1
|
Nosrati H, Shafieian M, Abolfathi N. A Comprehensive Analysis of Inconsistencies in the Brain's Conventional Ex Vivo Mechanical Experiments. Ann Biomed Eng 2025:10.1007/s10439-025-03765-4. [PMID: 40493114 DOI: 10.1007/s10439-025-03765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 05/18/2025] [Indexed: 06/12/2025]
Abstract
In 2020, a review titled Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue was published, offering a comprehensive overview of brain mechanics. While this work stands out for its insightful analysis of brain mechanics, there are certain points it did not fully address, as well as key areas that require more detailed examination. The goal of this review is not merely to summarize and report on previous studies but to highlight discrepancies in the root causes of the extensive data reported in the literature. By examining the wide-ranging data, the progression of research over six decades, and the knowledge developed during this period, we aim to identify the sources of these discrepancies and propose feasible directions for future research. Additionally, while micromechanical models have attracted significant attention in recent years, we provide evidence to emphasize that, despite their advantages, these models are not yet reliable enough to replace conventional mechanical experiments and macro-scale models. By compiling, visualizing, and analyzing data from the past six decades and integrating challenging issues into a cohesive framework, this approach provides a more actionable analysis. It simplifies navigation through the field and equips researchers with a clearer understanding of its historical progression, challenges, and opportunities.
Collapse
Affiliation(s)
- Hadi Nosrati
- Department of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran.
| | - Nabiollah Abolfathi
- Department of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| |
Collapse
|
2
|
Cerjanic AM, Diano AM, Johnson CL. Elastographic magnetization prepared imaging with rapid encoding. Magn Reson Med 2025; 93:2444-2455. [PMID: 40065646 DOI: 10.1002/mrm.30482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 04/06/2025]
Abstract
PURPOSE To introduce a novel sequence for achieving fast, whole-brain MR elastography data through the introduction of a magnetization preparation block for motion encoding along with rapid imaging readouts. THEORY AND METHODS We implemented MRE motion encoding in a magnetization preparation pulse sequence block, where spins are excited, motion encoded, and then stored longitudinally. This magnetization is accessed through a train of rapid gradient echoes and encoded with a 3D stack-of-spirals trajectory. Spoilers are included to crush unprepared magnetization and avoid image artifacts. We demonstrate the feasibility of the proposed method in capturing MRE displacement data for estimating mechanical properties and accelerating scan times. RESULTS We measured stability of phase across gradient echo readouts in the readout train after magnetization preparation. Additionally, we obtained displacement fields with high OSS-SNR with retrospective sampling and differences in average stiffness properties (NRMSE) of 3.6% (R x y = 2 $$ {R}_{xy}=2 $$ ) and 7.7% (R x y = 4 $$ {R}_{xy}=4 $$ ) between retrospectively undersampled and fully sampled data. Prospective undersampling showed highly similar multiscale similarity measures and global property differences between 1.0% to 3.5% with one outlier of 8.1% between the proposed method and reference EPI scans. CONCLUSION Magnetization preparation for MRE is feasible and can accelerate brain MRE scans, producing high-quality mechanical property maps at 2.5 mm isotropic resolution in 1 min 20 s.
Collapse
Affiliation(s)
- Alex M Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Alexa M Diano
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Alshareef A, Carass A, Lu YC, Mojumder J, Diano AM, Bailey OM, Okamoto RJ, Pham DL, Prince JL, Bayly PV, Johnson CL. Average Biomechanical Responses of the Human Brain Grouped by Age and Sex. Ann Biomed Eng 2025; 53:1496-1511. [PMID: 40205286 PMCID: PMC12075284 DOI: 10.1007/s10439-025-03725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Traumatic brain injuries (TBIs) occur from rapid head motion that results in brain deformation. Computational models are typically used to estimate brain deformation to predict risk of injury and evaluate the effectiveness of safety countermeasures. The accuracy of these models relies on validation to experimental brain deformation data. In this study, we create the first group-average biomechanical responses of the brain, including structure, material properties, and deformation response, by age and sex from 157 subjects. Subjects were sorted intro three age groups-young, mid-age, and older-and by sex to create group-average neuroanatomy, material properties, and brain deformation response to non-injurious loading using structural and specialized magnetic resonance imaging data. Computational models were also built using the group-average geometry and material properties for each of the six groups. The material properties did not depend on sex, but showed a decrease in shear stiffness in the older adult group. The brain deformation response also showed differences in the distribution of strain and a decrease in the magnitude of maximum strain in the older adult group. The computational models were simulated using the same non-injurious loading conditions as the subject data. While the models' strain response showed differences among the models, there were no clear relationships with age. Further studies, both modeling and experimental, with more data from subjects in each age group, are needed to clarify the mechanisms underlying the observed changes in strain response with age, and for computational models to better match the trends observed across the group-average responses.
Collapse
Affiliation(s)
- Ahmed Alshareef
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC, USA.
| | - Aaron Carass
- Image Analysis and Communications Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuan-Chiao Lu
- The Military Traumatic Brain Injury Initiative, The Henry M. Jackson Foundation, Bethesda, MD, USA
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Joy Mojumder
- Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alexa M Diano
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Olivia M Bailey
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Ruth J Okamoto
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Dzung L Pham
- The Military Traumatic Brain Injury Initiative, The Henry M. Jackson Foundation, Bethesda, MD, USA
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
| | - Jerry L Prince
- Image Analysis and Communications Laboratory, Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Philip V Bayly
- Department of Mechanical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Jeanpierre GM, Rausch MK, Santacruz SR. Mechanical properties of fresh rhesus monkey brain tissue. Acta Biomater 2025; 196:233-243. [PMID: 40015355 DOI: 10.1016/j.actbio.2025.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Studying brain tissue mechanics is critical for understanding how the brain's physical properties influence its biological functions. Non-human primates, such as rhesus monkeys, are a key translational model for human neuroscience research, yet their brain tissue mechanics remain poorly understood. We report the mechanical properties of rhesus monkey white (corona radiata, CR) and gray (basal ganglia, BG) matter during compression relaxation, tension relaxation, tension-compression cycling (strain = 0.15, nCR = 21, nBG = 14), and shear cycling (strain = 0.3, nCR = 17, nBG = 9). Compression relaxation yields short and long-term time constants of 1.13 ± 0.041 s and 26.3 ± 0.68 s for CR and 1.22 ± 0.046 s and 28.3 ± 0.70 s for BG. Tension relaxation yields short and long-term time constants of 1.10 ± 0.052 s and 28.2 ± 0.82 s for CR and 1.19 ± 0.052 s and 29 ± 1.3 s for BG. Tension-compression cycling yields elastic moduli (E₁, E₂, E₃) of 36 ± 3.8 kPa, 0.61 ± 0.096 kPa, and 9.3 ± 0.90 kPa for CR and 27 ± 4.8 kPa, 0.68 ± 0.092 kPa, and 8 ± 1.0 kPa for BG. Shear cycling yields E₁, E₂, and E₃ of 3.9 ± 0.77 kPa, 0.19 ± 0.034 kPa, and 3.1 ± 0.40 kPa for CR and 2.8 ± 0.52 kPa, 0.18 ± 0.058 kPa, and 3.2 ± 0.53 kPa for BG. Hysteresis areas are also captured during tension-compression and shear cycling. These findings extend the translatability of rhesus monkey models for neuroscience. STATEMENT OF SIGNIFICANCE: While rhesus monkeys are a valuable translational model in human neuroscience research, there is a huge gap in knowledge about rhesus monkey brain tissue mechanics. This study serves to increase our understanding of rhesus monkey brain tissue mechanics and is the first to report the stiffness, time constant, and hysteresis parameters for rhesus monkey brain tissue in compression, tension, and shear for both the corona radiata and basal ganglia. The data is available in an open-source format, allowing others to fit and validate their mechanical models.
Collapse
Affiliation(s)
- Grace M Jeanpierre
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Manuel K Rausch
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA; Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Samantha R Santacruz
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Neuroscience Program, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
5
|
Träuble J, Hiscox LV, Johnson C, Aviles-Rivero A, Schönlieb CB, Schierle GSK. Enhancing Brain Age Prediction and Neurodegeneration Detection with Contrastive Learning on Regional Biomechanical Properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645330. [PMID: 40196600 PMCID: PMC11974862 DOI: 10.1101/2025.03.25.645330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The aging process affects brain structure and function, yet its biomechanical properties remain underexplored. Magnetic Resonance Elastography (MRE) provides a unique perspective by mapping brain tissue stiffness and damping ratio, observables that correlate with age and disease. Using a self-supervised contrastive regression framework, we demonstrate that MRE surpasses conventional structural magnetic resonance imaging (MRI) in sensitivity. Specifically, stiffness captures Alzheimer's disease (AD), while damping ratio detects subtle changes associated with mild cognitive impairment (MCI). Our regional analysis identifies deep brain structures, particularly the caudate and thalamus, as key biomarkers of aging. The greater age sensitivity of MRE translates to superior differentiation of AD and MCI from healthy individuals, pinpointing regions where significant biomechanical alterations occur, notably the thalamus in AD and hippocampus in MCI. Furthermore, our results reveal biomechanical alterations in cognitively healthy individuals whose aging profiles closely resemble patients with MCI and AD. These findings highlight MRE's potential as a biomarker for early neurodegenerative changes, aiding dementia risk detection and early intervention.
