1
|
Zhou F, Tajamul Mumtaz P, Dogan H, Madadjim R, Cui J, Zempleni J. Divergence of gut bacteria through the selection of genomic variants implicated in the metabolism of sugars, amino acids, and purines by small extracellular vesicles in milk. Gut Microbes 2025; 17:2449704. [PMID: 39762216 DOI: 10.1080/19490976.2025.2449704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 03/08/2025] Open
Abstract
Here, we report that small extracellular vesicles (sEVs) in milk mediate the communication between bacteria and animal kingdoms, increase the divergence of bacteria in the intestine, and alter metabolite production by bacteria. We show that bovine milk sEVs select approximately 55,000 genomic variants in 19 species of bacteria from the murine cecum ex vivo. The genomic variants are transcribed into mRNA. The selection of genomic variants by milk sEVs alters bacterial metabolism, leading to an up to 12-fold difference in the abundance of more than 1000 metabolites in bacteria cultured in milk sEV-free media compared to sEV-containing media. Evidence is particularly strong that selection of genomic variants by milk sEV changes the metabolism of sugars, amino acids, and purines which might contribute to the development of spatial learning and memory deficiencies and seizure phenotypes reported for milk sEV-depleted infants and mice. Human milk is a rich source of sEVs, whereas formula contains only trace amounts of milk sEVs. This report implicates nutritional sEVs in altered microbial metabolism beyond the mere selection of bacterial communities.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Peerzada Tajamul Mumtaz
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Haluk Dogan
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Roland Madadjim
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C, Yuan H, Li J, Lin Z, Lin W. Role of iron in brain development, aging, and neurodegenerative diseases. Ann Med 2025; 57:2472871. [PMID: 40038870 PMCID: PMC11884104 DOI: 10.1080/07853890.2025.2472871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
It is now understood that iron crosses the blood-brain barrier via a complex metabolic regulatory network and participates in diverse critical biological processes within the central nervous system, including oxygen transport, energy metabolism, and the synthesis and catabolism of myelin and neurotransmitters. During brain development, iron is distributed throughout the brain, playing a pivotal role in key processes such as neuronal development, myelination, and neurotransmitter synthesis. In physiological aging, iron can selectively accumulate in specific brain regions, impacting cognitive function and leading to intracellular redox imbalance, mitochondrial dysfunction, and lipid peroxidation, thereby accelerating aging and associated pathologies. Furthermore, brain iron accumulation may be a primary contributor to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Comprehending the role of iron in brain development, aging, and neurodegenerative diseases, utilizing iron-sensitive Magnetic Resonance Imaging (MRI) technology for timely detection or prediction of abnormal neurological states, and implementing appropriate interventions may be instrumental in preserving normal central nervous system function.
Collapse
Affiliation(s)
- Qiqi Gao
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyang Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yu Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Hu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenwen Jin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunting Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Yuan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshun Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Gilbreath D, Hagood D, Andres A, Larson-Prior LJ. The effect of diet on the development of EEG microstates in healthy infant throughout the first year of life. Neuroimage 2025; 311:121152. [PMID: 40139517 DOI: 10.1016/j.neuroimage.2025.121152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Electroencephalography (EEG) is used to directly measure neuronal activity and evaluate network dynamics with an excellent temporal resolution. These network dynamics in the form of EEG microstates - distinct yet transiently stable topographies captured at peaks of the global field power - are increasingly used as markers of disease, neurodegeneration, and neurodevelopment. However, few studies have evaluated EEG microstates throughout the first year of life, and currently none have examined the potential effects of infant diet. The current study seeks to investigate whether different diets impact EEG microstates throughout the first year of life. EEGs were collected from approximately 500 healthy infants who were fed a human milk, diary-, or soy-based formula at three, six, nine, and twelve months of age. Microstate classes and temporal characteristics were then calculated for each timepoint and diet. Microstates classes showed a clear developmental trajectory, with duration decreasing with age, and coverage, globally explained variance, and occurrence generally increasing with age. There were relatively few significant differences between infants fed different diets, indicating that diet potentially effects functional neurodevelopment more subtly than previously indicated in the literature. This study adds to the growing body of literature demonstrating that formula feeding does not have clear disadvantages in terms of infant functional neuronal development.
Collapse
Affiliation(s)
- Dylan Gilbreath
- Arkansas Children's Nutrition Center (ACNC), Little Rock, AR 72202, USA; University of Arkansas for Medical Sciences (UAMS), Department of Neuroscience, Little Rock, AR 72207, USA.
| | - Darcy Hagood
- Arkansas Children's Nutrition Center (ACNC), Little Rock, AR 72202, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center (ACNC), Little Rock, AR 72202, USA; University of Arkansas for Medical Sciences (UAMS) Department of Pediatrics, Little Rock, AR 72207, USA
| | - Linda J Larson-Prior
- Arkansas Children's Nutrition Center (ACNC), Little Rock, AR 72202, USA; University of Arkansas for Medical Sciences (UAMS), Department of Neuroscience, Little Rock, AR 72207, USA; University of Arkansas for Medical Sciences (UAMS) Department of Pediatrics, Little Rock, AR 72207, USA
| |
Collapse
|
4
|
Zhu L, Zhang Z, Luo T, Li H, Deng Z, Li J, Zheng L, Liao J, Wang M, Zhang B. Cognitive and behavioral benefits of 2'-fucosyllactose in growing mice: the roles of 5-hydroxytryptophan and gut microbiota. MICROBIOME 2025; 13:97. [PMID: 40221776 PMCID: PMC11992797 DOI: 10.1186/s40168-025-02094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is one of the major oligosaccharides found in human breast milk, with several recognized beneficial effects on the host. Extensive research has indicated positive effects of 2'-FL on cognitive development in the brain, yet its molecular mechanisms have remained elusive. This study aimed to assess the impact of 2'-FL on the gut-brain axis microbiota and cognitive function in growing mice, along with its potential mechanisms of action. RESULTS Following long-term supplementation for 4 weeks, 2'-FL was found to enhance cognitive memory function in growing mice (3 weeks old) as assessed through Y-maze, novel object recognition, and water maze tests. Analysis via 16S rRNA sequencing revealed significant alterations in gut microbiota diversity and composition induced by 2'-FL, notably increasing the relative abundance of Bacteroides and Lactobacillus genera. Additionally, 2'-FL significantly elevated levels of 5-hydroxytryptamine (5-HT) and 5-hydroxytryptophan (5-HTP) in the hippocampal tissue. However, antibiotic intervention abolished the cognitive advantage conferred by 2'-FL, highlighting the critical role of gut microbiota in mediating its effects. Similarly, short-term supplementation with 2'-FL for 7 days indicated rapid changes in gut microbiota composition preceding cognitive improvements, further suggesting a potential causal relationship between gut microbiota characteristics and cognition. Further, in vitro experiments with mouse feces suggested that 2'-FL may influence tryptophan hydroxylase levels in the gut microbiota and inhibit the activity of 5-hydroxytryptophan decarboxylase, potentially leading to increased accumulation of 5-HTP. Additionally, 2'-FL may indirectly impact tryptophan hydroxylase levels in enterochromaffin cells by promoting short-chain fatty acid production, which could support 5-HTP synthesis. Elevated 5-HTP produced by the gut system enters the bloodstream, crosses the blood-brain barrier, and may potentially enhance brain 5-HT levels. CONCLUSION This study offers preliminary evidence that the cognitive-promoting effects of 2'-FL in mice may be closely associated with gut microbiota and 5-HT. The findings suggest that 2'-FL contribute to cognitive development in growing mice, potentially by modulating gut microbiota and enhancing 5-HT levels in the brain. Video Abstract.
Collapse
Affiliation(s)
- Liuying Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China.
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China
| | - Jinqiang Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Minghui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
- International Institute of Food Innovation, Nanchang University, Nanchang , Jiangxi, 330051, China.
| |
Collapse
|
5
|
Wilmot L, Miller C, Patil I, Kelly AL, Jimenez-Flores R. Dairy Foods: A Matrix for Human Health and Precision Nutrition-The relevance of a potential bioactive ingredient; The milk fat globule membrane. J Dairy Sci 2025; 108:3109-3134. [PMID: 39414020 DOI: 10.3168/jds.2024-25412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
The milk fat globule membrane (MFGM) is a complex structure that surrounds the surface of fat globules in the milk of mammals. The MFGM is rich in bioactive compounds such as phospholipids, glycoproteins, and sphingolipids. Recent research highlights its important role in human health, particularly in infant nutrition, where it contributes to cognitive development, immune function, and gastrointestinal health. This review article examines the variability in commercial MFGM ingredients derived from dairy sources, detailing the impact of processes used to extrapolate the bioactive rich fractions from the MFGM. The potential applications of MFGM in food products, especially infant formulas, are emphasized, showcasing its ability to improve nutritional outcomes. Furthermore, the review discusses clinical studies that demonstrate the health benefits associated with MFGM supplementation, including enhanced cognitive performance and reduced incidence of infections in infants. Some of the underlying mechanisms behind the health-enhancing effects are elucidated in this review. Overall, this review underscores the importance of MFGM as a valuable bioactive ingredient in promoting health and development in early life nutrition.
Collapse
Affiliation(s)
- Leia Wilmot
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland, T12 YN60
| | - Celeste Miller
- Department of Food Science and Technology, Parker Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Isha Patil
- Department of Food Science and Technology, Parker Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland, T12 YN60
| | - Rafael Jimenez-Flores
- Department of Food Science and Technology, Parker Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
6
|
Chakkarapani E, Ingram J, Stocks S, Beasant L, Odd D. Cooling and physiology during parent cuddling infants with neonatal encephalopathy in usual care: CoolCuddle-2 study. Acta Paediatr 2025; 114:546-554. [PMID: 39451123 PMCID: PMC11828723 DOI: 10.1111/apa.17466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
AIM CoolCuddle, enabling parents to cuddle their babies with neonatal encephalopathy (NE) during therapeutic hypothermia and intensive care (TH), was developed in research settings. To determine the impact of implementing CoolCuddle in usual care in six diverse neonatal intensive care units on the cooling process and intensive care. METHODS This vital sign cohort study embedded within the CoolCuddle implementation study enrolled 36 infants receiving TH for NE. Nurses received training on CoolCuddle and a standard operating procedure using an instruction video. After consenting, parents experienced up to 2 h of CoolCuddle with 30 min of pre- and post-cuddle observation. We used multilevel, clustered linear modelling to assess the physiological stability in temperature, cardio-respiratory and neurophysiology across the CoolCuddle. RESULTS In 60 CoolCuddles over 93.12 h, respiratory parameters, heart rate or neurological function did not vary between the epochs (p > 0.05). During cuddle, sleep-wake cycling on amplitude-integrated EEG increased (p = 0.008) and there was weak evidence of lower pain scores (p = 0.08). No adverse effects were observed. CONCLUSION Implementing CoolCuddle with support in usual practice maintained physiological stability and did not significantly affect the cooling process or intensive care, and may improve infant comfort. Ongoing monitoring of adverse effects when implementing CoolCuddle is recommended.
