brain: Planar imaging measurements and tomographic imaging simulations. PLoS One 2017; 12:e0186451. [PMID: 29088259 PMCID: PMC5663376 DOI: 10.1371/journal.pone.0186451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 11/18/2022] Open
Abstract
Small-angle x-ray scattering (SAXS) imaging can differentiate tissue types based on their nanoscale molecular structure. However, characterization of the coherent scattering cross-section profile of relevant tissues is needed to optimally design SAXS imaging techniques for a variety of biomedical applications. Reported measured nervous tissue x-ray scattering cross sections under a synchrotron source have had limited agreement. We report a set of x-ray cross-section measurements obtained from planar SAXS imaging of 1 mm thick mouse brain (APP/PS1 wild-type) coronal slices using an 8 keV laboratory x-ray source. Two characteristic peaks were found at 0.96 and 1.60 nm-1 attributed to myelin. The peak intensities varied by location in the slice. We found that regions of gray matter, white matter, and corpus callosum could be segmented by their increasing intensities of myelin peaks respectively. Measured small-angle x-ray scattering cross sections were then used to define brain tissue scattering properties in a GPU-accelerated Monte Carlo simulation of SAXS computed tomography (CT) using a higher monochromatic x-ray energy (20 keV) to study design trade-offs for noninvasive in vivo SAXS imaging on a small-animal head including radiation dose, signal-to-noise ratio (SNR), and the effect of skull presence on the previous two metrics. Simulation results show the estimated total dose to the mouse head for a single SAXS-CT slice was 149.4 mGy. The pixel SNR was approximately 30.8 for white matter material whether or not a skull was present. In this early-stage proof-of-principle work, we have demonstrated our brain cross-section data and simulation tools can be used to assess optimal instrument parameters for dedicated small-animal SAXS-CT prototypes.
Collapse
Affiliation(s)
- Mina Choi
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States of America
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| | - Bahaa Ghammraoui
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| | - Aldo Badano
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, United States of America
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH/USFDA, Silver Spring, Maryland 20993, United States of America
| |
Collapse
|
22
|
Hu T, Wang Y, Du G, Wang Y, Hua W, Deng B, Xie H, Bian F, Xiao T. Improving the efficiency of small-angle x-ray scattering computed tomography using the OSEM algorithm. APPLIED OPTICS 2017; 56:8326-8334. [PMID: 29091609 DOI: 10.1364/ao.56.008326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Small-angle x-ray scattering computed tomography (SAXS-CT) is a nondestructive method for the nanostructure analysis of heterogeneous materials. However, the limits of a long data acquisition time and vast amounts of data prevent SAXS-CT from becoming a routine experimental method in the applications of synchrotron radiation. In this study, the ordered subsets expectation maximization (OSEM) algorithm is introduced to improve the efficiency of SAXS-CT. To demonstrate the practicability of this method, a systematic simulation and experiments were carried out. The simulation results on a numerical phantom show that the OSEM-based SAXS-CT can effectively eliminate streaking artifacts and improve the efficiency of data acquisition by at least 3 times compared with the filter backprojection algorithm. By compromising the reconstruction speed and image quality, the optimal reconstruction parameters are also given for the image reconstruction in the OSEM-based SAXS-CT experiments. An experiment on a bamboo sample verified the validity of the proposed method with limited projection data. A further experiment on polyethylene demonstrated that the OSEM-based SAXS-CT is able to reveal the local nanoscale information about the crystalline structure and distributional difference inside the sample. In conclusion, the OSEM-based SAXS-CT can significantly improve experimental efficiency, which may promote SAXS-CT becoming a conventional method.
Collapse
|
23
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
24
|
Carboni E, Nicolas JD, Töpperwien M, Stadelmann-Nessler C, Lingor P, Salditt T. Imaging of neuronal tissues by x-ray diffraction and x-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases. BIOMEDICAL OPTICS EXPRESS 2017; 8:4331-4347. [PMID: 29082068 PMCID: PMC5654783 DOI: 10.1364/boe.8.004331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 05/04/2023]
Abstract
We have used scanning X-ray diffraction (XRD) and X-ray fluorescence (XRF) with micro-focused synchrotron radiation to study histological sections from human substantia nigra (SN). Both XRF and XRD mappings visualize tissue properties, which are inaccessible by conventional microscopy and histology. We propose to use these advanced tools to characterize neuronal tissue in neurodegeneration, in particular in Parkinson's disease (PD). To this end, we take advantage of the recent experimental progress in x-ray focusing, detection, and use automated data analysis scripts to enable quantitative analysis of large field of views. XRD signals are recorded and analyzed both in the regime of small-angle (SAXS) and wide-angle x-ray scattering (WAXS). The SAXS signal was analyzed in view of the local myelin structure, while WAXS was used to identify crystalline deposits. PD tissue scans exhibited increased amounts of crystallized cholesterol. The XRF analysis showed increased amounts of iron and decreased amounts of copper in the PD tissue compared to the control.
