1
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
2
|
Farahvash A, Kassardjian CD, Micieli JA. Mitochondrial Neurogastrointestinal Encephalopathy Disease: A Rare Disease Diagnosed in Siblings with Double Vision. Case Rep Ophthalmol 2021; 12:174-181. [PMID: 33976678 PMCID: PMC8077549 DOI: 10.1159/000514098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalopathy disease (MNGIE) is a rare autosomal recessive condition characterized by gastrointestinal dysmotility, external ophthalmoplegia, leukoencephalopathy, and sensorimotor neuropathy. A 31-year-old man was referred for a 1-year history of horizontal diplopia related to a large exotropia from chronic progressive external ophthalmoplegia. MRI revealed a diffuse leukoencephalopathy and his 3-year history of chronic intermittent diarrhea, cachexia, and diffuse sensory more than motor peripheral neuropathy led to a unifying clinical diagnosis of MNGIE. This was later confirmed with genetic testing, which revealed a homozygous pathogenic mutation in the thymidine phosphorylase (TYMP) gene. His younger brother had an identical clinical syndrome and was similarly diagnosed. MNGIE diagnosis is important to establish to avoid unnecessary invasive testing for gastrointestinal, ophthalmological, and neurological symptoms and to ensure patients receive appropriate nutritional and genetic counselling. Gene therapy offers a potential future therapy for patients with this condition.
Collapse
Affiliation(s)
- Armin Farahvash
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles D Kassardjian
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan A Micieli
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Michaud M, Stojkovic T, Maisonobe T, Behin A, Rucheton B, Léonard-Louis S, Eymard B, Laforêt P. Ganglionopathies Associated with MERRF Syndrome: An Original Report. J Neuromuscul Dis 2020; 7:419-423. [DOI: 10.3233/jnd-200513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuropathies in Myoclonic Epilepsy with Ragged Red Fibers (MERRF) syndrome are frequent but ganglionopathies have never been reported. We retrospectively identified 24 patients with MERRF mutations in the neuromuscular center Nord/Est/Ile de France (Pitié-Salpêtrière, Paris, France). Seventeen nerve conduction studies (NCS) were available. Five patients had MERRF syndrome and ganglionopathy, a pure sensory neuropathy. All of them displayed ataxia and mild clinical sensory abnormalities. Ganglionopathies have been reported in mitochondrial diseases but never in MERRF syndrome. We suggest that patients presenting with ganglionopathy, especially if associated with myopathy, lipomatosis or epilepsy, should be screened for MERRF mutations.
Collapse
Affiliation(s)
- Maud Michaud
- Department of Neurology, Central Hospital, Neuromuscular Reference Center Nord/Est/Ile de France, Nancy, France
| | - Tanya Stojkovic
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Thierry Maisonobe
- Department of Neurophysiology and Neuropathology, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Anthony Behin
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Benoit Rucheton
- Department of Metabolic Biochemistry, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sarah Léonard-Louis
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Bruno Eymard
- Institute of Myology, Neuromuscular Reference Center Nord/Est/Ile de France, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Pascal Laforêt
- Department of Neurology, Neuromuscular Reference Center Nord/Est/Ile de France, Raymond-Poincaré Teaching Hospital, AP-HP, Garches, Paris Saclay University, France
- INSERM U1179, END-ICAP Versailles Saint-Quentin-en-Yvelines University
| |
Collapse
|
4
|
Zhunina OA, Yabbarov NG, Grechko AV, Yet SF, Sobenin IA, Orekhov AN. Neurodegenerative Diseases Associated with Mitochondrial DNA Mutations. Curr Pharm Des 2020; 26:103-109. [DOI: 10.2174/1381612825666191122091320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Mitochondrial dysfunction underlies several human chronic pathologies, including cardiovascular
disorders, cancers and neurodegenerative diseases. Impaired mitochondrial function associated with oxidative
stress can be a result of both nuclear and mitochondrial DNA (mtDNA) mutations. Neurological disorders associated
with mtDNA mutations include mitochondrial encephalomyopathy, chronic progressive external ophthalmoplegia,
neurogenic weakness, and Leigh syndrome. Moreover, mtDNA mutations were shown to play a role in the
development of Parkinson and Alzheimer’s diseases. In this review, current knowledge on the distribution and
possible roles of mtDNA mutations in the onset and development of various neurodegenerative diseases, with
special focus on Parkinson’s and Alzheimer’s diseases has been discussed.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Nikita G. Yabbarov
- Russian Research Center for Molecular Diagnostics and Therapy, Simferopolsky Blvd., 8, 117149, Moscow, Russian Federation
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240, Moscow, Russian Federation
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3rd Cherepkovskaya Street, Moscow 121552, Russian Federation
| | - Alexander N. Orekhov
- Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russian Federation
| |
Collapse
|
5
|
Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Exp Neurol 2019; 323:113090. [PMID: 31669484 DOI: 10.1016/j.expneurol.2019.113090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Non-mammalian models of CIPN remain relatively sparse, but the knowledge gained from the few published studies suggest that these species have great potential to serve as a discovery platform for new pathways and underlying genetic mechanisms of CIPN. These models permit large-scale genetic and pharmacological screening, and they are highly suitable for in vivo imaging. CIPN phenotypes described in rodents have been confirmed in those models, and conversely, genetic players leading to axon de- and regeneration under conditions of chemotherapy treatment identified in these non-mammalian species have been validated in rodents. Given the need for non-traditional approaches with which to identify new CIPN mechanisms, these models bear a strong potential due to the conservation of basic mechanisms by which chemotherapeutic agents induce neurotoxicity.