Collapse
Affiliation(s)
- Ela Chakkarapani
- Centre for Academic Child Health, Bristol Medical SchoolUniversity of BristolBristolUK
- St Michael's HospitalUniversity Hospitals Bristol and Weston NHS Foundation TrustBristolUK
| | - Jenny Ingram
- Centre for Academic Child Health, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Stephanie Stocks
- St Michael's HospitalUniversity Hospitals Bristol and Weston NHS Foundation TrustBristolUK
| | - Lucy Beasant
- Centre for Academic Child Health, Bristol Medical SchoolUniversity of BristolBristolUK
| | - David Odd
- School of MedicineCardiff University and University Hospital of WalesCardiffUK
| | | |
Collapse
|
7
|
Azrak O, Garic D, Nasir A, Swanson MR, Grzadzinski RL, Al-Ali K, Shen MD, Girault JB, St John T, Pandey J, Zwaigenbaum L, Estes AM, Wolff JJ, Dager SR, Schultz RT, Evans AC, Elison JT, Yacoub E, Kim SH, McKinstry RC, Gerig G, Pruett JR, Piven J, Botteron KN, Hazlett H, Marrus N, Styner MA. Early White Matter Microstructure Alterations in Infants with Down Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.26.25322913. [PMID: 40061339 PMCID: PMC11888504 DOI: 10.1101/2025.02.26.25322913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Importance Down syndrome, resulting from trisomy 21, is the most prevalent chromosomal disorder and a leading cause of intellectual disability. Despite its significant impact on brain development, research on the white matter microstructure in infants with Down syndrome remains limited. Objective To investigate early white matter microstructure in infants with Down syndrome using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI). Design Infants were recruited and scanned between March 2019 and May 2024 as participants in prospective studies conducted by the Infant Brain Imaging Study (IBIS) Network. Data were analyzed in October 2024. Setting Data collection occurred at five research centers in Minnesota, Missouri, North Carolina, Pennsylvania, and Washington. Participants Down syndrome and control infants were scanned at 6 months of age. Control infants had no Down syndrome diagnosis and either had a typically developing older sibling or, if they had an older sibling with autism, were confirmed not to meet clinical best estimate criteria for an autism diagnosis. Exposure Diagnosis of Down syndrome. Main Outcomes and Measures The outcome of interest was white matter microstructure quantified using DTI and NODDI measures. Results A total of 49 Down syndrome (28 [57.14%] female) and 37 control (18 [48.65%] female) infants were included. Infants with Down syndrome showed significant reductions in fractional anisotropy and neurite density index across multiple association tracts, particularly in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus II, consistent with reduced structural integrity and neurite density. These tracts also demonstrated increased radial diffusivity, suggesting delayed myelination. The inferior fronto-occipital fasciculus and uncinate fasciculus exhibited increased neurite dispersion and fanning in Down syndrome infants, reflected by elevated orientation dispersion index. Notably, the optic tracts in Down syndrome infants exhibited a distinct pattern of elevated fractional anisotropy and axial diffusivity, and lower radial diffusivity and orientation dispersion index, suggesting an early maturation of these pathways. Conclusions and Relevance This first characterization of white matter microstructure in Down syndrome infants reveals widespread white matter developmental delays. These findings provide new insights into the early neurodevelopment of Down syndrome and may inform early therapeutic interventions.
Collapse
Affiliation(s)
- Omar Azrak
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dea Garic
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aleeshah Nasir
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Meghan R Swanson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca L Grzadzinski
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Khalid Al-Ali
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark D Shen
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Tanya St John
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Juhi Pandey
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lonnie Zwaigenbaum
- Autism Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Annette M Estes
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
| | - Jason J Wolff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen R Dager
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Essa Yacoub
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, US
| | - Guido Gerig
- Tandon School of Engineering, New York University, New York, NY, USA
| | - John R Pruett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kelly N Botteron
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Heather Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Hoyt AT, Wilkinson AV, Langlois PH, Galeener CA, Ranjit N, Dabelea DM, Moore BF. Prenatal Exposure to Tobacco and Childhood Cognition and Behavior: Effect Modification by Maternal Folate Intake and Breastfeeding Duration. Child Psychiatry Hum Dev 2025; 56:12-22. [PMID: 37029873 PMCID: PMC11828757 DOI: 10.1007/s10578-023-01524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/09/2023]
Abstract
In this exploratory analysis, we assessed whether nutrition modified the association between prenatal exposure to tobacco and childhood cognition/behavior among 366 Colorado-based mothers and their offspring (born ≥ 37 weeks with birthweights ≥ 2500 g). Interaction by folate (≥ 1074 µg/day) and breastfeeding (≥ 5 months) was assessed by including a product term with cotinine (≥ limit of detection [LOD]) in regression models for NIH Toolbox and Child Behavior Checklist T-scores. Main effects were observed between cotinine ≥ LOD and inhibitory control (- 3.2; 95% CI: - 6.8, 0.3), folate < 1074 µg/day and anxious/depressed symptoms (1.1; 95% CI: 0.1, 2.1), and breastfeeding < 5 months and receptive language (- 4.3; 95% CI: - 8.5, - 0.02), though these findings would not survive Bonferroni correction. Breastfeeding modified the tobacco-behavior associations. Sleep (3.8; 95% CI: 0.5, 7.1; interaction p-value = 0.02), depressive (4.6; 95% CI: 1.0, 8.2; interaction p-value = 0.01) and total problems (5.8; 95% CI: - 0.7, 12.4; interaction p-value = 0.09) were observed among tobacco-exposed offspring who breastfed > 5 months, but not for shorter durations. Our findings support the need for smoking cessation campaigns throughout pregnancy and throughout the postpartum period breastfeeding to reduce neurobehavioral risks in the offspring.
Collapse
Affiliation(s)
- Adrienne T Hoyt
- Department of Health Promotion and Behavioral Sciences, UTHealth School of Public Health - Austin Regional Campus, Austin, TX, USA
| | - Anna V Wilkinson
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health - Austin Regional Campus, Austin, TX, USA
| | - Peter H Langlois
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health - Austin Regional Campus, Austin, TX, USA
| | - Carol A Galeener
- Department of Management, Policy and Community Health, Fleming Center Health for Care Management Houston, UTHealth School of Public Health- Houston Regional Campus, Houston, TX, USA
| | - Nalini Ranjit
- Department of Health Promotion and Behavioral Sciences, UTHealth School of Public Health - Austin Regional Campus, Austin, TX, USA
| | - Dana M Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Brianna F Moore
- Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health - Austin Regional Campus, Austin, TX, USA.
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA.
- University of Colorado Anschutz Medical Campus, 1890 N Revere Ct, Aurora, CO, 80045, USA.
| |
Collapse
|
9
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
10
|
Carreno CA, Evans ME, Lockhart BK, Chinaka O, Katz B, Bell MA, Howell BR. Optimizing infant neuroimaging methods to understand the neurodevelopmental impacts of early nutrition and feeding. Dev Cogn Neurosci 2025; 71:101481. [PMID: 39647348 PMCID: PMC11667636 DOI: 10.1016/j.dcn.2024.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
There is strong evidence proper nutrition is imperative for healthy infant neurodevelopment, providing the neural foundations for later cognition and behavior. Over the first years of life infants are supported by unique sources of nutrition (e.g., human milk, alternative milk sources). It is during this time that the brain undergoes its most drastic changes during postnatal development. Past research has examined associations between infant feeding and nutrition and morphological features of the brain, yet there remains a paucity of information on functional characteristics of neural activity during feeding. Within this article, we discuss how neuroimaging modalities can be optimized for researching the impacts of infant feeding and nutrition on brain function. We review past research utilizing EEG and fNIRS and describe our efforts to further develop neuroimaging approaches that allow for measurement of brain activity during active feeding with greater spatial resolution (e.g., fMRI and OPM-MEG). We also discuss current challenges, as well as the scientific and logistical limitations of each method. Once protocols have been optimized, these methods will provide the requisite insight into the underlying mechanisms of nutritional and feeding impacts on neurodevelopment, providing the missing piece in the field's efforts to understand this essential and ubiquitous part of early life.
Collapse
Affiliation(s)
- Claudia A Carreno
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Megan E Evans
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Blakely K Lockhart
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Oziomachukwu Chinaka
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Translational Biology, Medicine, & Health Graduate Program, Virginia Tech, Roanoke, VA, USA
| | - Benjamin Katz
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Martha Ann Bell
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Brittany R Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Rajagopalan V, Hsu E, Luo S. Breastfeeding duration and brain-body development in 9-10-year-olds: modulating effect of socioeconomic levels. Pediatr Res 2025; 97:378-386. [PMID: 38879625 PMCID: PMC11798855 DOI: 10.1038/s41390-024-03330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE To investigate relationships of breastfeeding duration with brain structure and adiposity markers in youth and how these relationships are modified by neighborhood socioeconomic environments (SEEs). METHODS This was a cross-sectional study of youth enrolled in the Adolescent Brain and Cognitive Development (ABCD) Study® (n = 7511). Mixed effects models examined associations of breastfeeding duration with global brain measures and adiposity markers, adjusting for sociodemographic, pre- and post-natal covariates. Stratified analysis was performed by area deprivation index (ADI) tertiles. RESULTS Total cortical surface area (SA) (False Discovery Rate - FDR corrected P < 0.001), cortical (FDR corrected P < 0.001) and subcortical gray matter (GM) volume (FDR corrected P < 0.001) increased with increased breastfeeding duration. Body mass index (BMI) z-scores (FDR corrected P = 0.001), waist circumference (FDR corrected P = 0.002) and waist-to-height ratio (WHtR) (FDR corrected P = 0.001) decreased with increased breastfeeding duration. Breastfeeding duration was inversely associated with adiposity in youth from high- and medium- ADI neighborhoods, but positively associated with SA across ADI tertiles. CONCLUSIONS In this cross-sectional study, longer breastfeeding duration was associated with lower adiposity indices, particularly in youth from lower SEEs and greater SA across SEE levels. Longer breastfeeding duration showed long-term associations with brain and body development for offspring. IMPACT Building on previous findings that longer breastfeeding duration is associated with healthier weight gain, lower obesity risk, and brain white matter development in infancy, our results find longer breastfeeding duration to be associated with lower adiposity indices and greater cortical and subcortical gray matter volume, and cortical surface area during peri-adolescence. Children from lower socioeconomic environments (SEEs) demonstrated stronger negative associations of breastfeeding duration and adiposity indices, and children across SEEs showed positive relationships between breastfeeding duration and cortical surface area. Promoting breastfeeding, particularly among women from lower SEEs would confer long-term benefits to offspring.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eustace Hsu
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shan Luo
- Division of Endocrinology and Diabetes, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Zheng X, Li R, Wang L, Yang H, Li L, Cui J, Zhao W, Yang Z, Zhang Q, Xu T, Wang Y, Chen B. Association between breastfeeding duration and neurodevelopment in Chinese children aged 2 to 3 years. Infant Behav Dev 2024; 77:101991. [PMID: 39303545 DOI: 10.1016/j.infbeh.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE The aim of this study was to explore the relationship between breastfeeding duration and neurodevelopment in children aged 2 to 3 years in a Chinese population. METHODS This study was based on a cross-sectional survey. The data were from the National Nutrition and Health Systematic Survey for children in China which was conducted from 2019 to 2020. Characteristics of parents and children and the breastfeeding duration were obtained using interview-administered questionnaires. Children's neuropsychological development was assessed by a trained child health care physician using the Child Psychological Development Scale. A multivariable linear regression model was used to analyze the association between breastfeeding duration and neuropsychological development. RESULTS A total 1290 children aged 2-3 years were included in the present analysis. In multivariable linear regression models, after adjustment for potential confounders, children who were breastfed for 7-12 months had a 3.59-point increase in gross motor development (β = 3.59; 95 % confidence interval [CI]: 1.23 to 6.34), a 3.73-point increase in fine motor development (β = 3.73; 95 % CI: 1.09 to 6.47), and a 2.87-point in language development (β = 2.87; 95 % CI: 1.12 to 5.31) compared with those who were never breastfed. Children who were breastfed for > 12 months had a 3.77-point increase in fine motor development (β = 3.77; 95 % CI: 0.98 to 6.86) compared with those who were never breastfed. CONCLUSIONS Longer breastfeeding duration was associated with increased gross motor, fine motor, and language scores in our study population. Mothers in China should be encouraged to initiate and continue breastfeeding.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Ruili Li
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Lihong Wang
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Huimin Yang
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Linlin Li
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Jiayin Cui
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China
| | - Wenhua Zhao
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenyu Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Xu
- National Center for Women and Children's Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuying Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bowen Chen
- Department of Children Health and Development, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
13
|
Heo JS, Kim EK. Strategies to support language development in neonatal intensive care unit: a narrative review. Clin Exp Pediatr 2024; 67:651-663. [PMID: 39533738 PMCID: PMC11621733 DOI: 10.3345/cep.2024.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/18/2024] [Accepted: 06/23/2024] [Indexed: 11/16/2024] Open
Abstract
Despite neonatal intensive care advancements and quality improvements, preterm infants often experience delays in speech and language development during early childhood. The etiological pathway of language delays is multifactorial, including younger gestational age at birth, male sex, pregnancy complications including gestational diabetes mellitus and preeclampsia, organic pathology from neonatal morbidities, environmental factors of the neonatal intensive care unit (NICU) and prolonged hospitalization, home environment including socioeconomic status and parental education, and parent-infant interactions. As early language experiences and environments are crucial for the development of language processing, strategies to support language development should be implemented from the NICU onward. This study aimed to summarize evidence- based strategies for language development through an extensive review of nutrition, NICU environment, language and sound exposure, developmental care interventions, and family-centered care. Promoting breastfeeding, increasing parent-infant interactions in a single-family room setting, nurturing the language environment via parental book reading and language interventions, and parent-integrated interventions in the NICU could potentially enhance language development among preterm infants. These supportive strategies can be integrated through family-centered care, which recognizes parents as primary caregivers and collaborative partners.