Collapse
Affiliation(s)
- J Träuble
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - L V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - C Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, USA
| | - A Aviles-Rivero
- Yau Mathematical Sciences Center, Tsinghua University, China
| | - C B Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - G S Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wang L, Li B, Tang Z, Wang Y, Peng Y, Sun T, Zhang A, Qi X. Gastrodin Alleviates Tau Pathology by Targeting the Alzheimer's Risk Gene FERMT2, Reversing the Reduction in Brain Viscoelasticity. CNS Neurosci Ther 2025; 31:e70283. [PMID: 40119586 PMCID: PMC11928745 DOI: 10.1111/cns.70283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The pathogenesis of Alzheimer's disease (AD) remains incompletely elucidated, and there is a notable deficiency in effective and safe therapeutic interventions. The influence of brain matrix viscoelasticity on the progression of AD has frequently been underestimated. It is imperative to elucidate these overlooked pathogenic factors and to innovate novel therapeutic strategies for AD. Gastrodin, a bioactive constituent derived from the traditional Chinese medicinal herb Gastrodia elata, exhibits a range of pharmacological properties, notably in the enhancement of neural function. Nevertheless, the underlying mechanisms of its action remain insufficiently elucidated. Consequently, this study seeks to examine the therapeutic effects and underlying mechanisms of gastrodin in the context of AD, with particular emphasis on its potential influence on the viscoelastic properties of the brain matrix. METHODS This study employs a range of methodologies, including the Morris water maze test, Y-maze spontaneous alternation test, atomic force microscopy (AFM), immunofluorescence, transmission electron microscopy, molecular docking, and Cellular Thermal Shift Assay (CETSA), to demonstrate that gastrodin mitigates tau pathology by modulating FERMT2, thereby reversing the deterioration of mechanical viscoelasticity in the brain. RESULTS Gastrodin administration via gavage has been demonstrated to mitigate cognitive decline associated with AD, attenuate the hyperphosphorylation of tau protein in the hippocampus and cortex, and ameliorate synaptic damage. Additionally, gastrodin was observed to counteract the reduction in brain matrix viscoelasticity in 3xTg-AD mice, as evidenced by the upregulation of extracellular matrix components pertinent to viscoelasticity, notably collagen types I and IV. Furthermore, molecular docking and CETSA revealed a strong binding affinity between gastrodin and FERMT2. Gastrodin treatment resulted in a reduction of FERMT2 fluorescence intensity, which is selectively expressed in astrocytes. Additionally, gastrodin contributed to the restoration of the blood-brain barrier (BBB) and modulated the expression levels of inflammatory mediators interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and matrix metallopeptidase 8 (MMP8). CONCLUSION Gastrodin treatment has the potential to mitigate tau pathology, thereby enhancing learning and memory in AD mouse models. This effect may be mediated through the modulation of cerebral mechanical viscoelasticity via the mechanosensor FERMT2, which facilitates the restoration of synaptic structure and function. This process is potentially linked to the maintenance of BBB integrity and the modulation of inflammatory factor release.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- School of NursingGuizhou Medical UniversityGuiyangChina
| | - Bo Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Yang Wang
- The Department of ImagingAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
| | - Ting Sun
- School of NursingGuizhou Medical UniversityGuiyangChina
| | - Anni Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- The Department of NeurologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou ProvinceKey Laboratory of Molecular Biology of Guizhou Medical UniversityGuiyangChina
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Constructed by the Province and MinistryGuiyangChina
| |
Collapse
|
7
|
Pavuluri K, Huston J, Ehman RL, Manduca A, Vemuri P, Jack CR, Senjem ML, Murphy MC. Brain mechanical properties predict longitudinal cognitive change in aging and Alzheimer's disease. Neurobiol Aging 2025; 147:203-212. [PMID: 39813771 PMCID: PMC11833753 DOI: 10.1016/j.neurobiolaging.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Age-related cognitive decline is a complex phenomenon that is influenced by various neurobiological processes at the molecular, cellular, and tissue levels. The extent of this decline varies between individuals and the underlying determinants of these differences are not fully understood. Two of the most prominent signs of cognitive decline in aging are the deterioration of episodic memory, which is a hallmark of Alzheimer's disease (AD), and the nearly always accompanying atrophy of the medial temporal lobe. Both cross-sectional and longitudinal studies have consistently demonstrated the strong relationship between these two, however, recent advanced imaging techniques have shown promise for predicting cognitive decline earlier than atrophy measures. In this study, we investigate the value of brain biomechanical properties, specifically in the medial temporal lobe, for predicting global cognitive decline along the normal aging and AD spectrum. Our results indicate that the medial temporal stiffness significantly predicts future cognitive decline beyond that achieved by measures of atrophy and amyloidosis. Measures of brain biomechanical properties may provide valuable prognostic information to enable more efficient study design and evaluation of potential interventions.
Collapse
Affiliation(s)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Wu C, Alizadeh M, Kramer MK, Kroen MB, Ziechmann R, Mohamed FB, Wu Q, Johnson CL. Deep Brain Stimulation Electrode Deviations are Associated With Brain Stiffness Interfaces Measured by Magnetic Resonance Elastography. Oper Neurosurg (Hagerstown) 2025:01787389-990000000-01480. [PMID: 39976434 DOI: 10.1227/ons.0000000000001523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The efficacy of deep brain stimulation (DBS) relies on accurate electrode placement. Unfortunately, electrode deviation poses a persistent problem, with most electrodes demonstrating some degree of bending. Although such bending does not always result in target deviation, an estimated 3% to 8% of patients still require revision surgery to address suboptimal electrode placement. DBS electrode deviation may occur at mechanical tissue interfaces, with denser internal capsule (IC) fibers being the most likely factor. Based on basic principles of physics, we hypothesized that the angle of a planned trajectory relative to tissue interfaces created by the IC induces deviation. METHODS Ten patients with Parkinson disease scheduled for DBS surgery underwent preoperative 3T magnetic resonance elastography (MRE) using synchronized external vibrations to measure brain tissue stiffness. The IC stiffness interface (ICSI) was defined as the transition between the corona radiata and IC on MRE. The rate of transition was calculated as the change in stiffness across the ICSI. Postoperative computed tomography was used to measure target deviation. The angle of approach was calculated as the angle between the planned trajectory and the normal vector to the ICSI. Pearson correlations and t-tests were performed to evaluate associations between the angle of approach and target deviation. RESULTS Twenty-one electrode trajectories were analyzed. The mean electrode deviation was 1.27 ± 0.63 mm. A significant correlation (r = 0.57, 95% CI [0.18, 0.80], P = .007) was found between angle of approach and target deviation, with larger angles associated with greater deviations. The rate of transition did not correlate with deviation (P = .874). CONCLUSION MRE effectively quantifies in vivo brain tissue stiffness in Parkinson disease. The angle between the planned trajectory and the ICSI correlates with target deviation, supporting the hypothesis that tissue mechanics influence electrode bending. MRE has potential to quantify the likelihood of DBS electrode deviation, which could reduce revision surgeries and enhance clinical outcomes.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mary K Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew B Kroen
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Robert Ziechmann
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qianhong Wu
- Department of Mechanical Engineering, Villanova University, Villanova, Pennsylvania, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Abdi H, Sanchez-Molina D, Garcia-Vilana S, Rahimi-Movaghar V. Biomechanical perspectives on traumatic brain injury in the elderly: a comprehensive review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022001. [PMID: 39761631 DOI: 10.1088/2516-1091/ada654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
Traumatic brain injuries (TBIs) pose a significant health concern among the elderly population, influenced by age-related physiological changes and the prevalence of neurodegenerative diseases. Understanding the biomechanical dimensions of TBIs in this demographic is vital for developing effective preventive strategies and optimizing clinical management. This comprehensive review explores the intricate biomechanics of TBIs in the elderly, integrating medical and aging studies, experimental biomechanics of head tissues, and numerical simulations. Research reveals that global brain atrophy in normal aging occurs at annual rates of -0.2% to -0.5%. In contrast, neurodegenerative diseases such as Alzheimer's, Parkinson's, and multiple sclerosis are associated with significantly higher rates of brain atrophy. These variations in atrophy rates underscore the importance of considering differing brain atrophy patterns when evaluating TBIs among the elderly. Experimental studies further demonstrate that age-related changes in the mechanical properties of critical head tissues increase vulnerability to head injuries. Numerical simulations provide insights into the biomechanical response of the aging brain to traumatic events, aiding in injury prediction and preventive strategy development tailored to the elderly. Biomechanical analysis is essential for understanding injury mechanisms and forms the basis for developing effective preventive strategies. By incorporating local atrophy and age-specific impact characteristics into biomechanical models, researchers can create targeted interventions to reduce the risk of head injuries in vulnerable populations. Future research should focus on refining these models and integrating clinical data to better predict outcomes and enhance preventive care. Advancements in this field promise to improve health outcomes and reduce injury risks for the aging population.
Collapse
Affiliation(s)
- Hamed Abdi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Binner P, Starshynov I, Tejeda G, McFall A, Molloy C, Ciccone G, Walker M, Vassalli M, Tobin AB, Faccio D. Optical, contact-free assessment of brain tissue stiffness and neurodegeneration. BIOMEDICAL OPTICS EXPRESS 2025; 16:447-459. [PMID: 39958854 PMCID: PMC11828460 DOI: 10.1364/boe.545580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025]
Abstract
Dementia affects a large proportion of the world's population. Approaches that allow for early disease detection and non-invasive monitoring of disease progression are desperately needed. Current approaches are centred on costly imaging technologies such as positron emission tomography and magnetic resonance imaging. We propose an alternative approach to assess neurodegeneration based on diffuse correlation spectroscopy (DCS), a remote and optical sensing technique. We employ this approach to assess neurodegeneration in mouse brains from healthy animals and those with prion disease. We find a statistically significant difference in the optical speckle decorrelation times between prion-diseased and healthy animals. We directly calibrated our DCS technique using hydrogel samples of varying Young's modulus, indicating that we can optically measure changes in the brain tissue stiffness in the order of 60 Pa (corresponding to a 1 s change in speckle decorrelation time). DCS holds promise for contact-free assessment of tissue stiffness alteration due to neurodegeneration, with a similar sensitivity to contact-based (e.g. nanoindentation) approaches.
Collapse
Affiliation(s)
- Philip Binner
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Ilya Starshynov
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo Tejeda
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Aisling McFall
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Colin Molloy
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Giuseppe Ciccone
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology (BIST) Barcelona, Spain
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Walker
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Twohy KE, Kramer MK, Diano AM, Bailey OM, Delgorio PL, McIlvain G, McGarry MDJ, Martens CR, Schwarb H, Hiscox LV, Johnson CL. Mechanical Properties of the Cortex in Older Adults and Relationships With Personality Traits. Hum Brain Mapp 2025; 46:e70147. [PMID: 39916406 PMCID: PMC11803078 DOI: 10.1002/hbm.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Aging and neurodegeneration impact structural brain integrity and can result in changes to behavior and cognition. Personality, a relatively stable trait in adults as compared to behavior, in part relies on normative individual differences in cellular organization of the cerebral cortex, but links between brain structure and personality expression have been mixed. One key finding is that personality has been shown to be a risk factor in the development of Alzheimer's disease, highlighting a structure-trait relationship. Magnetic resonance elastography (MRE) has been used to noninvasively study age-related changes in tissue mechanical properties because of its high sensitivity to both the microstructural health and the structure-function relationship of the tissue. Recent advancements in MRE methodology have allowed for reliable property recovery of cortical subregions, which had previously presented challenges due to the complex geometry and overall thin structure. This study aimed to quantify age-related changes in cortical mechanical properties and the relationship of these properties to measures of personality in an older adult population (N = 57; age 60-85 years) for the first time. Mechanical properties including shear stiffness and damping ratio were calculated for 30 bilateral regions of the cortex across all four lobes, and the NEO Personality Inventory (NEO-PI) was used to measure neuroticism and conscientiousness in all participants. Shear stiffness and damping ratio were found to vary widely across regions of the cortex, upward of 1 kPa in stiffness and by 0.3 in damping ratio. Shear stiffness changed regionally with age, with some regions experiencing accelerated degradation compared to neighboring regions. Greater neuroticism (i.e., the tendency to experience negative emotions and vulnerability to stress) was associated with high damping ratio, indicative of poorer tissue integrity, in the rostral middle frontal cortex and the precentral gyrus. This study provides evidence of structure-trait correlates between physical mechanical properties and measures of personality in older adults and adds to the supporting literature that neurotic traits may impact brain health in cognitively normal aging.
