1
|
Fan YS, Xu Y, Wan B, Sheng W, Wang C, Yang M, Valk SL, Chen H. Anterior-posterior systematic deficits of cortical thickness in early-onset schizophrenia. Commun Biol 2025; 8:778. [PMID: 40399456 PMCID: PMC12095531 DOI: 10.1038/s42003-025-08216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
Schizophrenia is a neurodevelopmental condition with alterations in both sensory and association cortical areas. These alterations have been reported to follow structural connectivity patterning, and to occur in a system-level fashion. Here we investigated whether pathological alterations of schizophrenia originate from an early disruption of cortical organization. We found a structural covariance gradient axis of cortical thickness discriminated anterior from posterior region and was compressed in early-onset schizophrenia (EOS) patients. Patients showed increased structural covariance between two ends of the anterior-posterior axis, with increased geodesic distance of covarying regions between two ends. Positive symptoms increased with the strengthening of structural covariance between two ends. Our findings revealed a contracted organizational axis in EOS patients, which was attributed to excessive distally coordinated changes between anterior and posterior cortical regions. Our study from a systematic perspective suggests disturbed maturational processes of cortical thickness in EOS, supporting the neurodevelopmental hypothesis of schizophrenia.
Collapse
Grants
- the National Natural Science Foundation of China (62333003, 82121003), Medical-Engineering Cooperation Funds from University of Electronic Science and Technology of China (ZYGX2021YGLH201).
- the National Natural Science Foundation of China (62403105), the China Postdoctoral Science Foundation (2023M740524), Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows.
- the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom)
- the National Natural Science Foundation of China (62373079)
- Helmholtz Association’s Initiative and Networking Fund under the Helmholtz International Lab grant agreement InterLabs-0015, and the Canada First Research Excellence Fund (CFREF Competition 2, 2015-2016) awarded to the Healthy Brains, Healthy Lives initiative at McGill University, through the Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL)
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bin Wan
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Wei Sheng
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Chong Wang
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Liang X, Luo J, Bi Q, Jiang Y, Yang L, Vatansever D, Jefferies E, Gong G. Functional divergence between the two cerebral hemispheres contributes to human fluid intelligence. Commun Biol 2025; 8:764. [PMID: 40382492 PMCID: PMC12085609 DOI: 10.1038/s42003-025-08151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Hemispheric lateralization is linked to potential cognitive advantages. It is considered a driving force behind the generation of human intelligence. However, establishing quantitative links between the degree of lateralization and intelligence in humans remains elusive. In this study, we propose a framework that utilizes the functional aligned multidimensional representation space derived from hemispheric functional gradients to compute between-hemisphere distances within this space. Applying this framework to a large cohort (N = 777), we identified high functional divergence across the two hemispheres within the frontoparietal network. We found that both global divergence between the cerebral hemispheres and regional divergence within the multiple demand network were positively associated with fluid composite score and partially mediated the relationship between brain size and individual differences in fluid intelligence. Together, these findings deepen our understanding of hemispheric lateralization as a fundamental organizational principle of the human brain, providing empirical evidence for its role in supporting fluid intelligence.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- The Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China.
| | - Junhao Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Shenzhen CyberAray Network Technology Co. Ltd, Shenzhen, China
- Harbin Institute of Technology, Shenzhen, Shenzhen, China
| | - Qiuhui Bi
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Artificial Intelligence and Language Cognition Laboratory, Beijing International Studies University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Deniz Vatansever
- The Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | | | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| |
Collapse
|
3
|
Di Stolfo L, Lee WS, Vanhecke D, Balog S, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. The impact of cell density variations on nanoparticle uptake across bioprinted A549 gradients. Front Bioeng Biotechnol 2025; 13:1584635. [PMID: 40370598 PMCID: PMC12075422 DOI: 10.3389/fbioe.2025.1584635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction The safe-by-design of engineered nanoparticles (NPs) for any application requires a detailed understanding of how the particles interact with single cells. Most studies are based on two-dimensional, uniformly dense cell cultures, which do not represent the diverse and inhomogeneous cell environments found in situ. In-vitro models that accurately represent tissue complexity, including realistic cell densities, are essential to increase the predictive accuracy of studies on cell-NP interactions. This study uses a bioprinted cell gradient model to examine the relation between cell density and NP uptake in one dish. Method A549 lung epithelial cell density gradients within single inserts were produced with a bioprinter by modulating inter-droplet distances. After two days in culture, cells were exposed to Cy5-labeled silica NPs (SiO2 NPs, ∼112 nm, 20 μg/mL) for up to 48 h. Confocal fluorescence microscopy and 3D image analysis were used to quantify NP uptake, cell surface area, and cell volume. The relationship between NP uptake and the other parameters was then investigated statistically. Results Bioprinting enabled the creation of reproducible linear cell density gradients, allowing controlled modeling of density variations while preserving cell viability throughout the experiment. Increasing inter-droplet distances, from 0.1 mm to 0.6 mm, were used to achieve uniformly decreasing cell densities. SiO2 NP uptake per cell was around 50% higher in low-density regions compared to high-density areas across all time points, i.e., 6, 24, and 48 h post-exposure. This inverse relationship correlated with greater average cell surface area in lower-density regions, while differences in the proliferation rates of the A549 cells at varying densities did not significantly impact uptake, did not significantly impact uptake. Conclusion SiO2 NP uptake is significantly enhanced at lower cell densities, mainly due to the increased available surface area, revealing potential cell-NP interaction differences in tissues that present cell density variability. Our drop-on-demand bioprinting gradient model successfully supports the implementation of cell density gradients in in-vitro models to increase their relevance as new approach methodologies (NAMs) for next-generation risk assessment strategies.
Collapse
Affiliation(s)
- Luigi Di Stolfo
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Wang Sik Lee
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Dimitri Vanhecke
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- Adolphe Merkle Institute and National Center of Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Demir U, Yang WFZ, Sacchet MD. Advanced concentrative absorption meditation reorganizes functional connectivity gradients of the brain: 7T MRI and phenomenology case study of jhana meditation. Cereb Cortex 2025; 35:bhaf079. [PMID: 40215476 PMCID: PMC11990890 DOI: 10.1093/cercor/bhaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/12/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
There is growing scientific interest in advanced meditation, and particularly the Theravada Buddhist advanced concentrative absorption meditation known as jhana (ACAM-J). ACAM-J includes a series of eight consecutive meditative states, which are radically altered states of consciousness. The neuroscience of ACAM-J, specifically brain reorganization, remains underspecified in part due to the difficulty of finding and studying expert ACAM-J meditators and challenges related to laboratory investigation of ACAM-J. Using a nonlinear dimensionality reduction technique applied to human functional neuroimaging in an intensive case study, we investigated brain reorganization during ACAM-J. We applied linear mixed models and correlations to explore relations among brain reorganization and ACAM-J phenomenology. Results demonstrated that ACAM-J induces disruption of the hierarchical organization of the brain by shifting the gradients toward a more globally integrated rather than segregated state between sensory-related and higher-order cognitive regions. Additionally, ACAM-J induces a separation between sensory-related and attention modulation-related regions, resulting in greater differentiation in functional organization of these regions, consistent with phenomenological reports. This study highlights the need for further research into brain reorganization and health-related implications of both short-term and long-term practice of ACAM-J. Key points/highlights The neuroscience of advanced concentrative absorption meditation (ACAM) has the potential to improve our knowledge of well-being and altered states of consciousness but remains underexplored due to methodological challenges. We investigated functional reorganization of the brain during ACAM-J using gradient analysis and demonstrated that ACAM-J disrupts the hierarchical organization of the brain during meditation. Additionally, we demonstrated that ACAM-J increases differentiation between primary sensory areas and areas related to attention modulation.