Collapse
Affiliation(s)
- Ju Sun Heo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| | - Ee-Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea
| |
Collapse
|
14
|
Parente F, Pedale T, Rossi-Espagnet C, Longo D, Napolitano A, Gazzellini S, Macrì S, Santangelo V. A Multivariate and Network Analysis Uncovers a Long-Term Influence of Exclusive Breastfeeding on the Development of Brain Morphology and Structural Connectivity. Brain Topogr 2024; 38:16. [PMID: 39585450 DOI: 10.1007/s10548-024-01091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Exclusive breastfeeding (eBF) in infancy appears to offer a developmental advantage for children's brains compared to formula-fed counterparts. Existing research has predominantly focused on global brain measures (i.e., total white/grey matter volumes) or on limited sets of specific brain regions, in selected age groups, leaving uncertainties about the impact of eBF on the overall structural connectomes. In this cross-sectional study encompassing participants from childhood to adulthood, partial least squares correlations (PLSC) were employed to assess white and grey matter volumes. Furthermore, a network analytic approach was used to estimate the structural connectome based on cortical thickness data. The results revealed that eBF duration correlated with increased white matter volumes in children and with the volume of the medial orbital gyrus in adults. Structural connectome analyses demonstrated heightened anatomical connectivity in eBF children, evidenced by enhanced network density and local/global efficiency, along with increased node degree and local efficiency in frontal and temporal lobes. Similarly, eBF in adults was associated to an improved node connectivity in the frontal lobe. These findings imply a lasting impact of eBF on brain morphometry and structural connectivity. Childhood benefits include heightened white matter development, while in adulthood, eBF may contribute to reduced neural loss associated with aging and enhanced connectivity, particularly in frontal regions.
Collapse
Affiliation(s)
- Fabrizio Parente
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy.
| | - Tiziana Pedale
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
- Department of Philosophy, Social Sciences & Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy
| | - Camilla Rossi-Espagnet
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children's Hospital IRCCS, Piazza S.Onofrio 4, 00165, Rome, Italy
| | - Daniela Longo
- Medical Physics Department, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Antonio Napolitano
- Neuroradiology Unit, Department of Imaging, Bambino Gesù Children's Hospital IRCCS, Piazza S.Onofrio 4, 00165, Rome, Italy
| | - Simone Gazzellini
- Neuroscience Clinical Area, Bambino Gesù Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299 00161, Rome, Italy
| | - Valerio Santangelo
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy.
- Department of Philosophy, Social Sciences & Education, University of Perugia, Piazza G. Ermini 1, 06123, Perugia, Italy.
| |
Collapse
|
15
|
Kwinta P, Lazarova S, Demová K, Chen Y, Hartweg M, Krattinger LF, Fumero C, Buczyńska A, Durlak W, Uhrikova Z, Kozar M, Samuel TM, Zibolen M. Effects of two-stage preterm formulas on growth, nutritional biomarkers, and neurodevelopment in preterm infants. Front Pediatr 2024; 12:1427050. [PMID: 39649400 PMCID: PMC11620880 DOI: 10.3389/fped.2024.1427050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/21/2024] [Indexed: 12/10/2024] Open
Abstract
Background Formula-fed preterm infants require nutrient-enriched formulas with optimized protein levels to support growth and neurodevelopment. The purpose of this study was to evaluate the safety, tolerability, and effectiveness of a new liquid two-staged formula system designed to provide tailored nutrition during hospital stay and after discharge. Methods Male and female very-low-birth-weight preterm infants (birth weight ≤1,500 g; gestational age ≤32 weeks) were recruited from three neonatal units in Poland and Slovakia in a prospective, open-label, interventional study. Stage 1 formula providing 3.6 g intact protein/100 kcal was consumed from enrollment until reaching 1,800 g, followed by a post-discharge (PD) Stage 2 formula with 2.8 g/100 kcal protein, which was consumed for 30 days. Weight gain velocity (WGV in g/kg/day) between the first day of achieving full enteral feeding (FEF D1 rate of 150 ml/kg/day and cessation of parenteral feeding) and day reaching 1,800 g was compared to the minimally required WGV (15 g/kg/day) for non-inferiority (primary endpoint), and to the Fenton median growth rate for superiority (17.3 g/kg/day), adjusting for sex, gestational age, site, visit, and WGV. Changes in z-scores, feeding tolerance, nutritional biomarker status, and safety were also assessed from FEF D1 to 30 days PD. In an observational follow-up at 2 years of age, neurodevelopment was evaluated using the Bayley Scales of Infant and Toddler Development (BSID-III). Results Adjusted weight gain velocity (95% CI) between the first day of full enteral feeding and day reaching 1,800 g in per protocol (PP, N = 18) was 23.0 (20.1-25.9) g/kg/day; lower limit of the 95% CIs exceeded the non-inferiority margin (15 g/kg/day, p < 0.001) and the superiority margin (17.3 g/kg/day, p < 0.001). Mean stool frequency ranged from 2.5 to 3.3 stools per day. The two-stage formula supported adequate growth patterns throughout the study and nutritional biomarkers of protein and mineral status were within normal ranges. At 24 months corrected age, the mean ± SD of the BSID cognitive scale was 97.3 ± 13.9 in PP, with all infants achieving a score >70. None of the adverse events reported were related to the study formulas. Conclusion The two-stage preterm formulas supported postnatal weight gain, adequate growth, cognitive development within normal ranges, and a safe profile of protein and bone biomarkers. Clinical Trial Registration Clinicaltrials.gov registration, NCT03728764, NCT04962035.
Collapse
Affiliation(s)
- Przemko Kwinta
- Department of Pediatrics, Jagiellonian University, Krakow, Poland
| | | | - Klaudia Demová
- Department of Neonatology, Faculty Hospital Nové Zámky, Nové Zámky, Slovakia
| | - Yipu Chen
- Nestlé Product Technology Center—Nutrition, Vevey, Switzerland
| | - Mickaël Hartweg
- Clinical Research Unit, Nestlé Research, Lausanne, Switzerland
| | | | - Cecilia Fumero
- Clinical Research Unit, Nestlé Research, Lausanne, Switzerland
| | | | - Wojciech Durlak
- Department of Pediatrics, Jagiellonian University, Krakow, Poland
| | - Zuzana Uhrikova
- Jessenius Faculty of Medicine, Martin/Comenius University, Bratislava, Slovakia
| | - Marek Kozar
- Jessenius Faculty of Medicine, Martin/Comenius University, Bratislava, Slovakia
| | | | - Mirko Zibolen
- Jessenius Faculty of Medicine, Martin/Comenius University, Bratislava, Slovakia
| |
Collapse
|
16
|
Cainelli E, Vedovelli L, Bisiacchi P. The mother-child interface: A neurobiological metamorphosis. Neuroscience 2024; 561:92-106. [PMID: 39427701 DOI: 10.1016/j.neuroscience.2024.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
From the start of pregnancy, mother and child induce reciprocal neurobiological changes in the brain that will prove critical for neurodevelopment and survival of both. Molecular communication between mother and fetus is constantly active and persists even after the fetus starts to synthesize its hormones in late gestation. Intriguingly, some mother and fetus exchange cells remain in the other's brain and body with long-lasting effects and memories that do not follow the laws of classical genetics but involve complex epigenetic mechanisms. After childbirth, mother and child go through a transitional phase, a sort of limbo in which both will have a peculiar functioning profile, which is adaptive for contingencies but also renders them vulnerable. The interplay between these two "limbo" states allows for an easier transition to the subsequent phases of development. In this review, we will trace mother's and child's path from pregnancy to the months following birth and, in particular, unravel i) the key features of pregnancy and brain development and the reciprocal influences; ii) how a transitory pattern of functioning characterize mother and child, moving them toward more flexible and evolved forms; and iii) how mother and fetus act during childbirth to promote neuroprotection, pain reduction, and neurophysiological changes. Therefore, this review covers a wide range of topics, integrating neuroanatomical, neurological, biochemical, neurophysiological, and psychological studies in a meaningful way, trying to integrate them in a holistic view of the mother-child interface that is usually neglected.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, 35131 Padova, Italy.
| | - Luca Vedovelli
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Thoracic, Vascular and Public Health Sciences, University of Padova, 35131 Padova, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, 35131 Padova, Italy; Padova Neuroscience Center, PNC, 35131 Padova, Italy.
| |
Collapse
|
17
|
Husain SF, Lim S, Pang WW, Ong YY, Fok D, Rifkin-Graboi A, Chong MFF, Chong YS, Chua MC, Daniel LM, Wlodek ME, Law EC. A longitudinal study of breastmilk feeding duration, EEG power and early academic skills. Early Hum Dev 2024; 198:106110. [PMID: 39260074 DOI: 10.1016/j.earlhumdev.2024.106110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND The cognitive benefits of breastfeeding are widely recognized; however, its effects on brain development and later academic skills require further examination. This study aimed to examine the longitudinal relations between breastmilk feeding, neurophysiological changes, and early academic skills. METHODS In the Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort, breastmilk feeding practices were collected every 3 months from 3 weeks to 18 months postpartum. Resting electroencephalography (EEG) was recorded at 18 months and power spectral density was derived. The outcomes were a set of early academic assessments administered at age 4 (n = 810). Structural equation modelling was used to investigate EEG power as a mediator between breastmilk duration and early academic skills. RESULTS Breastmilk feeding for ≥12 months was associated with better general knowledge, numeracy, and language at age 4 compared to shorter durations of breastmilk feeding (Cohen's d: 1.53-17.44). Linear regression showed that breastmilk duration was negatively and positively associated with low- (i.e., delta, theta) and high-frequency power (i.e., gamma), respectively (Cohen's f2: 0.03-0.09). After adjusting for demographic and child baseline covariates, a decrease in absolute and relative delta, as well as relative theta was associated with better general knowledge and numeracy (Cohen's f2: 0.16-0.25). Relative delta power provided an indirect path between breastmilk duration and early academic skills (x2: 18.390, p = 0.010; CFI: 0.978; TLI: 0.954; RMSEA: 0.040). CONCLUSIONS Extended breastmilk feeding is associated with reduced low-frequency power and better early academic skills, suggesting benefits to brain development. Additional research to confirm this finding is warranted.