Collapse
Affiliation(s)
- Kyra E. Twohy
- Department of Mechanical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Mary K. Kramer
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Alexa M. Diano
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Olivia M. Bailey
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Peyton L. Delgorio
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Grace McIlvain
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | | | | | - Hillary Schwarb
- Department of PsychologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Brain, Biology and BehaviorUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Lucy V. Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC)Cardiff UniversityCardiffUK
| | - Curtis L. Johnson
- Department of Mechanical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
12
|
Darwish OI, Koch V, Vogl TJ, Wolf M, Schregel K, Purushotham A, Vilgrain V, Paradis V, Neji R, Sinkus R. MR Elastography Using the Gravitational Transducer. SENSORS (BASEL, SWITZERLAND) 2024; 24:8038. [PMID: 39771774 PMCID: PMC11679839 DOI: 10.3390/s24248038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
MR elastography is a non-invasive imaging technique that provides quantitative maps of tissue biomechanical properties, i.e., elasticity and viscosity. Currently, hepatic MR elastography is deployed in the clinic to assess liver fibrosis in MAFLD patients. In addition, research has demonstrated MR elastography's ability to non-invasively assess chronic liver disease and to characterize breast cancer lesions and brain tumors. MR elastography requires efficient mechanical wave generation and penetration, motion-sensitized MRI sequences, and MR elastography inversion algorithms to retrieve the biomechanical properties of the tissue. MR elastography promises to enable non-invasive and versatile assessment of tissue, leading to better diagnosis and staging of several clinical conditions.
Collapse
Affiliation(s)
- Omar Isam Darwish
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- MR Predevelopment, Siemens Healthineers, 91052 Erlangen, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60629 Frankfurt am Main, Germany
| | - Marcos Wolf
- Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Schregel
- Department of Neuroradiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Arnie Purushotham
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Valérie Vilgrain
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Radiology, Hospital Beaujon, 92110 Clichy, France
| | - Valérie Paradis
- INSERM, Centre de Recherche sur l’Inflammation, Universite Paris Cite, 45018 Paris, France
- Department of Pathology, Hospital Beaujon, 92110 Clichy, France
| | - Radhouene Neji
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
| | - Ralph Sinkus
- Research Department of Imaging Physics and Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London WC2R 2LS, UK; (R.N.)
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, 75877 Paris, France
| |
Collapse
|
13
|
Ocamoto GN, da Silva LN, da Silva Rocha Tomaz C, Hisatugu MT, Frigieri G, Cardim D, Gonçalves RL, Russo TL, de Amorim RLO. Characterization of intracranial compliance in healthy subjects using a noninvasive method - results from a multicenter prospective observational study. J Clin Monit Comput 2024; 38:1249-1261. [PMID: 39031230 PMCID: PMC11604689 DOI: 10.1007/s10877-024-01191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE An FDA-approved non-invasive intracranial pressure (ICP) monitoring system enables the assessment of ICP waveforms by revealing and analyzing their morphological variations and parameters associated with intracranial compliance, such as the P2/P1 ratio and time-to-peak (TTP). The aim of this study is to characterize intracranial compliance in healthy volunteers across different age groups. METHODS Healthy participants, both sexes, aged from 9 to 74 years old were monitored for 5 min in the supine position at 0º. Age was stratified into 4 groups: children (≤ 7 years); young adults (18 ≤ age ≤ 44 years); middle-aged adults (45 ≤ age ≤ 64 years); older adults (≥ 65 years). The data obtained was the non-invasive ICP waveform, P2/P1 ratio and TTP. RESULTS From December 2020 to February 2023, 188 volunteers were assessed, of whom 104 were male, with a median (interquartile range) age of 41 (29-51), and a median (interquartile range) body mass index of 25.09 (22.57-28.04). Men exhibited lower values compared to women for both the P2/P1 ratio and TTP (p < 0.001). There was a relative rise in both P2/P1 and TTP as age increased (p < 0.001). CONCLUSIONS The study revealed that the P2/P1 ratio and TTP are influenced by age and sex in healthy individuals, with men displaying lower values than women, and both ratios increasing with age. These findings suggest potential avenues for further research with larger and more diverse samples to establish reference values for comparison in various health conditions. TRIAL REGISTRATION Brazilian Registry of Clinical Trials (RBR-9nv2h42), retrospectively registered 05/24/2022. UTN: U1111-1266-8006.
Collapse
Affiliation(s)
- Gabriela Nagai Ocamoto
- Braincare Desenvolvimento e Inovação Tecnológica S.A., Bruno Ruggiero Filho Avenue, 971, São Carlos, São Paulo, 13562-420, Brazil.
| | - Lucas Normando da Silva
- Health Sciences Postgraduation Program, Federal University of Amazonas, General Rodrigo Octavio Jordão Ramos Avenue, 1200, Manaus, Amazonas, 69067-005, Brazil
| | - Camila da Silva Rocha Tomaz
- Braincare Desenvolvimento e Inovação Tecnológica S.A., Bruno Ruggiero Filho Avenue, 971, São Carlos, São Paulo, 13562-420, Brazil
| | - Matheus Toshio Hisatugu
- Braincare Desenvolvimento e Inovação Tecnológica S.A., Bruno Ruggiero Filho Avenue, 971, São Carlos, São Paulo, 13562-420, Brazil
| | - Gustavo Frigieri
- Braincare Desenvolvimento e Inovação Tecnológica S.A., Bruno Ruggiero Filho Avenue, 971, São Carlos, São Paulo, 13562-420, Brazil
- Medical Investigation Laboratory 62, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Danilo Cardim
- Braincare Desenvolvimento e Inovação Tecnológica S.A., Bruno Ruggiero Filho Avenue, 971, São Carlos, São Paulo, 13562-420, Brazil
| | - Roberta Lins Gonçalves
- Health Sciences Postgraduation Program, Federal University of Amazonas, General Rodrigo Octavio Jordão Ramos Avenue, 1200, Manaus, Amazonas, 69067-005, Brazil
| | - Thiago Luiz Russo
- Department of Physical Therapy, Federal University of São Carlos, Washington Luís Road, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Robson Luis Oliveira de Amorim
- Health Sciences Postgraduation Program, Federal University of Amazonas, General Rodrigo Octavio Jordão Ramos Avenue, 1200, Manaus, Amazonas, 69067-005, Brazil
| |
Collapse
|
14
|
Claros-Olivares CC, Clements RG, McIlvain G, Johnson CL, Brockmeier AJ. MRI-based whole-brain elastography and volumetric measurements to predict brain age. Biol Methods Protoc 2024; 10:bpae086. [PMID: 39902188 PMCID: PMC11790219 DOI: 10.1093/biomethods/bpae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 02/05/2025] Open
Abstract
Brain age, as a correlate of an individual's chronological age obtained from structural and functional neuroimaging data, enables assessing developmental or neurodegenerative pathology relative to the overall population. Accurately inferring brain age from brain magnetic resonance imaging (MRI) data requires imaging methods sensitive to tissue health and sophisticated statistical models to identify the underlying age-related brain changes. Magnetic resonance elastography (MRE) is a specialized MRI technique which has emerged as a reliable, non-invasive method to measure the brain's mechanical properties, such as the viscoelastic shear stiffness and damping ratio. These mechanical properties have been shown to change across the life span, reflect neurodegenerative diseases, and are associated with individual differences in cognitive function. Here, we aim to develop a machine learning framework to accurately predict a healthy individual's chronological age from maps of brain mechanical properties. This framework can later be applied to understand neurostructural deviations from normal in individuals with neurodevelopmental or neurodegenerative conditions. Using 3D convolutional networks as deep learning models and more traditional statistical models, we relate chronological age as a function of multiple modalities of whole-brain measurements: stiffness, damping ratio, and volume. Evaluations on held-out subjects show that combining stiffness and volume in a multimodal approach achieves the most accurate predictions. Interpretation of the different models highlights important regions that are distinct between the modalities. The results demonstrate the complementary value of MRE measurements in brain age models, which, in future studies, could improve model sensitivity to brain integrity differences in individuals with neuropathology.
Collapse
Affiliation(s)
| | - Rebecca G Clements
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, United States
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Curtis L Johnson
- Department of Electrical & Computer Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, United States
| | - Austin J Brockmeier
- Department of Electrical & Computer Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Computer & Information Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
15
|
Klemmer Chandía S, Schattenfroh J, Brinker ST, Tzschätzsch H, Sack I, Meyer T. Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography. Sci Rep 2024; 14:28580. [PMID: 39562835 PMCID: PMC11576992 DOI: 10.1038/s41598-024-79991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Collapse
Affiliation(s)
- Stefan Klemmer Chandía
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jakob Schattenfroh
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Spencer T Brinker
- Department of Neurology, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - Heiko Tzschätzsch
- Department of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Invalidenstraße 90, 10115, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
16
|
Liu C, Cai Q, Gou Y, Liu Y, Kang M, Hui J, Zhou R, Shi P, Wang B, Zhang F. Association of accelerated biological aging with brain volumes: A cross-sectional study. J Affect Disord 2024; 364:188-193. [PMID: 39147148 DOI: 10.1016/j.jad.2024.08.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Multiple epidemiological studies have observed the connection between aging and brain volumes. The concept of accelerated biological aging (BA) is more powerful for observing the degree of aging of an individual than chronologic age (CA). The objective of this study is to explore the relationship between BA and brain volumes. METHODS BA was measured from clinical traits using two blood-chemistry algorithms, the Klemera-Doubal method (KDM) and the PhenoAge. The two age acceleration biomarkers were calculated by the residuals from regressing CA, termed "KDM-acceleration" and "PhenoAge-acceleration". Brain volumes were from brain magnetic resonance imaging (MRI) data. After adjustment for confounding factors, general linear regression models were used to examine associations between KDM-acceleration and PhenoAge-acceleration and brain volumes, respectively. Additionally, we stratified participants by sex, age, and the four quartiles of the Townsend Deprivation Index (TDI) for extra subgroup analysis. RESULTS 14,725 participants with available information were enrolled. After full adjustment, we observed negative associations between KDM-acceleration and brain volumes, such as gray matter (β = -0.029), white matter (β = -0.021), gray and white matter (β = -0.026), and hippocampus (β = -0.011 for left and β = -0.014 for right). There were also negative associations between PhenoAge-acceleration and brain volumes, such as white matter (β = -0.008), gray and white matter (β = -0.010), thalamus (β = -0.012 for left and β = -0.012 for right). In the subgroup analysis stratified by sex, age, and the four quartiles of TDI, the association between KDM-acceleration and PhenoAge-acceleration and brain volumes still existed. In subgroup analyses, the variation in associations suggests that socioeconomic and biological factors may differentially influence brain aging. CONCLUSIONS Our research indicated that more advanced BA was associated with less brain tissue.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Cai
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yifan Gou
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ye Liu
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Meijuan Kang
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingni Hui
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Ruixue Zhou
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Panxing Shi
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bingyi Wang
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Environment and Endemic Diseases of National Health Commission of China, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Key Laboratory for Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
17
|
Chavoshnejad P, Li G, Solhtalab A, Liu D, Razavi MJ. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue. Phys Biol 2024; 21:066004. [PMID: 39427682 DOI: 10.1088/1478-3975/ad88e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024]
Abstract
Finding the stiffness map of biological tissues is of great importance in evaluating their healthy or pathological conditions. However, due to the heterogeneity and anisotropy of biological fibrous tissues, this task presents challenges and significant uncertainty when characterized only by single-mode loading experiments. In this study, we propose a new theoretical framework to map the stiffness landscape of fibrous tissues, specifically focusing on brain white matter tissue. Initially, a finite element (FE) model of the fibrous tissue was subjected to six loading cases, and their corresponding stress-strain curves were characterized. By employing multiobjective optimization, the material constants of an equivalent anisotropic material model were inversely extracted to best fit all six loading modes simultaneously. Subsequently, large-scale FE simulations were conducted, incorporating various fiber volume fractions and orientations, to train a convolutional neural network capable of predicting the equivalent anisotropic material properties solely based on the fibrous architecture of any given tissue. The proposed method, leveraging brain fiber tractography, was applied to a localized volume of white matter, demonstrating its effectiveness in precisely mapping the anisotropic behavior of fibrous tissue. In the long-term, the proposed method may find applications in traumatic brain injury, brain folding studies, and neurodegenerative diseases, where accurately capturing the material behavior of the tissue is crucial for simulations and experiments.