Collapse
Affiliation(s)
- Umay Demir
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Faculty of Medicine, Graduate School of Life Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands
| | - Winson Fu Zun Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| |
Collapse
|
5
|
Cabalo DG, Leppert IR, Thevakumaran R, DeKraker J, Hwang Y, Royer J, Kebets V, Tavakol S, Wang Y, Zhou Y, Benkarim O, Eichert N, Paquola C, Doyon J, Tardif CL, Rudko D, Smallwood J, Rodriguez-Cruces R, Bernhardt BC. Multimodal precision MRI of the individual human brain at ultra-high fields. Sci Data 2025; 12:526. [PMID: 40157934 PMCID: PMC11954990 DOI: 10.1038/s41597-025-04863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Multimodal neuroimaging, in particular magnetic resonance imaging (MRI), allows for non-invasive examination of human brain structure and function across multiple scales. Precision neuroimaging builds upon this foundation, enabling the mapping of brain structure, function, and connectivity patterns with high fidelity in single individuals. Highfield MRI, operating at magnetic field strengths of 7 Tesla (T) or higher, increases signal-to-noise ratio and opens up possibilities for gains spatial resolution. Here, we share a multimodal Precision Neuroimaging and Connectomics (PNI) 7 T MRI dataset. Ten healthy individuals underwent a comprehensive MRI protocol, including T1 relaxometry, magnetization transfer imaging, T2*-weighted imaging, diffusion MRI, and multi-state functional MRI paradigms, aggregated across three imaging sessions. Alongside anonymized raw MRI data, we release cortex-wide connectomes from different modalities across multiple parcellation scales, and supply "gradients" that compactly characterize spatial patterning of cortical organization. Our precision MRI dataset will advance our understanding of structure-function relationships in the individual human brain and is publicly available via the Open Science Framework.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada.
| | - Ilana Ruth Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Risavarshni Thevakumaran
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Youngeun Hwang
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Yigu Zhou
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Juelich, Juelich, Germany
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - David Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada.
| |
Collapse
|
6
|
Sassenberg TA, Jung RE, DeYoung CG. Functional differentiation of the default and frontoparietal control networks predicts individual differences in creative achievement: evidence from macroscale cortical gradients. Cereb Cortex 2025; 35:bhaf046. [PMID: 40056422 PMCID: PMC11890067 DOI: 10.1093/cercor/bhaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/16/2025] [Accepted: 02/05/2025] [Indexed: 03/10/2025] Open
Abstract
Much of the research on the neural correlates of creativity has emphasized creative cognition, and growing evidence suggests that creativity is related to functional properties of the default and frontoparietal control networks. The present work expands on this body of evidence by testing associations of creative achievement with connectivity profiles of brain networks assessed using macroscale cortical gradients. Using resting-state connectivity functional magnetic resonance imaging in 2 community samples (N's = 236 and 234), we found evidence that creative achievement is positively associated with greater functional dissimilarity between core regions of the default and frontoparietal control networks. These results suggest that creative achievement is supported by the ability of these 2 networks to carry out distinct cognitive roles. This research provides further evidence, using a cortical gradient approach, that individual differences in creative achievement can be predicted from functional properties of brain networks involved in higher-order cognition, and it aligns with past research on the functional connectivity correlates of creative task performance.
Collapse
Affiliation(s)
- Tyler A Sassenberg
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, United States
| | - Rex E Jung
- Department of Neurosurgery, University of New Mexico, 915 Camino de Salud NE, Albuquerque, NM 87106, United States
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Xie K, Royer J, Rodriguez‐Cruces R, Horwood L, Ngo A, Arafat T, Auer H, Sahlas E, Chen J, Zhou Y, Valk SL, Hong S, Frauscher B, Pana R, Bernasconi A, Bernasconi N, Concha L, Bernhardt BC. Temporal Lobe Epilepsy Perturbs the Brain-Wide Excitation-Inhibition Balance: Associations with Microcircuit Organization, Clinical Parameters, and Cognitive Dysfunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406835. [PMID: 39806576 PMCID: PMC11884548 DOI: 10.1002/advs.202406835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models. A broad decrease in the Hurst exponent is observed in pharmaco-resistant temporal lobe epilepsy (TLE), suggesting more excitable network dynamics. Connectome decoders point to temporolimbic and frontocentral cortices as plausible network epicenters of E/I imbalance. Furthermore, computational simulations reveal that enhancing cortical excitability in TLE reflects atypical increases in recurrent connection strength of local neuronal ensembles. Mixed cross-sectional and longitudinal analyses show stronger E/I ratio elevation in patients with longer disease duration, more frequent electroclinical seizures as well as interictal epileptic spikes, and worse cognitive functioning. Hurst exponent-informed classifiers discriminate patients from healthy controls with high accuracy (72.4% [57.5%-82.5%]). Replicated in an independent dataset, this work provides in vivo evidence of a macroscale shift in E/I balance in TLE patients and points to progressive functional imbalances that relate to cognitive decline.
Collapse
Affiliation(s)
- Ke Xie
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Jessica Royer
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Raul Rodriguez‐Cruces
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Linda Horwood
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Alexander Ngo
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Thaera Arafat
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Hans Auer
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Ella Sahlas
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Judy Chen
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Yigu Zhou
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Sofie L. Valk
- Otto Hahn Research Group for Cognitive NeurogeneticsMax Planck Institute for Human Cognitive and Brain Sciences04103LeipzigGermany
- Institute of Neurosciences and Medicine (INM‐7)Research Centre Jülich52428JülichGermany
- Institute of Systems NeuroscienceHeinrich Heine University Düsseldorf40225DüsseldorfGermany
| | - Seok‐Jun Hong
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSungkyunkwan UniversitySuwon34126South Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
- Center for the Developing BrainChild Mind InstituteNew York CityNY10022USA
| | - Birgit Frauscher
- Department of Neurology and Department of Biomedical EngineeringDuke UniversityDurhamNC27704USA
| | - Raluca Pana
- Montreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Andrea Bernasconi
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Neda Bernasconi
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| | - Luis Concha
- Institute of NeurobiologyUniversidad Nacional Autónoma de MexicoQueretaro76230Mexico
| | - Boris C. Bernhardt
- McConnell Brain Imaging CentreMontreal Neurological Institute and HospitalMcGill UniversityMontrealQCH3A 2B4Canada
| |
Collapse
|
8
|
John A, Hettwer MD, Schaare HL, Saberi A, Bayrak Ş, Wan B, Royer J, Bernhardt BC, Valk SL. A multimodal characterization of low-dimensional thalamocortical structural connectivity patterns. Commun Biol 2025; 8:185. [PMID: 39910332 PMCID: PMC11799188 DOI: 10.1038/s42003-025-07528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
The human thalamus is a heterogeneous subcortical structure coordinating whole-brain activity. Investigations of its internal organization reveal differentiable subnuclei, however, a consensus on subnuclei boundaries remains absent. Recent work suggests that thalamic organization additionally reflects continuous axes transcending nuclear boundaries. Here, we study how low-dimensional axes of thalamocortical structural connectivity relate to intrathalamic microstructural features, functional connectivity, and structural covariance. Using diffusion MRI, we compute a thalamocortical structural connectome and derive two main axes of thalamic organization. The principal axis, extending from medial to lateral, relates to intrathalamic myelin, and functional connectivity organization. The secondary axis corresponds to the core-matrix cell distribution. Lastly, exploring multimodal associations globally, we observe the principal axis consistently differentiating limbic, frontoparietal, and default mode network nodes from dorsal and ventral attention networks across modalities. However, the link with sensory modalities varies. In sum, we show the coherence between lower dimensional patterns of thalamocortical structural connectivity and various modalities, shedding light on multiscale thalamic organization.
Collapse
Affiliation(s)
- Alexandra John
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Cognitive Neuroimaging (IMPRS CoNI), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Brain Dynamics Graduate School, Leipzig University, Leipzig, Germany.
- Faculty for Life Sciences, Leipzig University, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Meike D Hettwer
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - H Lina Schaare
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amin Saberi
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Şeyma Bayrak
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bin Wan
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Sofie L Valk
- Lise Meitner Research Group Neurobiosocial, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Shamir I, Assaf Y. Tutorial: a guide to diffusion MRI and structural connectomics. Nat Protoc 2025; 20:317-335. [PMID: 39232202 DOI: 10.1038/s41596-024-01052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) is a versatile imaging technique that has gained popularity thanks to its sensitive ability to measure displacement of water molecules within a living tissue on a micrometer scale. Although dMRI has been around since the early 1990s, its applications are constantly evolving, primarily regarding the inference of structural connectomics from nerve fiber trajectories. However, these applications require expertise in image processing and statistics, and it can be difficult for a newcomer to choose an appropriate pipeline to fit their research needs, not least because dMRI is such a flexible methodology that dozens of acquisition and analysis pipelines have been developed over the years. This introductory guide is designed for graduate students and researchers in the neuroscience community who are interested in integrating this new methodology regardless of their background in neuroimaging and computational tools. The guide provides a brief overview of the basic dMRI methodologies but focuses on its applications in neuroplasticity and connectomics. The guide starts with dMRI experimental designs and a complete step-by-step pipeline for structural connectomics. The following section covers the basics of dMRI, including parameters and clinical applications (apparent diffusion coefficient, mean diffusivity, fractional anisotropy and microscopic fractional anisotropy), as well as different approaches and models. The final section focuses on structural connectomics, covering subjects from fiber tracking (techniques, evaluation and limitations) to structural networks (constructing, analyzing and visualizing a network).