Collapse
Affiliation(s)
- Syeda Fabeha Husain
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuping Lim
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Wei Pang
- Global Centre for Asian Women's Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Bia-Echo Asia Centre for Reproductive Longevity & Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Yi Ying Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Doris Fok
- Department of Neonatology, National University Hospital, Singapore
| | - Anne Rifkin-Graboi
- National Institute of Education (NIE), Nanyang Technological University (NTU), Singapore
| | - Mary F-F Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Mei Chien Chua
- Kandang Kerbau Women's and Children's Hospital (KKH), Singapore; Duke-NUS Graduate Medical School, Singapore
| | - L Mary Daniel
- Kandang Kerbau Women's and Children's Hospital (KKH), Singapore; Duke-NUS Graduate Medical School, Singapore
| | - Mary E Wlodek
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| | - Evelyn C Law
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
18
|
Sinkiewicz-Darol E, Łubiech K, Adamczyk I. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk. Molecules 2024; 29:4973. [PMID: 39459341 PMCID: PMC11510558 DOI: 10.3390/molecules29204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Human milk comprehensively meets the nutritional needs of a child, providing not only structural and energy components but also various bioactive factors. Among these, neurotrophic factors and hormones involved in metabolic processes deserve special attention. Studies using enzyme-linked immunosorbent assays compared the content of neurotrophic factors-CNTF, NT-3, and NGF-and hormones, leptin and insulin, in two groups of breast milk samples: early lactation (1-3 months) and extended lactation (>6 months, up to 12 months). The results indicated changes in leptin and insulin levels as the lactation period extended. NGF, leptin, and insulin were present in milk samples from both study groups, with leptin and insulin levels being higher in the early lactation group. CNTF and NT-3 were not detected in any of the samples from either study group. The analyses confirmed that human milk from women who breastfeed for extended periods remains a source of biologically active components and macronutrients that support a child's development and health.
Collapse
Affiliation(s)
- Elena Sinkiewicz-Darol
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
- Human Milk Bank, Ludwik Rydygier Provincial Polyclinical Hospital in Torun, St. Josef 53-59 St., 87-100 Torun, Poland
| | - Katarzyna Łubiech
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
| | - Iwona Adamczyk
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30 St., 85-064 Bydgoszcz, Poland; (K.Ł.); (I.A.)
- Human Milk Bank, Ludwik Rydygier Provincial Polyclinical Hospital in Torun, St. Josef 53-59 St., 87-100 Torun, Poland
| |
Collapse
|
19
|
France TC, Kennedy E, O'Regan J, Goulding DA. Current perspectives on the use of milk fat globule membrane in infant milk formula. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 39428709 DOI: 10.1080/10408398.2024.2417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sources of milk fat globule membrane (MFGM) are desirable to include in infant milk formula (IMF) to mimic the composition and functionality of human milk MFGM. MFGM in its natural form consists of a trilayer structure containing lipids (e.g., cholesterol, phospholipids, gangliosides, ceramides), proteins (e.g., butyrophilin, xanthine oxidase, mucin-1, adipophilin) and glycans (e.g., sialic acid). Components of MFGM have been associated with various biological benefit areas including intestinal, neurocognitive, and immune health. There are many aspects to consider when supplementing IMF with MFGM ingredients, of which the major ones are highlighted and critiqued in this review from an industrial research perspective. Features include compositional unknowns, discussion on how best to incorporate MFGM to IMF, analytical method needs, biological function unknowns, and considerations on how best to communicate MFGM in different contexts. It is hoped that by identifying the key scientific gaps outstanding in this subject area, collective efforts can proceed to ensure the potential impact of MFGM on infant health is realized.
Collapse
Affiliation(s)
- Thomas C France
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Elaine Kennedy
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - Jonathan O'Regan
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| | - David A Goulding
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, Ireland
| |
Collapse
|
20
|
McNeil CJ, Habota T, Sandu AL, Waiter G, Whalley H, Murray AD. The Influence of Birth Weight, Socio-Economic Status, and Adult Health on Brain Volumes during Ageing. Neuroepidemiology 2024:1-9. [PMID: 39401501 DOI: 10.1159/000541918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/24/2024] [Indexed: 11/14/2024] Open
Abstract
INTRODUCTION Greater late-life brain volumes are associated with resilience against dementia. We examined relationships between birth weight, lifelong socio-economic status, and health with late-life brain volumes. We hypothesised that early life factors directly affect late-life brain volumes. METHODS Adults aged 59-67 y underwent MRI and brain volumes were measured. Birth weight and lifelong health, and socio-economic status were quantified and the principal components of each extracted. Relationships were examined using regression and structural equation analysis. RESULTS Birth weight (β = 0.095, p = 0.017) and childhood socio-economic status (β = 0.091, p = 0.033, n = 280) were directly associated with brain volume. Childhood socio-economic status was further associated with grey matter volume (β = 0.04, p = 0.047). Adult health was linked to increased brain volume (β = 0.15, p = 0.003). CONCLUSION Birth weight and childhood socio-economic status are associated with whole and regional brain volume through direct mechanisms. Optimal fetal development, reduced childhood poverty, and good adult health could reduce brain atrophy and delay dementia onset in late-life.
Collapse
Affiliation(s)
| | - Tina Habota
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Gordon Waiter
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Heather Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
21
|
Cioffredi LA, Garner B, Maxwell JR, Merhar S, Peralta-Carcelen M, Scott LS, Sisodia M, DeMauro SB. Infant and early childhood physical health assessments in the HEALthy Brain and Child Development (HBCD) Study. Dev Cogn Neurosci 2024; 69:101414. [PMID: 39032415 PMCID: PMC11315127 DOI: 10.1016/j.dcn.2024.101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
The HEALthy Brain and Child Development (HBCD) Study, a multi-site prospective longitudinal cohort study, will examine human brain, cognitive, behavioral, social and emotional development beginning prenatally and planned through early childhood. Many prenatal and early childhood exposures impact both later physical health and development. Moreover, early deficits in physical health, such as growth and vision, are associated with differences in brain development, language and cognitive functioning. For these reasons, the HBCD Study includes measures of early childhood physical health, many of which have clinical relevance, and are applicable for use as both predictors and outcomes. Study measures assess a broad range of physical health domains and include both objective measurement of child growth and health and subjective caregiver report of behaviors and attitudes about constructs known to influence growth and physical development. Lastly, we obtain caregiver report of the child's routine medical care as well as acute and chronic medical issues. We anticipate that these data will contextualize the impact of child physical growth and health on child brain development and function. In this report we present the rationale for each domain and an overview of the physical health measures included in the current HBCD Study protocol.
Collapse
Affiliation(s)
- Leigh-Anne Cioffredi
- University of Vermont Larner College of Medicine, Vermont Children's Hospital, United States.
| | - Bailey Garner
- Department of Psychology, University of Florida, United States
| | - Jessie R Maxwell
- Division of Neonatology, Department of Pediatrics, University of New Mexico, United States
| | - Stephanie Merhar
- Perinatal Institute, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, United States
| | | | - Lisa S Scott
- Department of Psychology, University of Florida, United States
| | | | - Sara B DeMauro
- Children's Hospital of Philadelphia, United States; University of Pennsylvania Perelman School of Medicine, United States
| |
Collapse
|
22
|
Falsaperla R, Sortino V, Gambilonghi F, Vitaliti G, Striano P. Human Milk Oligosaccharides and Their Pivotal Role in Gut-Brain Axis Modulation and Neurologic Development: A Narrative Review to Decipher the Multifaceted Interplay. Nutrients 2024; 16:3009. [PMID: 39275324 PMCID: PMC11397282 DOI: 10.3390/nu16173009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), which are unique bioactive components in human milk, are increasingly recognized for their multifaceted roles in infant health. A deeper understanding of the nexus between HMOs and the gut-brain axis can revolutionize neonatal nutrition and neurodevelopmental strategies. METHODS We performed a narrative review using PubMed, Embase, and Google Scholar to source relevant articles. The focus was on studies detailing the influence of HMOs on the gut and brain systems, especially in neonates. Articles were subsequently synthesized based on their exploration into the effects and mechanisms of HMOs on these interconnected systems. RESULTS HMOs significantly influence the neonatal gut-brain axis. Specific concentrations of HMO, measured 1 and 6 months after birth, would seem to agree with this hypothesis. HMOs are shown to influence gut microbiota composition and enhance neurotransmitter production, which are crucial for brain development. For instance, 2'-fucosyllactose has been demonstrated to support cognitive development by fostering beneficial gut bacteria that produce essential short-chain fatty acids. CONCLUSIONS HMOs serve as crucial modulators of the neonatal gut-brain axis, underscoring their importance in infant nutrition and neurodevelopment. Their dual role in shaping the infant gut while influencing brain function presents them as potential game-changers in neonatal health strategies.
Collapse
Affiliation(s)
- Raffaele Falsaperla
- Neonatal Intensive Care Unit and Neonatal Accompaniment Unit, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, 95123 Catania, Italy
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, 95123 Catania, Italy
- Department of Medical Science-Pediatrics, University of Ferrara, 44124 Ferrara, Italy
| | - Vincenzo Sortino
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, 95123 Catania, Italy
| | - Francesco Gambilonghi
- Postgraduate Training Program in Pediatrics, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giovanna Vitaliti
- Unit of Pediatrics and Pediatric Emergency, Azienda Ospedaliero-Universitaria Policlinico "Rodolico-San Marco", San Marco Hospital, University of Catania, 95123 Catania, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| |
Collapse
|
23
|
Faulkner ME, Gong Z, Guo A, Laporte JP, Bae J, Bouhrara M. Harnessing myelin water fraction as an imaging biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination: A review. J Neurochem 2024; 168:2243-2263. [PMID: 38973579 PMCID: PMC11951035 DOI: 10.1111/jnc.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Ottino-González J, Adise S, Machle CJ, Mokhtari P, Holzhausen EA, Furst A, Yonemitsu C, Alderete TL, Bode L, Peterson BS, Goran MI. Consumption of different combinations of human milk oligosaccharides in the first 6 mo of infancy is positively associated with early cognition at 2 y of age in a longitudinal cohort of Latino children. Am J Clin Nutr 2024; 120:593-601. [PMID: 39059708 PMCID: PMC11393400 DOI: 10.1016/j.ajcnut.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Lactation has been widely associated with optimal neurocognitive development, but the underlying mechanism remains unknown. Human milk oligosaccharides (HMOs) are complex sugars that support brain development, but previous studies examining their associations with cognition have yielded inconsistent findings. OBJECTIVES This study aimed to provide a broader understanding of how HMOs jointly influence cognition. METHODS We used data from an ongoing longitudinal cohort of Latino mother-infant dyads. Human milk samples from 1 mo (n = 157) and 6 mo (n = 107) postpartum were assessed for the 19 most abundant HMOs. Cognitive performance was assessed at 2 y using the Bayley Scale of Infant and Toddler Development. A partial least squares model identified HMO combinations predictive of cognitive scores. RESULTS At 1 mo, the combination of higher concentrations of lacto-N-neotetraose (LNnT), lacto-N-tetraose (LNT), lacto-N-fucopentaose (LNFP)-III, 6'-sialyllactose, and 2'-fucosyllactose (FL) with lower concentrations of sialyllacto-N-tetraose (LST) b, LNFP-II, fucodisialyllacto-N-hexaose, and 3-FL significantly predicted higher cognitive scores (β: 0.61; 95% confidence interval [CI]: 0.30, 0.92), explaining an additional 8% of the variance over a model with only nuisance covariates (11%). Additional analyses revealed that the combination of higher LNFP-III and lower LSTb alone explained 5% more of the variation in cognitive scores (β: 0.66; 95% CI: 0.24, 1.09). At 6 mo (n = 107), higher LNnT, LNT, and LNFP-III and lower 3FL and LSTb concentrations explained an extra 6% of the variance in cognitive scores (β: 0.43; 95% CI: 0.12, 0.75). CONCLUSIONS This study highlights specific HMO combinations in early life influencing cognitive performance at 2 y.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Pari Mokhtari
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Annalee Furst
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Chloe Yonemitsu
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Tanya L Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California, San Diego, CA, United States
| | - Bradley S Peterson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States; Department of Psychiatry and Behavioral Sciences, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Michael I Goran
- Division of Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
25
|
Elbedour L, Balaum R, Alhozyel E, Meiri G, Zigdon D, Michaelovski A, Kerub O, Menashe I. Breastfeeding patterns in infants are associated with a later diagnosis of autism Spectrum disorder. Autism Res 2024; 17:1696-1704. [PMID: 39114960 DOI: 10.1002/aur.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Breastfeeding is associated with medical and developmental benefits. This study aimed to assess associations between nutritional patterns in the first year of life and the likelihood of autism spectrum disorder (ASD). 270 children diagnosed with ASD (cases) and 500 neurotypical children (controls) matched to cases by sex, ethnicity, and birth date (± 3 months) were included in this retrospective case-control study. Both groups were ascertained from children born between 2014 and 2017 whose development/nutrition were monitored at mother-child health clinics in southern Israel. Conditional logistic regression was used to determine the independent association of nutritional patterns with ASD while adjusting for socio-demographic and clinical characteristics. Both exclusive and partial breastfeeding modes were associated with decreased odds of ASD diagnosis (aOR = 0.221, 95%CI = 0.136-0.360; aOR = 0.494, 95%CI = 0.328-0.743, respectively). A breastfeeding duration of >12 months was associated with lower ASD odds (aOR = 0.418, 95%CI = 0.204-0.855), while the introduction of solids after 6 months of age was associated with higher ASD odds than the introduction of solids at 6 months (aOR = 2.455, 95%CI = 1.116-4.201). These findings suggest that a longer period of exclusive breastfeeding is associated with a subsequent reduced likelihood of ASD diagnosis, thus reiterating the importance of proper post-natal nutrition for infant neurodevelopment.