Collapse
Affiliation(s)
- Eleonora Carboni
- Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen,
Germany
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain”, Humboldtallee 23, 37073 Göttingen,
Germany
- These authors contributed equally
| | - Jan-David Nicolas
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen,
Germany
- These authors contributed equally
| | - Mareike Töpperwien
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain”, Humboldtallee 23, 37073 Göttingen,
Germany
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen,
Germany
| | | | - Paul Lingor
- Klinik für Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen,
Germany
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain”, Humboldtallee 23, 37073 Göttingen,
Germany
| | - Tim Salditt
- Cluster of Excellence “Nanoscale Microscopy and Molecular Physiology of the Brain”, Humboldtallee 23, 37073 Göttingen,
Germany
- Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen,
Germany
| |
Collapse
|
25
|
Hémonnot CYJ, Köster S. Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction. ACS NANO 2017; 11:8542-8559. [PMID: 28787573 DOI: 10.1021/acsnano.7b03447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Northwestern Argonne Institute of Science and Engineering, Northwestern University , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Alam N, Choi M, Ghammraoui B, Dahal E, Badano A. Small-angle x-ray scattering cross-section measurements of imaging materials. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Skjønsfjell ET, Kringeland T, Granlund H, Høydalsvik K, Diaz A, Breiby DW. Retrieving the spatially resolved preferred orientation of embedded anisotropic particles by small-angle X-ray scattering tomography. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716005574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimental nondestructive methods for probing the spatially varying arrangement and orientation of ultrastructures in hierarchical materials are in high demand. While conventional computed tomography (CT) is the method of choice for nondestructively imaging the interior of objects in three dimensions, it retrieves only scalar density fields. In addition to the traditional absorption contrast, other contrast mechanisms for image formation based on scattering and refraction are increasingly used in combination with CT methods, improving both the spatial resolution and the ability to distinguish materials of similar density. Being able to obtain vectorial information, like local growth directions and crystallite orientations, in addition to scalar density fields, is a longstanding scientific desire. In this work, it is demonstrated that, under certain conditions, the spatially varying preferred orientation of anisotropic particles embedded in a homogeneous matrix can be retrieved using CT with small-angle X-ray scattering as the contrast mechanism. Specifically, orientation maps of filler talc particles in injection-moulded isotactic polypropylene are obtained nondestructively under the key assumptions that the preferred orientation varies slowly in space and that the orientation of the flake-shaped talc particles is confined to a plane. It is expected that the method will find application inin situstudies of the mechanical deformation of composites and other materials with hierarchical structures over a range of length scales.
Collapse
|
28
|
Hémonnot CYJ, Reinhardt J, Saldanha O, Patommel J, Graceffa R, Weinhausen B, Burghammer M, Schroer CG, Köster S. X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells. ACS NANO 2016; 10:3553-3561. [PMID: 26905642 DOI: 10.1021/acsnano.5b07871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juliane Reinhardt
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jens Patommel
- Institute of Structural Physics, Technische Universität Dresden , Zellescher Weg 16, 01069 Dresden, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281, 9000 Ghent, Belgium
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Department of Physics, University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Choi M, Ghammraoui B, Badal A, Badano A. Monte Carlo X-ray transport simulation of small-angle X-ray scattering instruments using measured sample cross sections. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576715023924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Small-angle X-ray scattering (SAXS) has recently been proposed as a novel noninvasivein vivomolecular imaging technique to characterize molecular interactions deep within the body using high-contrast probes. This article describes a detailed Monte Carlo X-ray transport simulation technique that utilizes user-provided cross sections to describe X-ray interaction in virtual samples and explore SAXS instrument design choices. The accuracy of the simulation code is validated with sample material cross sections derived from analytical models and empirical measurements of a homogeneous spherical gold nanoparticle (GNP) monomer, a dimer and heterogeneous mixtures of the two in aqueous solution. Analytical and measured scattering profiles from these samples were converted to cross sections using an absolute water standard. Our Monte Carlo estimates of the fraction of dimers from analytically derived and empirically derived cross sections are strongly correlated, with less than 1.5 and 16% error, respectively, to the expected concentration of monomer and dimer species. In addition, a variety of monoenergetic X-ray beams were simulated to investigate coherent scatteringversusradiation dose for a range of sample sizes. For GNP spheres in aqueous solution, the energy range that produces the most coherent scattering at the detector per deposited energy was between 31 and 49 keV for a sample thickness of 1 mm to 10 cm. The method described here for the detailed simulation of SAXS using measured and modeled cross sections will enable instrumentation optimization forin vivomolecular imaging applications.