Collapse
Affiliation(s)
- Ittai Shamir
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Kim S, Yoo S, Xie K, Royer J, Larivière S, Byeon K, Lee JE, Park Y, Valk SL, Bernhardt BC, Hong SJ, Park H, Park BY. Comparison of different group-level templates in gradient-based multimodal connectivity analysis. Netw Neurosci 2024; 8:1009-1031. [PMID: 39735514 PMCID: PMC11674319 DOI: 10.1162/netn_a_00382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 12/31/2024] Open
Abstract
The study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences. We studied multimodal magnetic resonance imaging data obtained from the Autism Brain Imaging Data Exchange (ABIDE) Initiative II and the Human Connectome Project (HCP). We designed six template construction strategies that varied in whether (1) they included typical controls in addition to ASD; or (2) they mapped from one dataset onto another. We found that aligning a combined subject template of the ASD and control subjects from the ABIDE Initiative onto the HCP template exhibited the most pronounced effect size. This strategy showed robust identification of ASD-related brain regions for both functional and structural gradients across different study settings. Replicating the findings on focal epilepsy demonstrated the generalizability of our approach. Our findings will contribute to improving gradient-based connectivity research.
Collapse
Affiliation(s)
- Sunghun Kim
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seulki Yoo
- GE HealthCare Korea, Seoul, Republic of Korea
| | - Ke Xie
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kyoungseob Byeon
- Center for the Integrative Developmental Neuroscience, Child Mind Institute, New York, NY, USA
| | - Jong Eun Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sofie L. Valk
- Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Royer J, Kebets V, Piguet C, Chen J, Ooi LQR, Kirschner M, Siffredi V, Misic B, Yeo BTT, Bernhardt BC. Multimodal neural correlates of childhood psychopathology. eLife 2024; 13:e87992. [PMID: 39625475 PMCID: PMC11781800 DOI: 10.7554/elife.87992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain-behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.
Collapse
Affiliation(s)
- Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of SingaporeSingaporeSingapore
| | - Camille Piguet
- Young Adult Unit, Psychiatric Specialities Division, Geneva University Hospitals and Department of Psychiatry, Faculty of Medicine, University of GenevaGenevaSwitzerland
- Adolescent Unit, Division of General Paediatric, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University HospitalsGenevaSwitzerland
| | - Jianzhong Chen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of SingaporeSingaporeSingapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of SingaporeSingaporeSingapore
| | - Matthias Kirschner
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University HospitalsGenevaSwitzerland
| | - Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and University of GenevaGenevaSwitzerland
- Neuro-X Institute, Ecole Polytechnique Fédérale de LausanneGenevaSwitzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - BT Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of Electrical and Computer Engineering, National University of SingaporeSingaporeSingapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, National University SingaporeSingaporeSingapore
- Martinos Center for Biomedical Imaging, Massachusetts General HospitalBostonUnited States
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill UniversityMontrealCanada
| |
Collapse
|
12
|
Wang X, Manza P, Li X, Ramos‐Rolón A, Hager N, Wang G, Volkow ND, Hu Y, Shi Z, Wiers CE. Reduced brain network segregation in alcohol use disorder: Associations with neurocognition. Addict Biol 2024; 29:e13446. [PMID: 39686721 PMCID: PMC11649955 DOI: 10.1111/adb.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024]
Abstract
The human brain consists of functionally segregated networks, characterized by strong connections among regions belonging to the same network and weak connections between those of different networks. Alcohol use disorder (AUD) is associated with premature brain aging and neurocognitive impairments. Given the link between decreased brain network segregation and age-related cognitive decline, we hypothesized lower brain segregation in patients with AUD than healthy controls (HCs). Thirty AUD patients (9 females, 21 males) and 61 HCs (35 females, 26 males) underwent resting-state functional MRI (rs-fMRI), whose data were processed to assess segregation within the brain sensorimotor and association networks. We found that, compared to HCs, AUD patients had significantly lower segregation in both brain networks as well as poorer performance on a spatial working memory task. In the HC group, brain network segregation correlated negatively with age and positively with spatial working memory. Our findings suggest reduced brain network segregation in individuals with AUD that may contribute to cognitive impairment and is consistent with premature brain aging in this population.
Collapse
Affiliation(s)
- Xinying Wang
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Psychology and Behavioral SciencesZhejiang University, Zijingang CampusHangzhouZhejiang ProvinceChina
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMarylandUSA
| | - Xinyi Li
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Astrid Ramos‐Rolón
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nathan Hager
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gene‐Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMarylandUSA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthBethesdaMarylandUSA
| | - Yuzheng Hu
- Department of Psychology and Behavioral SciencesZhejiang University, Zijingang CampusHangzhouZhejiang ProvinceChina
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corinde E. Wiers
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
13
|
Hardikar S, McKeown B, Turnbull A, Xu T, Valk SL, Bernhardt BC, Margulies DS, Milham MP, Jefferies E, Leech R, Villringer A, Smallwood J. Personality traits vary in their association with brain activity across situations. Commun Biol 2024; 7:1498. [PMID: 39533085 PMCID: PMC11557894 DOI: 10.1038/s42003-024-07061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Human cognition supports complex behaviour across a range of situations, and traits (e.g. personality) influence how we react in these different contexts. Although viewing traits as situationally grounded is common in social sciences, often studies attempting to link brain activity to human traits examine brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies, often referred to as brain wide association studies (BWAS) have recently become the subject of controversy because results are often unreliable even with large sample sizes. Although there are important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation in which brain activity is measured will impact the power in detecting a reliable link to specific traits. We performed a state-space analysis where tasks from the Human Connectome Project (HCP) were organized into a low-dimensional space based on how they activated different large-scale neural systems. We examined how individuals' observed brain activity across these different contexts related to their personality. We found that for multiple personality traits, stronger associations with brain activity emerge in some tasks than others. These data highlight the importance of context-bound views for understanding how brain activity links to trait variation in human behaviour.
Collapse
Affiliation(s)
- Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck School of Cognition, Stephanstrasse 1A, Leipzig, Germany.
- Department of Psychology, Queens University, Kingston, ON, Canada.
| | - Brontë McKeown
- Department of Psychology, Queens University, Kingston, ON, Canada
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Sofie L Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Stephanstrasse 1A, Leipzig, Germany
- Day Clinic of Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
15
|
Wang D, Li Z, Zhao K, Chen P, Yang F, Yao H, Zhou B, Wei Y, Lu J, Chen Y, Zhang X, Han Y, Wang P, Liu Y. Macroscale Gradient Dysfunction in Alzheimer's Disease: Patterns With Cognition Terms and Gene Expression Profiles. Hum Brain Mapp 2024; 45:e70046. [PMID: 39449114 PMCID: PMC11502409 DOI: 10.1002/hbm.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Macroscale functional gradient techniques provide a continuous coordinate system that extends from unimodal regions to transmodal higher-order networks. However, the alterations of these functional gradients in AD and their correlations with cognitive terms and gene expression profiles remain to be established. In the present study, we directly studied the functional gradients with functional MRI data from seven scanners. We adopted data-driven meta-analytic techniques to unveil AD-associated changes in the functional gradients. The principal primary-to-transmodal gradient was suppressed in AD. Compared to NCs, AD patients exhibited global connectome gradient alterations, including reduced gradient range and gradient variation, increased gradient scores in the somatomotor, ventral attention, and frontoparietal regions, and decreased in the default mode network. More importantly, the Gene Ontology terms of biological processes were significantly enriched in the potassium ion transport and protein-containing complex remodeling. Our compelling evidence provides a new perspective in understanding the connectome alterations in AD.
Collapse
Affiliation(s)
- Dawei Wang
- Department of RadiologyQilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong UniversityJinanChina
- Research Institute of Shandong UniversityMagnetic Field‐Free Medicine & Functional ImagingJinanChina
- Shandong Key Laboratory: Magnetic Field‐Free Medicine & Functional Imaging (MF)JinanChina
| | - Zhuangzhuang Li
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| | - Kun Zhao
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pindong Chen
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences, & Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Fan Yang
- CAS Key Laboratory of Molecular ImagingInstitute of AutomationBeijingChina
| | - Hongxiang Yao
- Department of Radiology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Bo Zhou
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Yongbin Wei
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yuqi Chen
- Affiliated HospitalBeijing University of Posts and TelecommunicationsBeijingChina
| | - Xi Zhang
- Department of Neurology, the Second Medical CentreNational Clinical Research Centre for Geriatric Diseases, Chinese PLA General HospitalBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu HospitalTianjinChina
| | - Yong Liu
- Queen Mary School HainanBeijing University of Posts and TelecommunicationsHainanChina
| |
Collapse
|
16
|
Zhao K, Wang D, Wang D, Chen P, Wei Y, Tu L, Chen Y, Tang Y, Yao H, Zhou B, Lu J, Wang P, Liao Z, Chen Y, Han Y, Zhang X, Liu Y. Macroscale connectome topographical structure reveals the biomechanisms of brain dysfunction in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eado8837. [PMID: 39392880 PMCID: PMC11809497 DOI: 10.1126/sciadv.ado8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
The intricate spatial configurations of brain networks offer essential insights into understanding the specific patterns of brain abnormalities and the underlying biological mechanisms associated with Alzheimer's disease (AD), normal aging, and other neurodegenerative disorders. This study investigated alterations in the topographical structure of the brain related to aging and neurodegenerative diseases by analyzing brain gradients derived from structural MRI data across multiple cohorts (n = 7323). The analysis identified distinct gradient patterns in AD, aging, and other neurodegenerative conditions. Gene enrichment analysis indicated that inorganic ion transmembrane transport was the most significant term in normal aging, while chemical synaptic transmission is a common enrichment term across various neurodegenerative diseases. Moreover, the findings show that each disorder exhibits unique dysfunctional neurophysiological characteristics. These insights are pivotal for elucidating the distinct biological mechanisms underlying AD, thereby enhancing our understanding of its unique clinical phenotypes in contrast to normal aging and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Liyun Tu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuqi Chen
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People’s Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People’s Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Roseman-Shalem M, Dunbar RIM, Arzy S. Processing of social closeness in the human brain. Commun Biol 2024; 7:1293. [PMID: 39390210 PMCID: PMC11467261 DOI: 10.1038/s42003-024-06934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Healthy social life requires relationships in different levels of personal closeness. Based on ethological, sociological, and psychological evidence, social networks have been divided into five layers, gradually increasing in size and decreasing in personal closeness. Is this division also reflected in brain processing of social networks? During functional MRI, 21 participants compared their personal closeness to different individuals. We examined the brain volume showing differential activation for varying layers of closeness and found that a disproportionately large portion of this volume (80%) exhibited preference for individuals closest to participants, while separate brain regions showed preference for all other layers. Moreover, this bipartition reflected cortical preference for different sizes of physical spaces, as well as distinct subsystems of the default mode network. Our results support a division of the neurocognitive processing of social networks into two patterns depending on personal closeness, reflecting the unique role intimately close individuals play in our social lives.