Collapse
|
6
|
Almutawa W, Smith C, Sabouny R, Smit RB, Zhao T, Wong R, Lee-Glover L, Desrochers-Goyette J, Ilamathi HS, Suchowersky O, Germain M, Mains PE, Parboosingh JS, Pfeffer G, Innes AM, Shutt TE. The R941L mutation in MYH14 disrupts mitochondrial fission and associates with peripheral neuropathy. EBioMedicine 2019; 45:379-392. [PMID: 31231018 PMCID: PMC6642256 DOI: 10.1016/j.ebiom.2019.06.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/25/2022] Open
Abstract
Background Peripheral neuropathies are often caused by disruption of genes responsible for myelination or axonal transport. In particular, impairment in mitochondrial fission and fusion are known causes of peripheral neuropathies. However, the causal mechanisms for peripheral neuropathy gene mutations are not always known. While loss of function mutations in MYH14 typically cause non-syndromic hearing loss, the recently described R941L mutation in MYH14, encoding the non-muscle myosin protein isoform NMIIC, leads to a complex clinical presentation with an unexplained peripheral neuropathy phenotype. Methods Confocal microscopy was used to examine mitochondrial dynamics in MYH14 patient fibroblast cells, as well as U2OS and M17 cells overexpressing NMIIC. The consequence of the R941L mutation on myosin activity was modeled in C. elegans. Findings We describe the third family carrying the R941L mutation in MYH14, and demonstrate that the R941L mutation impairs non-muscle myosin protein function. To better understand the molecular basis of the peripheral neuropathy phenotype associated with the R941L mutation, which has been hindered by the fact that NMIIC is largely uncharacterized, we have established a previously unrecognized biological role for NMIIC in mediating mitochondrial fission in human cells. Notably, the R941L mutation acts in a dominant-negative fashion to inhibit mitochondrial fission, especially in the cell periphery. In addition, we observed alterations to the organization of the mitochondrial genome. Interpretation As impairments in mitochondrial fission cause peripheral neuropathy, this insight into the function of NMIIC likely explains the peripheral neuropathy phenotype associated with the R941L mutation. Fund This study was supported by the Alberta Children's Hospital Research Institute, the Canadian Institutes of Health Research and the Care4Rare Canada Consortium.