Collapse
Affiliation(s)
- Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902, United States of America
| | - Guangfa Li
- Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902, United States of America
| | - Akbar Solhtalab
- Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902, United States of America
| | - Dehao Liu
- Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902, United States of America
| |
Collapse
|
18
|
Bergs J, Morr AS, Silva RV, Infante‐Duarte C, Sack I. The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402338. [PMID: 38874205 PMCID: PMC11336943 DOI: 10.1002/advs.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Mechanically, the brain is characterized by both solid and fluid properties. The resulting unique material behavior fosters proliferation, differentiation, and repair of cellular and vascular networks, and optimally protects them from damaging shear forces. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that maps the mechanical properties of the brain in vivo. MRE studies have shown that abnormal processes such as neuronal degeneration, demyelination, inflammation, and vascular leakage lead to tissue softening. In contrast, neuronal proliferation, cellular network formation, and higher vascular pressure result in brain stiffening. In addition, brain viscosity has been reported to change with normal blood perfusion variability and brain maturation as well as disease conditions such as tumor invasion. In this article, the contributions of the neuronal, glial, extracellular, and vascular networks are discussed to the coarse-grained parameters determined by MRE. This reductionist multi-network model of brain mechanics helps to explain many MRE observations in terms of microanatomical changes and suggests that cerebral viscoelasticity is a suitable imaging marker for brain disease.
Collapse
Affiliation(s)
- Judith Bergs
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Anna S. Morr
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| | - Rafaela V. Silva
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Carmen Infante‐Duarte
- Experimental and Clinical Research Centera cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin BerlinLindenberger Weg 8013125BerlinGermany
- Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinECRC Experimental and Clinical Research CenterCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)Robert‐Rössle‐Straße 1013125BerlinGermany
| | - Ingolf Sack
- Department of RadiologyCharité – Universitätsmedizin BerlinCharitéplatz 110117BerlinGermany
| |
Collapse
|
19
|
McIlvain G, Magoon EM, Clements RG, Merritt A, Hiscox LV, Schwarb H, Johnson CL. Acute effects of high-intensity exercise on brain mechanical properties and cognitive function. Brain Imaging Behav 2024; 18:863-874. [PMID: 38538876 PMCID: PMC11364612 DOI: 10.1007/s11682-024-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/26/2024]
Abstract
Previous studies have shown that engagement in even a single session of exercise can improve cognitive performance in the short term. However, the underlying physiological mechanisms contributing to this effect are still being studied. Recently, with improvements to advanced quantitative neuroimaging techniques, brain tissue mechanical properties can be sensitively and noninvasively measured with magnetic resonance elastography (MRE) and regional brain mechanical properties have been shown to reflect individual cognitive performance. Here we assess brain mechanical properties before and immediately after engagement in a high-intensity interval training (HIIT) regimen, as well as one-hour post-exercise. We find that immediately after exercise, subjects in the HIIT group had an average global brain stiffness decrease of 4.2% (p < 0.001), and an average brain damping ratio increase of 3.1% (p = 0.002). In contrast, control participants who did not engage in exercise showed no significant change over time in either stiffness or damping ratio. Changes in brain mechanical properties with exercise appeared to be regionally dependent, with the hippocampus decreasing in stiffness by 10.4%. We also found that one-hour after exercise, brain mechanical properties returned to initial baseline values. The magnitude of changes to brain mechanical properties also correlated with improvements in reaction time on executive control tasks (Eriksen Flanker and Stroop) with exercise. Understanding the neural changes that arise in response to exercise may inform potential mechanisms behind improvements to cognitive performance with acute exercise.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Emily M Magoon
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca G Clements
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Alexis Merritt
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Lucy V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Hillary Schwarb
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
20
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
21
|
Williams LT, Cao Z, Lateef AH, McGarry MDJ, Corbin EA, Johnson CL. Viscoelastic polyacrylamide MR elastography phantoms with tunable damping ratio independent of shear stiffness. J Mech Behav Biomed Mater 2024; 154:106522. [PMID: 38537609 PMCID: PMC11023745 DOI: 10.1016/j.jmbbm.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Physiologically modeled test samples with known properties and characteristics, or phantoms, are essential for developing sensitive, repeatable, and accurate quantitative MRI techniques. Magnetic resonance elastography (MRE) is one such technique used to estimate tissue mechanical properties, and it is advantageous to use phantoms with independently tunable mechanical properties to benchmark the accuracy of MRE methods. Phantoms with tunable shear stiffness are commonly used for MRE, but tuning the viscosity or damping ratio has proven to be difficult. A promising candidate for MRE phantoms with tunable damping ratio is polyacrylamide (PAA). While pure PAA has very low attenuation, viscoelastic hydrogels have been made by entrapping linear polyacrylamide strands (LPAA) within the PAA network. In this study, we evaluate the use of LPAA/PAA gels as physiologically accurate phantoms with tunable damping ratio, independent of shear stiffness, via MRE. Phantoms were made with 15.3 wt% PAA while the LPAA concentration ranged from 4.5 wt% to 8.0 wt%. MRE was performed at 9.4 T with 400 Hz vibration on all phantoms revealing a strong, positive correlation between damping ratio and LPAA content (p < 0.001). There was no significant correlation between shear stiffness and LPAA content, confirming a constant PAA concentration yielded constant shear stiffness. Rheometry at 10 Hz was performed to verify the damping ratio of the phantoms. Nearly identical slopes for damping ratio versus LPAA content were found from both MRE and rheometry (0.0073 and 0.0075 respectively). Ultimately, this study validates the adaptation of polyacrylamide gels into physiologically-relevant MRE phantoms to enable testing of MRE estimates of damping ratio.
Collapse
Affiliation(s)
- L Tyler Williams
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Zheng Cao
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Ali H Lateef
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | - Elise A Corbin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
22
|
Parker KJ, Kabir IE, Doyley MM, Faiyaz A, Uddin MN, Flores G, Schifitto G. Brain elastography in aging relates to fluid/solid trendlines. Phys Med Biol 2024; 69:115037. [PMID: 38670141 DOI: 10.1088/1361-6560/ad4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The relatively new tools of brain elastography have established a general trendline for healthy, aging adult humans, whereby the brain's viscoelastic properties 'soften' over many decades. Earlier studies of the aging brain have demonstrated a wide spectrum of changes in morphology and composition towards the later decades of lifespan. This leads to a major question of causal mechanisms: of the many changes documented in structure and composition of the aging brain, which ones drive the long term trendline for viscoelastic properties of grey matter and white matter? The issue is important for illuminating which factors brain elastography is sensitive to, defining its unique role for study of the brain and clinical diagnoses of neurological disease and injury. We address these issues by examining trendlines in aging from our elastography data, also utilizing data from an earlier landmark study of brain composition, and from a biophysics model that captures the multiscale biphasic (fluid/solid) structure of the brain. Taken together, these imply that long term changes in extracellular water in the glymphatic system of the brain along with a decline in the extracellular matrix have a profound effect on the measured viscoelastic properties. Specifically, the trendlines indicate that water tends to replace solid fraction as a function of age, then grey matter stiffness decreases inversely as water fraction squared, whereas white matter stiffness declines inversely as water fraction to the 2/3 power, a behavior consistent with the cylindrical shape of the axons. These unique behaviors point to elastography of the brain as an important macroscopic measure of underlying microscopic structural change, with direct implications for clinical studies of aging, disease, and injury.
Collapse
Affiliation(s)
- Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Irteza Enan Kabir
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Md Nasir Uddin
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| | - Gilmer Flores
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| |
Collapse
|
23
|
Duan S, Hu J. Pathogenesis and management of low-pressure hydrocephalus: A narrative review. J Neurol Sci 2024; 460:122988. [PMID: 38579413 DOI: 10.1016/j.jns.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Patients diagnosed with low-pressure hydrocephalus typically present with enlarged ventricles and unusually low intracranial pressure, often measuring below 5 cmH2O or even below atmospheric pressure. This atypical presentation often leads to low recognition and diagnostic rates. The development of low-pressure hydrocephalus is believed to be associated with a decrease in the viscoelasticity of brain tissue or separation between the ventricular and subarachnoid spaces. Risk factors for low-pressure hydrocephalus include subarachnoid hemorrhage, aqueduct stenosis, prior cranial radiotherapy, ventricular shunting, and cerebrospinal fluid leaks. For potential low-pressure hydrocephalus, diagnostic criteria include neurological symptoms related to hydrocephalus, an Evans index >0.3 on imaging, ICP ≤ 5 cm H2O, symptom improvement with negative pressure drainage, and exclusion of ventriculomegaly caused by neurodegenerative diseases. The pathogenesis and pathophysiological features of low-pressure hydrocephalus differ significantly from other types of hydrocephalus, making it challenging to restore normal ventricular morphology through conventional drainage methods. The primary treatment options for low-pressure hydrocephalus involve negative pressure drainage and third ventriculostomy. With appropriate treatment, most patients can regain their previous neurological function. However, in most cases, permanent shunt surgery is still necessary. Low-pressure hydrocephalus is a rare condition with a high rate of underdiagnosis and mortality. Early identification and appropriate intervention are crucial in reducing complications and improving prognosis.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of ICU of Hongqiao Campus, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Caban-Rivera DA, Williams LT, McGarry MDJ, Smith DR, Van Houten EEW, Paulsen KD, Bayly PV, Johnson CL. Mechanical Properties of White Matter Tracts in Aging Assessed via Anisotropic MR Elastography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593260. [PMID: 38766139 PMCID: PMC11100698 DOI: 10.1101/2024.05.08.593260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Magnetic resonance elastography (MRE) is a promising neuroimaging technique to probe tissue microstructure, which has revealed widespread softening with loss of structural integrity in the aging brain. Traditional MRE approaches assume mechanical isotropy. However, white matter is known to be anisotropic from aligned, myelinated axonal bundles, which can lead to uncertainty in mechanical property estimates in these areas when using isotropic MRE. Recent advances in anisotropic MRE now allow for estimation of shear and tensile anisotropy, along with substrate shear modulus, in white matter tracts. The objective of this study was to investigate age-related differences in anisotropic mechanical properties in human brain white matter tracts for the first time. Anisotropic mechanical properties in all tracts were found to be significantly lower in older adults compared to young adults, with average property differences ranging between 0.028-0.107 for shear anisotropy and between 0.139-0.347 for tensile anisotropy. Stiffness perpendicular to the axonal fiber direction was also significantly lower in older age, but only in certain tracts. When compared with fractional anisotropy measures from diffusion tensor imaging, we found that anisotropic MRE measures provided additional, complementary information in describing differences between the white matter integrity of young and older populations. Anisotropic MRE provides a new tool for studying white matter structural integrity in aging and neurodegeneration.