Collapse
|
30
|
Schaff F, Bech M, Zaslansky P, Jud C, Liebi M, Guizar-Sicairos M, Pfeiffer F. Six-dimensional real and reciprocal space small-angle X-ray scattering tomography. Nature 2015; 527:353-6. [PMID: 26581292 DOI: 10.1038/nature16060] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/22/2015] [Indexed: 11/09/2022]
Abstract
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Collapse
Affiliation(s)
- Florian Schaff
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences, Lund, Lund University, 22185 Lund, Sweden
| | - Paul Zaslansky
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Jud
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany
| | | | | | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department &Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.,Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München, Germany
| |
Collapse
|
31
|
Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 2015; 527:349-52. [PMID: 26581291 DOI: 10.1038/nature16056] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022]
Abstract
The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and allows, for example, the role of ultrastructure in the mechanical response of a biological tissue or manufactured material to be studied.
Collapse
|
32
|
Birkbak ME, Leemreize H, Frølich S, Stock SR, Birkedal H. Diffraction scattering computed tomography: a window into the structures of complex nanomaterials. NANOSCALE 2015; 7:18402-10. [PMID: 26505175 PMCID: PMC4727839 DOI: 10.1039/c5nr04385a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials.
Collapse
Affiliation(s)
- M E Birkbak
- iNANO and Department of Chemistry, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Bartels M, Krenkel M, Cloetens P, Möbius W, Salditt T. Myelinated mouse nerves studied by X-ray phase contrast zoom tomography. J Struct Biol 2015; 192:561-568. [PMID: 26546551 DOI: 10.1016/j.jsb.2015.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022]
Abstract
We have used X-ray phase contrast tomography to resolve the structure of uncut, entire myelinated optic, saphenous and sciatic mouse nerves. Intrinsic electron density contrast suffices to identify axonal structures. Specific myelin labeling by an osmium tetroxide stain enables distinction between axon and surrounding myelin sheath. Utilization of spherical wave illumination enables zooming capabilities which enable imaging of entire sciatic internodes as well as identification of sub-structures such as nodes of Ranvier and Schmidt-Lanterman incisures.
Collapse
Affiliation(s)
- M Bartels
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - M Krenkel
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - P Cloetens
- ESRF - The European Synchrotron, 38043 Grenoble, France
| | - W Möbius
- Max-Planck-Institut für Exp. Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
34
|
Inouye H, Kirschner DA. Evolution of myelin ultrastructure and the major structural myelin proteins. Brain Res 2015; 1641:43-63. [PMID: 26519753 DOI: 10.1016/j.brainres.2015.10.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 01/16/2023]
Abstract
Myelin sheaths, as the specialized tissue wrapping the nerve fibers in the central and peripheral nervous systems (CNS and PNS), are responsible for rapid conduction of electrical signals in these fibers. We compare the nerve myelin sheaths of different phylogenetic origins-including mammal, rodent, bird, reptile, amphibian, lungfish, teleost, and elasmobranch-with respect to periodicities and inter-membrane separations at their cytoplasmic and extracellular appositions, and correlate these structural parameters with biochemical composition. P0 glycoprotein and P0-like proteins are present in PNS of terrestrial species or land vertebrates (Tetrapod) and in CNS and PNS of aquatic species. Proteolipid protein (PLP) is a major component only in the CNS myelin of terrestrial species and is involved in compaction of the extracellular apposition. The myelin structures of aquatic garfish and lungfish, which contain P0-like protein both in CNS and PNS, are similar to those of terrestrial species, indicating that they may be transitional organisms between water and land species. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3811, USA.
| |
Collapse
|
35
|
Allec N, Choi M, Yesupriya N, Szychowski B, White MR, Kann MG, Garcin ED, Daniel MC, Badano A. Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept. Sci Rep 2015; 5:12085. [PMID: 26160052 PMCID: PMC4498188 DOI: 10.1038/srep12085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/28/2015] [Indexed: 11/24/2022] Open
Abstract
Characterizing biomolecular interactions is crucial to the understanding of biological processes. Existing characterization methods have low spatial resolution, poor specificity, and some lack the capability for deep tissue imaging. We describe a novel technique that relies on small-angle X-ray scattering signatures from high-contrast molecular probes that correlate with the presence of biomolecular interactions. We describe a proof-of-concept study that uses a model system consisting of mixtures of monomer solutions of gold nanoparticles (GNPs) as the non-interacting species and solutions of GNP dimers linked with an organic molecule (dimethyl suberimidate) as the interacting species. We report estimates of the interaction fraction obtained with the proposed small-angle X-ray scattering characterization method exhibiting strong correlation with the known relative concentration of interacting and non-interacting species.
