1
|
Omer N, Wilczynski E, Zlotzover S, Helft C, Blumenfeld-Katzir T, Ben-Eliezer N. Validation of a data-driven multicomponent T2 analysis for quantifying myelin content in the cuprizone mouse model of multiple sclerosis. PLoS One 2025; 20:e0323614. [PMID: 40397883 DOI: 10.1371/journal.pone.0323614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/10/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Myelin quantification is essential for understanding a wide range of neurodegenerative pathologies. Voxel-wise multicomponent T2 (mcT2) analysis is the common approach for this purpose, yet no gold standard technique exist that can overcome the ambiguity of fitting several T2 components to a single-voxel signal. This challenge is further exacerbated in preclinical scan settings due to the addition of spurious diffusion encoding, resulting from the use of imaging gradients that are at least an order of magnitude larger than on typical clinical scanners. PURPOSE Assess the utility of a new data-driven approach for mcT2 analysis, which utilizes information from the entire tissue to analyze the signal from each voxel in healthy and demyelinated tissues. Specifically, this algorithm uses statistical analysis of the entire anatomy to identify tissue-specific multi-T2 signal combinations, and then uses these as basis-functions for voxel-wise mcT2 fitting. METHODS Data-driven mcT2 analysis was performed on N = 7 cuprizone mice and N = 7 healthy mice. Myelin water fraction (MWF) values at six brain regions were evaluated. Correlation with reference immunohistochemical (IHC) staining for myelin basic protein was done in the corpus callosum. To demonstrate the added value of the data-driven approach the analysis was performed twice - with and without the data-driven preprocessing step. RESULTS Strong agreement was obtained between data-driven MWF values and histology. Applying the data-driven analysis prior to the voxel-wise fitting improved the mapping accuracy vs. non data-driven analysis, producing statistically significant separation between the two mice groups, good groupwise linear correlation with histology (cuprizone: R² = 0.64, p < 0.05, control: R2 = 0.61, p < 0.05), and addressed the inherent ambiguity, characterizing conventional mcT2 fitting. CONCLUSION The proposed data-driven algorithm provides a reliable tool for mapping myelin content on preclinical scanners, allowing precise classification between healthy and demyelinated tissues in cuprizone mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Noam Omer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ella Wilczynski
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Zlotzover
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Coral Helft
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Noam Ben-Eliezer
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, United States of America
| |
Collapse
|
2
|
Lee CH, Holloman M, Salzer JL, Zhang J. Multiparametric MRI Can Detect Enhanced Myelination in the Ex Vivo Gli1 -/- Mouse Brain. NMR IN BIOMEDICINE 2025; 38:e70025. [PMID: 40174963 DOI: 10.1002/nbm.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
This study investigated the potential of combining multiple MR parameters to enhance the characterization of myelin in the mouse brain. We collected ex vivo multiparametric MR data at 7 T from control and Gli1-/- mice; the latter exhibit enhanced myelination at Postnatal Day 10 (P10) in the corpus callosum and cortex. The MR data included relaxivity, magnetization transfer, and diffusion measurements, each targeting distinct myelin properties. This analysis was followed by and compared to myelin basic protein (MBP) staining of the same samples. Although a majority of the MR parameters included in this study showed significant differences in the corpus callosum between the control and Gli1-/- mice, only T2, T1/T2, and radial diffusivity (RD) demonstrated a significant correlation with MBP values. Based on data from the corpus callosum, partial least square regression suggested that combining T2, T1/T2, and inhomogeneous magnetization transfer ratio could explain approximately 80% of the variance in the MBP values. Myelin predictions based on these three parameters yielded stronger correlations with the MBP values in the P10 mouse brain corpus callosum than any single MR parameter. In the motor cortex, combining T2, T1/T2, and radial kurtosis could explain over 90% of the variance in the MBP values at P10. This study demonstrates the utility of multiparametric MRI in improving the detection of myelin changes in the mouse brain.
Collapse
Affiliation(s)
- Choong H Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mara Holloman
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - James L Salzer
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Sandgaard A, Jespersen S. Predicting Mesoscopic Larmor Frequency Shifts in White Matter With Diffusion MRI-A Monte Carlo Study in Axonal Phantoms. NMR IN BIOMEDICINE 2025; 38:e70004. [PMID: 39933490 PMCID: PMC11813543 DOI: 10.1002/nbm.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Magnetic susceptibility MRI offers potential insights into the chemical composition and microstructural organization of tissue. However, estimating magnetic susceptibility in white matter is challenging due to anisotropic subvoxel Larmor frequency shifts caused by axonal microstructure relative to the B0 field orientation. Recent biophysical models have analytically described how axonal microstructure influences the Larmor frequency shifts, relating these shifts to a mesoscopically averaged magnetic field that depends on the axons' fiber orientation distribution function (fODF), typically estimated using diffusion MRI. This study is aimed at validating the use of MRI to estimate mesoscopic magnetic fields and determining whether diffusion MRI can faithfully estimate the orientation dependence of the Larmor frequency shift in realistic axonal microstructure. To achieve this, we developed a framework for performing Monte Carlo simulations of MRI signals in mesoscopically sized white matter axon substrates segmented with electron microscopy. Our simulations demonstrated that with careful experimental design, it is feasible to estimate mesoscopic magnetic fields. Additionally, the fODF estimated by the standard model of diffusion in white matter could predict the orientation dependence of the mesoscopic Larmor frequency shift. We also found that incorporating the intra-axonal axial kurtosis into the standard model could explain a significant amount of signal variance, thereby improving the estimation of the Larmor frequency shift. This factor should not be neglected when fitting the standard model.
Collapse
Affiliation(s)
- Anders Dyhr Sandgaard
- Center of Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Physics and AstronomyAarhus UniversityAarhusDenmark
| |
Collapse
|
4
|
Min K, Sohn B, Kim WJ, Park CJ, Song S, Shin DH, Chang KW, Shin NY, Kim M, Shin HG, Lee PH, Lee J. A human brain atlas of χ-separation for normative iron and myelin distributions. NMR IN BIOMEDICINE 2024; 37:e5226. [PMID: 39162295 DOI: 10.1002/nbm.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024]
Abstract
Iron and myelin are primary susceptibility sources in the human brain. These substances are essential for a healthy brain, and their abnormalities are often related to various neurological disorders. Recently, an advanced susceptibility mapping technique, which is referred to as χ-separation (pronounced as "chi"-separation), has been proposed, successfully disentangling paramagnetic iron from diamagnetic myelin. This method provided a new opportunity for generating high-resolution iron and myelin maps of the brain. Utilizing this technique, this study constructs a normative χ-separation atlas from 106 healthy human brains. The resulting atlas provides detailed anatomical structures associated with the distributions of iron and myelin, clearly delineating subcortical nuclei, thalamic nuclei, and white matter fiber bundles. Additionally, susceptibility values in a number of regions of interest are reported along with age-dependent changes. This atlas may have direct applications such as localization of subcortical structures for deep brain stimulation or high-intensity focused ultrasound and also serve as a valuable resource for future research.
Collapse
Affiliation(s)
- Kyeongseon Min
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Beomseok Sohn
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Woo Jung Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
| | | | | | - Kyung Won Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Na-Young Shin
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjun Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyeong-Geol Shin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Phil Hyu Lee
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhu Z, Naji N, Esfahani JH, Snyder J, Seres P, Emery DJ, Noga M, Blevins G, Smyth P, Wilman AH. MR Susceptibility Separation for Quantifying Lesion Paramagnetic and Diamagnetic Evolution in Relapsing-Remitting Multiple Sclerosis. J Magn Reson Imaging 2024; 60:1867-1879. [PMID: 38308397 DOI: 10.1002/jmri.29266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Multiple sclerosis (MS) lesion evolution may involve changes in diamagnetic myelin and paramagnetic iron. Conventional quantitative susceptibility mapping (QSM) can provide net susceptibility distribution, but not the discrete paramagnetic and diamagnetic components. PURPOSE To apply susceptibility separation (χ separation) to follow lesion evolution in MS with comparison to R2*/R2 '/QSM. STUDY TYPE Longitudinal, prospective. SUBJECTS Twenty relapsing-remitting MS subjects (mean age: 42.5 ± 9.4 years, 13 females; mean years of symptoms: 4.3 ± 1.4 years). FIELD STRENGTH/SEQUENCE Three-dimensional multiple echo gradient echo (QSM and R2* mapping), two-dimensional dual echo fast spin echo (R2 mapping), T2-weighted fluid attenuated inversion recovery, and T1-weighted magnetization prepared gradient echo sequences at 3 T. ASSESSMENT Data were analyzed from two scans separated by a mean interval of 14.4 ± 2.0 months. White matter lesions on fluid-attenuated inversion recovery were defined by an automatic pipeline, then manually refined (by ZZ/AHW, 3/25 years' experience in MRI), and verified by a radiologist (MN, 25 years' experience in MS). Susceptibility separation yielded the paramagnetic and diamagnetic susceptibility content of each voxel. Lesions were classified into four groups based on the variation of QSM/R2* or separated into positive/negative components from χ separation. STATISTICAL TESTS Two-sample paired t tests for assessment of longitudinal differences. Spearman correlation coefficients to assess associations between χ separation and R2*/R2 '/QSM. Significant level: P < 0.005. RESULTS A total of 183 lesions were quantified. Categorizing lesions into groups based on χ separation demonstrated significant annual changes in QSM//R2*/R2 '. When lesions were grouped based on changes in QSM and R2*, both changing in unison yielded a significant dominant paramagnetic variation and both opposing yielded a dominant diamagnetic variation. Significant Spearman correlation coefficients were found between susceptibility-sensitive MRI indices and χ separation. DATA CONCLUSION Susceptibility separation changes in MS lesions may distinguish and quantify paramagnetic and diamagnetic evolution, potentially providing additional insight compared to R2* and QSM alone. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ziyan Zhu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Nashwan Naji
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Javad Hamidi Esfahani
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Snyder
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Seres
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Derek J Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle Noga
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Gregg Blevins
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Penelope Smyth
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Mohammadi S, Ghaderi S, Fatehi F. Iron accumulation/overload and Alzheimer's disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med (Milton) 2024; 7:649-667. [PMID: 39507230 PMCID: PMC11535174 DOI: 10.1002/agm2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaques, neurofibrillary tangles, and neuronal loss. Early cerebral and body iron dysregulation and accumulation interact with AD pathology, particularly in the precuneus, a crucial functional hub in cognitive functions. Quantitative susceptibility mapping (QSM), a novel post-processing approach, provides insights into tissue iron levels and cerebral oxygen metabolism and reveals abnormal iron accumulation early in AD. Increased iron deposition in the precuneus can lead to oxidative stress, neuroinflammation, and accelerated neurodegeneration. Metabolic disorders (diabetes, non-alcoholic fatty liver disease (NAFLD), and obesity), genetic factors, and small vessel pathology contribute to abnormal iron accumulation in the precuneus. Therefore, in line with the growing body of literature in the precuneus region of patients with AD, QSM as a neuroimaging method could serve as a non-invasive biomarker to track disease progression, complement other imaging modalities, and aid in early AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Sadegh Ghaderi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati HospitalTehran University of Medical SciencesTehranIran
- Neurology DepartmentUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
7
|
Friesen E, Hari K, Sheft M, Thiessen JD, Martin M. Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:765-790. [PMID: 38635150 DOI: 10.1007/s10334-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.