Collapse
|
25
|
Milbocker KA, Williams LT, Caban-Rivera DA, Smith IF, Kurtz S, McGarry MDJ, Wattrisse B, Van Houten EEW, Johnson CL, Klintsova AY. Magnetic resonance elastography captures a transient benefit of exercise intervention on forebrain stiffness in a rat model of fetal alcohol spectrum disorders. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:466-477. [PMID: 38225180 PMCID: PMC11162295 DOI: 10.1111/acer.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD), a group of prevalent conditions resulting from prenatal alcohol exposure, affect the maturation of cerebral white matter as first identified with neuroimaging. However, traditional methods are unable to track subtle microstructural alterations to white matter. This preliminary study uses a highly sensitive and clinically translatable magnetic resonance elastography (MRE) protocol to assess brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. METHODS Female rat pups were either alcohol-exposed (AE) via intragastric intubation of alcohol in milk substitute (5.25 g/kg/day) or sham-intubated (SI) on postnatal days (PD) four through nine to model alcohol exposure during the brain growth spurt. On PD 30, half of AE and SI rats were randomly assigned to either a wheel-running or standard cage for 12 days. Magnetic resonance elastography was used to measure whole brain and callosal mechanical properties at the end of the intervention (around PD 42) and at 1 month post-intervention, and findings were validated with histological quantification of oligoglia. RESULTS Alcohol exposure reduced forebrain stiffness (p = 0.02) in standard-housed rats. The adolescent exercise intervention mitigated this effect, confirming that increased aerobic activity supports proper neurodevelopmental trajectories. Forebrain damping ratio was lowest in standard-housed AE rats (p < 0.01), but this effect was not mitigated by intervention exposure. At 1 month post-intervention, all rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Callosal stiffness and damping ratio increased with age. With cessation of exercise, there was a negative rebound effect on the quantity of callosal oligodendrocytes, irrespective of treatment group, which diverged from our MRE results. CONCLUSIONS This is the first application of MRE to measure the brain's mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes in forebrain stiffness and damping ratio. Additionally, MRE identified an exercise-related increase to forebrain stiffness in AE rats.
Collapse
Affiliation(s)
- Katrina A. Milbocker
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - L. Tyler Williams
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Ian F. Smith
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Samuel Kurtz
- Laboratorie de Mecanique et Genie Civil, CNRS, Universite de Montpellier, Montpellier, France
| | | | - Bertrand Wattrisse
- Laboratorie de Mecanique et Genie Civil, CNRS, Universite de Montpellier, Montpellier, France
| | | | - Curtis L. Johnson
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Anna Y. Klintsova
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
26
|
Pavuluri K, Huston J, Ehman RL, Manduca A, Jack CR, Senjem ML, Vemuri P, Murphy MC. Associations between vascular health, brain stiffness and global cognitive function. Brain Commun 2024; 6:fcae073. [PMID: 38505229 PMCID: PMC10950054 DOI: 10.1093/braincomms/fcae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Vascular brain injury results in loss of structural and functional connectivity and leads to cognitive impairment. Its various manifestations, including microinfarcts, microhaemorrhages and white matter hyperintensities, result in microstructural tissue integrity loss and secondary neurodegeneration. Among these, tissue microstructural alteration is a relatively early event compared with atrophy along the aging and neurodegeneration continuum. Understanding its association with cognition may provide the opportunity to further elucidate the relationship between vascular health and clinical outcomes. Magnetic resonance elastography offers a non-invasive approach to evaluate tissue mechanical properties, providing a window into the microstructural integrity of the brain. This retrospective study evaluated brain stiffness as a potential biomarker for vascular brain injury and its role in mediating the impact of vascular dysfunction on cognitive impairment. Seventy-five participants from the Mayo Clinic Study of Aging underwent brain imaging using a 3T MR imager with a spin-echo echo-planar imaging sequence for magnetic resonance elastography and T1- and T2-weighted pulse sequences. This study evaluated the effects of vascular biomarkers (white matter hyperintensities and cardiometabolic condition score) on brain stiffness using voxelwise analysis. Partial correlation analysis explored associations between brain stiffness, white matter hyperintensities, cardiometabolic condition and global cognition. Mediation analysis determined the role of stiffness in mediating the relationship between vascular biomarkers and cognitive performance. Statistical significance was set at P-values < 0.05. Diagnostic accuracy of magnetic resonance elastography stiffness for white matter hyperintensities and cardiometabolic condition was evaluated using receiver operator characteristic curves. Voxelwise linear regression analysis indicated white matter hyperintensities negatively correlate with brain stiffness, specifically in periventricular regions with high white matter hyperintensity levels. A negative association between cardiovascular risk factors and stiffness was also observed across the brain. No significant patterns of stiffness changes were associated with amyloid load. Global stiffness (µ) negatively correlated with both white matter hyperintensities and cardiometabolic condition when all other covariables including amyloid load were controlled. The positive correlation between white matter hyperintensities and cardiometabolic condition weakened and became statistically insignificant when controlling for other covariables. Brain stiffness and global cognition were positively correlated, maintaining statistical significance after adjusting for all covariables. These findings suggest mechanical alterations are associated with cognitive dysfunction and vascular brain injury. Brain stiffness significantly mediated the indirect effects of white matter hyperintensities and cardiometabolic condition on global cognition. Local cerebrovascular diseases (assessed by white matter hyperintensities) and systemic vascular risk factors (assessed by cardiometabolic condition) impact brain stiffness with spatially and statistically distinct effects. Global brain stiffness is a significant mediator between vascular disease measures and cognitive function, highlighting the value of magnetic resonance elastography-based mechanical assessments in understanding this relationship.
Collapse
Affiliation(s)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
27
|
Khair AM, McIlvain G, McGarry MDJ, Kandula V, Yue X, Kaur G, Averill LW, Choudhary AK, Johnson CL, Nikam RM. Clinical application of magnetic resonance elastography in pediatric neurological disorders. Pediatr Radiol 2023; 53:2712-2722. [PMID: 37794174 PMCID: PMC11086054 DOI: 10.1007/s00247-023-05779-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Magnetic resonance elastography is a relatively new, rapidly evolving quantitative magnetic resonance imaging technique which can be used for mapping the viscoelastic mechanical properties of soft tissues. MR elastography measurements are akin to manual palpation but with the advantages of both being quantitative and being useful for regions which are not available for palpation, such as the human brain. MR elastography is noninvasive, well tolerated, and complements standard radiological and histopathological studies by providing in vivo measurements that reflect tissue microstructural integrity. While brain MR elastography studies in adults are becoming frequent, published studies on the utility of MR elastography in children are sparse. In this review, we have summarized the major scientific principles and recent clinical applications of brain MR elastography in diagnostic neuroscience and discuss avenues for impact in assessing the pediatric brain.
Collapse
Affiliation(s)
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | | | - Vinay Kandula
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Xuyi Yue
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Gurcharanjeet Kaur
- Department of Neurology, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren W Averill
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA
| | - Arabinda K Choudhary
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Biomedical Research, Nemours Children's Hospital, Wilmington, DE, USA
| | - Rahul M Nikam
- Department of Radiology, Nemours Children's Hospital, Wilmington, DE, USA.
| |
Collapse
|
28
|
Winchester LM, Harshfield EL, Shi L, Badhwar A, Khleifat AA, Clarke N, Dehsarvi A, Lengyel I, Lourida I, Madan CR, Marzi SJ, Proitsi P, Rajkumar AP, Rittman T, Silajdžić E, Tamburin S, Ranson JM, Llewellyn DJ. Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimers Dement 2023; 19:5860-5871. [PMID: 37654029 PMCID: PMC10840606 DOI: 10.1002/alz.13390] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 09/02/2023]
Abstract
With the increase in large multimodal cohorts and high-throughput technologies, the potential for discovering novel biomarkers is no longer limited by data set size. Artificial intelligence (AI) and machine learning approaches have been developed to detect novel biomarkers and interactions in complex data sets. We discuss exemplar uses and evaluate current applications and limitations of AI to discover novel biomarkers. Remaining challenges include a lack of diversity in the data sets available, the sheer complexity of investigating interactions, the invasiveness and cost of some biomarkers, and poor reporting in some studies. Overcoming these challenges will involve collecting data from underrepresented populations, developing more powerful AI approaches, validating the use of noninvasive biomarkers, and adhering to reporting guidelines. By harnessing rich multimodal data through AI approaches and international collaborative innovation, we are well positioned to identify clinically useful biomarkers that are accurate, generalizable, unbiased, and acceptable in clinical practice. HIGHLIGHTS: Artificial intelligence and machine learning approaches may accelerate dementia biomarker discovery. Remaining challenges include data set suitability due to size and bias in cohort selection. Multimodal data, diverse data sets, improved machine learning approaches, real-world validation, and interdisciplinary collaboration are required.
Collapse
Affiliation(s)
| | - Eric L Harshfield
- Department of Clinical Neurosciences, Stroke Research Group, University of Cambridge, Cambridge, UK
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Headington, UK
| | - AmanPreet Badhwar
- Département de Pharmacologie et Physiologie, Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Natasha Clarke
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Amir Dehsarvi
- School of Medicine, Medical Sciences, and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Imre Lengyel
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University, Belfast, UK
| | - Ilianna Lourida
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute at Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Petroula Proitsi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK, Mental health services of older people, Nottinghamshire healthcare NHS foundation trust, Nottingham, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Edina Silajdžić
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Janice M Ranson
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
| | - David J Llewellyn
- Health and Community Sciences, University of Exeter Medical School, Exeter, UK
- The Alan Turing Institute, London, UK
| |
Collapse
|
29
|
Sanjana F, Delgorio PL, DeConne TM, Hiscox LV, Pohlig RT, Johnson CL, Martens CR. Vascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespan. J Cereb Blood Flow Metab 2023; 43:1931-1941. [PMID: 37395479 PMCID: PMC10676145 DOI: 10.1177/0271678x231186571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Arterial stiffness and cerebrovascular pulsatility are non-traditional risk factors of Alzheimer's disease. However, there is a gap in understanding the earliest mechanisms that link these vascular determinants to brain aging. Changes to mechanical tissue properties of the hippocampus (HC), a brain structure essential for memory encoding, may reflect the impact of vascular dysfunction on brain aging. We tested the hypothesis that arterial stiffness and cerebrovascular pulsatility are related to HC tissue properties in healthy adults across the lifespan. Twenty-five adults underwent measurements of brachial blood pressure (BP), large elastic artery stiffness, middle cerebral artery pulsatility index (MCAv PI), and magnetic resonance elastography (MRE), a sensitive measure of HC viscoelasticity. Individuals with higher carotid pulse pressure (PP) exhibited lower HC stiffness (β = -0.39, r = -0.41, p = 0.05), independent of age and sex. Collectively, carotid PP and MCAv PI significantly explained a large portion of the total variance in HC stiffness (adjusted R2 = 0.41, p = 0.005) in the absence of associations with HC volumes. These cross-sectional findings suggest that the earliest reductions in HC tissue properties are associated with alterations in vascular function.