Collapse
Affiliation(s)
- Moshe Roseman-Shalem
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Shahar Arzy
- Computational Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
18
|
Royer J, Paquola C, Valk SL, Kirschner M, Hong SJ, Park BY, Bethlehem RAI, Leech R, Yeo BTT, Jefferies E, Smallwood J, Margulies D, Bernhardt BC. Gradients of Brain Organization: Smooth Sailing from Methods Development to User Community. Neuroinformatics 2024; 22:623-634. [PMID: 38568476 DOI: 10.1007/s12021-024-09660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 11/21/2024]
Abstract
Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.
Collapse
Affiliation(s)
- Jessica Royer
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Kirschner
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Thonex, Switzerland
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, USA
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Data Science, Inha University, Incheon, South Korea
- Department of Statistics and Data Science, Inha University, Incheon, South Korea
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College London, London, UK
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Paris, France
| | - Boris C Bernhardt
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Khan AF, Iturria-Medina Y. Beyond the usual suspects: multi-factorial computational models in the search for neurodegenerative disease mechanisms. Transl Psychiatry 2024; 14:386. [PMID: 39313512 PMCID: PMC11420368 DOI: 10.1038/s41398-024-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
From Alzheimer's disease to amyotrophic lateral sclerosis, the molecular cascades underlying neurodegenerative disorders remain poorly understood. The clinical view of neurodegeneration is confounded by symptomatic heterogeneity and mixed pathology in almost every patient. While the underlying physiological alterations originate, proliferate, and propagate potentially decades before symptomatic onset, the complexity and inaccessibility of the living brain limit direct observation over a patient's lifespan. Consequently, there is a critical need for robust computational methods to support the search for causal mechanisms of neurodegeneration by distinguishing pathogenic processes from consequential alterations, and inter-individual variability from intra-individual progression. Recently, promising advances have been made by data-driven spatiotemporal modeling of the brain, based on in vivo neuroimaging and biospecimen markers. These methods include disease progression models comparing the temporal evolution of various biomarkers, causal models linking interacting biological processes, network propagation models reproducing the spatial spreading of pathology, and biophysical models spanning cellular- to network-scale phenomena. In this review, we discuss various computational approaches for integrating cross-sectional, longitudinal, and multi-modal data, primarily from large observational neuroimaging studies, to understand (i) the temporal ordering of physiological alterations, i(i) their spatial relationships to the brain's molecular and cellular architecture, (iii) mechanistic interactions between biological processes, and (iv) the macroscopic effects of microscopic factors. We consider the extents to which computational models can evaluate mechanistic hypotheses, explore applications such as improving treatment selection, and discuss how model-informed insights can lay the groundwork for a pathobiological redefinition of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ahmed Faraz Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Canada.
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.
| |
Collapse
|
20
|
Royer J, Kebets V, Piguet C, Chen J, Ooi LQR, Kirschner M, Siffredi V, Misic B, Yeo BTT, Bernhardt BC. MULTIMODAL NEURAL CORRELATES OF CHILDHOOD PSYCHOPATHOLOGY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530821. [PMID: 39185226 PMCID: PMC11343159 DOI: 10.1101/2023.03.02.530821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples, supporting generalizability, and robust to variations in analytical parameters. Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.
Collapse
Affiliation(s)
- Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Camille Piguet
- Young Adult Unit, Psychiatric Specialities Division, Geneva University Hospitals and Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Adolescent Unit, Division of General Paediatric, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals
| | - Jianzhong Chen
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - Matthias Kirschner
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Vanessa Siffredi
- Division of Development and Growth, Department of Paediatrics, Gynaecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Switzerland
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - B T Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme, National University Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Larivière S, Park BY, Royer J, DeKraker J, Ngo A, Sahlas E, Chen J, Rodríguez-Cruces R, Weng Y, Frauscher B, Liu R, Wang Z, Shafiei G, Mišić B, Bernasconi A, Bernasconi N, Fox MD, Zhang Z, Bernhardt BC. Connectome reorganization associated with temporal lobe pathology and its surgical resection. Brain 2024; 147:2483-2495. [PMID: 38701342 PMCID: PMC11224603 DOI: 10.1093/brain/awae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.
Collapse
Affiliation(s)
- Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Bo-yong Park
- Department of Data Science, Inha University, Incheon 22212, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 34126, Republic of Korea
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Ngo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ella Sahlas
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Judy Chen
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Birgit Frauscher
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ruoting Liu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Zhengge Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bratislav Mišić
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard University, Boston, MA 02115, USA
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
22
|
Salvalaggio A, Pini L, Bertoldo A, Corbetta M. Glioblastoma and brain connectivity: the need for a paradigm shift. Lancet Neurol 2024; 23:740-748. [PMID: 38876751 DOI: 10.1016/s1474-4422(24)00160-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 06/16/2024]
Abstract
Despite substantial advances in cancer treatment, for patients with glioblastoma prognosis remains bleak. The emerging field of cancer neuroscience reveals intricate functional interplays between glioblastoma and the cellular architecture of the brain, encompassing neurons, glia, and vessels. New findings underscore the role of structural and functional connections within hierarchical networks, known as the connectome. These connections contribute to the location, spread, and recurrence of a glioblastoma, and a patient's overall survival, revealing a complex interplay between the tumour and the CNS. This mounting evidence prompts a paradigm shift, challenging the perception of glioblastomas as mere foreign bodies within the brain. Instead, these tumours are intricately woven into the structural and functional fabric of the brain. This radical change in thinking holds profound implications for the understanding and treatment of glioblastomas, which could unveil new prognostic factors and surgical strategies and optimise radiotherapy. Additionally, a connectivity approach suggests that non-invasive brain stimulation could disrupt pathological neuron-glioma interactions within specific networks.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Lorenzo Pini
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Clinica Neurologica, Azienda Ospedale Università Padova, Padova, Italy; Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy.
| |
Collapse
|
23
|
Vogel JW, Alexander-Bloch AF, Wagstyl K, Bertolero MA, Markello RD, Pines A, Sydnor VJ, Diaz-Papkovich A, Hansen JY, Evans AC, Bernhardt B, Misic B, Satterthwaite TD, Seidlitz J. Deciphering the functional specialization of whole-brain spatiomolecular gradients in the adult brain. Proc Natl Acad Sci U S A 2024; 121:e2219137121. [PMID: 38861593 PMCID: PMC11194492 DOI: 10.1073/pnas.2219137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning. The interaction of these spatiomolecular gradients i) accurately reconstructs the position of brain tissue samples, ii) delineates known functional territories, and iii) can model the topographical variation of diverse cortical features. The spatiomolecular gradients are distinct from canonical cortical axes differentiating the primary sensory cortex from the association cortex, but radiate in parallel with the axes traversed by local field potentials along the cortex. We replicate all three molecular gradients in three independent human datasets as well as two nonhuman primate datasets and find that each gradient shows a distinct developmental trajectory across the lifespan. The gradients are composed of several well-known transcription factors (e.g., PAX6 and SIX3), and a small set of genes shared across gradients are strongly enriched for multiple diseases. Together, these results provide insight into the developmental sculpting of functionally distinct brain regions, governed by three robust transcriptomic axes embedded within brain parenchyma.