Collapse
Affiliation(s)
- Leena Elbedour
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rewaa Balaum
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Einav Alhozyel
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gal Meiri
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dikla Zigdon
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Analya Michaelovski
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Soroka University Medical Center, Beer-Sheva, Israel
| | | | - Idan Menashe
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
26
|
Gilbreath D, Hagood D, Larson-Prior L. A Systematic Review over the Effect of Early Infant Diet on Neurodevelopment: Insights from Neuroimaging. Nutrients 2024; 16:1703. [PMID: 38892636 PMCID: PMC11174660 DOI: 10.3390/nu16111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The optimization of infant neuronal development through nutrition is an increasingly studied area. While human milk consumption during infancy is thought to give a slight cognitive advantage throughout early childhood in comparison to commercial formula, the biological underpinnings of this process are less well-known and debated in the literature. This systematic review seeks to quantitatively analyze whether early diet affects infant neurodevelopment as measured by various neuroimaging modalities and techniques. Results presented suggest that human milk does have a slight positive impact on the structural development of the infant brain-and that this impact is larger in preterm infants. Other diets with distinct macronutrient compositions were also considered, although these had more conflicting results.
Collapse
Affiliation(s)
- Dylan Gilbreath
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Science, Little Rock, AR 72207, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Darcy Hagood
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| | - Linda Larson-Prior
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Science, Little Rock, AR 72207, USA;
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA;
| |
Collapse
|
27
|
Chen XY, Yang MT, Huang SY, Qiu YZ, Wei W, Jiang CY, Song S, Zhu HL, Lan QY. Concentration and composition of odd-chain fatty acids in phospholipids and triacylglycerols in Chinese human milk throughout lactation. Food Funct 2024; 15:5352-5363. [PMID: 38635214 DOI: 10.1039/d4fo00396a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Human milk represents the gold standard for infant nutrition, with approximately 50% of the energy in human milk derived from lipids. Odd-chain fatty acids (OCFAs) have been recognized as a category of bioactive milk fatty acids in recent research; however, limited data exist on OCFAs in human milk. This study collected human milk samples spanning the postpartum period from 0 to 400 days. Phospholipids containing OCFAs (PL-OCFAs) were determined in 486 human milk samples using hydrophilic liquid chromatography-electrospray ionization-triquadrupole-mass spectrometry. Triacylglycerols containing OCFAs (TAG-OCFAs) were analyzed in 296 human milk samples using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The average total concentration of PL-OCFA ranged from 30.89 ± 14.27 mg L-1 to 93.48 ± 36.55 mg L-1 during lactation, and the average total TAG-OCFA content ranged from 103.1 ± 147.15 mg L-1 to 965.41 ± 651.67 mg L-1. Despite the lower absolute concentration of PL-OCFA, its relative concentration (8.75%-11.75%) was significantly higher than that of TAG-OCFA (0.37%-1.85%) throughout lactation. PC-OCFA, SM-OCFA and PE-OCFA are major sub-classes of PL-OCFA. Furthermore, C17:0 was the major chain length in both PL-OCFA and TAG-OCFA, followed by C15:0. C17:1 was characteristic of TAG-OCFA, while long-chain fatty acids C19:0, C21:0 and C23:0 were characteristic of PL-OCFA. Our findings highlighted the importance of bioactive lipids in human milk, suggesting that OCFAs could be targeted in future studies in relation to the health and development of infants.
Collapse
Affiliation(s)
- Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ying-Zhen Qiu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chen-Yu Jiang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Qiu-Ye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
28
|
Wallenborn JT, Hyland C, Sagiv SK, Kogut KR, Bradman A, Eskenazi B. Prenatal exposure to polybrominated diphenyl ether (PBDE) and child neurodevelopment: The role of breastfeeding duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171202. [PMID: 38408669 PMCID: PMC11070443 DOI: 10.1016/j.scitotenv.2024.171202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Prenatal and early-life exposure to polybrominated diphenyl ethers (PBDEs) is associated with detrimental and irreversible neurodevelopmental health outcomes during childhood. Breastfeeding may be a child's largest sustained exposure to PBDE- potentially exacerbating their risk for adverse neurodevelopment outcomes. However, breastfeeding has also been associated with positive neurodevelopment. Our study investigates if breastfeeding mitigates or exacerbates the known adverse effects of prenatal exposure to PBDEs and child neurodevelopment. METHODS Participants included 321 mother-infant dyads from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a longitudinal birth cohort in California. PBDE concentrations were measured in maternal serum blood samples collected during pregnancy or at delivery. Using generalized estimated equations (GEE), we estimated associations of PBDE concentrations with children's attention, executive function, and cognitive scores assessed longitudinally between 7 and 12 years of age, stratified by duration of exclusive and complementary breastfeeding. RESULTS We observed that higher maternal prenatal PBDE concentrations were associated with poorer executive function among children who were complementary breastfed for a shorter duration compared to children breastfed for a longer duration; preservative errors (β for 10-fold increase in complementary breastfeeding <7 months = -6.6; 95 % Confidence Interval (CI): -11.4, -1.8; β ≥ 7 months = -5.1; 95 % CI: -10.2, 0.1) and global executive composition (β for 10-fold increase <7 months = 4.3; 95 % CI: 0.4, 8.2; β for 10-fold increase ≥7 months = 0.6; 95 % CI: -2.8, 3.9). CONCLUSIONS Prolonged breastfeeding does not exacerbate but may mitigate some previously observed negative associations of prenatal PBDE exposure and child neurodevelopment.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Center of Excellence for Maternal and Child Health, School of Public Health, University of California, Berkeley, CA, USA; Swiss Tropical and Public Health Institute, Department of Epidemiology and Public Health, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Carly Hyland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Division of Agriculture and Natural Resources, University of California, Berkeley, CA, USA; Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Katherine R Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Asa Bradman
- Department of Public Health, School of Social Sciences, Humanities, and Arts, University of California, Merced, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
29
|
Ni X, Zhang Z, Deng Z, Li J. Optimizing ARA and DHA in infant formula: A systematic review of global trends, regional disparities, and considerations for precision nutrition. Food Res Int 2024; 182:114049. [PMID: 38519198 DOI: 10.1016/j.foodres.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
In the context of precision nutrition, the addition of ARA and DHA in infant formula needs to consider more factors. This study conducted a comprehensive literature review, including 112 relevant Chinese and English articles, to summarize and analyze the global levels of ARA, DHA, and the ARA/DHA ratio in breast milk. The data were correlated with local aquatic products intake and children's IQ. The results indicated that the average level of DHA in breast milk across regions is lower than that of ARA. Variations in DHA content were identified as a primary factor influencing ARA/DHA ratio fluctuations. Breast milk ARA and DHA levels decrease with prolonged lactation periods but increase over the past 22 years. Correlation analysis revealed a significant positive relationship between aquatic products intake and breast milk DHA levels (r = 0.64, p < 0.05). Breast milk DHA levels also showed a significant positive correlation with children's IQ (r = 0.67, p < 0.01). Stable breast milk ARA content did not exhibit significant correlations with aquatic products intake or children's IQ (r = 0, p > 0.05). Among 22 infant formula products available in China, only 5 had ARA levels within the range of breast milk. Most formula products had higher ARA levels than DHA, resulting in ARA/DHA ratios generally exceeding 1. The temporal and spatial variability in breast milk ARA and DHA levels may lead to diverse health outcomes in infants. Therefore, the addition of ARA and DHA in infant formula should consider this variability, including the molecular forms and positional isomerism of the added ARA and DHA. Additionally, considering the impact of different cognitive development tests and infant's gene expression on formula assessment results, there is a need to establish a more comprehensive infant health assessment system to guide the addition of ARA and DHA in formula.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
30
|
Becker M, Fehr K, Goguen S, Miliku K, Field C, Robertson B, Yonemitsu C, Bode L, Simons E, Marshall J, Dawod B, Mandhane P, Turvey SE, Moraes TJ, Subbarao P, Rodriguez N, Aghaeepour N, Azad MB. Multimodal machine learning for modeling infant head circumference, mothers' milk composition, and their shared environment. Sci Rep 2024; 14:2977. [PMID: 38316895 PMCID: PMC10844250 DOI: 10.1038/s41598-024-52323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Links between human milk (HM) and infant development are poorly understood and often focus on individual HM components. Here we apply multi-modal predictive machine learning to study HM and head circumference (a proxy for brain development) among 1022 mother-infant dyads of the CHILD Cohort. We integrated HM data (19 oligosaccharides, 28 fatty acids, 3 hormones, 28 chemokines) with maternal and infant demographic, health, dietary and home environment data. Head circumference was significantly predictable at 3 and 12 months. Two of the most associated features were HM n3-polyunsaturated fatty acid C22:6n3 (docosahexaenoic acid, DHA; p = 9.6e-05) and maternal intake of fish (p = 4.1e-03), a key dietary source of DHA with established relationships to brain function. Thus, using a systems biology approach, we identified meaningful relationships between HM and brain development, which validates our statistical approach, gives credence to the novel associations we observed, and sets the foundation for further research with additional cohorts and HM analytes.