Collapse
Affiliation(s)
- Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Theodore M DeConne
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Lucy V Hiscox
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Ryan T Pohlig
- Department of Epidemiology, University of Delaware, Newark, DE, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| |
Collapse
|
30
|
Yang F, Ding W, Fu X, Chen W, Tang J. Photoacoustic elasto-viscography and optical coherence microscopy for multi-parametric ex vivo brain imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:5615-5628. [PMID: 38021134 PMCID: PMC10659785 DOI: 10.1364/boe.503847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Optical coherence microscopy (OCM) has shown the importance of imaging ex vivo brain slices at the microscopic level for a better understanding of the disease pathology and mechanism. However, the current OCM-based techniques are mainly limited to providing the tissue's optical properties, such as the attenuation coefficient, scattering coefficient, and cell architecture. Imaging the tissue's mechanical properties, including the elasticity and viscosity, in addition to the optical properties, to provide a comprehensive multi-parametric assessment of the sample has remained a challenge. Here, we present an integrated photoacoustic elasto-viscography (PAEV) and OCM imaging system to measure the sample's optical absorption coefficient, attenuation coefficient, and mechanical properties, including elasticity and viscosity. The obtained mechanical and optical properties were consistent with anatomical features observed in the PAEV and OCM images. The elasticity and viscosity maps showed rich variations of microstructural mechanical properties of mice brain. In the reconstructed elasto-viscogram of brain slices, greater elasticity, and lower viscosity were observed in white matter than in gray matter. With the ability to provide multi-parametric properties of the sample, the PAEV-OCM system holds the potential for a more comprehensive study of brain disease pathology.
Collapse
Affiliation(s)
- Fen Yang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenguo Ding
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinlei Fu
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
31
|
Liu Z, Mao S, Hu Y, Liu F, Shao X. Hydrogel platform facilitating astrocytic differentiation through cell mechanosensing and YAP-mediated transcription. Mater Today Bio 2023; 22:100735. [PMID: 37576868 PMCID: PMC10413151 DOI: 10.1016/j.mtbio.2023.100735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Astrocytes are multifunctional glial cells that are essential for brain functioning. Most existing methods to induce astrocytes from stem cells are inefficient, requiring couples of weeks. Here, we designed an alginate hydrogel-based method to realize high-efficiency astrocytic differentiation from human neural stem cells. Comparing to the conventional tissue culture materials, the hydrogel drastically promoted astrocytic differentiation within three days. We investigated the regulatory mechanism underlying the enhanced differentiation, and found that the stretch-activated ion channels and Yes-associated protein (YAP), a mechanosensitive transcription coactivator, were both indispensable. In particular, the Piezo1 Ca2+ channel, but not transient receptor potential vanilloid 4 (TRPV4) channel, was necessary for promoting the astrocytic differentiation. The stretch-activated channels regulated the nuclear localization of YAP, and inhibition of the channels down-regulated the expression of YAP as well as its target genes. When blocking the YAP/TEAD-mediated transcription, astrocytic differentiation on the hydrogel significantly declined. Interestingly, cells on the hydrogel showed a remarkable filamentous actin assembly together with YAP nuclear translocation during the differentiation, while a progressive gel rupture at the cell-hydrogel interface along with a change in the gel elasticity was detected. These findings suggest that spontaneous decrosslinking of the hydrogel alters its mechanical properties, delivering mechanical stimuli to the cells. These mechanical signals activate the Piezo1 Ca2+ channel, facilitate YAP nuclear transcription via actomyosin cytoskeleton, and eventually provoke the astrocytic differentiation. While offering an efficient approach to obtain astrocytes, our work provides novel insights into the mechanism of astrocytic development through mechanical regulation.
Collapse
Affiliation(s)
- Zhongqian Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Feng Liu
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaowei Shao
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
32
|
Milbocker KA, Williams LT, Caban-Rivera DA, Smith IF, Kurtz S, McGarry MDJ, Wattrisse B, Van Houten EEW, Johnson CL, Klintsova AY. Monitoring lasting changes to brain tissue integrity through mechanical properties following adolescent exercise intervention in a rat model of Fetal Alcohol Spectrum Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559571. [PMID: 37808633 PMCID: PMC10557734 DOI: 10.1101/2023.09.26.559571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background Fetal Alcohol Spectrum Disorders (FASD) encompass a group of highly prevalent conditions resulting from prenatal alcohol exposure. Alcohol exposure during the third trimester of pregnancy overlapping with the brain growth spurt is detrimental to white matter growth and myelination, particularly in the corpus callosum, ultimately affecting tissue integrity in adolescence. Traditional neuroimaging techniques have been essential for assessing neurodevelopment in affected youth; however, these methods are limited in their capacity to track subtle microstructural alterations to white matter, thus restricting their effectiveness in monitoring therapeutic intervention. In this preliminary study we use a highly sensitive and clinically translatable Magnetic Resonance Elastography (MRE) protocol for assessing brain tissue microstructure through its mechanical properties following an exercise intervention in a rat model of FASD. Methods Rat pups were divided into two groups: alcohol-exposed (AE) pups which received alcohol in milk substitute (5.25 g/kg/day) via intragastric intubation on postnatal days (PD) four through nine during the rat brain growth spurt (Dobbing and Sands, 1979), or sham-intubated (SI) controls. In adolescence, on PD 30, half AE and SI rats were randomly assigned to either a modified home cage with free access to a running wheel or to a new home cage for 12 days (Gursky and Klintsova, 2017). Previous studies conducted in the lab have shown that 12 days of voluntary exercise intervention in adolescence immediately ameliorated callosal myelination in AE rats (Milbocker et al., 2022, 2023). MRE was used to measure longitudinal changes to mechanical properties of the whole brain and the corpus callosum at intervention termination and one-month post-intervention. Histological quantification of precursor and myelinating oligoglia in corpus callosum was performed one-month post-intervention. Results Prior to intervention, AE rats had lower forebrain stiffness in adolescence compared to SI controls ( p = 0.02). Exercise intervention immediately mitigated this effect in AE rats, resulting in higher forebrain stiffness post-intervention in adolescence. Similarly, we discovered that forebrain damping ratio was lowest in AE rats in adolescence ( p < 0.01), irrespective of intervention exposure. One-month post-intervention in adulthood, AE and SI rats exhibited comparable forebrain stiffness and damping ratio (p > 0.05). Taken together, these MRE data suggest that adolescent exercise intervention supports neurodevelopmental "catch-up" in AE rats. Analysis of the stiffness and damping ratio of the body of corpus callosum revealed that these measures increased with age. Finally, histological quantification of myelinating oligodendrocytes one-month post-intervention revealed a negative rebound effect of exercise cessation on the total estimate of these cells in the body of corpus callosum, irrespective of treatment group which was not convergent with noninvasive MRE measures. Conclusions This is the first application of MRE to measure changes in brain mechanical properties in a rodent model of FASD. MRE successfully captured alcohol-related changes to forebrain stiffness and damping ratio in adolescence. These preliminary findings expand upon results from previous studies which used traditional diffusion neuroimaging to identify structural changes to the adolescent brain in rodent models of FASD (Milbocker et al., 2022; Newville et al., 2017). Additionally, in vivo MRE identified an exercise-related alteration to forebrain stiffness that occurred in adolescence, immediately post-intervention.
Collapse
|
33
|
Wang S, Guertler CA, Okamoto RJ, Johnson CL, McGarry MDJ, Bayly PV. Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig. Neuroimage 2023; 277:120234. [PMID: 37369255 PMCID: PMC11081136 DOI: 10.1016/j.neuroimage.2023.120234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.
Collapse
Affiliation(s)
- Shuaihu Wang
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | - Charlotte A Guertler
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | - Ruth J Okamoto
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States
| | | | | | - Philip V Bayly
- Mechanical Engineering and Material Science, Washington University in St. Louis, United States; Biomedical Engineering, Washington University in St. Louis, United States.
| |
Collapse
|
34
|
Hall CM, Lasli S, Serwinski B, Djordjevic B, Sheridan GK, Moeendarbary E. Hippocampus of the APP NL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis. Front Aging Neurosci 2023; 15:1212212. [PMID: 37547743 PMCID: PMC10398960 DOI: 10.3389/fnagi.2023.1212212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APPNL-G-F mouse model. Several hippocampal regions in APPNL-G-F mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.
Collapse
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering, University College London, London, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Soufian Lasli
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Faculty of Social Sciences, Northeastern University London, London, United Kingdom
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Graham K. Sheridan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
35
|
Madl CM. Accelerating aging with dynamic biomaterials: Recapitulating aged tissue phenotypes in engineered platforms. iScience 2023; 26:106825. [PMID: 37250776 PMCID: PMC10213044 DOI: 10.1016/j.isci.2023.106825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Aging is characterized by progressive decline in tissue function and represents the greatest risk factor for many diseases. Nevertheless, many fundamental mechanisms driving human aging remain poorly understood. Aging studies using model organisms are often limited in their applicability to humans. Mechanistic studies of human aging rely on relatively simple cell culture models that fail to replicate mature tissue function, making them poor surrogates for aged tissues. These culture systems generally lack well-controlled cellular microenvironments that capture the changes in tissue mechanics and microstructure that occur during aging. Biomaterial platforms presenting dynamic, physiologically relevant mechanical, structural, and biochemical cues can capture the complex changes in the cellular microenvironment in a well-defined manner, accelerating the process of cellular aging in model laboratory systems. By enabling selective tuning of relevant microenvironmental parameters, these biomaterials systems may enable identification of new therapeutic approaches to slow or reverse the detrimental effects of aging.
Collapse
Affiliation(s)
- Christopher M. Madl
- Department of Materials Science and Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Joo B, Won SY, Sinkus R, Lee SK. Viscoelastic Property of the Brain Assessed With Magnetic Resonance Elastography and Its Association With Glymphatic System in Neurologically Normal Individuals. Korean J Radiol 2023; 24:564-573. [PMID: 37271210 DOI: 10.3348/kjr.2022.0992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE To investigate the feasibility of assessing the viscoelastic properties of the brain using magnetic resonance elastography (MRE) and a novel MRE transducer to determine the relationship between the viscoelastic properties and glymphatic function in neurologically normal individuals. MATERIALS AND METHODS This prospective study included 47 neurologically normal individuals aged 23-74 years (male-to-female ratio, 21:26). The MRE was acquired using a gravitational transducer based on a rotational eccentric mass as the driving system. The magnitude of the complex shear modulus |G*| and the phase angle ϕ were measured in the centrum semiovale area. To evaluate glymphatic function, the Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) method was utilized and the ALPS index was calculated. Univariable and multivariable (variables with P < 0.2 from the univariable analysis) linear regression analyses were performed for |G*| and ϕ and included sex, age, normalized white matter hyperintensity (WMH) volume, brain parenchymal volume, and ALPS index as covariates. RESULTS In the univariable analysis for |G*|, age (P = 0.005), brain parenchymal volume (P = 0.152), normalized WMH volume (P = 0.011), and ALPS index (P = 0.005) were identified as candidates with P < 0.2. In the multivariable analysis, only the ALPS index was independently associated with |G*|, showing a positive relationship (β = 0.300, P = 0.029). For ϕ, normalized WMH volume (P = 0.128) and ALPS index (P = 0.015) were identified as candidates for multivariable analysis, and only the ALPS index was independently associated with ϕ (β = 0.057, P = 0.039). CONCLUSION Brain MRE using a gravitational transducer is feasible in neurologically normal individuals over a wide age range. The significant correlation between the viscoelastic properties of the brain and glymphatic function suggests that a more organized or preserved microenvironment of the brain parenchyma is associated with a more unimpeded glymphatic fluid flow.