Collapse
Affiliation(s)
- Nicholas Allec
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mina Choi
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Nikhil Yesupriya
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Brian Szychowski
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Maryland, USA
| | - Michael R. White
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Maryland, USA
| | - Maricel G. Kann
- Department of Biological Sciences, University of Maryland, Baltimore County, Maryland, USA
| | - Elsa D. Garcin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Maryland, USA
| | - Marie-Christine Daniel
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Maryland, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
36
|
Cersoy S, Leynaud O, Álvarez-Murga M, Martinetto P, Bordet P, Boudet N, Chalmin E, Castets G, Hodeau JL. Laboratory implementation of X-ray diffraction/scattering computed tomography. J Appl Crystallogr 2015. [DOI: 10.1107/s1600576714027204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article demonstrates the possibility to perform X-ray diffraction/scattering computed tomography experiments with a laboratory diffraction setup. This technique is useful to characterize samples with inhomogeneities on a length scale of a couple of hundred micrometres. Furthermore, the method can be applied to preliminary phase-selective imaging prior to higher-resolution characterization using synchrotron radiation. This article presents the results of test experiments carried out on a rhombohedral C60sample previously studied at the ESRF.
Collapse
|
37
|
Hofmann G, Rochet A, Ogel E, Casapu M, Ritter S, Ogurreck M, Grunwaldt JD. Aging of a Pt/Al2O3 exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography. RSC Adv 2015. [DOI: 10.1039/c4ra14007a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Catalyst aging effects are analyzed using X-ray absorption micro-computed tomography in combination with conventional characterization methods on various length scales ranging from nm to μm to gain insight into deactivation mechanisms.
Collapse
Affiliation(s)
- Georg Hofmann
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Amélie Rochet
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Elen Ogel
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Stephan Ritter
- Institute of Structural Physics
- Technical University Dresden (TUD)
- D-01062 Dresden
- Germany
| | - Malte Ogurreck
- Institute of Materials Research
- Helmholtz-Zentrum Geesthacht (HZG)
- D-21502 Geesthacht
- Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| |
Collapse
|
38
|
Changes of statistical structural fluctuations unveils an early compacted degraded stage of PNS myelin. Sci Rep 2014; 4:5430. [PMID: 24962806 PMCID: PMC4069690 DOI: 10.1038/srep05430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
Degradation of the myelin sheath is a common pathology underlying demyelinating neurological diseases from Multiple Sclerosis to Leukodistrophies. Although large malformations of myelin ultrastructure in the advanced stages of Wallerian degradation is known, its subtle structural variations at early stages of demyelination remains poorly characterized. This is partly due to the lack of suitable and non-invasive experimental probes possessing sufficient resolution to detect the degradation. Here we report the feasibility of the application of an innovative non-invasive local structure experimental approach for imaging the changes of statistical structural fluctuations in the first stage of myelin degeneration. Scanning micro X-ray diffraction, using advances in synchrotron x-ray beam focusing, fast data collection, paired with spatial statistical analysis, has been used to unveil temporal changes in the myelin structure of dissected nerves following extraction of the Xenopus laevis sciatic nerve. The early myelin degeneration is a specific ordered compacted phase preceding the swollen myelin phase of Wallerian degradation. Our demonstration of the feasibility of the statistical analysis of SµXRD measurements using biological tissue paves the way for further structural investigations of degradation and death of neurons and other cells and tissues in diverse pathological states where nanoscale structural changes may be uncovered.