Collapse
Affiliation(s)
- Martin Becker
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Stanford University, Stanford, 94305, USA
| | - Kelsey Fehr
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Stephanie Goguen
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Kozeta Miliku
- University of Toronto, Toronto, M5S 1A8, Canada
- McMaster University, Hamilton, M5S 1A8, Canada
| | | | | | - Chloe Yonemitsu
- University of California, San Diego, La Jolla, CA, 92093, USA
| | - Lars Bode
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | - Stuart E Turvey
- University of British Columbia and British Columbia Children's Hospital, Vancouver, V5Z4H4, Canada
| | | | - Padmaja Subbarao
- University of Toronto, Toronto, M5S 1A8, Canada
- McMaster University, Hamilton, M5S 1A8, Canada
- SickKids, Toronto, M5G 0A4, Canada
| | - Natalie Rodriguez
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
- University of Manitoba, Winnipeg, R3E3P4, Canada
| | - Nima Aghaeepour
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada.
- Stanford University, Stanford, 94305, USA.
| | - Meghan B Azad
- International Milk Composition (IMiC) Consortium, Winnipeg, Canada.
- Manitoba Interdisciplinary Lactation Centre (MILC), Winnipeg, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
- University of Manitoba, Winnipeg, R3E3P4, Canada.
| |
Collapse
|
31
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024; 68:177-219. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- Centre hospitalier universitaire Sainte-Justine and Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
32
|
Chen B, de Launoit E, Renier N, Schneeberger M. Central myelin dysfunction bridges obesity and neurological diseases. Trends Endocrinol Metab 2024; 35:7-10. [PMID: 37798242 PMCID: PMC10840937 DOI: 10.1016/j.tem.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The central nervous system (CNS) relies on myelin for proper functioning. Myelin remodeling is a risk factor for neurometabolic and endocrine malfunction, resulting in cognitive decline and heightened susceptibility to neurological diseases. The plasticity of myelin upon nutrient shifts may lead to dietary and hormonal interventions for preventing and treating neural complications.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| | - Elisa de Launoit
- Laboratoire de Plasticité Structurale Sorbonne Université, ICM Paris Brain Institute, INSERM U1127, CNRS UMR7225, 75013 Paris, France
| | - Nicolas Renier
- Laboratoire de Plasticité Structurale Sorbonne Université, ICM Paris Brain Institute, INSERM U1127, CNRS UMR7225, 75013 Paris, France.
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Saito Y, Sato K, Jinno S, Nakamura Y, Nobukuni T, Ogishima S, Mizuno S, Koshiba S, Kuriyama S, Ohneda K, Morifuji M. Effect of Nicotinamide Mononucleotide Concentration in Human Milk on Neurodevelopmental Outcome: The Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. Nutrients 2023; 16:145. [PMID: 38201974 PMCID: PMC10780616 DOI: 10.3390/nu16010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: Breast milk is the only source of nutrition for breastfed infants, but few studies have examined the relationship between breast milk micronutrients and infant neurodevelopmental outcome in exclusively breastfed infants. The aim of this study was to characterize the association between nicotinamide adenine dinucleotide (NAD)-related compounds in the breast milk of Japanese subjects and infant neurodevelopmental outcome. (2) Methods: A total of 150 mother-child pairs were randomly selected from the three-generation cohort of the Tohoku Medical Megabank in Japan. Infants were exclusively breastfed for up to 6 months. Breast milk was collected at 1 month postpartum, and the quantity of NAD-related substances in the breast milk was quantified. The mothers also completed developmental questionnaires at 6, 12, and 24 months. The relationship between the concentration of NAD-related substances in breast milk and developmental indicators was evaluated via ordinal logistic regression analysis. (3) Results: Nicotinamide mononucleotide (NMN) was quantified as the major NAD precursor in breast milk. The median amount of NMN in the breast milk was 9.2 μM. The NMN concentration in breast milk was the only NAD-related substance in breast milk that showed a significant positive correlation with neurodevelopmental outcome in infants at 24 months. (4) Conclusions: The results suggest that NMN in human milk may be an important nutrient for early childhood development.
Collapse
Affiliation(s)
- Yoshie Saito
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji 192-0919, Japan;
| | - Keigo Sato
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Shinji Jinno
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Yoshitaka Nakamura
- Food Microbiology and Function Research Laboratory, Meiji Co., Ltd., Hachioji 192-0919, Japan; (K.S.); (S.J.); (Y.N.)
| | - Takahiro Nobukuni
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Satoshi Mizuno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
- International Research Institute of Disaster Science, Tohoku University, Sendai 980-0845, Japan
| | - Kinuko Ohneda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (T.N.); (S.O.); (S.M.); (S.K.); (S.K.); (K.O.)
- Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd., Hachioji 192-0919, Japan;
| |
Collapse
|
34
|
Wu Y, Sun Y, Chen R, Qiao Y, Zhang Q, Li Q, Wang X, Pan Y, Li S, Wang Z. Analysis for lipid nutrient differences in the milk of 13 species from a quantitative non-targeted lipidomics perspective. Food Chem X 2023; 20:101024. [PMID: 38144754 PMCID: PMC10740049 DOI: 10.1016/j.fochx.2023.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Lipids are essential organic components in milk and have been associated with various health benefits for newborns. However, a comprehensive analysis of lipid profiles across multiple species and levels has been lacking. In this study, we employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to accurately determine the absolute content of lipid molecules. It revealed that ruminants exhibit a higher concentration of short-chain fatty acids compared to non-ruminants. Additionally, we identified ALC (camel), MGH (horse), and DZD (donkey) as species that display similarities to components found in human milk fat. Remarkably, it reveals that porcine milk fat is characterized by long chain lengths, low saturation, and a high proportion of essential fatty acids. PS (22:5_18:2) could potentially serve as a biomarker in porcine milk. These unique characteristics present potential opportunities for the utilization of porcine milk. Overall, our findings provide valuable insights into the lipidomics profiles of milk from different species.
Collapse
Affiliation(s)
| | | | | | - Yanjun Qiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiu Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qian Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaowei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuan Pan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Siyi Li
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
35
|
Louie AY, Rund LA, Komiyama-Kasai KA, Weisenberger KE, Stanke KL, Larsen RJ, Leyshon BJ, Kuchan MJ, Das T, Steelman AJ. A hydrolyzed lipid blend diet promotes myelination in neonatal piglets in a region and concentration-dependent manner. J Neurosci Res 2023; 101:1864-1883. [PMID: 37737490 DOI: 10.1002/jnr.25243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
The impact of early life nutrition on myelin development is of interest given that cognitive and behavioral function depends on proper myelination. Evidence shows that myelination can be altered by dietary lipid, but most of these studies have been performed in the context of disease or impairment. Here, we assessed the effects of lipid blends containing various levels of a hydrolyzed fat (HF) system on myelination in healthy piglets. Piglets were sow-reared, fed a control diet, or a diet containing 12%, 25%, or 53% HF consisting of cholesterol, fatty acids, monoglycerides, and phospholipid from lecithin. At postnatal day 28/29, magnetic resonance imaging (MRI) was performed to assess changes to brain development, followed by brain collection for microscopic analyses of myelin in targeted regions using CLARITY tissue clearing, immunohistochemistry, and electron microscopy techniques. Sow-reared piglets exhibited the highest overall brain white matter volume by MRI. However, a 25% HF diet resulted in the greatest total myelin density in the prefrontal cortex based on 3D modeling analysis of myelinated filaments. Nodal gap length and g-ratio were inversely correlated with percentage of HF in the corpus callosum, as well as in the PFC and internal capsule for g-ratio, indicating that a 53% HF diet resulted in the thickest myelin per axon and a 0% HF control diet the thinnest in specific brain regions. These findings indicate that HF promoted myelination in the neonatal piglet in a region- and concentration-dependent manner.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karin A Komiyama-Kasai
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kelsie E Weisenberger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kayla L Stanke
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ryan J Larsen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Tapas Das
- Abbott Nutrition, Columbus, Ohio, USA
| | - Andrew J Steelman
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
36
|
Reichman NE, Corman H, Noonan K, Papas ED, Kuhn KB, Hegyi T. Small-for-Gestational-Age and Vocabulary and Achievement Test Scores at Age 9 Among Children Born at Term in a Contemporary U.S. Sample. Matern Child Health J 2023; 27:2156-2164. [PMID: 37526806 PMCID: PMC11806358 DOI: 10.1007/s10995-023-03760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION Children that are small-for-gestational-age (SGA) at birth are at an increased risk for cognitive impairment, even if born at term (37-41 weeks). This study examined associations between sex-specific SGA and vocabulary and achievement tests in 9 year old children born at term using a contemporary population-based US sample. METHODS A secondary data analysis was conducted on a sample of 2144 children born at term in 1998-2000 who participated in a US birth cohort study that oversampled non-marital births, which in the U.S. are associated with socioeconomic disadvantage and racial minority status. Vocabulary and achievement tests were administered to participants at age 9. Unadjusted and adjusted Ordinary Least Squares and logistic regression models of associations between SGA and test scores were estimated. RESULTS Sex-specific SGA was associated with 2-5 point lower test scores and 1-2 times the odds of scores less than 85 (> 1 SD below the national mean) across most outcomes. In adjusted models, measures of SGA were associated with low scores on the Woodcock-Johnson Applied Problems test (OR 2.257; 95% CI 1.434, 3.551) and the Woodcock-Johnson Passage Comprehension test (OR 1.554; 95% CI 1.132, 2.134). CONCLUSION The findings validate previous studies of SGA at term and cognitive outcomes and provide further evidence using a contemporary high-risk population-based US sample. The findings suggest that SGA children born at term should be recruited for early interventions to promote improved cognitive functioning in school.
Collapse
Affiliation(s)
- Nancy E Reichman
- Division of Population Health, Quality, and Implementation Science, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
- Division of Neonatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Hope Corman
- Department of Economics, Rider University, Lawrenceville, NJ, USA
- National Bureau of Economic Research, Cambridge, MA, USA
| | - Kelly Noonan
- Department of Economics, Princeton University, Princeton, NJ, USA
| | - Erini D Papas
- Department of Medical Education, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Kirsten B Kuhn
- School of Public and International Affairs, Princeton University, Princeton, NJ, USA
| | - Thomas Hegyi
- Division of Neonatology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
37
|
Zhang Y, Zhao B, Man-Yau SI, Pan Z, Gao L, Li Q, Tang C, Wang Y, Tang X, Zhao Z, Hao J, Duan S, Yan Y, Li T, Zhong Z. Milk fat globule membrane promotes brain development in piglets by enhancing the connection of white matter fiber trace. Front Nutr 2023; 10:1248809. [PMID: 38075212 PMCID: PMC10701284 DOI: 10.3389/fnut.2023.1248809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/10/2023] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Brain development during infancy is crucial for later health and development. Although Milk Fat Globule Membrane (MFGM) has been demonstrated to enhance brain development, further investigation is needed to determine the optimal dose. METHODS In this study, 80 piglets aged 2 days were randomly assigned to four groups: Control group, MFGM-L (1.74 g MFGM per 100 g diet), MFGM-M (4.64 g MFGM per 100 g diet), and MFGM-H (6.09 g MFGM per 100 g diet). Daily body weight and milk intake of the piglets were recorded until 31 days postnatal. Learning and memory abilities were evaluated using the spatial T-maze test on day 15. MRI analysis was conducted to assess functional and structural changes in brain tissues. Additionally, mRNA and protein expression of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NTF-3) in the hippocampus and prefrontal cortex were evaluated. RESULTS The results indicated that the MFGM supplemented diet significantly improved the accuracy of the piglets in the T-maze test, with the MFGM-L group exhibiting the best performance. MRI showed no volumetric differences in the gray and white matter between the groups. However, the fractional anisotropy in the left and right hippocampus of piglets in the MFGM-L group was significantly higher than in the other three groups. Furthermore, there was a strong correlation between the accuracy of the T-maze test and hippocampal fractional anisotropy. DISCUSSION The MFGM supplemented diet also increased the expression of BDNF in the cerebral cortex. However, the changes in BDNF were not consistent with the results of the T-maze test. In conclusion, adding 1.74 g MFGM per 100 g diet can significantly improve neonatal piglets' learning and memory abilities, potentially by enhancing the connection of white matter fiber bundles in the brain.