Collapse
Affiliation(s)
- Emma Friesen
- Chemistry, University of Winnipeg, Winnipeg, Canada.
| | - Kamya Hari
- Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Maxina Sheft
- Physics, University of Winnipeg, Winnipeg, Canada
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | | |
Collapse
|
8
|
Müller J, Lu PJ, Cagol A, Ruberte E, Shin HG, Ocampo-Pineda M, Chen X, Tsagkas C, Barakovic M, Galbusera R, Weigel M, Schaedelin SA, Wang Y, Nguyen TD, Spincemaille P, Kappos L, Kuhle J, Lee J, Granziera C. Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions. Neurology 2024; 103:e209604. [PMID: 39213476 PMCID: PMC11362958 DOI: 10.1212/wnl.0000000000209604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Myelin and iron play essential roles in remyelination processes of multiple sclerosis (MS) lesions. χ-separation, a novel biophysical model applied to multiecho T2*-data and T2-data, estimates the contribution of myelin and iron to the obtained susceptibility signal. We used this method to investigate myelin and iron levels in lesion and nonlesion brain areas in patients with MS and healthy individuals. METHODS This prospective MS cohort study included patients with MS fulfilling the McDonald Criteria 2017 and healthy individuals, aged 18 years or older, with no other neurologic comorbidities. Participants underwent MRI at baseline and after 2 years, including multiecho GRE-(T2*) and FAST-(T2) sequences. Using χ-separation, we generated myelin-sensitive and iron-sensitive susceptibility maps. White matter lesions (WMLs), cortical lesions (CLs), surrounding normal-appearing white matter (NAWM), and normal-appearing gray matter were segmented on fluid-attenuated inversion recovery and magnetization-prepared 2 rapid gradient echo images, respectively. Cross-sectional group comparisons used Wilcoxon rank-sum tests, longitudinal analyses applied Wilcoxon signed-rank tests. Associations with clinical outcomes (disease phenotype, age, sex, disease duration, disability measured by Expanded Disability Status Scale [EDSS], neurofilament light chain levels, and T2-lesion number and volume) were assessed using linear regression models. RESULTS Of 168 patients with MS (median [interquartile range (IQR)] age 47.0 [21.7] years; 101 women; 6,898 WMLs, 775 CLs) and 103 healthy individuals (age 33.0 [10.5] years, 57 women), 108 and 62 were followed for a median of 2 years, respectively (IQR 0.1; 5,030 WMLs, 485 CLs). At baseline, WMLs had lower myelin (median 0.025 [IQR 0.015] parts per million [ppm]) and iron (0.017 [0.015] ppm) than the corresponding NAWM (myelin 0.030 [0.012]; iron 0.019 [0.011] ppm; both p < 0.001). After 2 years, both myelin (0.027 [0.014] ppm) and iron had increased (0.018 [0.015] ppm; both p < 0.001). Younger age (p < 0.001, b = -5.111 × 10-5), lower disability (p = 0.04, b = -2.352 × 10-5), and relapsing-remitting phenotype (RRMS, 0.003 [0.01] vs primary progressive 0.002 [IQR 0.01], p < 0.001; vs secondary progressive 0.0004 [IQR 0.01], p < 0.001) at baseline were associated with remyelination. Increment of myelin correlated with clinical improvement measured by EDSS (p = 0.015, b = -6.686 × 10-4). DISCUSSION χ-separation, a novel mathematical model applied to multiecho T2*-images and T2-images shows that young RRMS patients with low disability exhibit higher remyelination capacity, which correlated with clinical disability over a 2-year follow-up.
Collapse
Affiliation(s)
- Jannis Müller
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Po-Jui Lu
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Alessandro Cagol
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Esther Ruberte
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Hyeong-Geol Shin
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Mario Ocampo-Pineda
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Xinjie Chen
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Charidimos Tsagkas
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Muhamed Barakovic
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Riccardo Galbusera
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Matthias Weigel
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Sabine A Schaedelin
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Yi Wang
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Thanh D Nguyen
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Pascal Spincemaille
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Ludwig Kappos
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Jens Kuhle
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Jongho Lee
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| | - Cristina Granziera
- From the Translational Imaging in Neurology (ThINk) Basel (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., S.A.S., L.K., C.G.), Department of Biomedical Engineering, Faculty of Medicine, and Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (J.M., P.-J.L., A.C., E.R., M.O.-P., X.C., C.T., M.B., R.G., M.W., L.K., J.K., C.G.), University Hospital Basel and University of Basel, Switzerland; Department of Health Sciences (A.C.), University of Genova, Italy; Laboratory for Imaging Science and Technology (H.-G.S., J.L.), Department of Electrical and Computer Engineering, Seoul National University, South Korea; Division of Radiological Physics (M.W.), Department of Radiology, University Hospital Basel; Department of Clinical Research (S.A.S.), Clinical Trial Unit, University Hospital Basel, Switzerland; and Department of Radiology (Y.W., T.D.N., P.S.), Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
9
|
Sandgaard AD, Shemesh N, Østergaard L, Kiselev VG, Jespersen SN. The Larmor frequency shift of a white matter magnetic microstructure model with multiple sources. NMR IN BIOMEDICINE 2024; 37:e5150. [PMID: 38553824 DOI: 10.1002/nbm.5150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/28/2024] [Indexed: 07/11/2024]
Abstract
Magnetic susceptibility imaging may provide valuable information about chemical composition and microstructural organization of tissue. However, its estimation from the MRI signal phase is particularly difficult as it is sensitive to magnetic tissue properties ranging from the molecular to the macroscopic scale. The MRI Larmor frequency shift measured in white matter (WM) tissue depends on the myelinated axons and other magnetizable sources such as iron-filled ferritin. We have previously derived the Larmor frequency shift arising from a dense medium of cylinders with scalar susceptibility and arbitrary orientation dispersion. Here, we extend our model to include microscopic WM susceptibility anisotropy as well as spherical inclusions with scalar susceptibility to represent subcellular structures, biologically stored iron, and so forth. We validate our analytical results with computer simulations and investigate the feasibility of estimating susceptibility using simple iterative linear least squares without regularization or preconditioning. This is done in a digital brain phantom synthesized from diffusion MRI measurements of an ex vivo mouse brain at ultra-high field.
Collapse
Affiliation(s)
- Anders Dyhr Sandgaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Valerij G Kiselev
- Division of Medical Physics, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Sune Nørhøj Jespersen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Lee CY, Thedens DR, Lullmann O, Steinbach EJ, Tamplin MR, Petronek MS, Grumbach IM, Allen BG, Harshman LA, Magnotta VA. An Improved Postprocessing Method to Mitigate the Macroscopic Cross-Slice B0 Field Effect on R2* Measurements in the Mouse Brain at 7T. Tomography 2024; 10:1074-1088. [PMID: 39058053 PMCID: PMC11280969 DOI: 10.3390/tomography10070081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The MR transverse relaxation rate, R2*, has been widely used to detect iron and myelin content in tissue. However, it is also sensitive to macroscopic B0 inhomogeneities. One approach to correct for the B0 effect is to fit gradient-echo signals with the three-parameter model, a sinc function-weighted monoexponential decay. However, such three-parameter models are subject to increased noise sensitivity. To address this issue, this study presents a two-stage fitting procedure based on the three-parameter model to mitigate the B0 effect and reduce the noise sensitivity of R2* measurement in the mouse brain at 7T. MRI scans were performed on eight healthy mice. The gradient-echo signals were fitted with the two-stage fitting procedure to generate R2corr_t*. The signals were also fitted with the monoexponential and three-parameter models to generate R2nocorr* and R2corr*, respectively. Regions of interest (ROIs), including the corpus callosum, internal capsule, somatosensory cortex, caudo-putamen, thalamus, and lateral ventricle, were selected to evaluate the within-ROI mean and standard deviation (SD) of the R2* measurements. The results showed that the Akaike information criterion of the monoexponential model was significantly reduced by using the three-parameter model in the selected ROIs (p = 0.0039-0.0078). However, the within-ROI SD of R2corr* using the three-parameter model was significantly higher than that of the R2nocorr* in the internal capsule, caudo-putamen, and thalamus regions (p = 0.0039), a consequence partially due to the increased noise sensitivity of the three-parameter model. With the two-stage fitting procedure, the within-ROI SD of R2corr* was significantly reduced by 7.7-30.2% in all ROIs, except for the somatosensory cortex region with a fast in-plane variation of the B0 gradient field (p = 0.0039-0.0078). These results support the utilization of the two-stage fitting procedure to mitigate the B0 effect and reduce noise sensitivity for R2* measurement in the mouse brain.
Collapse
Affiliation(s)
- Chu-Yu Lee
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA; (C.-Y.L.); (D.R.T.)
| | - Daniel R. Thedens
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA; (C.-Y.L.); (D.R.T.)
| | - Olivia Lullmann
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Stead Family Department of Pediatrics, Division of Pediatric Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (E.J.S.); (L.A.H.)
| | - Emily J. Steinbach
- Stead Family Department of Pediatrics, Division of Pediatric Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (E.J.S.); (L.A.H.)
| | - Michelle R. Tamplin
- Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.R.T.); (I.M.G.)