Collapse
Affiliation(s)
- Jacob W. Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden202 13
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Aaron F. Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, LondonWC1N 3AR, United Kingdom
| | - Maxwell A. Bertolero
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Ross D. Markello
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Adam Pines
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Valerie J. Sydnor
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Diaz-Papkovich
- Quantitative Life Sciences, McGill University, Montreal, QCH3A 1E3, Canada
- McGill Genome Centre, McGill University, Montreal, QCH3A 0G1, Canada
| | - Justine Y. Hansen
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Alan C. Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QCH3A 2B4, Canada
| | - Theodore D. Satterthwaite
- Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
24
|
Ottoy J, Kang MS, Tan JXM, Boone L, Vos de Wael R, Park BY, Bezgin G, Lussier FZ, Pascoal TA, Rahmouni N, Stevenson J, Fernandez Arias J, Therriault J, Hong SJ, Stefanovic B, McLaurin J, Soucy JP, Gauthier S, Bernhardt BC, Black SE, Rosa-Neto P, Goubran M. Tau follows principal axes of functional and structural brain organization in Alzheimer's disease. Nat Commun 2024; 15:5031. [PMID: 38866759 PMCID: PMC11169286 DOI: 10.1038/s41467-024-49300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Alzheimer's disease (AD) is a brain network disorder where pathological proteins accumulate through networks and drive cognitive decline. Yet, the role of network connectivity in facilitating this accumulation remains unclear. Using in-vivo multimodal imaging, we show that the distribution of tau and reactive microglia in humans follows spatial patterns of connectivity variation, the so-called gradients of brain organization. Notably, less distinct connectivity patterns ("gradient contraction") are associated with cognitive decline in regions with greater tau, suggesting an interaction between reduced network differentiation and tau on cognition. Furthermore, by modeling tau in subject-specific gradient space, we demonstrate that tau accumulation in the frontoparietal and temporo-occipital cortices is associated with greater baseline tau within their functionally and structurally connected hubs, respectively. Our work unveils a role for both functional and structural brain organization in pathology accumulation in AD, and supports subject-specific gradient space as a promising tool to map disease progression.
Collapse
Affiliation(s)
- Julie Ottoy
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Min Su Kang
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | | | - Lyndon Boone
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Gleb Bezgin
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Neuroinformatics for Personalized Medicine lab, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nesrine Rahmouni
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Jaime Fernandez Arias
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Joseph Therriault
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bojana Stefanovic
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Medicine (Division of Neurology), University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Translational Neuroimaging laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maged Goubran
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Noh E, Namgung JY, Park Y, Jang Y, Lee MJ, Park BY. Shifts in structural connectome organization in the limbic and sensory systems of patients with episodic migraine. J Headache Pain 2024; 25:99. [PMID: 38862883 PMCID: PMC11165833 DOI: 10.1186/s10194-024-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.
Collapse
Affiliation(s)
- Eunchan Noh
- College of Medicine, Inha University, Incheon, Republic of Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea.
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
26
|
Nenning KH, Xu T, Tambini A, Franco AR, Margulies DS, Colcombe SJ, Milham MP. Fast connectivity gradient approximation: maintaining spatially fine-grained connectivity gradients while reducing computational costs. Commun Biol 2024; 7:697. [PMID: 38844612 PMCID: PMC11156950 DOI: 10.1038/s42003-024-06401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Brain connectome analysis suffers from the high dimensionality of connectivity data, often forcing a reduced representation of the brain at a lower spatial resolution or parcellation. This is particularly true for graph-based representations, which are increasingly used to characterize connectivity gradients, capturing patterns of systematic spatial variation in the functional connectivity structure. However, maintaining a high spatial resolution is crucial for enabling fine-grained topographical analysis and preserving subtle individual differences that might otherwise be lost. Here we introduce a computationally efficient approach to establish spatially fine-grained connectivity gradients. At its core, it leverages a set of landmarks to approximate the underlying connectivity structure at the full spatial resolution without requiring a full-scale vertex-by-vertex connectivity matrix. We show that this approach reduces computational time and memory usage while preserving informative individual features and demonstrate its application in improving brain-behavior predictions. Overall, its efficiency can remove computational barriers and enable the widespread application of connectivity gradients to capture spatial signatures of the connectome. Importantly, maintaining a spatially fine-grained resolution facilitates to characterize the spatial transitions inherent in the core concept of gradients of brain organization.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | - Arielle Tambini
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- New York University, New York, NY, USA
| | - Alexandre R Franco
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
- New York University, New York, NY, USA
| | | | - Stanley J Colcombe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
- New York University, New York, NY, USA
| | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, New York, NY, USA
| |
Collapse
|
27
|
Arichi T. Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging. Cold Spring Harb Perspect Biol 2024; 16:a041496. [PMID: 38438187 PMCID: PMC11146311 DOI: 10.1101/cshperspect.a041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
28
|
Qiu X, Yang J, Hu X, Li J, Zhao M, Ren F, Weng X, Edden RAE, Gao F, Wang J. Association between hearing ability and cortical morphology in the elderly: multiparametric mapping, cognitive relevance, and neurobiological underpinnings. EBioMedicine 2024; 104:105160. [PMID: 38788630 PMCID: PMC11140565 DOI: 10.1016/j.ebiom.2024.105160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING See the Acknowledgements section.
Collapse
Affiliation(s)
- Xiaofan Qiu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jing Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuchu Weng
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China; Center for Studies of Psychological Application, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou, China.
| |
Collapse
|
29
|
King AM, Cooper JN, Oganezova K, Mittal J, McKenna K, Godur DA, Zalta M, Danesh AA, Mittal R, Eshraghi AA. Vestibular Schwannoma and Tinnitus: A Systematic Review of Microsurgery Compared to Gamma Knife Radiosurgery. J Clin Med 2024; 13:3065. [PMID: 38892775 PMCID: PMC11173275 DOI: 10.3390/jcm13113065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Vestibular schwannoma (VS) is a benign tumor of the eighth cranial nerve formed from neoplastic Schwann cells. Although VS can cause a variety of symptoms, tinnitus is one of the most distressing symptoms for patients and can greatly impact quality of life. The objective of this systematic review is to comprehensively examine and compare the outcomes related to tinnitus in patients undergoing treatment for VS. Specifically, it evaluates patient experiences with tinnitus following the removal of VS using the various surgical approaches of traditional surgical resection and gamma knife radiosurgery (GKS). By delving into various aspects such as the severity of tinnitus post-treatment, the duration of symptom relief, patient quality of life, new onset of tinnitus after VS treatment, and any potential complications or side effects, this review aims to provide a detailed analysis of VS treatment on tinnitus outcomes. Methods: Following PRISMA guidelines, articles were included from PubMed, Science Direct, Scopus, and EMBASE. Quality assessment and risk of bias analysis were performed using a ROBINS-I tool. Results: Although VS-associated tinnitus is variable in its intensity and persistence post-resection, there was a trend towards a decreased tinnitus burden in patients. Irrespective of the surgical approach or the treatment with GKS, there were cases of persistent or worsened tinnitus within the studied cohorts. Conclusion: The findings of this systematic review highlight the complex relationship between VS resection and tinnitus outcomes. These findings underscore the need for individualized patient counseling and tailored treatment approaches in managing VS-associated tinnitus. The findings of this systematic review may help in guiding clinicians towards making more informed and personalized healthcare decisions. Further studies must be completed to fill gaps in the current literature.
Collapse
Affiliation(s)
- Ava M. King
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Jaimee N. Cooper
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Karina Oganezova
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Keelin McKenna
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Dimitri A. Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Max Zalta
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Ali A. Danesh
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
- Department of Communication Sciences and Disorders, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Integrated Medical Sciences, Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.M.K.); (J.N.C.); (J.M.); (K.M.); (D.A.G.); (M.Z.); (A.A.D.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33143, USA
| |
Collapse
|
30
|
Yang Y, Zhen Y, Wang X, Liu L, Zheng Y, Zheng Z, Zheng H, Tang S. Altered asymmetry of functional connectome gradients in major depressive disorder. Front Neurosci 2024; 18:1385920. [PMID: 38745933 PMCID: PMC11092381 DOI: 10.3389/fnins.2024.1385920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Major depressive disorder (MDD) is a debilitating disease involving sensory and higher-order cognitive dysfunction. Previous work has shown altered asymmetry in MDD, including abnormal lateralized activation and disrupted hemispheric connectivity. However, it remains unclear whether and how MDD affects functional asymmetries in the context of intrinsic hierarchical organization. Methods Here, we evaluate intra- and inter-hemispheric asymmetries of the first three functional gradients, characterizing unimodal-transmodal, visual-somatosensory, and somatomotor/default mode-multiple demand hierarchies, to study MDD-related alterations in overarching system-level architecture. Results We find that, relative to the healthy controls, MDD patients exhibit alterations in both primary sensory regions (e.g., visual areas) and transmodal association regions (e.g., default mode areas). We further find these abnormalities are woven in heterogeneous alterations along multiple functional gradients, associated with cognitive terms involving mind, memory, and visual processing. Moreover, through an elastic net model, we observe that both intra- and inter-asymmetric features are predictive of depressive traits measured by BDI-II scores. Discussion Altogether, these findings highlight a broad and mixed effect of MDD on functional gradient asymmetry, contributing to a richer understanding of the neurobiological underpinnings in MDD.