Collapse
Affiliation(s)
- Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - So Yeon Won
- Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ralph Sinkus
- School of Biomedical Imaging and Imaging Sciences, King's College London, London, UK
- INSERM U1148, Laboratory for Vascular Translational Science, University Paris Diderot, Paris, France
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Jyoti D, McGarry M, Caban-Rivera DA, Van Houten E, Johnson CL, Paulsen K. Transversely-isotropic brain in vivo MR elastography with anisotropic damping. J Mech Behav Biomed Mater 2023; 141:105744. [PMID: 36893687 PMCID: PMC10084917 DOI: 10.1016/j.jmbbm.2023.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Measuring tissue parameters from increasingly sophisticated mechanical property models may uncover new contrast mechanisms with clinical utility. Building on previous work on in vivo brain MR elastography (MRE) with a transversely-isotropic with isotropic damping (TI-ID) model, we explore a new transversely-isotropic with anisotropic damping (TI-AD) model that involves six independent parameters describing direction-dependent behavior for both stiffness and damping. The direction of mechanical anisotropy is determined by diffusion tensor imaging and we fit three complex-valued moduli distributions across the full brain volume to minimize differences between measured and modeled displacements. We demonstrate spatially accurate property reconstruction in an idealized shell phantom simulation, as well as an ensemble of 20 realistic, randomly-generated simulated brains. We characterize the simulated precisions of all six parameters across major white matter tracts to be high, suggesting that they can be measured independently with acceptable accuracy from MRE data. Finally, we present in vivo anisotropic damping MRE reconstruction data. We perform t-tests on eight repeated MRE brain exams on a single-subject, and find that the three damping parameters are statistically distinct for most tracts, lobes and the whole brain. We also show that population variations in a 17-subject cohort exceed single-subject measurement repeatability for most tracts, lobes and whole brain, for all six parameters. These results suggest that the TI-AD model offers new information that may support differential diagnosis of brain diseases.
Collapse
Affiliation(s)
- Dhrubo Jyoti
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | - Matthew McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA.
| | | | | | | | - Keith Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA; Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
| |
Collapse
|
38
|
Ge GR, Rolland JP, Song W, Nedergaard M, Parker KJ. Fluid compartments influence elastography of the aging mouse brain. Phys Med Biol 2023; 68:095004. [PMID: 36996842 PMCID: PMC10108361 DOI: 10.1088/1361-6560/acc922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Objective. Elastography of the brain has the potential to reveal subtle but clinically important changes in the structure and composition as a function of age, disease, and injury.Approach. In order to quantify the specific effects of aging on mouse brain elastography, and to determine the key factors influencing observed changes, we applied optical coherence tomography reverberant shear wave elastography at 2000 Hz to a group of wild-type healthy mice ranging from young to old age.Main results. We found a strong trend towards increasing stiffness with age, with an approximately 30% increase in shear wave speed from 2 months to 30 months within this sampled group. Furthermore, this appears to be strongly correlated with decreasing measures of whole brain fluid content, so older brains have less water and are stiffer. Rheological models are applied, and the strong effect is captured by specific assignment of changes to the glymphatic compartment of the brain fluid structures along with a correlated change in the parenchymal stiffness.Significance. Short-term and longer-term changes in elastography measures may provide a sensitive biomarker of progressive and fine-scale changes in the glymphatic fluid channels and parenchymal components of the brain.
Collapse
Affiliation(s)
- Gary R Ge
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Jannick P Rolland
- Institute of Optics, University of Rochester, 480 Intercampus Drive, Box 270186, Rochester, NY 14627, United States of America
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645, Rochester, NY 14642, United States of America
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| |
Collapse
|
39
|
Carmo GP, Dymek M, Ptak M, Alves-de-Sousa RJ, Fernandes FAO. Development, validation and a case study: The female finite element head model (FeFEHM). COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107430. [PMID: 36827824 DOI: 10.1016/j.cmpb.2023.107430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Traumatic brain injuries are one of the leading causes of death and disability in the world. To better understand the interactions and forces applied in different constituents of the human head, several finite element head models have been developed throughout the years, for offering a good cost-effective and ethical approach compared to experimental tests. Once validated, the female finite element head model (FeFEHM) will allow a better understanding of injury mechanisms resulting in neuronal damage, which can later evolve into neurodegenerative diseases. METHODS This work encompasses the approached methodology starting from medical images and finite element modelling until the validation process using novel experimental data of brain displacements conducted on human cadavers. The material modelling of the brain is performed using an age-specific characterization of the brain using microindentation at dynamic rates and under large deformation, with a similar age to the patient used to model the FeFEHM. RESULTS The numerical displacement curves are in good accordance with the experimental data, displaying similar peak times and values, in all three anatomical planes. The case study result shows a similarity between the pressure fields of the FeFEHM compared to another model, highlighting the future potential of the model. CONCLUSIONS The initial objective was met, and a new female finite element head model has been developed with biofidelic brain motion. This model will be used for the assessment of repetitive impact scenarios and its repercussions on the female brain.
Collapse
Affiliation(s)
- Gustavo P Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal.
| | - Mateusz Dymek
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5/7, Wrocław 50-370, Poland
| | - Mariusz Ptak
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5/7, Wrocław 50-370, Poland
| | - Ricardo J Alves-de-Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal
| | - Fábio A O Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, Aveiro 3810-193, Portugal; LASI-Intelligent Systems Associate Laboratory, Portugal
| |
Collapse
|
40
|
Donnaloja F, Limonta E, Mancosu C, Morandi F, Boeri L, Albani D, Raimondi MT. Unravelling the mechanotransduction pathways in Alzheimer's disease. J Biol Eng 2023; 17:22. [PMID: 36978103 PMCID: PMC10045049 DOI: 10.1186/s13036-023-00336-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) represents one of the most common and debilitating neurodegenerative disorders. By the end of 2040, AD patients might reach 11.2 million in the USA, around 70% higher than 2022, with severe consequences on the society. As now, we still need research to find effective methods to treat AD. Most studies focused on the tau and amyloid hypothesis, but many other factors are likely involved in the pathophysiology of AD. In this review, we summarize scientific evidence dealing with the mechanotransduction players in AD to highlight the most relevant mechano-responsive elements that play a role in AD pathophysiology. We focused on the AD-related role of extracellular matrix (ECM), nuclear lamina, nuclear transport and synaptic activity. The literature supports that ECM alteration causes the lamin A increment in the AD patients, leading to the formation of nuclear blebs and invaginations. Nuclear blebs have consequences on the nuclear pore complexes, impairing nucleo-cytoplasmic transport. This may result in tau hyperphosphorylation and its consequent self-aggregation in tangles, which impairs the neurotransmitters transport. It all exacerbates in synaptic transmission impairment, leading to the characteristic AD patient's memory loss. Here we related for the first time all the evidence associating the mechanotransduction pathway with neurons. In addition, we highlighted the entire pathway influencing neurodegenerative diseases, paving the way for new research perspectives in the context of AD and related pathologies.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Emma Limonta
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Mancosu
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Morandi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Lucia Boeri
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Teresa Raimondi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
41
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
42
|
Clements RG, Claros-Olivares CC, McIlvain G, Brockmeier AJ, Johnson CL. Mechanical Property Based Brain Age Prediction using Convolutional Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528186. [PMID: 36824781 PMCID: PMC9948973 DOI: 10.1101/2023.02.12.528186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brain age is a quantitative estimate to explain an individual's structural and functional brain measurements relative to the overall population and is particularly valuable in describing differences related to developmental or neurodegenerative pathology. Accurately inferring brain age from brain imaging data requires sophisticated models that capture the underlying age-related brain changes. Magnetic resonance elastography (MRE) is a phase contrast MRI technology that uses external palpations to measure brain mechanical properties. Mechanical property measures of viscoelastic shear stiffness and damping ratio have been found to change across the entire life span and to reflect brain health due to neurodegenerative diseases and even individual differences in cognitive function. Here we develop and train a multi-modal 3D convolutional neural network (CNN) to model the relationship between age and whole brain mechanical properties. After training, the network maps the measurements and other inputs to a brain age prediction. We found high performance using the 3D maps of various mechanical properties to predict brain age. Stiffness maps alone were able to predict ages of the test group subjects with a mean absolute error (MAE) of 3.76 years, which is comparable to single inputs of damping ratio (MAE: 3.82) and outperforms single input of volume (MAE: 4.60). Combining stiffness and volume in a multimodal approach performed the best, with an MAE of 3.60 years, whereas including damping ratio worsened model performance. Our results reflect previous MRE literature that had demonstrated that stiffness is more strongly related to chronological age than damping ratio. This machine learning model provides the first prediction of brain age from brain biomechanical data-an advancement towards sensitively describing brain integrity differences in individuals with neuropathology.
Collapse
|
43
|
Pavuluri K, Scott JM, Huston Iii J, Ehman RL, Manduca A, Jack CR, Savica R, Boeve BF, Kantarci K, Petersen RC, Knopman DS, Murphy MC. Differential effect of dementia etiology on cortical stiffness as assessed by MR elastography. Neuroimage Clin 2023; 37:103328. [PMID: 36696808 PMCID: PMC9879983 DOI: 10.1016/j.nicl.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aging and dementia involve the disruption of brain molecular pathways leading to the alterations in tissue composition and gross morphology of the brain. Phenotypic and biomarker overlap between various etiologies of dementia supports a need for new modes of information to more accurately distinguish these disorders. Brain mechanical properties, which can be measured noninvasively by MR elastography, represent one understudied feature that are sensitive to neurodegenerative processes. In this study, we used two stiffness estimation schemes to test the hypothesis that different etiologies of dementia are associated with unique patterns of mechanical alterations across the cerebral cortex. METHODS MR elastography data were acquired for six clinical groups including amyloid-negative cognitively unimpaired (CU), amyloid-positive cognitively unimpaired (A + CU), amyloid-positive participants with mild cognitive impairment (A + MCI), amyloid-positive participants with Alzheimer's clinical syndrome (A + ACS), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). Stiffness maps were computed using two neural network inversions with the objective to at least partially separate the parenchyma-specific and morphological effects of neurodegeneration on mechanical property estimates. A tissue-confined inversion algorithm was designed to obtain the best estimate of stiffness in the brain parenchyma itself, while a regionally-aware inversion algorithm was used to measure the tissue stiffness along with the surroundings. Mean stiffness of 15 bilateral gray matter cortical regions were considered for statistical analysis. First, we tested the hypothesis that cortical stiffness changes in the aging brain. Next, we tested the overall study hypothesis by first comparing stiffness in each clinical group to the CU group, and then comparing the clinical groups against one another. Finally, we assessed the spatial and statistical overlap between atrophy and stiffness changes for both inversions. RESULTS Cortical brain regions become softer with age for both inversions with larger effects observed using regionally-aware stiffness. Stiffness decreases in the range 0.010-0.027 kPa per year were observed. Pairwise comparisons of each clinical group with cognitively unimpaired participants demonstrated 5 statistically significant differences in stiffness for tissue-confined measurements and 19 statistically different stiffness changes for the regionally-aware stiffness measurements. Pairwise comparisons between clinical groups further demonstrated unique patterns of stiffness differences. Analysis of the atrophy-versus-stiffness relationship showed that regionally-aware stiffness measurements exhibit higher sensitivity to neurodegeneration with findings that are not fully explained by partial volume effects or atrophy. CONCLUSIONS Both tissue-confined and regionally-aware stiffness estimates exhibited unique and complementary stiffness differences in various etiologies of dementia. Our results suggest that mechanical alterations measured by MRE reflect both tissue-specific differences as well as environmental effects. Multi-inversion schemes in MRE may provide new insights into the relationships between neuropathology and brain biomechanics.