- Department of Radiation Oncology, Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.S.P.); (B.G.A.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| | - Michael S. Petronek
- Department of Radiation Oncology, Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.S.P.); (B.G.A.)
| | - Isabella M. Grumbach
- Division of Cardiovascular Medicine, Abboud Cardiovascular Research Center, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.R.T.); (I.M.G.)
- Department of Radiation Oncology, Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.S.P.); (B.G.A.)
- Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA
| | - Bryan G. Allen
- Department of Radiation Oncology, Free Radical and Radiation Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (M.S.P.); (B.G.A.)
| | - Lyndsay A. Harshman
- Stead Family Department of Pediatrics, Division of Pediatric Nephrology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (E.J.S.); (L.A.H.)
| | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA; (C.-Y.L.); (D.R.T.)
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Lee J, Ji S, Oh SH. So You Want to Image Myelin Using MRI: Magnetic Susceptibility Source Separation for Myelin Imaging. Magn Reson Med Sci 2024; 23:291-306. [PMID: 38644201 PMCID: PMC11234950 DOI: 10.2463/mrms.rev.2024-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
In MRI, researchers have long endeavored to effectively visualize myelin distribution in the brain, a pursuit with significant implications for both scientific research and clinical applications. Over time, various methods such as myelin water imaging, magnetization transfer imaging, and relaxometric imaging have been developed, each carrying distinct advantages and limitations. Recently, an innovative technique named as magnetic susceptibility source separation has emerged, introducing a novel surrogate biomarker for myelin in the form of a diamagnetic susceptibility map. This paper comprehensively reviews this cutting-edge method, providing the fundamental concepts of magnetic susceptibility, susceptibility imaging, and the validation of the diamagnetic susceptibility map as a myelin biomarker that indirectly measures myelin content. Additionally, the paper explores essential aspects of data acquisition and processing, offering practical insights for readers. A comparison with established myelin imaging methods is also presented, and both current and prospective clinical and scientific applications are discussed to provide a holistic understanding of the technique. This work aims to serve as a foundational resource for newcomers entering this dynamic and rapidly expanding field.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Sooyeon Ji
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
| | - Se-Hong Oh
- Biomedical Engineering, Hankuk University of Foreign Studies, Yongin, Korea
| |
Collapse
|
12
|
Jansen MG, Zwiers MP, Marques JP, Chan KS, Amelink JS, Altgassen M, Oosterman JM, Norris DG. The Advanced BRain Imaging on ageing and Memory (ABRIM) data collection: Study design, data processing, and rationale. PLoS One 2024; 19:e0306006. [PMID: 38905233 PMCID: PMC11192316 DOI: 10.1371/journal.pone.0306006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
To understand the neurocognitive mechanisms that underlie heterogeneity in cognitive ageing, recent scientific efforts have led to a growing public availability of imaging cohort data. The Advanced BRain Imaging on ageing and Memory (ABRIM) project aims to add to these existing datasets by taking an adult lifespan approach to provide a cross-sectional, normative database with a particular focus on connectivity, myelinization and iron content of the brain in concurrence with cognitive functioning, mechanisms of reserve, and sleep-wake rhythms. ABRIM freely shares MRI and behavioural data from 295 participants between 18-80 years, stratified by age decade and sex (median age 52, IQR 36-66, 53.20% females). The ABRIM MRI collection consists of both the raw and pre-processed structural and functional MRI data to facilitate data usage among both expert and non-expert users. The ABRIM behavioural collection includes measures of cognitive functioning (i.e., global cognition, processing speed, executive functions, and memory), proxy measures of cognitive reserve (e.g., educational attainment, verbal intelligence, and occupational complexity), and various self-reported questionnaires (e.g., on depressive symptoms, pain, and the use of memory strategies in daily life and during a memory task). In a sub-sample (n = 120), we recorded sleep-wake rhythms using an actigraphy device (Actiwatch 2, Philips Respironics) for a period of 7 consecutive days. Here, we provide an in-depth description of our study protocol, pre-processing pipelines, and data availability. ABRIM provides a cross-sectional database on healthy participants throughout the adult lifespan, including numerous parameters relevant to improve our understanding of cognitive ageing. Therefore, ABRIM enables researchers to model the advanced imaging parameters and cognitive topologies as a function of age, identify the normal range of values of such parameters, and to further investigate the diverse mechanisms of reserve and resilience.
Collapse
Affiliation(s)
- Michelle G. Jansen
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Marcel P. Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jose P. Marques
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kwok-Shing Chan
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Jitse S. Amelink
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Radboud University, Nijmegen, the Netherlands
| | - Mareike Altgassen
- Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joukje M. Oosterman
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - David G. Norris
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Lee CH, Holloman M, Salzer JL, Zhang J. Multi-parametric MRI can detect enhanced myelination in the Gli1 -/- mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567957. [PMID: 38045415 PMCID: PMC10690149 DOI: 10.1101/2023.11.20.567957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
This study investigated the potential of combining multiple MR parameters to enhance the characterization of myelin in the mouse brain. We collected ex vivo multi-parametric MR data at 7 Tesla from control and Gli1 -/- mice; the latter exhibit enhanced myelination at postnatal day 10 (P10) in the corpus callosum and cortex. The MR data included relaxivity, magnetization transfer, and diffusion measurements, each targeting distinct myelin properties. This analysis was followed by and compared to myelin basic protein (MBP) staining of the same samples. Although a majority of the MR parameters included in this study showed significant differences in the corpus callosum between the control and Gli1 -/- mice, only T 2 , T 1 /T 2, and radial diffusivity (RD) demonstrated a significant correlation with MBP values. Based on data from the corpus callosum, partial least square regression suggested that combining T 2 , T 1 /T 2 , and inhomogeneous magnetization transfer ratio could explain approximately 80% of the variance in the MBP values. Myelin predictions based on these three parameters yielded stronger correlations with the MBP values in the P10 mouse brain corpus callosum than any single MR parameter. In the motor cortex, combining T 2 , T 1 /T 2, and radial kurtosis could explain over 90% of the variance in the MBP values at P10. This study demonstrates the utility of multi-parametric MRI in improving the detection of myelin changes in the mouse brain.
Collapse
|
14
|
Chen L, Shin HG, van Zijl PC, Li X. Exploiting gradient-echo frequency evolution: Probing white matter microstructure and extracting bulk susceptibility-induced frequency for quantitative susceptibility mapping. Magn Reson Med 2024; 91:1676-1693. [PMID: 38102838 PMCID: PMC10880384 DOI: 10.1002/mrm.29958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE This work is to investigate the microstructure-induced frequency shift in white matter (WM) with crossing fibers and to separate the microstructure-related frequency shift from the bulk susceptibility-induced frequency shift by model fitting the gradient-echo (GRE) frequency evolution for potentially more accurate quantitative susceptibility mapping (QSM). METHODS A hollow-cylinder fiber model (HCFM) with two fiber populations was developed to investigate GRE frequency evolutions in WM voxels with microstructural orientation dispersion. The simulated and experimentally measured TE-dependent local frequency shift was then fitted to a simplified frequency evolution model to obtain a microstructure-related frequency difference parameter (∆ f $$ \Delta f $$ ) and a TE-independent bulk susceptibility-induced frequency shift (C f $$ {C}_f $$ ). The obtainedC f $$ {C}_f $$ was then used for QSM reconstruction. Reconstruction performances were evaluated using a numerical head phantom and in vivo data and then compared to other multi-echo combination methods. RESULTS GRE frequency evolutions and∆ f $$ \Delta f $$ -based tissue parameters in both parallel and crossing fibers determined from our simulations were comparable to those observed in vivo. The TE-dependent frequency fitting method outperformed other multi-echo combination methods in estimatingC f $$ {C}_f $$ in simulations. The fitted∆ f $$ \Delta f $$ ,C f $$ {C}_f $$ , and QSM could be improved further by navigator-based B0 fluctuation correction. CONCLUSION A HCFM with two fiber populations can be used to characterize microstructure-induced frequency shifts in WM regions with crossing fibers. HCFM-based TE-dependent frequency fitting provides tissue contrast related to microstructure (∆ f $$ \Delta f $$ ) and in addition may help improve the quantification accuracy ofC f $$ {C}_f $$ and the corresponding QSM.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Hyeong-Geol Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Choi S, Lake S, Harrison DM. Evaluation of the Blood-Brain Barrier, Demyelination, and Neurodegeneration in Paramagnetic Rim Lesions in Multiple Sclerosis on 7 Tesla MRI. J Magn Reson Imaging 2024; 59:941-951. [PMID: 37276054 PMCID: PMC10754232 DOI: 10.1002/jmri.28847] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Paramagnetic rim lesions (PRLs) are associated with chronic inflammation in multiple sclerosis (MS). 7-Tesla (7T) magnetic resonance imaging (MRI) can evaluate the integrity of the blood-brain barrier (BBB) in addition to the tissue myelination status and cell loss. PURPOSE To use MRI metrics to investigate underlying physiology and clinical importance of PRLs. STUDY TYPE Prospective. SUBJECTS Thirty-six participants (mean-age 47, 23 females, 13 males) of mixed MS subtypes. FIELD STRENGTH/SEQUENCE 7T, MP2RAGE, MULTI-ECHO 3D-GRE, FLAIR. ASSESSMENT Lesion heterogeneity; longitudinal changes in lesion counts; comparison of T1, R2*, and χ; association between baseline lesion types and disease progression (2-3 annual MRI visits with additional years of annual clinical follow-up). STATISTICAL TESTS Two-sample t-test, Wilcoxon Rank-Sum test, Pearson's chi-square test, two-group comparison with linear-mixed-effect model, mixed-effect ANOVA, logistic regression. P-values <0.05 were considered significant. RESULTS A total of 58.3% of participants had at least one PRL at baseline. Higher male proportion in PRL+ group was found. Average change in PRL count was 0.20 (SD = 2.82) for PRLs and 0.00 (SD = 0.82) for mottled lesions. Mean and median pre-/post-contrast T1 were longer in PRL+ than in PRL-. No differences in mean χ were seen for lesions grouped by PRL (P = 0.310, pre-contrast; 0.086, post-contrast) or PRL/M presence (P = 0.234, pre-contrast; 0.163, post-contrast). Median χ were less negative in PRL+ and PRL/M+ than in PRL- and PRL/M-. Mean and median pre-/post-contrast R2* were slower in PRL+ compared to PRL-. Mean and median pre-/post-contrast R2* were slower in PRL/M+ than in PRL/M-. PRL presence at baseline was associated with confirmed EDSS Plus progression (OR 3.75 [1.22-7.59]) and PRL/M+ at baseline with confirmed EDSS Plus progression (OR 3.63 [1.14-7.43]). DATA CONCLUSION Evidence of BBB breakdown in PRLs was not seen. Quantitative metrics confirmed prior results suggesting greater demyelination, cell loss, and possibly disruption of tissue anisotropy in PRLs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Seongjin Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
| | - Sarah Lake
- Hasbro Children’s Hospital, Brown University
| | - Daniel M. Harrison
- Department of Neurology, University of Maryland School of Medicine, Baltimore Maryland
- Department of Neurology, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
16
|
Sandgaard AD, Kiselev VG, Henriques RN, Shemesh N, Jespersen SN. Incorporating the effect of white matter microstructure in the estimation of magnetic susceptibility in ex vivo mouse brain. Magn Reson Med 2024; 91:699-715. [PMID: 37772624 DOI: 10.1002/mrm.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE To extend quantitative susceptibility mapping to account for microstructure of white matter (WM) and demonstrate its effect on ex vivo mouse brain at 16.4T. THEORY AND METHODS Previous studies have shown that the MRI measured Larmor frequency also depends on local magnetic microstructure at the mesoscopic scale. Here, we include effects from WM microstructure using our previous results for the mesoscopic Larmor frequencyΩ ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ of cylinders with arbitrary orientations. We scrutinize the validity of our model and QSM in a digital brain phantom includingΩ ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ from a WM susceptibility tensor and biologically stored iron with scalar susceptibility. We also apply susceptibility tensor imaging to the phantom and investigate how the fitted tensors are biased fromΩ ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ . Last, we demonstrate how to combine multi-gradient echo and diffusion MRI images of ex vivo mouse brains acquired at 16.4T to estimate an apparent scalar susceptibility without sample rotations. RESULTS Our new model improves susceptibility estimation compared to QSM for the brain phantom. Applying susceptibility tensor imaging to the phantom withΩ ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ from WM axons with scalar susceptibility produces a highly anisotropic susceptibility tensor that mimics results from previous susceptibility tensor imaging studies. For the ex vivo mouse brain we find theΩ ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ due to WM microstructure to be substantial, changing susceptibility in WM up to 25% root-mean-squared-difference. CONCLUSION Ω ‾ Meso $$ {\overline{\Omega}}^{\mathrm{Meso}} $$ impacts susceptibility estimates and biases susceptibility tensor imaging fitting substantially. Hence, it should not be neglected when imaging structurally anisotropic tissue such as brain WM.