Collapse
Affiliation(s)
- Yaqian Yang
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
| | - Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Zhiming Zheng
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- PengCheng Laboratory, Shenzhen, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
- State Key Lab of Software Development Environment, Beihang University, Beijing, China
| |
Collapse
|
31
|
Janet R, Smallwood J, Hutcherson CA, Plassmann H, Mckeown B, Tusche A. Body mass index-dependent shifts along large-scale gradients in human cortical organization explain dietary regulatory success. Proc Natl Acad Sci U S A 2024; 121:e2314224121. [PMID: 38648482 PMCID: PMC11067012 DOI: 10.1073/pnas.2314224121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Making healthy dietary choices is essential for keeping weight within a normal range. Yet many people struggle with dietary self-control despite good intentions. What distinguishes neural processing in those who succeed or fail to implement healthy eating goals? Does this vary by weight status? To examine these questions, we utilized an analytical framework of gradients that characterize systematic spatial patterns of large-scale neural activity, which have the advantage of considering the entire suite of processes subserving self-control and potential regulatory tactics at the whole-brain level. Using an established laboratory food task capturing brain responses in natural and regulatory conditions (N = 123), we demonstrate that regulatory changes of dietary brain states in the gradient space predict individual differences in dietary success. Better regulators required smaller shifts in brain states to achieve larger goal-consistent changes in dietary behaviors, pointing toward efficient network organization. This pattern was most pronounced in individuals with lower weight status (low-BMI, body mass index) but absent in high-BMI individuals. Consistent with prior work, regulatory goals increased activity in frontoparietal brain circuits. However, this shift in brain states alone did not predict variance in dietary success. Instead, regulatory success emerged from combined changes along multiple gradients, showcasing the interplay of different large-scale brain networks subserving dietary control and possible regulatory strategies. Our results provide insights into how the brain might solve the problem of dietary control: Dietary success may be easier for people who adopt modes of large-scale brain activation that do not require significant reconfigurations across contexts and goals.
Collapse
Affiliation(s)
- Rémi Janet
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Cendri A. Hutcherson
- Department of Psychology, University of Toronto, Toronto, ONM5S 2E5, Canada
- Department of Marketing, Rotman School of Management, University of Toronto, Toronto, ONM5S 3E6, Canada
| | - Hilke Plassmann
- Marketing Area, INSEAD, FontainebleauF-77300, France
- Control-Interoception-Attention Team, Paris Brain Institute (ICM), Sorbonne University, Paris75013, France
| | - Bronte Mckeown
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
| | - Anita Tusche
- Department of Psychology, Queen’s University, Kingston, ONK7L 3N6, Canada
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
32
|
Koller DP, Schirner M, Ritter P. Human connectome topology directs cortical traveling waves and shapes frequency gradients. Nat Commun 2024; 15:3570. [PMID: 38670965 PMCID: PMC11053146 DOI: 10.1038/s41467-024-47860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Traveling waves and neural oscillation frequency gradients are pervasive in the human cortex. While the direction of traveling waves has been linked to brain function and dysfunction, the factors that determine this direction remain elusive. We hypothesized that structural connectivity instrength gradients - defined as the gradually varying sum of incoming connection strengths across the cortex - could shape both traveling wave direction and frequency gradients. We confirm the presence of instrength gradients in the human connectome across diverse cohorts and parcellations. Using a cortical network model, we demonstrate how these instrength gradients direct traveling waves and shape frequency gradients. Our model fits resting-state MEG functional connectivity best in a regime where instrength-directed traveling waves and frequency gradients emerge. We further show how structural subnetworks of the human connectome generate opposing wave directions and frequency gradients observed in the alpha and beta bands. Our findings suggest that structural connectivity instrength gradients affect both traveling wave direction and frequency gradients.
Collapse
Grants
- P.R. acknowledges funding from the following sources: Digital Europe Grant TEF-Health # 101100700, H2020 Research and Innovation Action Grant Human Brain Project SGA2 785907, H2020 Research and Innovation Action Grant Human Brain Project SGA3 945539, H2020 Research and Innovation Action Grant EOSC VirtualBrainCloud 826421, H2020 Research and Innovation Action Grant AISN 101057655, H2020 Research Infrastructures Grant EBRAINS-PREP 101079717, H2020 European Innovation Council PHRASE 101058240, H2020 Research Infrastructures Grant EBRAIN-Health 101058516, H2020 European Research Council Grant ERC BrainModes 683049, JPND ERA PerMed PatternCog 2522FSB904, Berlin Institute of Health & Foundation Charité, Johanna Quandt Excellence Initiative, German Research Foundation SFB 1436 (project ID 425899996), German Research Foundation SFB 1315 (project ID 327654276), German Research Foundation SFB 936 (project ID 178316478), German Research Foundation SFB-TRR 295 (project ID 424778381) German Research Foundation SPP Computational Connectomics RI 2073/6-1, RI 2073/10-2, RI 2073/9-1.
Collapse
Affiliation(s)
- Dominik P Koller
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Michael Schirner
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany
| | - Petra Ritter
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany.
- Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany.
| |
Collapse
|
33
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
34
|
Farrugia C, Galdi P, Irazu IA, Scerri K, Bajada CJ. Local gradient analysis of human brain function using the Vogt-Bailey Index. Brain Struct Funct 2024; 229:497-512. [PMID: 38294531 PMCID: PMC10917869 DOI: 10.1007/s00429-023-02751-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
In this work, we take a closer look at the Vogt-Bailey (VB) index, proposed in Bajada et al. (NeuroImage 221:117140, 2020) as a tool for studying local functional homogeneity in the human cortex. We interpret the VB index in terms of the minimum ratio cut, a scaled cut-set weight that indicates whether a network can easily be disconnected into two parts having a comparable number of nodes. In our case, the nodes of the network consist of a brain vertex/voxel and its neighbours, and a given edge is weighted according to the affinity of the nodes it connects (as reflected by the modified Pearson correlation between their fMRI time series). Consequently, the minimum ratio cut quantifies the degree of small-scale similarity in brain activity: the greater the similarity, the 'heavier' the edges and the more difficult it is to disconnect the network, hence the higher the value of the minimum ratio cut. We compare the performance of the VB index with that of the Regional Homogeneity (ReHo) algorithm, commonly used to assess whether voxels in close proximity have synchronised fMRI signals, and find that the VB index is uniquely placed to detect sharp changes in the (local) functional organization of the human cortex.
Collapse
Affiliation(s)
- Christine Farrugia
- Faculty of Engineering, L-Università ta' Malta, Msida, Malta.
- University of Malta Magnetic Resonance Imaging Platform (UMRI), L-Università ta' Malta, Msida, Malta.
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK.
| | - Paola Galdi
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | | | - Kenneth Scerri
- Faculty of Engineering, L-Università ta' Malta, Msida, Malta
| | - Claude J Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI), L-Università ta' Malta, Msida, Malta.
- Faculty of Medicine and Surgery, L-Università ta' Malta, Msida, Malta.