Collapse
Affiliation(s)
- Walaa Almutawa
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher Smith
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rasha Sabouny
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ryan B Smit
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tian Zhao
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rachel Wong
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Laurie Lee-Glover
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Justine Desrochers-Goyette
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Centre de Recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hema Saranya Ilamathi
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Centre de Recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology), Medical Genetics and Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada; Centre de Recherche Biomed, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Paul E Mains
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jillian S Parboosingh
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Gerald Pfeffer
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - A Micheil Innes
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Timothy E Shutt
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:127-176. [PMID: 31208522 PMCID: PMC11533248 DOI: 10.1016/bs.irn.2019.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. Recent clinical studies have identified an association between the development of neuropathy and dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary saturated fatty acids (SFAs) associated with dyslipidemia impair mitochondrial dynamics in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve and sensory mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this debilitating complication.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
8
|
Observation of novel COX20 mutations related to autosomal recessive axonal neuropathy and static encephalopathy. Hum Genet 2019; 138:749-756. [DOI: 10.1007/s00439-019-02026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
9
|
Mathis S, Magy L, Le Masson G, Richard L, Soulages A, Solé G, Duval F, Ghorab K, Vallat JM, Duchesne M. Value of nerve biopsy in the management of peripheral neuropathies. Expert Rev Neurother 2018; 18:589-602. [DOI: 10.1080/14737175.2018.1489240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stéphane Mathis
- Department of Neurology (Nerve-Muscle Unit), CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
- National Reference Center ‘maladies neuromusculaires du grand sud-ouest’, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Laurent Magy
- Department of Neurology, University hospital, Limoges, France
- National Reference Center for ‘rare peripheral neuropathies’, University Hospital, Limoges, France
| | - Gwendal Le Masson
- Department of Neurology (Nerve-Muscle Unit), CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
- National Reference Center ‘maladies neuromusculaires du grand sud-ouest’, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Laurence Richard
- Department of Neurology, University hospital, Limoges, France
- National Reference Center for ‘rare peripheral neuropathies’, University Hospital, Limoges, France
| | - Antoine Soulages
- Department of Neurology (Nerve-Muscle Unit), CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
| | - Guilhem Solé
- Department of Neurology (Nerve-Muscle Unit), CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
- National Reference Center ‘maladies neuromusculaires du grand sud-ouest’, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Fanny Duval
- Department of Neurology (Nerve-Muscle Unit), CHU Bordeaux (Pellegrin Hospital), Bordeaux, France
- National Reference Center ‘maladies neuromusculaires du grand sud-ouest’, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France
| | - Karima Ghorab
- Department of Neurology, University hospital, Limoges, France
- National Reference Center for ‘rare peripheral neuropathies’, University Hospital, Limoges, France
| | - Jean-Michel Vallat
- Department of Neurology, University hospital, Limoges, France
- National Reference Center for ‘rare peripheral neuropathies’, University Hospital, Limoges, France
| | - Mathilde Duchesne
- National Reference Center for ‘rare peripheral neuropathies’, University Hospital, Limoges, France
- Department of Pathology, University Hospital, Limoges, France
| |
Collapse
|
10
|
Zhuo M, Gorgun MF, Englander EW. Neurotoxicity of cytarabine (Ara-C) in dorsal root ganglion neurons originates from impediment of mtDNA synthesis and compromise of mitochondrial function. Free Radic Biol Med 2018; 121:9-19. [PMID: 29698743 PMCID: PMC5971160 DOI: 10.1016/j.freeradbiomed.2018.04.570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
Abstract
Peripheral Nervous System (PNS) neurotoxicity caused by cancer drugs hinders attainment of chemotherapy goals. Due to leakiness of the blood nerve barrier, circulating chemotherapeutic drugs reach PNS neurons and adversely affect their function. Chemotherapeutic drugs are designed to target dividing cancer cells and mechanisms underlying their toxicity in postmitotic neurons remain to be fully clarified. The objective of this work was to elucidate progression of events triggered by antimitotic drugs in postmitotic neurons. For proof of mechanism study, we chose cytarabine (ara-C), an antimetabolite used in treatment of hematological cancers. Ara-C is a cytosine analog that terminates DNA synthesis. To investigate how ara-C affects postmitotic neurons, which replicate mitochondrial but not genomic DNA, we adapted a model of Dorsal Root Ganglion (DRG) neurons. We showed that DNA polymerase γ, which is responsible for mtDNA synthesis, is inhibited by ara-C and that sublethal ara-C exposure of DRG neurons leads to reduction in mtDNA content, ROS generation, oxidative mtDNA damage formation, compromised mitochondrial respiration and diminution of NADPH and GSH stores, as well as, activation of the DNA damage response. Hence, it is plausible that in ara-C exposed DRG neurons, ROS amplified by the high mitochondrial content shifts from physiologic to pathologic levels signaling stress to the nucleus. Combined, the findings suggest that ara-C neurotoxicity in DRG neurons originates in mitochondria and that continuous mtDNA synthesis and reliance on oxidative phosphorylation for energy needs sensitize the highly metabolic neurons to injury by mtDNA synthesis terminating cancer drugs.