Collapse
Affiliation(s)
- Anders Dyhr Sandgaard
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Valerij G Kiselev
- Division of Medical Physics, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune Nørhøj Jespersen
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Goldman SA, Franklin RJM, Osorio J. Stem and progenitor cell-based therapy of myelin disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:283-295. [PMID: 39341659 DOI: 10.1016/b978-0-323-90120-8.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.
Collapse
Affiliation(s)
- Steven A Goldman
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States; University of Copenhagen Faculty of Medicine, Copenhagen, Denmark.
| | | | - Joana Osorio
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
Ahmed M, Chen J, Arani A, Senjem ML, Cogswell PM, Jack CR, Liu C. The diamagnetic component map from quantitative susceptibility mapping (QSM) source separation reveals pathological alteration in Alzheimer's disease-driven neurodegeneration. Neuroimage 2023; 280:120357. [PMID: 37661080 DOI: 10.1016/j.neuroimage.2023.120357] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
A sensitive and accurate imaging technique capable of tracking the disease progression of Alzheimer's Disease (AD) driven amnestic dementia would be beneficial. A currently available method for pathology detection in AD with high accuracy is Positron Emission Tomography (PET) imaging, despite certain limitations such as low spatial resolution, off-targeting error, and radiation exposure. Non-invasive MRI scanning with quantitative magnetic susceptibility measurements can be used as a complementary tool. To date, quantitative susceptibility mapping (QSM) has widely been used in tracking deep gray matter iron accumulation in AD. The present work proposes that by compartmentalizing quantitative susceptibility into paramagnetic and diamagnetic components, more holistic information about AD pathogenesis can be acquired. Particularly, diamagnetic component susceptibility (DCS) can be a powerful indicator for tracking protein accumulation in the gray matter (GM), demyelination in the white matter (WM), and relevant changes in the cerebrospinal fluid (CSF). In the current work, voxel-wise group analysis of the WM and the CSF regions show significantly lower |DCS| (the absolute value of DCS) value for amnestic dementia patients compared to healthy controls. Additionally, |DCS| and τ PET standardized uptake value ratio (SUVr) were found to be associated in several GM regions typically affected by τ deposition in AD. Therefore, we propose that the separated diamagnetic susceptibility can be used to track pathological neurodegeneration in different tissue types and regions of the brain. With the initial evidence, we believe the usage of compartmentalized susceptibility demonstrates substantive potential as an MRI-based technique for tracking AD-driven neurodegeneration.
Collapse
Affiliation(s)
- Maruf Ahmed
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Fritz FJ, Mordhorst L, Ashtarayeh M, Periquito J, Pohlmann A, Morawski M, Jaeger C, Niendorf T, Pine KJ, Callaghan MF, Weiskopf N, Mohammadi S. Fiber-orientation independent component of R 2* obtained from single-orientation MRI measurements in simulations and a post-mortem human optic chiasm. Front Neurosci 2023; 17:1133086. [PMID: 37694109 PMCID: PMC10491021 DOI: 10.3389/fnins.2023.1133086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, β1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted β1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for β1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.
Collapse
Affiliation(s)
- Francisco J. Fritz
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laurin Mordhorst
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mohammad Ashtarayeh
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Markus Morawski
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carsten Jaeger
- Paul Flechsig Institute – Center for Neuropathology and Brain Research, University of Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kerrin J. Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neurosciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck Research Group MR Physics, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
20
|
Chao AS, Matak P, Pegram K, Powers J, Hutson C, Jo R, Dubois L, Thompson JW, Smith PB, Jain V, Liu C, Younge NE, Rikard B, Reyes EY, Shinohara ML, Gregory SG, Goldberg RN, Benner EJ. 20-αHydroxycholesterol, an oxysterol in human breast milk, reverses mouse neonatal white matter injury through Gli-dependent oligodendrogenesis. Cell Stem Cell 2023; 30:1054-1071.e8. [PMID: 37541211 PMCID: PMC10625465 DOI: 10.1016/j.stem.2023.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/21/2023] [Accepted: 07/12/2023] [Indexed: 08/06/2023]
Abstract
White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.
Collapse
Affiliation(s)
- Agnes S Chao
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Pavle Matak
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Kelly Pegram
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - James Powers
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Collin Hutson
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Rebecca Jo
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Center for Genomics and Computational Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - P Brian Smith
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Vaibhav Jain
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noelle E Younge
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Estefany Y Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simon G Gregory
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Ronald N Goldberg
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Duke University Medical Center, The Jean and George Brumley, Jr. Neonatal-Perinatal Institute, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
Gilli F, Ceccarelli A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini review. J Neurosci Res 2023. [DOI: 10.1002/jnr.25193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire USA
| | - Antonia Ceccarelli
- Department of Neurology EpiCURA Centre Hospitalier Ath Belgium
- Hearthrhythmanagement, UZB Brussels Belgium
| |
Collapse
|
22
|
Lee S, Shin HG, Kim M, Lee J. Depth-wise profiles of iron and myelin in the cortex and white matter using χ-separation: A preliminary study. Neuroimage 2023; 273:120058. [PMID: 36997135 DOI: 10.1016/j.neuroimage.2023.120058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The in-vivo profiling of iron and myelin across cortical depths and underlying white matter has important implications for advancing knowledge about their roles in brain development and degeneration. Here, we utilize χ-separation, a recently-proposed advanced susceptibility mapping that creates positive (χpos) and negative (χneg) susceptibility maps, to generate the depth-wise profiles of χpos and χneg as surrogate biomarkers for iron and myelin, respectively. Two regional sulcal fundi of precentral and middle frontal areas are profiled and compared with findings from previous studies. The results show that the χpos profiles peak at superificial white matter (SWM), which is an area beneath cortical gray matter known to have the highest accumulation of iron within the cortex and white matter. On the other hand, the χneg profiles increase in SWM toward deeper white matter. These characteristics in the two profiles are in agreement with histological findings of iron and myelin. Furthermore, the χneg profiles report regional differences that agree with well-known distributions of myelin concentration. When the two profiles are compared with those of QSM and R2*, different shapes and peak locations are observed. This preliminary study offers an insight into one of the possible applications of χ-separation for exploring microstructural information of the human brain, as well as clinical applications in monitoring changes of iron and myelin in related diseases.