| |
Collapse
|
35
|
Liu X, Guo J, Jiang Z, Liu X, Chen H, Zhang Y, Wang J, Liu C, Gao Q, Chen H. Compressed cerebellar functional connectome hierarchy in spinocerebellar ataxia type 3. Hum Brain Mapp 2024; 45:e26624. [PMID: 38376240 PMCID: PMC10878347 DOI: 10.1002/hbm.26624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an inherited movement disorder characterized by a progressive decline in motor coordination. Despite the extensive functional connectivity (FC) alterations reported in previous SCA3 studies in the cerebellum and cerebellar-cerebral pathways, the influence of these FC disturbances on the hierarchical organization of cerebellar functional regions remains unclear. Here, we compared 35 SCA3 patients with 48 age- and sex-matched healthy controls using a combination of voxel-based morphometry and resting-state functional magnetic resonance imaging to investigate whether cerebellar hierarchical organization is altered in SCA3. Utilizing connectome gradients, we identified the gradient axis of cerebellar hierarchical organization, spanning sensorimotor to transmodal (task-unfocused) regions. Compared to healthy controls, SCA3 patients showed a compressed hierarchical organization in the cerebellum at both voxel-level (p < .05, TFCE corrected) and network-level (p < .05, FDR corrected). This pattern was observed in both intra-cerebellar and cerebellar-cerebral gradients. We observed that decreased intra-cerebellar gradient scores in bilateral Crus I/II both negatively correlated with SARA scores (left/right Crus I/II: r = -.48/-.50, p = .04/.04, FDR corrected), while increased cerebellar-cerebral gradients scores in the vermis showed a positive correlation with disease duration (r = .48, p = .04, FDR corrected). Control analyses of cerebellar gray matter atrophy revealed that gradient alterations were associated with cerebellar volume loss. Further FC analysis showed increased functional connectivity in both unimodal and transmodal areas, potentially supporting the disrupted cerebellar functional hierarchy uncovered by the gradients. Our findings provide novel evidence regarding alterations in the cerebellar functional hierarchy in SCA3.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jing Guo
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zhouyu Jiang
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xingli Liu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yuhan Zhang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jian Wang
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chen Liu
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qing Gao
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- School of Mathematical SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- Department of Radiology, Southwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for Neuroinformation, High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
36
|
Yee Y, Ellegood J, French L, Lerch JP. Organization of thalamocortical structural covariance and a corresponding 3D atlas of the mouse thalamus. Neuroimage 2024; 285:120453. [PMID: 37979895 DOI: 10.1016/j.neuroimage.2023.120453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/29/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
For information from sensory organs to be processed by the brain, it is usually passed to appropriate areas of the cerebral cortex. Almost all of this information passes through the thalamus, a relay structure that reciprocally connects to the vast majority of the cortex. The thalamus facilitates this information transfer through a set of thalamocortical connections that vary in cellular structure, molecular profiles, innervation patterns, and firing rates. Additionally, corticothalamic connections allow for intracortical information transfer through the thalamus. These efferent and afferent connections between the thalamus and cortex have been the focus of many studies, and the importance of cortical connectivity in defining thalamus anatomy is demonstrated by multiple studies that parcellate the thalamus based on cortical connectivity profiles. Here, we examine correlated morphological variation between the thalamus and cortex, or thalamocortical structural covariance. For each voxel in the thalamus as a seed, we construct a cortical structural covariance map that represents correlated cortical volume variation, and examine whether high structural covariance is observed in cortical areas that are functionally relevant to the seed. Then, using these cortical structural covariance maps as features, we subdivide the thalamus into six non-overlapping regions (clusters of voxels), and assess whether cortical structural covariance is associated with cortical connectivity that specifically originates from these regions. We show that cortical structural covariance is high in areas of the cortex that are functionally related to the seed voxel, cortical structural covariance varies along cortical depth, and sharp transitions in cortical structural covariance profiles are observed when varying seed locations in the thalamus. Subdividing the thalamus based on structural covariance, we additionally demonstrate that the six thalamic clusters of voxels stratify cortical structural covariance along the dorsal-ventral, medial-lateral, and anterior-posterior axes. These cluster-associated structural covariance patterns are prominently detected in cortical regions innervated by fibers projecting out of their related thalamic subdivisions. Together, these results advance our understanding of how the thalamus and the cortex couple in their volumes. Our results indicate that these volume correlations reflect functional organization and structural connectivity, and further provides a novel segmentation of the mouse thalamus that can be used to examine thalamic structural variation and thalamocortical structural covariation in disease models.
Collapse
Affiliation(s)
- Yohan Yee
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Jacob Ellegood
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Leon French
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Park S, Thomson P, Kiar G, Castellanos FX, Milham MP, Bernhardt B, Di Martino A. Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. ADVANCES IN NEUROBIOLOGY 2024; 40:511-544. [PMID: 39562456 DOI: 10.1007/978-3-031-69491-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
Collapse
Affiliation(s)
- Shinwon Park
- Child Mind Institute, Autism Center, New York, NY, USA
| | | | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, Center for the Developing Brain, New York, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
38
|
Park BY, Benkarim O, Weber CF, Kebets V, Fett S, Yoo S, Martino AD, Milham MP, Misic B, Valk SL, Hong SJ, Bernhardt BC. Connectome-wide structure-function coupling models implicate polysynaptic alterations in autism. Neuroimage 2024; 285:120481. [PMID: 38043839 DOI: 10.1016/j.neuroimage.2023.120481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Data Science, Inha University, Incheon, South Korea; Department of Statistics and Data Science, Inha University, Incheon, South Korea; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Clara F Weber
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Valeria Kebets
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Serena Fett
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Seulki Yoo
- Convergence Research Institute, Sungkyunkwan University, Suwon, South Korea
| | - Adriana Di Martino
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sofie L Valk
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Seok-Jun Hong
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea; Center for the Developing Brain, Child Mind Institute, New York, United States; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|
39
|
Xu T, Wu Y, Zhang Y, Zuo XN, Chen F, Zhou C. Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development. Neurosci Bull 2024; 40:50-64. [PMID: 37715923 PMCID: PMC10774512 DOI: 10.1007/s12264-023-01108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/01/2023] [Indexed: 09/18/2023] Open
Abstract
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Collapse
Affiliation(s)
- Tianyong Xu
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunying Wu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Yi Zhang
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Feiyan Chen
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
| | - Changsong Zhou
- Bio-X Laboratory, School of Physics, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Zhejiang University, Hangzhou, 310027, China.
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
40
|
Diveica V, Riedel MC, Salo T, Laird AR, Jackson RL, Binney RJ. Graded functional organization in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity. Cereb Cortex 2023; 33:11384-11399. [PMID: 37833772 PMCID: PMC10690868 DOI: 10.1093/cercor/bhad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.
Collapse
Affiliation(s)
- Veronica Diveica
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL 33199, United States
| | - Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - Richard J Binney
- Department of Psychology & Cognitive Neuroscience Institute, Bangor University, Bangor, Wales LL57 2AS, United Kingdom
| |
Collapse
|
41
|
Howell AM, Warrington S, Fonteneau C, Cho YT, Sotiropoulos SN, Murray JD, Anticevic A. The spatial extent of anatomical connections within the thalamus varies across the cortical hierarchy in humans and macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550168. [PMID: 37546767 PMCID: PMC10401924 DOI: 10.1101/2023.07.22.550168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Each cortical area has a distinct pattern of anatomical connections within the thalamus, a central subcortical structure composed of functionally and structurally distinct nuclei. Previous studies have suggested that certain cortical areas may have more extensive anatomical connections that target multiple thalamic nuclei, which potentially allows them to modulate distributed information flow. However, there is a lack of quantitative investigations into anatomical connectivity patterns within the thalamus. Consequently, it remains unknown if cortical areas exhibit systematic differences in the extent of their anatomical connections within the thalamus. To address this knowledge gap, we used diffusion magnetic resonance imaging (dMRI) to perform brain-wide probabilistic tractography for 828 healthy adults from the Human Connectome Project. We then developed a framework to quantify the spatial extent of each cortical area's anatomical connections within the thalamus. Additionally, we leveraged resting-state functional MRI, cortical myelin, and human neural gene expression data to test if the extent of anatomical connections within the thalamus varied along the cortical hierarchy. Our results revealed two distinct corticothalamic tractography motifs: 1) a sensorimotor cortical motif characterized by focal thalamic connections targeting posterolateral thalamus, associated with fast, feed-forward information flow; and 2) an associative cortical motif characterized by diffuse thalamic connections targeting anteromedial thalamus, associated with slow, feed-back information flow. These findings were consistent across human subjects and were also observed in macaques, indicating cross-species generalizability. Overall, our study demonstrates that sensorimotor and association cortical areas exhibit differences in the spatial extent of their anatomical connections within the thalamus, which may support functionally-distinct cortico-thalamic information flow.
Collapse
Affiliation(s)
- Amber M Howell
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Clara Fonteneau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, Nottingham, UK
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Physics, Yale University, New Haven, Connecticut, 06511, USA
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA
- Division of Neurocognition, Neurocomputation, & Neurogenetics (N3), Yale University School of Medicine, New Haven, Connecticut, 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, 06511, USA
- Department of Psychology, Yale University, New Haven, Connecticut, 06511, USA
| |
Collapse
|
42
|
Wan B, Hong SJ, Bethlehem RAI, Floris DL, Bernhardt BC, Valk SL. Diverging asymmetry of intrinsic functional organization in autism. Mol Psychiatry 2023; 28:4331-4341. [PMID: 37587246 PMCID: PMC10827663 DOI: 10.1038/s41380-023-02220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Seok-Jun Hong
- Centre for Neuroscience Imaging Research, Institute for Basic Science, Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | - Dorothea L Floris
- Department of Psychology, University of Zürich, Zürich, Switzerland
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
43
|
Hansen JY, Shafiei G, Voigt K, Liang EX, Cox SML, Leyton M, Jamadar SD, Misic B. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol 2023; 21:e3002314. [PMID: 37747886 PMCID: PMC10553842 DOI: 10.1371/journal.pbio.3002314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Emma X. Liang
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
44
|
Strauman TJ, Hariri AR. Revising a Self-Regulation Phenotype for Depression Through Individual Differences in Macroscale Brain Organization. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2023; 32:267-275. [PMID: 37786408 PMCID: PMC10545323 DOI: 10.1177/09637214221149742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Self-regulation denotes the processes by which people initiate, maintain, and control their own thoughts, behaviors, or emotions to produce a desired outcome or avoid an undesired outcome. Self-regulation brings the influence of distal factors such as biology, temperament, and socialization history onto cognition, motivation, and behavior. Dysfunction in self-regulation represents a contributory causal factor for psychopathology. Accordingly, we previously proposed a risk phenotype model for depression drawing from regulatory focus theory and traditional task-based fMRI studies. In this article, we revise and expand our risk phenotype model using insights from new methodologies allowing quantification of individual differences in task-free macroscale brain organization. We offer a set of hypotheses as examples of how examination of intrinsic macroscale brain organization can extend and enrich investigations of self-regulation and depression. In doing so, we hope to promote a useful heuristic for model development and for identifying transdiagnostic risk phenotypes in psychopathology.