Collapse
Affiliation(s)
- Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bangcheng Zhao
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Szeto Ignatius Man-Yau
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Zhixiang Pan
- Department of Radiography, West China Hospital, Sichuan University, Chengdu, China
| | - Lijuan Gao
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinxi Li
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Tang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Tang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yalu Yan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ting Li
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Silveira RC, Corso AL, Procianoy RS. The Influence of Early Nutrition on Neurodevelopmental Outcomes in Preterm Infants. Nutrients 2023; 15:4644. [PMID: 37960297 PMCID: PMC10648100 DOI: 10.3390/nu15214644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Premature infants, given their limited reserves, heightened energy requirements, and susceptibility to nutritional deficits, require specialized care. AIM To examine the complex interplay between nutrition and neurodevelopment in premature infants, underscoring the critical need for tailored nutritional approaches to support optimal brain growth and function. DATA SOURCES PubMed and MeSH and keywords: preterm, early nutrition, macronutrients, micronutrients, human milk, human milk oligosaccharides, probiotics AND neurodevelopment or neurodevelopment outcomes. Recent articles were selected according to the authors' judgment of their relevance. Specific nutrients, including macro (amino acids, glucose, and lipids) and micronutrients, play an important role in promoting neurodevelopment. Early and aggressive nutrition has shown promise, as has recognizing glucose as the primary energy source for the developing brain. Long-chain polyunsaturated fatty acids, such as DHA, contribute to brain maturation, while the benefits of human milk, human milk oligosaccharides, and probiotics on neurodevelopment via the gut-brain axis are explored. This intricate interplay between the gut microbiota and the central nervous system highlights human milk oligosaccharides' role in early brain maturation. CONCLUSIONS Individualized nutritional approaches and comprehensive nutrient strategies are paramount to enhancing neurodevelopment in premature infants, underscoring human milk's potential as the gold standard of nutrition for preterm infants.
Collapse
Affiliation(s)
| | | | - Renato S. Procianoy
- Department of Pediatrics, Newborn Section, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre 3452925, RS, Brazil
| |
Collapse
|
39
|
Carnell S, Thapaliya G, Jansen E, Chen L. Biobehavioral susceptibility for obesity in childhood: Behavioral, genetic and neuroimaging studies of appetite. Physiol Behav 2023; 271:114313. [PMID: 37544571 PMCID: PMC10591980 DOI: 10.1016/j.physbeh.2023.114313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Modern food environments are conducive to overeating and weight gain, but not everyone develops obesity. One reason for this may be that individuals differ in appetitive characteristics, or traits, that manifest early in life and go on to influence their behavioral susceptibility to gain and maintain excess weight. Classic studies showing that eating behavior in children can be measured by behavioral paradigms such as tests of caloric compensation and eating in the absence of hunger inspired the development and validation of psychometric instruments to assess appetitive characteristics in children and infants. A large body of evidence now suggests that food approach traits increase obesity risk, while food avoidant traits, such as satiety responsiveness, decrease obesity risk. Twin studies and genetic association studies have demonstrated that appetitive characteristics are heritable, consistent with a biological etiology. However, family environment factors are also influential, with mounting evidence suggesting that genetic and environmental risk factors interact and correlate with consequences for child eating behavior and weight. Further, neuroimaging studies are revealing that individual differences in responses to visual food cues, as well as to small tastes and larger amounts of food, across a number of brain regions involved in reward/motivation, cognitive control and other functions, may contribute to individual variation in appetitive behavior. Growing evidence also suggests that variation on psychometric measures of appetite is associated with regional differences in brain structure, and differential patterns of resting state functional connectivity. Large prospective studies beginning in infancy promise to enrich our understanding of neural and other biological underpinnings of appetite and obesity development in early life, and how the interplay between genetic and environmental factors affects appetitive systems. The biobehavioral susceptibility model of obesity development and maintenance outlined in this narrative review has implications for prevention and treatment of obesity in childhood.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA.
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Liuyi Chen
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
40
|
Rajhans P, Mainardi F, Austin S, Sprenger N, Deoni S, Hauser J, Schneider N. The Role of Human Milk Oligosaccharides in Myelination, Socio-Emotional and Language Development: Observational Data from Breast-Fed Infants in the United States of America. Nutrients 2023; 15:4624. [PMID: 37960278 PMCID: PMC10649431 DOI: 10.3390/nu15214624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Infancy is a critical period for neurodevelopment, which includes myelination, synaptogenesis, synaptic pruning, and the development of motor, social-emotional, and cognitive functions. Human milk provides essential nutrients to the infant's developing brain, especially during the first postnatal months. Human milk oligosaccharides (HMOs) are a major component of human milk, and there is growing evidence of the association of individual HMOs with cognitive development in early life. However, to our knowledge, no study has explained these associations with a mechanism of action. Here, we investigated possible mediating associations between HMOs in human milk, brain myelination (measured via myelin water fraction), and measures of motor, language (collected via the Bayley Scales of Infant and Toddler Development (Bayley-III)), and socioemotional development (collected via the Ages and Stages Questionnaire: Social-Emotional Version (ASQ-SE)) in healthy term-born breast-fed infants. The results revealed an association between 6'Sialyllactose and social skills that was mediated by myelination. Furthermore, associations of fucosylated HMOs with language outcomes were observed that were not mediated by myelination. These observations indicate the roles of specific HMOs in neurodevelopment and associated functional outcomes, such as social-emotional function and language development.
Collapse
Affiliation(s)
- Purva Rajhans
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| | - Fabio Mainardi
- Department of Data Sciences & Precision Nutrition, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Sean Austin
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Norbert Sprenger
- Gastro-Intestinal Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland;
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, Providence, RI 02912, USA;
- Department of Radiology, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Jonas Hauser
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland; (J.H.); (N.S.)
| |
Collapse
|
41
|
Rodríguez-Suárez J, Solís-Sánchez G, Riaño-Galán I. Neonatal Growth, Nutrition, and Neurodevelopment: A Complex Relationship. Nutrients 2023; 15:4634. [PMID: 37960285 PMCID: PMC10649361 DOI: 10.3390/nu15214634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Growth in the neonatal period is critical for the neurodevelopment of the individual, both in low- and middle-income countries [...].
Collapse
Affiliation(s)
| | - Gonzalo Solís-Sánchez
- AGC Pediatría, Hospital Universitario Central de Asturias, Instituto Investigación Sanitaria Principado de Asturias (ISPA), Universidad de Oviedo, 33011 Oviedo, Spain; (J.R.-S.); (I.R.-G.)
| | | |
Collapse
|
42
|
Schneider N, Hartweg M, O’Regan J, Beauchemin J, Redman L, Hsia DS, Steiner P, Carmichael O, D’Sa V, Deoni S. Impact of a Nutrient Formulation on Longitudinal Myelination, Cognition, and Behavior from Birth to 2 Years: A Randomized Clinical Trial. Nutrients 2023; 15:4439. [PMID: 37892514 PMCID: PMC10610069 DOI: 10.3390/nu15204439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Observation studies suggest differences in myelination in relation to differences in early life nutrition. This two-center randomized controlled trial investigates the effect of a 12-month nutritional intervention on longitudinal changes in myelination, cognition, and behavior. Eighty-one full-term, neurotypical infants were randomized into an investigational (N = 42) or a control group (N = 39), receiving higher versus lower levels of a blend of nutrients. Non-randomized breastfed infants (N = 108) served as a reference group. Main outcomes were myelination (MRI), neurodevelopment (Bayley-III), social-emotional development (ASQ:SE-2), infant and toddler behavior (IBQ-R and TBAQ), and infant sleep (BISQ) during the first 2 years of life. The full analysis set comprised N = 67 infants from the randomized groups, with 81 myelin-sensitive MRI sequences. Significantly higher myelination was observed in the investigational compared to the control group at 6, 12, 18, and 24 months of life, as well as significantly higher gray matter volume at 24 months, a reduced number of night awakenings at 6 months, increased day sleep at 12 months, and reduced social fearfulness at 24 months. The results suggest that brain development may be modifiable with brain- and age-relevant nutritional approaches in healthy infants and young children, which may be foundational for later learning outcomes.
Collapse
Affiliation(s)
- Nora Schneider
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Mickaël Hartweg
- Biostatistics and Data Management, Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Vers-chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Jonathan O’Regan
- Nestlé Development Centre Nutrition, Askeaton, Co., RH6 0PA Limerick, Ireland
| | - Jennifer Beauchemin
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
| | - Leanne Redman
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Daniel S. Hsia
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Pascal Steiner
- Brain Health, Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1010 Lausanne, Switzerland
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA (O.C.)
| | - Viren D’Sa
- Advanced Baby Imaging Lab, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
| | - Sean Deoni
- Department of Pediatrics, Brown University, Providence, RI 02903, USA
- Spinn Neuroscience, Mukilteo, WA 98275, USA
| |
Collapse
|
43
|
Pan J, Chen M, Li N, Han R, Yang Y, Zheng N, Zhao S, Zhang Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023; 12:3755. [PMID: 37893646 PMCID: PMC10606317 DOI: 10.3390/foods12203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
The milk fat globule membrane (MFGM) is a complex tri-layer membrane that wraps droplets of lipids in milk. In recent years, it has attracted widespread attention due to its excellent bioactive functions and nutritional value. MFGM contains a diverse array of bioactive lipids, including cholesterol, phospholipids, and sphingolipids, which play pivotal roles in mediating the bioactivity of the MFGM. We sequentially summarize the main lipid types in the MFGM in this comprehensive review and outline the characterization methods used to employ them. In this comprehensive review, we sequentially describe the types of major lipids found in the MFGM and outline the characterization methods employed to study them. Additionally, we compare the structural disparities among glycerophospholipids, sphingolipids, and gangliosides, while introducing the formation of lipid rafts facilitated by cholesterol. The focus of this review revolves around an extensive evaluation of the current research on lipid isolates from the MFGM, as well as products containing MFGM lipids, with respect to their impact on human health. Notably, we emphasize the clinical trials encompassing a large number of participants. The summarized bioactive functions of MFGM lipids encompass the regulation of human growth and development, influence on intestinal health, inhibition of cholesterol absorption, enhancement of exercise capacity, and anticancer effects. By offering a comprehensive overview, the aim of this review is to provide valuable insights into the diverse biologically active functions exhibited by lipids in the MFGM.
Collapse
Affiliation(s)
- Junyu Pan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Meiqing Chen
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Ning Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (N.L.); (R.H.); (Y.Y.)
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.P.); (M.C.); (N.Z.); (S.Z.)
| |
Collapse
|
44
|
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023; 15:3754. [PMID: 37686785 PMCID: PMC10490067 DOI: 10.3390/nu15173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Myelination of the brain structures underlying social behavior in humans is a dynamic process that parallels the emergence of social-emotional development and social skills in early life. Of the many genetic and environmental factors regulating the myelination processes, nutrition is considered as a critical and modifiable early-life factor for establishing healthy social brain networks. However, the impact of nutrition on the longitudinal development of social brain myelination remains to be fully understood. This study examined the interplay between childhood nutrient intake and social brain development across the first 5 years of life. Myelin-sensitive neuroimaging and food-intake data were analyzed in 293 children, 0.5 to 5 years of age, and explored for dynamic patterns of nutrient-social brain myelin associations. We found three data-driven age windows with specific nutrient correlation patterns, 63 individual nutrient-myelin correlations, and six nutrient combinations with a statistically significant predictive value for social brain myelination. These results provide novel insights into the impact of specific nutrient intakes on early brain development, in particular social brain regions, and suggest a critical age-sensitive opportunity to impact these brain regions for potential longer-term improvements in socio-emotional development and related executive-function and critical-thinking skills.