Collapse
|
23
|
Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry 2022; 27:5144-5153. [PMID: 36071113 PMCID: PMC9772130 DOI: 10.1038/s41380-022-01740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023]
Abstract
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Collapse
|
24
|
Wang Y, Zhan M, Roebroeck A, De Weerd P, Kashyap S, Roberts MJ. Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives. Neuroimage 2022; 259:119421. [PMID: 35779763 DOI: 10.1016/j.neuroimage.2022.119421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022] Open
Abstract
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Minye Zhan
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; U992 (Cognitive neuroimaging unit), NeuroSpin, INSERM-CEA, Gif sur Yvette, France
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Techna Institute, University Health Network, Toronto, ON, Canada
| | - Mark J Roberts
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| |
Collapse
|
25
|
Uchida Y, Kan H, Sakurai K, Oishi K, Matsukawa N. Quantitative susceptibility mapping as an imaging biomarker for Alzheimer’s disease: The expectations and limitations. Front Neurosci 2022; 16:938092. [PMID: 35992906 PMCID: PMC9389285 DOI: 10.3389/fnins.2022.938092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia and a distressing diagnosis for individuals and caregivers. Researchers and clinical trials have mainly focused on β-amyloid plaques, which are hypothesized to be one of the most important factors for neurodegeneration in AD. Meanwhile, recent clinicopathological and radiological studies have shown closer associations of tau pathology rather than β-amyloid pathology with the onset and progression of Alzheimer’s symptoms. Toward a biological definition of biomarker-based research framework for AD, the 2018 National Institute on Aging–Alzheimer’s Association working group has updated the ATN classification system for stratifying disease status in accordance with relevant pathological biomarker profiles, such as cerebral β-amyloid deposition, hyperphosphorylated tau, and neurodegeneration. In addition, altered iron metabolism has been considered to interact with abnormal proteins related to AD pathology thorough generating oxidative stress, as some prior histochemical and histopathological studies supported this iron-mediated pathomechanism. Quantitative susceptibility mapping (QSM) has recently become more popular as a non-invasive magnetic resonance technique to quantify local tissue susceptibility with high spatial resolution, which is sensitive to the presence of iron. The association of cerebral susceptibility values with other pathological biomarkers for AD has been investigated using various QSM techniques; however, direct evidence of these associations remains elusive. In this review, we first briefly describe the principles of QSM. Second, we focus on a large variety of QSM applications, ranging from common applications, such as cerebral iron deposition, to more recent applications, such as the assessment of impaired myelination, quantification of venous oxygen saturation, and measurement of blood– brain barrier function in clinical settings for AD. Third, we mention the relationships among QSM, established biomarkers, and cognitive performance in AD. Finally, we discuss the role of QSM as an imaging biomarker as well as the expectations and limitations of clinically useful diagnostic and therapeutic implications for AD.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Yuto Uchida,
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Ōbu, Japan
| | - Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Noriyuki Matsukawa
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Noriyuki Matsukawa,
| |
Collapse
|
26
|
Sibgatulin R, Güllmar D, Deistung A, Enzinger C, Ropele S, Reichenbach JR. Magnetic susceptibility anisotropy in normal appearing white matter in multiple sclerosis from single-orientation acquisition. Neuroimage Clin 2022; 35:103059. [PMID: 35661471 PMCID: PMC9163587 DOI: 10.1016/j.nicl.2022.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/02/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022]
Abstract
Quantitative susceptibility mapping (QSM) has been successfully applied to study changes in deep grey matter nuclei as well as in lesional tissue, but its application to white matter has been complicated by the observed orientation dependence of gradient echo signal. The anisotropic susceptibility tensor is thought to be at the origin of this orientation dependence, and magnetic susceptibility anisotropy (MSA) derived from this tensor has been proposed as a marker of the state and integrity of the myelin sheath and may therefore be of particular interest for the study of demyelinating pathologies such as multiple sclerosis (MS). Reconstruction of the susceptibility tensor, however, requires repeated measurements with multiple head orientations, rendering the approach impractical for clinical applications. In this study, we combined single-orientation QSM with fibre orientation information to assess apparent MSA in three white matter tracts, i.e., optic radiation (OR), splenium of the corpus callosum (SCC), and superior longitudinal fascicle (SLF), in two cohorts of 64 healthy controls and 89 MS patients. The apparent MSA showed a significant decrease in optic radiation in the MS cohort compared with healthy controls. It decreased in the MS cohort with increasing lesion load in OR and with disease duration in the splenium. All of this suggests demyelination in normal appearing white matter. However, the apparent MSA observed in the SLF pointed to potential systematic issues that require further exploration to realize the full potential of the presented approach. Despite the limitations of such single-orientation ROI-specific estimation, we believe that our clinically feasible approach to study degenerative changes in WM is worthy of further investigation.
Collapse
Affiliation(s)
- Renat Sibgatulin
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, Department for Radiation Medicine, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Philosophenweg 3, 07743 Jena, Germany; Michael Stifel Center Jena for Data-Driven and Simulation Science, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
27
|
Gustavsson J, Papenberg G, Falahati F, Laukka EJ, Kalpouzos G. Contributions of the Catechol-O-Methyltransferase Val158Met Polymorphism to Changes in Brain Iron Across Adulthood and Their Relationships to Working Memory. Front Hum Neurosci 2022; 16:838228. [PMID: 35571998 PMCID: PMC9091601 DOI: 10.3389/fnhum.2022.838228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ageing is associated with excessive free brain iron, which may induce oxidative stress and neuroinflammation, likely causing cognitive deficits. Lack of dopamine may be a factor behind the increase of iron with advancing age, as it has an important role in cellular iron homoeostasis. We investigated the effect of COMT Val 158 Met (rs4680), a polymorphism crucial for dopamine degradation and proxy for endogenous dopamine, on iron accumulation and working memory in a longitudinal lifespan sample (n = 208, age 20–79 at baseline, mean follow-up time = 2.75 years) using structural equation modelling. Approximation of iron content was assessed using quantitative susceptibility mapping in striatum and dorsolateral prefrontal cortex (DLPFC). Iron accumulated in both striatum and DLPFC during the follow-up period. Greater iron accumulation in DLPFC was associated with more deleterious change in working memory. Older (age 50–79) Val homozygotes (with presumably lower endogenous dopamine) accumulated more iron than older Met carriers in both striatum and DLPFC, no such differences were observed among younger adults (age 20–49). In conclusion, individual differences in genetic predisposition related to low dopamine levels increase iron accumulation, which in turn may trigger deleterious change in working memory. Future studies are needed to better understand how dopamine may modulate iron accumulation across the human lifespan.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- *Correspondence: Jonatan Gustavsson,
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Erika J. Laukka
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Grégoria Kalpouzos,
| |
Collapse
|
28
|
Jung S, Yun J, Kim DY, Kim D. Improved multi‐echo gradient echo myelin water fraction mapping using complex‐valued neural network analysis. Magn Reson Med 2022; 88:492-500. [DOI: 10.1002/mrm.29192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 01/20/2023]
Affiliation(s)
- Soozy Jung
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| | - JiSu Yun
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine Yonsei University College of Medicine Seoul Republic of Korea
| | - Dong‐Hyun Kim
- Department of Electrical and Electronic Engineering Yonsei University Seoul Republic of Korea
| |
Collapse
|
29
|
Song JE, Kim DH. Improved Multi-Echo Gradient-Echo-Based Myelin Water Fraction Mapping Using Dimensionality Reduction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:27-38. [PMID: 34357864 DOI: 10.1109/tmi.2021.3102977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multi-echo gradient-echo (mGRE)-based myelin water fraction (MWF) mapping is a promising myelin water imaging (MWI) modality but is vulnerable to noise and artifact corruption. The linear dimensionality reduction (LDR) method has recently shown improvements with regard to these challenges. However, the magnitude value based low rank operators have been shown to misestimate the MWF for regions with [Formula: see text] anisotropy. This paper presents a nonlinear dimensionality reduction (NLDR) method to estimate the MWF map better by encouraging nonlinear low dimensionality of mGRE signal sources. Specifically, we implemented a fully connected deep autoencoder to extract the low-dimensional features of complex-valued signals and incorporated a sparse regularization to separate the anomaly sources that do not reside in the low-dimensional manifold. Simulations and in vivo experiments were performed to evaluate the accuracy of the MWF map under various situations. The proposed NLDR-based MWF improves the accuracy of the MWF map over the conventional nonlinear least-squares method and the LDR-based MWF and maintains robustness against noise and artifact corruption.
Collapse
|
30
|
Cottaar M, Wu W, Tendler BC, Nagy Z, Miller K, Jbabdi S. Quantifying myelin in crossing fibers using diffusion-prepared phase imaging: Theory and simulations. Magn Reson Med 2021; 86:2618-2634. [PMID: 34254349 PMCID: PMC8581995 DOI: 10.1002/mrm.28907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Myelin has long been the target of neuroimaging research. However, most available techniques can only provide a voxel-averaged estimate of myelin content. In the human brain, white matter fiber pathways connecting different brain areas and carrying different functions often cross each other in the same voxel. A measure that can differentiate the degree of myelination of crossing fibers would provide a more specific marker of myelination. THEORY AND METHODS One MRI signal property that is sensitive to myelin is the phase accumulation. This sensitivity is used by measuring the phase accumulation of the signal remaining after diffusion-weighting, which is called diffusion-prepared phase imaging (DIPPI). Including diffusion-weighting before estimating the phase accumulation has two distinct advantages for estimating the degree of myelination: (1) It increases the relative contribution of intra-axonal water, whose phase is related linearly to the thickness of the surrounding myelin (in particular the log g-ratio); and (2) it gives directional information, which can be used to distinguish between crossing fibers. Here the DIPPI sequence is described, an approach is proposed to estimate the log g-ratio, and simulations are used and DIPPI data acquired in an isotropic phantom to quantify other sources of phase accumulation. RESULTS The expected bias is estimated in the log g-ratio for reasonable in vivo acquisition parameters caused by eddy currents (~4%-10%), remaining extra-axonal signal (~15%), and gradients in the bulk off-resonance field (<10% for most of the brain). CONCLUSION This new sequence may provide a g-ratio estimate per fiber population crossing within a voxel.
Collapse
Affiliation(s)
- Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems ResearchUniversity of ZurichZurichSwitzerland
| | - Karla Miller
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
31
|
In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition. Neuroimage 2021; 241:118442. [PMID: 34339831 DOI: 10.1016/j.neuroimage.2021.118442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
Multiple studies have reported a significant dependence of the effective transverse relaxation rate constant (R2*) and the phase of gradient-echo based (GRE) signal on the orientation of white matter fibres in the human brain. It has also been hypothesized that magnetic susceptibility, as obtained by single-orientation quantitative susceptibility mapping (QSM), exhibits such a dependence. In this study, we investigated this hypothesized relationship in a cohort of healthy volunteers. We show that R2* follows the predicted orientation dependence consistently across white matter regions, whereas the apparent magnetic susceptibility is related differently to fibre orientation across the brain and often in a complex non-monotonic manner. In addition, we explored the effect of fractional anisotropy measured by diffusion-weighted MRI on the strength of the orientation dependence and observed only a limited influence in many regions. However, with careful consideration of such an impact and the limitations imposed by the ill-posed nature of the dipole inversion process, it is possible to study magnetic susceptibility anisotropy in specific brain regions with a single orientation acquisition.