Collapse
|
39
|
|
40
|
A computational model coupling mechanics and electrophysiology in spinal cord injury. Biomech Model Mechanobiol 2013; 13:883-96. [PMID: 24337934 DOI: 10.1007/s10237-013-0543-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury and spinal cord injury have recently been put under the spotlight as major causes of death and disability in the developed world. Despite the important ongoing experimental and modeling campaigns aimed at understanding the mechanics of tissue and cell damage typically observed in such events, the differentiated roles of strain, stress and their corresponding loading rates on the damage level itself remain unclear. More specifically, the direct relations between brain and spinal cord tissue or cell damage, and electrophysiological functions are still to be unraveled. Whereas mechanical modeling efforts are focusing mainly on stress distribution and mechanistic-based damage criteria, simulated function-based damage criteria are still missing. Here, we propose a new multiscale model of myelinated axon associating electrophysiological impairment to structural damage as a function of strain and strain rate. This multiscale approach provides a new framework for damage evaluation directly relating neuron mechanics and electrophysiological properties, thus providing a link between mechanical trauma and subsequent functional deficits.
Collapse
|
41
|
Varga P, Pacureanu A, Langer M, Suhonen H, Hesse B, Grimal Q, Cloetens P, Raum K, Peyrin F. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta Biomater 2013; 9:8118-27. [PMID: 23707503 DOI: 10.1016/j.actbio.2013.05.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
Abstract
We investigate the three-dimensional (3-D) organization of mineralized collagen fibrils in human cortical bone based on synchrotron X-ray phase nano-tomography images. In lamellar bone the collagen fibrils are assumed to have a plywood-like arrangement, but due to experimental limitations the 3-D fibril structure has only been deduced from section surfaces so far and the findings have been controversial. Breakthroughs in synchrotron tomographic imaging have given access to direct 3-D information on the bone structure at the nanoscale level. Using an autocorrelation-based orientation measure we confirm that the fibrils are unidirectional in quasi-planes of sub-lamellae and find two specific dominant patterns, oscillating and twisted plywoods coexisting in a single osteon. Both patterns exhibit smooth orientation changes between adjacent quasi-planes. Moreover, we find that the periodic changes in collagen fibril orientation are independent of fluctuations in local mass density. These data improve our understanding of the lamellar arrangement in bone and allow more detailed investigations of structure-function relationships at this scale, providing templates for bio-inspired materials. The presented methodology can be applied to non-destructive 3-D characterization of the sub-micron scale structure of other natural and artificial mineralized biomaterials.
Collapse
Affiliation(s)
- Peter Varga
- Julius Wolff Institute and Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, Chauveau F, Cho TH, Nighoghossian N, Berthezène Y, Peyrin F, Wiart M. Synchrotron Radiation X-Ray Phase Micro-computed Tomography as a New Method to Detect Iron Oxide Nanoparticles in the Brain. Mol Imaging Biol 2013; 15:552-9. [DOI: 10.1007/s11307-013-0639-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Kastyak-Ibrahim MZ, Nasse MJ, Rak M, Hirschmugl C, Del Bigio MR, Albensi BC, Gough KM. Biochemical label-free tissue imaging with subcellular-resolution synchrotron FTIR with focal plane array detector. Neuroimage 2011; 60:376-83. [PMID: 22197789 DOI: 10.1016/j.neuroimage.2011.11.069] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/13/2022] Open
Abstract
The critical questions into the cause of neural degeneration, in Alzheimer disease and other neurodegenerative disorders, are closely related to the question of why certain neurons survive. Answers require detailed understanding of biochemical changes in single cells. Fourier transform infrared microspectroscopy is an excellent tool for biomolecular imaging in situ, but resolution is limited. The mid-infrared beamline IRENI (InfraRed ENvironmental Imaging) at the Synchrotron Radiation Center, University of Wisconsin-Madison, enables label-free subcellular imaging and biochemical analysis of neurons with an increase of two orders of magnitude in pixel spacing over current systems. With IRENI's capabilities, it is now possible to study changes in individual neurons in situ, and to characterize their surroundings, using only the biochemical signatures of naturally-occurring components in unstained, unfixed tissue. We present examples of analyses of brain from two transgenic mouse models of Alzheimer disease (TgCRND8 and 3xTg) that exhibit different features of pathogenesis. Data processing on spectral features for nuclei reveals individual hippocampal neurons, and neurons located in the proximity of amyloid plaque in TgCRND8 mouse. Elevated lipids are detected surrounding and, for the first time, within the dense core of amyloid plaques, offering support for inflammatory and aggregation roles. Analysis of saturated and unsaturated fatty acid ester content in retina allows characterization of neuronal layers. IRENI images also reveal spatially-resolved data with unprecedented clarity and distinct spectral variation, from sub-regions including photoreceptors, neuronal cell bodies and synapses in sections of mouse retina. Biochemical composition of retinal layers can be used to study changes related to disease processes and dietary modification.
Collapse
Affiliation(s)
- M Z Kastyak-Ibrahim
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | | | | | | | | | |
Collapse
|