Collapse
Affiliation(s)
- Alexandros K. Kanellopoulos
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sarah Costello
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Data Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin Street, Providence, RI 20903, USA
- Department of Radiology, Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02912, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
45
|
Cerdó T, Nieto-Ruíz A, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Suárez A, Bermúdez MG, Campoy C. Current Knowledge About the Impact of Maternal and Infant Nutrition on the Development of the Microbiota-Gut-Brain Axis. Annu Rev Nutr 2023; 43:251-278. [PMID: 37603431 DOI: 10.1146/annurev-nutr-061021-025355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The prenatal and early postnatal periods are stages during which dynamic changes and the development of the brain and gut microbiota occur, and nutrition is one of the most important modifiable factors that influences this process. Given the bidirectional cross talk between the gut microbiota and the brain through the microbiota-gut-brain axis (MGBA), there is growing interest in evaluating the potential effects of nutritional interventions administered during these critical developmental windows on gut microbiota composition and function and their association with neurodevelopmental outcomes. We review recent preclinical and clinical evidence from animal studies and infant/child populations. Although further research is needed, growing evidence suggests that different functional nutrients affect the establishment and development of the microbiota-gut-brain axis and could have preventive and therapeutic use in the treatment of neuropsychiatric disorders. Therefore, more in-depth knowledge regarding the effect of nutrition on the MGBA during critical developmental windows may enable the prevention of later neurocognitive and behavioral disorders and allow the establishment of individualized nutrition-based programs that can be used from the prenatal to the early and middle stages of life.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba, Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Ana Nieto-Ruíz
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - José Antonio García-Santos
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - María García-Ricobaraza
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Nutrición y Tecnología de los Alimentos, Biomedical Research Centre, University of Granada, Granada, Spain
| | - Mercedes G Bermúdez
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
| | - Cristina Campoy
- Department of Paediatrics, Faculty of Medicine, University of Granada, Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS-GRANADA), Granada, Spain
- Instituto de Neurociencias "Doctor Federico Olóriz," Biomedical Research Centre, University of Granada, Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health, Granada Node, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
46
|
Grotheer M, Bloom D, Kruper J, Richie-Halford A, Zika S, Aguilera González VA, Yeatman JD, Grill-Spector K, Rokem A. Human white matter myelinates faster in utero than ex utero. Proc Natl Acad Sci U S A 2023; 120:e2303491120. [PMID: 37549280 PMCID: PMC10438384 DOI: 10.1073/pnas.2303491120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 08/09/2023] Open
Abstract
The formation of myelin, the fatty sheath that insulates nerve fibers, is critical for healthy brain function. A fundamental open question is what impact being born has on myelin growth. To address this, we evaluated a large (n = 300) cross-sectional sample of newborns from the Developing Human Connectome Project (dHCP). First, we developed software for the automated identification of 20 white matter bundles in individual newborns that is well suited for large samples. Next, we fit linear models that quantify how T1w/T2w (a myelin-sensitive imaging contrast) changes over time at each point along the bundles. We found faster growth of T1w/T2w along the lengths of all bundles before birth than right after birth. Further, in a separate longitudinal sample of preterm infants (N = 34), we found lower T1w/T2w than in full-term peers measured at the same age. By applying the linear models fit on the cross-section sample to the longitudinal sample of preterm infants, we find that their delay in T1w/T2w growth is well explained by the amount of time they spent developing in utero and ex utero. These results suggest that white matter myelinates faster in utero than ex utero. The reduced rate of myelin growth after birth, in turn, explains lower myelin content in individuals born preterm and could account for long-term cognitive, neurological, and developmental consequences of preterm birth. We hypothesize that closely matching the environment of infants born preterm to what they would have experienced in the womb may reduce delays in myelin growth and hence improve developmental outcomes.
Collapse
Affiliation(s)
- Mareike Grotheer
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - David Bloom
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - John Kruper
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Adam Richie-Halford
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| | - Stephanie Zika
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Vicente A. Aguilera González
- Department of Psychology, Philipps-Universität Marburg, Marburg35039, Germany
- Center for Mind, Brain and Behavior, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg35039, Germany
| | - Jason D. Yeatman
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Graduate School of Education, Stanford University, Stanford, CA94305
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA94305
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA98105
- eScience Institute, University of Washington, Seattle, WA98105
| |
Collapse
|
47
|
Mohammed S, Webb EL, Calvert C, Glynn JR, Sunny BS, Crampin AC, McLean E, Munthali-Mkandawire S, Lazarous Nkhata Dube A, Kalobekamo F, Marston M, Oakley LL. Effects of exclusive breastfeeding on educational attainment and longitudinal trajectories of grade progression among children in a 13-year follow-up study in Malawi. Sci Rep 2023; 13:11413. [PMID: 37452129 PMCID: PMC10349128 DOI: 10.1038/s41598-023-38455-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
The benefits of exclusive breastfeeding (EBF) for infant health and survival are well documented. However, its impact on educational outcomes has been contested and poorly researched in Africa. It has been hypothesised that positive associations reported in high-income countries can be attributed to residual confounding by socioeconomic status (SES). Our study investigated whether EBF duration in infancy is associated with educational attainment and age-for-grade attainment trajectories at school-age in rural Malawi. Longitudinal data on 1021 children at the Karonga demographic surveillance site in Malawi were analysed. Breastfeeding data were collected 3 months after birth and again at age one. The school grade of each child was recorded each year from age 6 until age 13. We calculated age-for-grade based on whether a child was at, over, or under the official expected age for a grade. Generalised estimating equations estimated the average effect of breastfeeding on age-for-grade. Latent class growth analysis identified age-for-grade trajectories, and multinomial logistic regression examined their associations with EBF. Maternal-child characteristics, SES, and HIV status were controlled. Overall, 35.9% of the children were exclusively breastfed for 6 months. Over-age for grade steadily increased from 9.6% at age 8 to 41.9% at age 13. There was some evidence that EBF for 6 months was associated with lower odds of being over-age for grade than EBF for less than 3 months (aOR = 0.82, 95%CI = 0.64-1.06). In subgroup analyses, children exclusively breastfed for 6 months in infancy were less likely to be over-age for grades between ages 6-9 (aOR = 0.64, 95%CI = 0.43-0.94). Latent class growth analysis also provided some evidence that EBF reduced the odds of falling behind in the early school grades (aOR = 0.66, 95%CI = 0.41-1.08) but not later. Our study adds to the growing evidence that EBF for 6 months has benefits beyond infant health and survival, supporting the WHO's recommendation on EBF.
Collapse
Affiliation(s)
- Shamsudeen Mohammed
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Emily L Webb
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Clara Calvert
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith R Glynn
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Bindu S Sunny
- United Nations Educational, Scientific and Cultural Organization, Paris, France
| | - Amelia C Crampin
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Estelle McLean
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
- Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi
| | | | | | | | - Milly Marston
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Laura L Oakley
- Department of Non-communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
48
|
Beery AK, Jackson B, Halstead E, Windorski SM, Nnodim-Amadi C, Upin E. Acute decrease in mothers' cortisol following nursing and milk expression. Horm Behav 2023; 153:105387. [PMID: 37307679 DOI: 10.1016/j.yhbeh.2023.105387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The glucocorticoid hormone cortisol is an integral component of signaling pathways related to stress reactivity, energy balance, immune function, and other processes. In animal models, lactation is robustly associated with alterations in glucocorticoid signaling, and limited data suggest that similar changes may occur across human lactation. We asked whether milk letdown/secretion in breastfeeding mothers was associated with changes in cortisol, and whether such effects required presence of an infant. We measured changes in maternal salivary cortisol concentrations before and after nursing, the expression of breastmilk with an electric pump, or control activities. Participants conducted pre-session and post-session sampling (at 30 min) for all conditions, and provided a sample of pumped milk from one session. Both nursing and mechanical expression of breastmilk but not control were associated with equivalent declines in maternal cortisol concentration from pre-session values, indicating an effect of milk letdown on circulating cortisol independent of infant contact. Pre-session maternal salivary cortisol concentration was strongly and positively correlated with cortisol concentration in pumped milk samples, indicating that cortisol ingested by offspring provides a signal of maternal cortisol levels. Self-reported maternal stress was associated with higher pre-session cortisol concentrations, as well as with a larger drop in cortisol following nursing or pumping. These findings demonstrate that milk release-in the presence or absence of a suckling infant-regulates cortisol in mothers, and supports the potential for maternal signaling through breastmilk.
Collapse
Affiliation(s)
- Annaliese K Beery
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, United States of America; Department of Psychology, Smith College, Northampton, MA 01063, United States of America; Department of Biology, Smith College, Northampton, MA 01063, United States of America; Program in Neuroscience, Smith College, Northampton, MA 01063, United States of America; Program in Culture, Health, and Science, Five College Consortium, Amherst, MA 01002, United States of America; Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01002, United States of America.
| | - Benita Jackson
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America; Program in Culture, Health, and Science, Five College Consortium, Amherst, MA 01002, United States of America
| | - Emily Halstead
- Program in Neuroscience, Smith College, Northampton, MA 01063, United States of America
| | - Sunny M Windorski
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America
| | | | - Emily Upin
- Department of Psychology, Smith College, Northampton, MA 01063, United States of America
| |
Collapse
|
49
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
50
|
Abargil M, Irani M, klein Selle N, Atzil S. Breastfeeding at Any Cost? Adverse Effects of Breastfeeding Pain on Mother-Infant Behavior. BIOLOGY 2023; 12:636. [PMID: 37237450 PMCID: PMC10215422 DOI: 10.3390/biology12050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Breast milk is considered the ideal infant nutrition, and medical organizations encourage breastfeeding worldwide. Moreover, breastfeeding is often perceived as a natural and spontaneous socio-biological process and one of the fundamental roles of new mothers. While breastfeeding is beneficial, little scientific consideration has been given to its potential psychological challenges. Here, we investigate the phenomenon of breastfeeding pain in mothers and its association with maternal and infant behavioral regulation. During the postpartum weeks, the mother-infant dyad can be considered one allostatic unit directed at infant regulation and development. We hypothesize that pain comprises an allostatic challenge for mothers and will thus impair the capacity for dyadic regulation. To test this, we recruited 71 mothers with varying levels of breastfeeding pain and videotaped them with their infants (2-35 weeks old) during spontaneous face-to-face interactions. We quantified the individual differences in dyadic regulation by behaviorally coding the second-by-second affective expressions for each mother and infant throughout their interactions. We tested the extent to which breastfeeding pain alters affect regulation during mother-infant interactions. We discovered that mothers with severe breastfeeding pain express less affective expressions and less infant-directed gaze during interactive moments of engagement and play than mothers with no or moderate pain. Moreover, infants of mothers experiencing pain during breastfeeding express less affective expressions and more mother-directed gaze while interacting with their mothers than infants of mothers who are not in pain. This demonstrates that the allostatic challenge of maternal pain interferes with the behavioral regulation of both mothers and infants. Since the mother-infant dyad is a codependent allostatic unit, the allostatic challenges of one partner can impact the dyad and thus potentially impact child development, bonding, and mother and infant well-being. The challenges of breastfeeding should be considered in addition to the nutritional advances.
Collapse
Affiliation(s)
- Maayan Abargil
- The Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Merav Irani
- The Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | | | - Shir Atzil
- The Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|