Collapse
|
32
|
Emmerich J, Bachert P, Ladd ME, Straub S. A novel phantom with dia- and paramagnetic substructure for quantitative susceptibility mapping and relaxometry. Phys Med 2021; 88:278-284. [PMID: 34332237 DOI: 10.1016/j.ejmp.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE A phantom is presented in this study that allows for an experimental evaluation of QSM reconstruction algorithms. The phantom contains susceptibility producing particles with dia- and paramagnetic properties embedded in an MRI visible medium and is suitable to assess the performance of algorithms that attempt to separate isotropic dia- and paramagnetic susceptibility at the sub-voxel level. METHODS The phantom was built from calcium carbonate (diamagnetic) and tungsten carbide particles (paramagnetic) embedded in gelatin and surrounded by agarose gel. Different mass fractions and mixing ratios of both susceptibility sources were used. Gradient echo data were acquired at 1.5 T, 3 T and 7 T. Susceptibility maps were calculated using the MEDI toolbox and relaxation rates ΔR2∗ were determined using exponential fitting. RESULTS Relaxation rates as well as susceptibility values generally coincide with the theoretical values for particles fulfilling the assumptions of the the static dephasing regime with stronger deviations for relaxation rates at higher field strength and for high susceptibility values. MRI raw data are available for free academic use as supplementary material. CONCLUSIONS In this study, a susceptibility phantom is presented that might find its application in the development and quantitative validation of current and future QSM reconstruction algorithms which aim to separate the influence of isotropic dia- and paramagnetic substructure in quantitative susceptibility mapping.
Collapse
Affiliation(s)
- Julian Emmerich
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sina Straub
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
33
|
Khattar N, Triebswetter C, Kiely M, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging. Neuroimage 2021; 239:118267. [PMID: 34139358 PMCID: PMC8370037 DOI: 10.1016/j.neuroimage.2021.118267] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Myelin loss and iron accumulation are cardinal features of aging and various neurodegenerative diseases. Oligodendrocytes incorporate iron as a metabolic substrate for myelin synthesis and maintenance. An emerging hypothesis in Alzheimer’s disease research suggests that myelin breakdown releases substantial stores of iron that may accumulate, leading to further myelin breakdown and neurodegeneration. We assessed associations between iron content and myelin content in critical brain regions using quantitative magnetic resonance imaging (MRI) on a cohort of cognitively unimpaired adults ranging in age from 21 to 94 years. We measured whole-brain myelin water fraction (MWF), a surrogate of myelin content, using multicomponent relaxometry, and whole-brain iron content using susceptibility weighted imaging in all individuals. MWF was negatively associated with iron content in most brain regions evaluated indicating that lower myelin content corresponds to higher iron content. Moreover, iron content was significantly higher with advanced age in most structures, with men exhibiting a trend towards higher iron content as compared to women. Finally, relationship between MWF and age, in all brain regions investigated, suggests that brain myelination continues until middle age, followed by degeneration at older ages. This work establishes a foundation for further investigations of the etiology and sequelae of myelin breakdown and iron accumulation in neurodegeneration and may lead to new imaging markers for disease progression and treatment.
Collapse
Affiliation(s)
- Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, United States.
| |
Collapse
|
34
|
Tuzzi E, Balla DZ, Loureiro JRA, Neumann M, Laske C, Pohmann R, Preische O, Scheffler K, Hagberg GE. Ultra-High Field MRI in Alzheimer's Disease: Effective Transverse Relaxation Rate and Quantitative Susceptibility Mapping of Human Brain In Vivo and Ex Vivo compared to Histology. J Alzheimers Dis 2021; 73:1481-1499. [PMID: 31958079 DOI: 10.3233/jad-190424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. So far, diagnosis of AD is only unequivocally defined through postmortem histology. Amyloid plaques are a classical hallmark of AD and amyloid load is currently quantified by Positron Emission tomography (PET) in vivo. Ultra-high field magnetic resonance imaging (UHF-MRI) can potentially provide a non-invasive biomarker for AD by allowing imaging of pathological processes at a very-high spatial resolution. The first aim of this work was to reproduce the characteristic cortical pattern previously observed in vivo in AD patients using weighted-imaging at 7T. We extended these findings using quantitative susceptibility mapping (QSM) and quantification of the effective transverse relaxation rate (R2*) at 9.4T. The second aim was to investigate the origin of the contrast patterns observed in vivo in the cortex of AD patients at 9.4T by comparing quantitative UHF-MRI (9.4T and 14.1T) of postmortem samples with histology. We observed a distinctive cortical pattern in vivo in patients compared to healthy controls (HC), and these findings were confirmed ex vivo. Specifically, we found a close link between the signal changes detected by QSM in the AD sample at 14.1T and the distribution pattern of amyloid plaques in the histological sections of the same specimen. Our findings showed that QSM and R2* maps can distinguish AD from HC at UHF by detecting cortical alterations directly related to amyloid plaques in AD patients. Furthermore, we provided a method to quantify amyloid plaque load in AD patients at UHF non-invasively.
Collapse
Affiliation(s)
- Elisa Tuzzi
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, Eberhard Karl's University, Tübingen and University Hospital, Tübingen, Germany
| | - David Z Balla
- Department for Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Joana R A Loureiro
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, Eberhard Karl's University, Tübingen and University Hospital, Tübingen, Germany.,Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Manuela Neumann
- Department of Neuropathology, University Hospital, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, Eberhard Karl's University, Tübingen and University Hospital, Tübingen, Germany
| | - Gisela E Hagberg
- Department for High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department for Biomedical Magnetic Resonance, Eberhard Karl's University, Tübingen and University Hospital, Tübingen, Germany
| |
Collapse
|
35
|
Hédouin R, Metere R, Chan KS, Licht C, Mollink J, van Walsum AMC, Marques JP. Decoding the microstructural properties of white matter using realistic models. Neuroimage 2021; 237:118138. [PMID: 33964461 DOI: 10.1016/j.neuroimage.2021.118138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been shown that realistic models of WM offer a better description of the signal behaviour observed. In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can already provide comparable results for some of the decoded metrics.
Collapse
Affiliation(s)
- Renaud Hédouin
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; Empenn, INRIA, INSERM, CNRS, Université de Rennes 1, Rennes, France.
| | - Riccardo Metere
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Kwok-Shing Chan
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Christian Licht
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Jeroen Mollink
- Radboud University Medical Centre, Medical Imaging and Anatomy, Nijmegen, Netherlands
| | | | - José P Marques
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
36
|
Boshkovski T, Kocarev L, Cohen-Adad J, Mišić B, Lehéricy S, Stikov N, Mancini M. The R1-weighted connectome: complementing brain networks with a myelin-sensitive measure. Netw Neurosci 2021; 5:358-372. [PMID: 34189369 PMCID: PMC8233108 DOI: 10.1162/netn_a_00179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/11/2020] [Indexed: 11/05/2022] Open
Abstract
Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture. In the present work, we show that by using a myelin-sensitive measure we can complement the diffusion MRI-based connectivity and provide a different picture of the brain organization. We show that the R1-weighted average distribution does not follow the same trend as the number of streamlines strength distribution, and the two connectomes exhibit different modular organization. We also show that unimodal cortical regions tend to be connected by more streamlines, but the connections exhibit a lower R1-weighted average, while the transmodal regions have higher R1-weighted average but fewer streamlines. This could imply that the unimodal regions require more connections with lower myelination, whereas the transmodal regions rely on connections with higher myelination.
Collapse
Affiliation(s)
| | - Ljupco Kocarev
- Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | | | - Stéphane Lehéricy
- Paris Brain Institute (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique Montreal, Montreal, QC, Canada
| | - Matteo Mancini
- NeuroPoly Lab, Polytechnique Montreal, Montreal, QC, Canada
| |
Collapse
|
37
|
Olivieri B, Rampakakis E, Gilbert G, Fezoua A, Wintermark P. Myelination may be impaired in neonates following birth asphyxia. NEUROIMAGE-CLINICAL 2021; 31:102678. [PMID: 34082365 PMCID: PMC8182124 DOI: 10.1016/j.nicl.2021.102678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 01/23/2023]
Abstract
Myelination is a developmental process that intensifies after birth during the first years of life. We used a T2* mapping sequence to assess myelination in healthy and critically ill neonates with neonatal encephalopathy. Birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Background Myelination is a developmental process that begins during the end of gestation, intensifies after birth over the first years of life, and continues well into adolescence. Any event leading to brain injury around the time of birth and during the perinatal period, such as birth asphyxia, may impair this critical process. Currently, the impact of such brain injury related to birth asphyxia on the myelination process is unknown. Objective To assess the myelination pattern over the first month of life in neonates with neonatal encephalopathy (NE) developing brain injury, compared to neonates without injury (i.e., healthy neonates and neonates with NE who do not develop brain injury). Methods Brain magnetic resonance imaging (MRI) was performed around day of life 2, 10, and 30 in healthy neonates and near-term/term neonates with NE who were treated with hypothermia. We evaluated myelination in various regions of interest using a T2* mapping sequence. In each region of interest, we compared the T2* values of the neonates with NE with brain injury to the values of the neonates without injury, according to the MRI timing, by using a repeated measures generalized linear mixed model. Results We obtained 74 MRI scans over the first month of life for 6 healthy neonates, 17 neonates with NE who were treated with hypothermia and did not develop brain injury, and 16 neonates with NE who were treated with hypothermia and developed brain injury. The T2* values significantly increased in the neonates with NE who developed injury in the posterior limbs of the internal capsule (day 2: p < 0.001; day 10: p < 0.001; and day 30: p < 0.001), the thalami (day 2: p = 0.001; day 10: p = 0.006; and day 30: p = 0.016), the lentiform nuclei (day 2: p = 0.005), the anterior white matter (day 2: p = 0.002; day 10: p = 0.006; and day 30: p = 0.002), the posterior white matter (day 2: p = 0.001; day 10: p = 0.008; and day 30: p = 0.03), the genu of the corpus callosum (day 2: p = 0.01; and day 10: p = 0.006), and the optic radiations (day 30: p < 0.001). Conclusion In the neonates with NE who were treated with hypothermia and developed brain injury, birth asphyxia impaired myelination in the regions that are myelinated at birth or soon after birth (the posterior limbs of internal capsule, the thalami, and the lentiform nuclei), in the regions where the myelination process begins only after the perinatal period (optic radiations), and in the regions where this process does not occur until months after birth (anterior/posterior white matter), which suggests that birth asphyxia, in addition to causing the previously well-described direct injury to the brain, may impair myelination.