Collapse
Affiliation(s)
| | - Jonathan M Scott
- Mayo Clinic Medical Scientist Training Program, 200 First Street SW, Rochester, MN, USA
| | | | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
44
|
Delgorio PL, Hiscox LV, McIlvain G, Kramer MK, Diano AM, Twohy KE, Merritt AA, McGarry MDJ, Schwarb H, Daugherty AM, Ellison JM, Lanzi AM, Cohen ML, Martens CR, Johnson CL. Hippocampal subfield viscoelasticity in amnestic mild cognitive impairment evaluated with MR elastography. Neuroimage Clin 2023; 37:103327. [PMID: 36682312 PMCID: PMC9871742 DOI: 10.1016/j.nicl.2023.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Hippocampal subfields (HCsf) are brain regions important for memory function that are vulnerable to decline with amnestic mild cognitive impairment (aMCI), which is often a preclinical stage of Alzheimer's disease. Studies in aMCI patients often assess HCsf tissue integrity using measures of volume, which has little specificity to microstructure and pathology. We use magnetic resonance elastography (MRE) to examine the viscoelastic mechanical properties of HCsf tissue, which is related to structural integrity, and sensitively detect differences in older adults with aMCI compared to an age-matched control group. Group comparisons revealed HCsf viscoelasticity is differentially affected in aMCI, with CA1-CA2 and DG-CA3 exhibiting lower stiffness and CA1-CA2 exhibiting higher damping ratio, both indicating poorer tissue integrity in aMCI. Including HCsf stiffness in a logistic regression improves classification of aMCI beyond measures of volume alone. Additionally, lower DG-CA3 stiffness predicted aMCI status regardless of DG-CA3 volume. These findings showcase the benefit of using MRE in detecting subtle pathological tissue changes in individuals with aMCI via the HCsf particularly affected in the disease.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Mary K Kramer
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alexa M Diano
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Kyra E Twohy
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Alexis A Merritt
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | | | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - James M Ellison
- Swank Memory Care and Geriatric Consultation, ChristianaCare, Wilmington, DE, United States; Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Alyssa M Lanzi
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Matthew L Cohen
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Mechanical Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
45
|
Herthum H, Hetzer S, Kreft B, Tzschätzsch H, Shahryari M, Meyer T, Görner S, Neubauer H, Guo J, Braun J, Sack I. Cerebral tomoelastography based on multifrequency MR elastography in two and three dimensions. Front Bioeng Biotechnol 2022; 10:1056131. [PMID: 36532573 PMCID: PMC9755504 DOI: 10.3389/fbioe.2022.1056131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/21/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose: Magnetic resonance elastography (MRE) generates quantitative maps of the mechanical properties of biological soft tissues. However, published values obtained by brain MRE vary largely and lack detail resolution, due to either true biological effects or technical challenges. We here introduce cerebral tomoelastography in two and three dimensions for improved data consistency and detail resolution while considering aging, brain parenchymal fraction (BPF), systolic blood pressure, and body mass index (BMI). Methods: Multifrequency MRE with 2D- and 3D-tomoelastography postprocessing was applied to the brains of 31 volunteers (age range: 22-61 years) for analyzing the coefficient of variation (CV) and effects of biological factors. Eleven volunteers were rescanned after 1 day and 1 year to determine intraclass correlation coefficient (ICC) and identify possible long-term changes. Results: White matter shear wave speed (SWS) was slightly higher in 2D-MRE (1.28 ± 0.02 m/s) than 3D-MRE (1.22 ± 0.05 m/s, p < 0.0001), with less variation after 1 day in 2D (0.33 ± 0.32%) than in 3D (0.96 ± 0.66%, p = 0.004), which was also reflected in a slightly lower CV and higher ICC in 2D (1.84%, 0.97 [0.88-0.99]) than in 3D (3.89%, 0.95 [0.76-0.99]). Remarkably, 3D-MRE was sensitive to a decrease in white matter SWS within only 1 year, whereas no change in white matter volume was observed during this follow-up period. Across volunteers, stiffness correlated with age and BPF, but not with blood pressure and BMI. Conclusion: Cerebral tomoelastography provides high-resolution viscoelasticity maps with excellent consistency. Brain MRE in 2D shows less variation across volunteers in shorter scan times than 3D-MRE, while 3D-MRE appears to be more sensitive to subtle biological effects such as aging.
Collapse
Affiliation(s)
- Helge Herthum
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bernhard Kreft
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mehrgan Shahryari
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Steffen Görner
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hennes Neubauer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
46
|
Li Y, Gao Q, Chen N, Zhang Y, Wang J, Li C, He X, Jiao Y, Zhang Z. Clinical studies of magnetic resonance elastography from 1995 to 2021: Scientometric and visualization analysis based on CiteSpace. Quant Imaging Med Surg 2022; 12:5080-5100. [PMID: 36330182 PMCID: PMC9622435 DOI: 10.21037/qims-22-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To assess the knowledge framework around magnetic resonance elastography (MRE) and to explore MRE research hotspots and emerging trends. METHODS The Science Citation Index Expanded of the Web of Science Core Collection was searched on 22 October 2021 for MRE-related studies published between 1995 and 2021. Excel 2016 and CiteSpace V (version 5.8.R3) were used to analyze the downloaded data. RESULTS In all, 1,236 articles published by 726 authors from 540 institutions in 40 countries were included in this study. The top 10 authors published 57.6% of all included articles. The 3 most productive countries were the USA (n=631), Germany (n=202), and France (n=134), and the 3 most productive institutions were the Mayo Clinic (n=240), Charité (n=131), and the University of Illinois (n=56). The USA and the Mayo Clinic had the highest betweenness centrality among countries and institutions, respectively, and played an important role in the field of MRE. In this study, the 24,347 distinct references were clustered into 48 categories via reasonable clustering using specific keywords, forming the knowledge framework. Among the 294 co-occurring keywords, "hepatic fibrosis", "stiffness", "skeletal muscle", "acoustic strain wave", "in vivo", and "non-invasive assessment" were research hotspots. "Diagnostic performance", "diagnostic accuracy", "hepatic steatosis", "chronic hepatitis B", "radiation force impulse", "children", and "echo" were frontier topics. CONCLUSIONS Scientometric and visualized analysis of MRE can provide information regarding the knowledge framework, research hotspots, frontier areas, and emerging trends in this field.
Collapse
Affiliation(s)
- Youwei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuanfang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Juan Wang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chang Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuan He
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing, China
| |
Collapse
|
47
|
Delgorio PL, Hiscox LV, Daugherty AM, Sanjana F, McIlvain G, Pohlig RT, McGarry MDJ, Martens CR, Schwarb H, Johnson CL. Structure-Function Dissociations of Human Hippocampal Subfield Stiffness and Memory Performance. J Neurosci 2022; 42:7957-7968. [PMID: 36261271 PMCID: PMC9617610 DOI: 10.1523/jneurosci.0592-22.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Aging and neurodegenerative diseases lead to decline in thinking and memory ability. The subfields of the hippocampus (HCsf) play important roles in memory formation and recall. Imaging techniques sensitive to the underlying HCsf tissue microstructure can reveal unique structure-function associations and their vulnerability in aging and disease. The goal of this study was to use magnetic resonance elastography (MRE), a noninvasive MR imaging-based technique that can quantitatively image the viscoelastic mechanical properties of tissue to determine the associations of HCsf stiffness with different cognitive domains across the lifespan. Eighty-eight adult participants completed the study (age 23-81 years, male/female 36/51), in which we aimed to determine which HCsf regions most strongly correlated with different memory performance outcomes and if viscoelasticity of specific HCsf regions mediated the relationship between age and performance. Our results revealed that both interference cost on a verbal memory task and relational memory task performance were significantly related to cornu ammonis 1-2 (CA1-CA2) stiffness (p = 0.018 and p = 0.011, respectively), with CA1-CA2 stiffness significantly mediating the relationship between age and interference cost performance (p = 0.031). There were also significant associations between delayed free verbal recall performance and stiffness of both the dentate gyrus-cornu ammonis 3 (DG-CA3; p = 0.016) and subiculum (SUB; p = 0.032) regions. This further exemplifies the functional specialization of HCsf in declarative memory and the potential use of MRE measures as clinical biomarkers in assessing brain health in aging and disease.SIGNIFICANCE STATEMENT Hippocampal subfields are cytoarchitecturally unique structures involved in distinct aspects of memory processing. Magnetic resonance elastography is a technique that can noninvasively image tissue viscoelastic mechanical properties, potentially serving as sensitive biomarkers of aging and neurodegeneration related to functional outcomes. High-resolution in vivo imaging has invigorated interest in determining subfield functional specialization and their differential vulnerability in aging and disease. Applying MRE to probe subfield-specific cognitive correlates will indicate that measures of subfield stiffness can determine the integrity of structures supporting specific domains of memory performance. These findings will further validate our high-resolution MRE method and support the potential use of subfield stiffness measures as clinical biomarkers in classifying aging and disease states.
Collapse
Affiliation(s)
- Peyton L Delgorio
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Lucy V Hiscox
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, Michigan 48202
| | - Faria Sanjana
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware 19713
| | - Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| | - Ryan T Pohlig
- Biostatistics Core Facility, College of Health Sciences, University of Delaware, Newark, Delaware 19713
| | - Matthew D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Christopher R Martens
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware 19713
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
48
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
49
|
Upadhyay K, Alshareef A, Knutsen AK, Johnson CL, Carass A, Bayly PV, Pham DL, Prince JL, Ramesh KT. Development and validation of subject-specific 3D human head models based on a nonlinear visco-hyperelastic constitutive framework. J R Soc Interface 2022; 19:20220561. [PMCID: PMC9554734 DOI: 10.1098/rsif.2022.0561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Computational head models are promising tools for understanding and predicting traumatic brain injuries. Most available head models are developed using inputs (i.e. head geometry, material properties and boundary conditions) from experiments on cadavers or animals and employ hereditary integral-based constitutive models that assume linear viscoelasticity in part of the rate-sensitive material response. This leads to high uncertainty and poor accuracy in capturing the nonlinear brain tissue response. To resolve these issues, a framework for the development of subject-specific three-dimensional head models is proposed, in which all inputs are derived in vivo from the same living human subject: head geometry via magnetic resonance imaging (MRI), brain tissue properties via magnetic resonance elastography (MRE), and full-field strain-response of the brain under rapid head rotation via tagged MRI. A nonlinear, viscous dissipation-based visco-hyperelastic constitutive model is employed to capture brain tissue response. Head models are validated using quantitative metrics that compare spatial strain distribution, temporal strain evolution, and the magnitude of strain maxima, with the corresponding experimental observations from tagged MRI. Results show that our head models accurately capture the strain-response of the brain. Further, employment of the nonlinear visco-hyperelastic constitutive framework provides improvements in the prediction of peak strains and temporal strain evolution over hereditary integral-based models.
Collapse
Affiliation(s)
- Kshitiz Upadhyay
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ahmed Alshareef
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew K. Knutsen
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Curtis L. Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aaron Carass
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Philip V. Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dzung L. Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20814, USA
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - K. T. Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD 21218, USA,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
50
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|