Collapse
Affiliation(s)
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
45
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Valk SL, Kanske P, Park BY, Hong SJ, Böckler A, Trautwein FM, Bernhardt BC, Singer T. Functional and microstructural plasticity following social and interoceptive mental training. eLife 2023; 12:e85188. [PMID: 37417306 PMCID: PMC10414971 DOI: 10.7554/elife.85188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills.
Collapse
Affiliation(s)
- Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- INM-7, FZ JülichJülichGermany
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität DresdenDresdenGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Bo-yong Park
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
- Department of Data Science, Inha UniversityIncheonRepublic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic ScienceSuwonRepublic of Korea
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
- Department of Biomedical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Anne Böckler
- Department of Psychology, Wurzburg UniversityWurzburgGermany
| | - Fynn-Mathis Trautwein
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill UniversityMontrealCanada
| | - Tania Singer
- Social Neuroscience Lab, Max Planck SocietyBerlinGermany
| |
Collapse
|
47
|
Labache L, Ge T, Yeo BTT, Holmes AJ. Language network lateralization is reflected throughout the macroscale functional organization of cortex. Nat Commun 2023; 14:3405. [PMID: 37296118 PMCID: PMC10256741 DOI: 10.1038/s41467-023-39131-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Hemispheric specialization is a fundamental feature of human brain organization. However, it is not yet clear to what extent the lateralization of specific cognitive processes may be evident throughout the broad functional architecture of cortex. While the majority of people exhibit left-hemispheric language dominance, a substantial minority of the population shows reverse lateralization. Using twin and family data from the Human Connectome Project, we provide evidence that atypical language dominance is associated with global shifts in cortical organization. Individuals with atypical language organization exhibit corresponding hemispheric differences in the macroscale functional gradients that situate discrete large-scale networks along a continuous spectrum, extending from unimodal through association territories. Analyses reveal that both language lateralization and gradient asymmetries are, in part, driven by genetic factors. These findings pave the way for a deeper understanding of the origins and relationships linking population-level variability in hemispheric specialization and global properties of cortical organization.
Collapse
Affiliation(s)
- Loïc Labache
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, US
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, US
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, 02142, US
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Sleep and Cognition, National University of Singapore, Singapore, SG, 119077, Singapore
- Department of Electrical and Computer Engineering, Centre for Translational Magnetic Resonance Research, National University of Singapore, Singapore, SG, 119077, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, SG, 119077, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, US
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, SG, 119077, Singapore
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Yale University, New Haven, CT, 06520, US.
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, US.
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, US.
| |
Collapse
|
48
|
Lucas A, Mouchtaris S, Cornblath EJ, Sinha N, Caciagli L, Hadar P, Gugger JJ, Das S, Stein JM, Davis KA. Subcortical functional connectivity gradients in temporal lobe epilepsy. Neuroimage Clin 2023; 38:103418. [PMID: 37187042 PMCID: PMC10196948 DOI: 10.1016/j.nicl.2023.103418] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND AND MOTIVATION Functional gradients have been used to study differences in connectivity between healthy and diseased brain states, however this work has largely focused on the cortex. Because the subcortex plays a key role in seizure initiation in temporal lobe epilepsy (TLE), subcortical functional-connectivity gradients may help further elucidate differences between healthy brains and TLE, as well as differences between left (L)-TLE and right (R)-TLE. METHODS In this work, we calculated subcortical functional-connectivity gradients (SFGs) from resting-state functional MRI (rs-fMRI) by measuring the similarity in connectivity profiles of subcortical voxels to cortical gray matter voxels. We performed this analysis in 24 R-TLE patients and 31 L-TLE patients (who were otherwise matched for age, gender, disease specific characteristics, and other clinical variables), and 16 controls. To measure differences in SFGs between L-TLE and R-TLE, we quantified deviations in the average functional gradient distributions, as well as their variance, across subcortical structures. RESULTS We found an expansion, measured by increased variance, in the principal SFG of TLE relative to controls. When comparing the gradient across subcortical structures between L-TLE and R-TLE, we found that abnormalities in the ipsilateral hippocampal gradient distributions were significantly different between L-TLE and R-TLE. CONCLUSION Our results suggest that expansion of the SFG is characteristic of TLE. Subcortical functional gradient differences exist between left and right TLE and are driven by connectivity changes in the hippocampus ipsilateral to the seizure onset zone.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, United States; Department of Bioengineering, University of Pennsylvania, United States.
| | - Sofia Mouchtaris
- Department of Bioengineering, University of Pennsylvania, United States
| | - Eli J Cornblath
- Department of Neurology, University of Pennsylvania, United States
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, United States
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, United States
| | - Peter Hadar
- Department of Neurology, Massachusetts General Hospital, United States
| | - James J Gugger
- Department of Neurology, University of Pennsylvania, United States
| | - Sandhitsu Das
- Department of Neurology, University of Pennsylvania, United States
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, United States
| | - Kathryn A Davis
- Department of Neurology, University of Pennsylvania, United States
| |
Collapse
|
49
|
Samara A, Eilbott J, Margulies DS, Xu T, Vanderwal T. Cortical gradients during naturalistic processing are hierarchical and modality-specific. Neuroimage 2023; 271:120023. [PMID: 36921679 DOI: 10.1016/j.neuroimage.2023.120023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Understanding cortical topographic organization and how it supports complex perceptual and cognitive processes is a fundamental question in neuroscience. Previous work has characterized functional gradients that demonstrate large-scale principles of cortical organization. How these gradients are modulated by rich ecological stimuli remains unknown. Here, we utilize naturalistic stimuli via movie-fMRI to assess macroscale functional organization. We identify principal movie gradients that delineate separate hierarchies anchored in sensorimotor, visual, and auditory/language areas. At the opposite/heteromodal end of these perception-to-cognition axes, we find a more central role for the frontoparietal network along with the default network. Even across different movie stimuli, movie gradients demonstrated good reliability, suggesting that these hierarchies reflect a brain state common across different naturalistic conditions. The relative position of brain areas within movie gradients showed stronger and more numerous correlations with cognitive behavioral scores compared to resting state gradients. Together, these findings provide an ecologically valid representation of the principles underlying cortical organization while the brain is active and engaged in multimodal, dynamic perceptual and cognitive processing.
Collapse
Affiliation(s)
- Ahmad Samara
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada
| | - Jeffrey Eilbott
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Daniel S Margulies
- CNRS, Integrative Neuroscience and Cognition Center (UMR 8002), Université de Paris, Paris 75006, France
| | - Ting Xu
- Center for the Developing Brain, The Child Mind Institute, New York, NY 10022, USA
| | - Tamara Vanderwal
- Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 2A1, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Yale Child Study Center, Yale University, New Haven, CT 06519, USA.
| |
Collapse
|
50
|
Wang B, Chen Y, Chen K, Lu H, Zhang Z. From local properties to brain-wide organization: A review of intraregional temporal features in functional magnetic resonance imaging data. Hum Brain Mapp 2023; 44:3926-3938. [PMID: 37086446 DOI: 10.1002/hbm.26302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/24/2023] Open
Abstract
Based on the fluctuations ensembled over neighbouring neurons, blood oxygen level-dependent (BOLD) signal is a mesoscale measurement of brain signals. Intraregional temporal features (IRTFs) of BOLD signal, extracted from regional neural activities, are utilized to investigate how the brain functions in local brain areas. This literature highlights four types of IRTFs and their representative calculations including variability in the temporal domain, variability in the frequency domain, entropy, and intrinsic neural timescales, which are tightly related to cognitions. In the brain-wide spatial organization, these brain features generally organized into two spatial hierarchies, reflecting structural constraints of regional dynamics and hierarchical functional processing workflow in brain. Meanwhile, the spatial organization gives rise to the link between neuronal properties and cognitive performance. Disrupted or unbalanced spatial conditions of IRTFs emerge with suboptimal cognitive states, which improved our understanding of the aging process and/or neuropathology of brain disease. This review concludes that IRTFs are important properties of the brain functional system and IRTFs should be considered in a brain-wide manner.
Collapse
Affiliation(s)
- Bolong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
| | - Hui Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- BABRI Centre, Beijing Normal University, Beijing, China
| |
Collapse
|