Collapse
Affiliation(s)
- Bianca Olivieri
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Emmanouil Rampakakis
- Medical Affairs, JSS Medical Research, Montreal, Québec, Canada; Department of Pediatrics, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | - Aliona Fezoua
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Pia Wintermark
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada; Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
38
|
Du J, Bydder GM. Brain Atrophy Is a Better Biomarker than Susceptibility for Evaluating Clinical Severity in Wilson Disease. Radiology 2021; 299:673-674. [PMID: 33759583 DOI: 10.1148/radiol.2021210106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiang Du
- From the Department of Radiology, University of California San Diego, 408 Dickinson St, San Diego, CA 92103-8226
| | - Graeme M Bydder
- From the Department of Radiology, University of California San Diego, 408 Dickinson St, San Diego, CA 92103-8226
| |
Collapse
|
39
|
Chary K, Nissi MJ, Nykänen O, Manninen E, Rey RI, Shmueli K, Sierra A, Gröhn O. Quantitative susceptibility mapping of the rat brain after traumatic brain injury. NMR IN BIOMEDICINE 2021; 34:e4438. [PMID: 33219598 DOI: 10.1002/nbm.4438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
The primary lesion arising from the initial insult after traumatic brain injury (TBI) triggers a cascade of secondary tissue damage, which may also progress to connected brain areas in the chronic phase. The aim of this study was, therefore, to investigate variations in the susceptibility distribution related to these secondary tissue changes in a rat model after severe lateral fluid percussion injury. We compared quantitative susceptibility mapping (QSM) and R2 * measurements with histological analyses in white and grey matter areas outside the primary lesion but connected to the lesion site. We demonstrate that susceptibility variations in white and grey matter areas could be attributed to reduction in myelin, accumulation of iron and calcium, and gliosis. QSM showed quantitative changes attributed to secondary damage in areas located rostral to the lesion site that appeared normal in R2 * maps. However, combination of QSM and R2 * was informative in disentangling the underlying tissue changes such as iron accumulation, demyelination, or calcifications. Therefore, combining QSM with R2 * measurement can provide a more detailed assessment of tissue changes and may pave the way for improved diagnosis of TBI, and several other complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Karthik Chary
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ramón I Rey
- Clinical Neurosciences Research Laboratory, Department of Neurology, Health Research Institute of Santiago de Compostela, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Kaden E, Gyori NG, Rudrapatna SU, Barskaya IY, Dragonu I, Does MD, Jones DK, Clark CA, Alexander DC. Microscopic susceptibility anisotropy imaging. Magn Reson Med 2020; 84:2739-2753. [PMID: 32378746 PMCID: PMC7402021 DOI: 10.1002/mrm.28303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The gradient-echo MR signal in brain white matter depends on the orientation of the fibers with respect to the external magnetic field. To map microstructure-specific magnetic susceptibility in orientationally heterogeneous material, it is thus imperative to regress out unwanted orientation effects. METHODS This work introduces a novel framework, referred to as microscopic susceptibility anisotropy imaging, that disentangles the 2 principal effects conflated in gradient-echo measurements, (a) the susceptibility properties of tissue microenvironments, especially the myelin microstructure, and (b) the axon orientation distribution relative to the magnetic field. Specifically, we utilize information about the orientational tissue structure inferred from diffusion MRI data to factor out the B 0 -direction dependence of the frequency difference signal. RESULTS A human pilot study at 3 T demonstrates proxy maps of microscopic susceptibility anisotropy unconfounded by fiber crossings and orientation dispersion as well as magnetic field direction. The developed technique requires only a dual-echo gradient-echo scan acquired at 1 or 2 head orientations with respect to the magnetic field and a 2-shell diffusion protocol achievable on standard scanners within practical scan times. CONCLUSIONS The quantitative recovery of microscopic susceptibility features in the presence of orientational heterogeneity potentially improves the assessment of microstructural tissue integrity.
Collapse
Affiliation(s)
- Enrico Kaden
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | - Noemi G. Gyori
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | | | | | | | - Mark D. Does
- Institute of Imaging ScienceVanderbilt UniversityNashvilleTNUSA
| | - Derek K. Jones
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiffUK
- School of PsychologyAustralian Catholic UniversityMelbourneVICAustralia
| | - Chris A. Clark
- Great Ormond Street Institute of Child HealthUniversity College LondonLondonUK
| | | |
Collapse
|
41
|
Lee SH, Shin S, Roh Y, Oh SJ, Lee SH, Song HS, Ryu YS, Kim YK, Seo M. Label-free brain tissue imaging using large-area terahertz metamaterials. Biosens Bioelectron 2020; 170:112663. [PMID: 33011619 DOI: 10.1016/j.bios.2020.112663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Terahertz (THz) imaging technology has shown significant potential for use in biomedical imaging owing to its non-ionizing characteristics by its low photon energy and its ultrabroadband spectral comparability with many molecular vibrational resonances. However, despite the significant advantage of being able to identify bio-materials in label-free configurations, most meaningful signals are buried by huge water absorption, thus it is very difficult to distinguish them using the small differences in optical constants at THz regime, limiting the practical application of this technology. Here, we demonstrate advanced THz imaging with enhanced color contrast by the use of THz field that is localized and enhanced by a nanometer-scale slot array. THz images of a biological specimen, such as mouse brain tissue and fingerprint, on a nano-slot array-based metamaterial sensing chip, which is elaborately fabricated in large-area, show a higher contrast and clearer boundary information in reflectance without any labeling. A reliable numerical solution to find accurate optical constants using THz nano-slot resonance for the quantitative analysis of target bio-specimens is also introduced. Finally, the precise optical properties of real bio-samples and atlas information are provided for specific areas where amyloid beta proteins, known to cause dementia, have accumulated in a mouse brain.
Collapse
Affiliation(s)
- Sang-Hun Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seulgi Shin
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Yeeun Roh
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo Hyun Lee
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yong-Sang Ryu
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
42
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
43
|
Multi-centre, multi-vendor reproducibility of 7T QSM and R 2* in the human brain: Results from the UK7T study. Neuroimage 2020; 223:117358. [PMID: 32916289 PMCID: PMC7480266 DOI: 10.1016/j.neuroimage.2020.117358] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction We present the reliability of ultra-high field T2* MRI at 7T, as part of the UK7T Network's “Travelling Heads” study. T2*-weighted MRI images can be processed to produce quantitative susceptibility maps (QSM) and R2* maps. These reflect iron and myelin concentrations, which are altered in many pathophysiological processes. The relaxation parameters of human brain tissue are such that R2* mapping and QSM show particularly strong gains in contrast-to-noise ratio at ultra-high field (7T) vs clinical field strengths (1.5–3T). We aimed to determine the inter-subject and inter-site reproducibility of QSM and R2* mapping at 7T, in readiness for future multi-site clinical studies. Methods Ten healthy volunteers were scanned with harmonised single- and multi-echo T2*-weighted gradient echo pulse sequences. Participants were scanned five times at each “home” site and once at each of four other sites. The five sites had 1× Philips, 2× Siemens Magnetom, and 2× Siemens Terra scanners. QSM and R2* maps were computed with the Multi-Scale Dipole Inversion (MSDI) algorithm (https://github.com/fil-physics/Publication-Code). Results were assessed in relevant subcortical and cortical regions of interest (ROIs) defined manually or by the MNI152 standard space. Results and Discussion Mean susceptibility (χ) and R2* values agreed broadly with literature values in all ROIs. The inter-site within-subject standard deviation was 0.001–0.005 ppm (χ) and 0.0005–0.001 ms−1 (R2*). For χ this is 2.1–4.8 fold better than 3T reports, and 1.1–3.4 fold better for R2*. The median ICC from within- and cross-site R2* data was 0.98 and 0.91, respectively. Multi-echo QSM had greater variability vs single-echo QSM especially in areas with large B0 inhomogeneity such as the inferior frontal cortex. Across sites, R2* values were more consistent than QSM in subcortical structures due to differences in B0-shimming. On a between-subject level, our measured χ and R2* cross-site variance is comparable to within-site variance in the literature, suggesting that it is reasonable to pool data across sites using our harmonised protocol. Conclusion The harmonized UK7T protocol and pipeline delivers on average a 3-fold improvement in the coefficient of reproducibility for QSM and R2* at 7T compared to previous reports of multi-site reproducibility at 3T. These protocols are ready for use in multi-site clinical studies at 7T.
Collapse
|
44
|
On the influence of two coexisting species of susceptibility-producing structures on the R2∗ relaxation rate. Magn Reson Imaging 2020; 71:170-177. [DOI: 10.1016/j.mri.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
45
|
Wood TC, Damestani NL, Lawrence AJ, Ljungberg E, Barker GJ, Solana AB, Wiesinger F, Williams SCR. Silent myelin-weighted magnetic resonance imaging. Wellcome Open Res 2020; 5:74. [PMID: 32832700 PMCID: PMC7431975 DOI: 10.12688/wellcomeopenres.15845.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Inhomogeneous Magnetization Transfer (ihMT) is an emerging, uniquely myelin-specific magnetic resonance imaging (MRI) contrast. Current ihMT acquisitions utilise fast Gradient Echo sequences which are among the most acoustically noisy MRI sequences, reducing patient comfort during acquisition. We sought to address this by modifying a near silent MRI sequence to include ihMT contrast. Methods: A Magnetization Transfer preparation module was incorporated into a radial Zero Echo-Time sequence. Repeatability of the ihMT ratio and inverse ihMT ratio were assessed in a cohort of healthy subjects. We also investigated how head orientation affects ihMT across subjects, as a previous study in a single subject suggests this as a potential confound. Results: We demonstrated that ihMT ratios comparable to existing, acoustically loud, implementations could be obtained with the silent sequence. We observed a small but significant effect of head orientation on inverse ihMTR. Conclusions: Silent ihMT imaging is a comparable alternative to conventional, noisy, alternatives. For all future ihMT studies we recommend careful positioning of the subject within the scanner.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | | | - Andrew J Lawrence
- Department of Psychological Medicine, King's College London, London, UK
| | - Emil Ljungberg
- Department of Neuroimaging, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, King's College London, London, UK
| | | | - Florian Wiesinger
- Department of Neuroimaging, King's College London, London, UK.,ASL Europe, GE Healthcare, Munich, Germany
| | | |
Collapse
|
46
|
Nair G, Dodd S, Ha SK, Koretsky AP, Reich DS. Ex vivo MR microscopy of a human brain with multiple sclerosis: Visualizing individual cells in tissue using intrinsic iron. Neuroimage 2020; 223:117285. [PMID: 32828923 PMCID: PMC7811778 DOI: 10.1016/j.neuroimage.2020.117285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 08/15/2020] [Indexed: 01/30/2023] Open
Abstract
Purpose: To perform magnetic resonance microscopy (MRM) on human cortex and a cortical lesion as well as the adjacent normal appearing white matter. To shed light on the origins of MRI contrast by comparison with histochemical and immunostaining. Methods: 3D MRM at a nominal isotropic resolution of 15 and 18 μm was performed on 2 blocks of tissue from the brain of a 77-year-old man who had MS for 47 years. One block contained normal appearing cortical gray matter (CN block) and adjacent normal appearing white matter (NAWM), and the other also included a cortical lesion (CL block). Postmortem ex-vivo MRI was performed at 11.7T using a custom solenoid coil and T2*-weighted 3D GRE sequence. Histochemical and immunostaining were done after paraffin embedding for iron, myelin, oligodendrocytes, neurons, blood vessels, macrophages and microglia, and astrocytes. Results: MRM could identify individual iron-laden oligodendrocytes with high sensitivity (70% decrease in signal compared to surrounding) in CN and CL blocks, as well as some iron-laden activated macrophages and microglia. Iron-deficient oligodendrocytes seemed to cause relative increase in MRI signal within the cortical lesion. High concentration of myelin in the white matter was primarily responsible for its hypointense appearance relative to the cortex, however, signal variations within NAWM could be attributed to changes in density of iron-laden oligodendrocytes. Conclusion: Changes in iron accumulation within cells gave rise to imaging contrast seen between cortical lesions and normal cortex, as well as the patchy signal in NAWM. Densely packed myelin and collagen deposition also contributed to MRM signal changes. Even though we studied only one block each from normal appearing and cortical lesions, such studies can help better understand the origins of histopathological and microstructural correlates of MRI signal changes in multiple sclerosis and contextualize the interpretation of lower-resolution in vivo MRI scans.
Collapse
Affiliation(s)
- Govind Nair
- Quantitative MRI Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States.
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
47
|
Wood TC, Damestani NL, Lawrence AJ, Ljungberg E, Barker GJ, Solana AB, Wiesinger F, Williams SCR. Silent myelin-weighted magnetic resonance imaging. Wellcome Open Res 2020; 5:74. [PMID: 32832700 DOI: 10.12688/wellcomeopenres.15845.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2020] [Indexed: 02/03/2023] Open
Abstract
Background: Inhomogeneous Magnetization Transfer (ihMT) is an emerging, uniquely myelin-specific magnetic resonance imaging (MRI) contrast. Current ihMT acquisitions utilise fast Gradient Echo sequences which are among the most acoustically noisy MRI sequences, reducing patient comfort during acquisition. We sought to address this by modifying a near silent MRI sequence to include ihMT contrast. Methods: A Magnetization Transfer preparation module was incorporated into a radial Zero Echo-Time sequence. Repeatability of the ihMT ratio and inverse ihMT ratio were assessed in a cohort of healthy subjects. We also investigated how head orientation affects ihMT across subjects, as a previous study in a single subject suggests this as a potential confound. Results: We demonstrated that ihMT ratios comparable to existing, acoustically loud, implementations could be obtained with the silent sequence. We observed a small but significant effect of head orientation on inverse ihMTR. Conclusions: Silent ihMT imaging is a comparable alternative to conventional, noisy, alternatives. For all future ihMT studies we recommend careful positioning of the subject within the scanner.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | | | - Andrew J Lawrence
- Department of Psychological Medicine, King's College London, London, UK
| | - Emil Ljungberg
- Department of Neuroimaging, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, King's College London, London, UK
| | | | - Florian Wiesinger
- Department of Neuroimaging, King's College London, London, UK.,ASL Europe, GE Healthcare, Munich, Germany
| | | |
Collapse
|
48
|
Straub S, Mangesius S, Emmerich J, Indelicato E, Nachbauer W, Degenhardt KS, Ladd ME, Boesch S, Gizewski ER. Toward quantitative neuroimaging biomarkers for Friedreich's ataxia at 7 Tesla: Susceptibility mapping, diffusion imaging, R 2 and R 1 relaxometry. J Neurosci Res 2020; 98:2219-2231. [PMID: 32731306 PMCID: PMC7590084 DOI: 10.1002/jnr.24701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Friedreich's ataxia (FRDA) is a rare genetic disorder leading to degenerative processes. So far, no effective treatment has been found. Therefore, it is important to assist the development of medication with imaging biomarkers reflecting disease status and progress. Ten FRDA patients (mean age 37 ± 14 years; four female) and 10 age- and sex-matched controls were included. Acquisition of magnetic resonance imaging (MRI) data for quantitative susceptibility mapping, R1 , R2 relaxometry and diffusion imaging was performed at 7 Tesla. Results of volume of interest (VOI)-based analyses of the quantitative data were compared with a voxel-based morphometry (VBM) evaluation. Differences between patients and controls were assessed using the analysis of covariance (ANCOVA; p < 0.01) with age and sex as covariates, effect size of group differences, and correlations with disease characteristics with Spearman correlation coefficient. For the VBM analysis, a statistical threshold of 0.001 for uncorrected and 0.05 for corrected p-values was used. Statistically significant differences between FRDA patients and controls were found in five out of twelve investigated structures, and statistically significant correlations with disease characteristics were revealed. Moreover, VBM revealed significant white matter atrophy within regions of the brainstem, and the cerebellum. These regions overlapped partially with brain regions for which significant differences between healthy controls and patients were found in the VOI-based quantitative MRI evaluation. It was shown that two independent analyses provided overlapping results. Moreover, positive results on correlations with disease characteristics were found, indicating that these quantitative MRI parameters could provide more detailed information and assist the search for effective treatments.
Collapse
Affiliation(s)
- Sina Straub
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Emmerich
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | | | - Wolfgang Nachbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katja S Degenhardt
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elke R Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria.,Neuroimaging Core Facility, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Foxley S, Wildenberg G, Sampathkumar V, Karczmar GS, Brugarolas P, Kasthuri N. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med 2020; 85:667-677. [PMID: 32783262 DOI: 10.1002/mrm.28440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Dysmyelinating diseases are characterized by abnormal myelin formation and function. Such microstructural abnormalities in myelin have been demonstrated to produce measurable effects on the MR signal. This work examines these effects on measurements of voxel-wise, high-resolution water spectra acquired using a 3D echo-planar spectroscopic imaging (EPSI) pulse sequence from both postmortem fixed control mouse brains and a dysmyelination mouse brain model. METHODS Perfusion fixed, resected control (n = 5) and shiverer (n = 4) mouse brains were imaged using 3D-EPSI with 100 µm isotropic resolution. The free induction decay (FID) was sampled every 2.74 ms over 192 echoes, for a total sampling duration of 526.08 ms. Voxel-wise FIDs were Fourier transformed to produce water spectra with 1.9 Hz resolution. Spectral asymmetry was computed and compared between the two tissue types. RESULTS The water resonance is more asymmetrically broadened in the white matter of control mouse brain compared with dysmyelinated white matter. In control brain, this is modulated by and consistent with previously reported orientationally dependent effects of white matter relative to B0 . Similar sensitivity to orientation is observed in dysmyelinated white matter as well; however, the magnitude of the resonance asymmetry is much lower across all directions. CONCLUSION Results demonstrate that components of the spectra are specifically differentially affected by myelin concentration. This suggests that water proton spectra may be sensitive to the presence of myelin, and as such, could serve as a MRI-based biomarker of dysmyelinating disease, free of mathematical models.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Pedro Brugarolas
- Department of Radiology, Harvard Medical School, Boston, Maryland, USA.,Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Maryland, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Zhang L, Ellor S, Sun JM, Liu C, Kurtzburg J, Song AW. DTI Tract-Based Quantitative Susceptibility Mapping: An Initial Feasibility Study to Investigate the Potential Role of Myelination in Brain Connectivity Change in Cerebral Palsy Patients During Autologous Cord Blood Cell Therapy Using a Rotationally-Invariant Quantitative Measure. J Magn Reson Imaging 2020; 53:251-258. [PMID: 32677156 DOI: 10.1002/jmri.27286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Previous studies using diffusion tensor imaging (DTI)-based connectome analysis revealed improved connectivity in cerebral palsy (CP) patients who underwent autologous umbilical cord blood (UCB) stem-cell therapy. However, the potential mechanism for the connectivity increase remains unclear and needs to be further elucidated. PURPOSE To develop a technique with improved accuracy for quantitative susceptibility mapping (QSM) with unique sensitivity to myelin, and demonstrate its use in elucidating the underlying mechanism of the observed motor function improvement and brain connectivity increase in CP patients who received autologous UCB stem-cell therapy. STUDY TYPE Prospective. POPULATION A cohort of eight pediatric CP patients (2.6 ± 0.6 years of age) with intact corticospinal tracts (CST) from a randomized, placebo-controlled trial of autologous UCB stem-cell therapy in CP children was included in this study. FIELD STRENGTH/SEQUENCE DTI and 3D spoiled gradient recalled (SPGR) QSM at 3.0T. ASSESSMENT Pre- and posttreatment magnetic susceptibility (χ) and the rotationally-invariant magnetic susceptibility anisotropy (MSA) along the CST were derived. Behavioral changes were assessed using the 66-item Gross Motor Function Measurement. Changes in χ and MSA were compared between patients with and without substantial behavioral improvements. STATISTICAL TESTS Two-sample t-tests were performed to assess the differences in the changes of measurements of interest (Δχ, ΔMSA, and ΔFA) between patients who significantly improved and those who did not. RESULTS Patients who demonstrated posttreatment motor improvements exceeding expectations showed significantly more diamagnetic Δχ in the periventricular region along the CST (P = 0.003). Further analysis on the ΔMSA of this region was significantly increased (P = 0.006) for high responders, along with concurrent FA increase. DATA CONCLUSION These initial findings suggest that the DTI tract-based QSM method has the potential to characterize white matter changes associated with behavioral improvements in CP children who underwent cord blood stem-cell therapy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lijia Zhang
- Brain Imaging and Analysis Center, Duke University Medical Center, Duke University, Durham, North Carolina, USA
| | - Susan Ellor
- Department of Neurology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, USA
| | - Jessica M Sun
- The Robertson Clinical and Translational Cell Therapy Program, Duke University, Durham, North California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Joanne Kurtzburg
- The Robertson Clinical and Translational Cell Therapy Program, Duke University, Durham, North California, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|