Collapse
Affiliation(s)
- Ming Zhuo
- Division of Neurosurgery, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Murat F Gorgun
- Division of Neurosurgery, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Ella W Englander
- Division of Neurosurgery, Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
11
|
Nascimento A, Ortez C, Jou C, O'Callaghan M, Ramos F, Garcia-Cazorla À. Neuromuscular Manifestations in Mitochondrial Diseases in Children. Semin Pediatr Neurol 2016; 23:290-305. [PMID: 28284391 DOI: 10.1016/j.spen.2016.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mitochondrial diseases exhibit significant clinical and genetic heterogeneity. Mitochondria are highly dynamic organelles that are the major contributor of adenosine triphosphate, through oxidative phosphorylation. These disorders may be developed at any age, with isolated or multiple system involvement, and in any pattern of inheritance. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle and peripheral nerves, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis), progressive external ophthalmoplegia, peripheral ataxia, and peripheral polyneuropathy. This review describes the main neuromuscular symptomatology through different syndromes reported in the literature and from our experience. We want to highlight the importance of searching for the "clue clinical signs" associated with inheritance pattern as key elements to guide the complex diagnosis process and genetic studies in mitochondrial diseases.
Collapse
Affiliation(s)
- Andrés Nascimento
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain.
| | - Carlos Ortez
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Cristina Jou
- Department of Neurology, Neuromuscular Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain
| | - Mar O'Callaghan
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Federico Ramos
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| | - Àngels Garcia-Cazorla
- Center for Biomedical Research on Rare Diseases (CIBERER), Institute of Pediatric Research Sant Joan de Déu, Madrid, Spain; Department of Neurology, Neurometabolic Units, Hospital Sant Joan de Déu, Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
12
|
Montecchiani C, Pedace L, Lo Giudice T, Casella A, Mearini M, Gaudiello F, Pedroso JL, Terracciano C, Caltagirone C, Massa R, St George-Hyslop PH, Barsottini OGP, Kawarai T, Orlacchio A. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 2015; 139:73-85. [PMID: 26556829 PMCID: PMC5839554 DOI: 10.1093/brain/awv320] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022] Open
Abstract
Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot-Marie-Tooth disease type 2H on chromosome 8q13-21.1 was excluded by linkage analysis. Pedigrees originated in Italy, Brazil, Canada, England, Iran, and Japan. Interestingly, we identified 15 ALS5/SPG11/KIAA1840 mutations in 12 families (two sequence variants were never reported before, p.Gln198* and p.Pro2212fs*5). No large deletions/duplications were detected in these patients. The novel mutations seemed to be pathogenic since they co-segregated with the disease in all pedigrees and were absent in 300 unrelated controls. Furthermore, in silico analysis predicted their pathogenic effect. Our results indicate that ALS5/SPG11/KIAA1840 is the causative gene of a wide spectrum of clinical features, including autosomal recessive axonal Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
| | - Lucia Pedace
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Temistocle Lo Giudice
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Antonella Casella
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | - Marzia Mearini
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy
| | | | - José L Pedroso
- 3 Department of Neurology, Universidade Federal de São Paulo, Brazil
| | - Chiara Terracciano
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Carlo Caltagirone
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy 4 Laboratorio di Neurologia Clinica e Comportamentale, IRCCS Santa Lucia, Rome, Italy
| | - Roberto Massa
- 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| | - Peter H St George-Hyslop
- 5 Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada 6 Department of Medicine, University of Toronto, Toronto, Ontario, Canada 7 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Toshitaka Kawarai
- 8 Department of Clinical Neuroscience, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Antonio Orlacchio
- 1 Laboratorio di Neurogenetica, CERC - IRCCS Santa Lucia, Rome, Italy 2 Dipartimento di Medicina dei Sistemi, Università di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
13
|
Abstract
Various endogenous and environmental factors can cause mitochondrial DNA (mtDNA) damage. One of the reasons for enhanced mtDNA damage could be its proximity to the source of oxidants, and lack of histone-like protective proteins. Moreover, mitochondria contain inadequate DNA repair pathways, and, diminished DNA repair capacity may be one of the factors responsible for high mutation frequency of the mtDNA. mtDNA damage might cause impaired mitochondrial function, and, unrepaired mtDNA damage has been frequently linked with several diseases. Exploration of mitochondrial perspective of diseases might lead to a better understanding of several diseases, and will certainly open new avenues for detection, cure, and prevention of ailments.
Collapse
Affiliation(s)
- Gyanesh Singh
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - U C Pachouri
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Devika Chanu Khaidem
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Aman Kundu
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushplata Singh
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, Punjab, India
| |
Collapse
|
14
|
Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 2015; 596:66-77. [PMID: 25847151 DOI: 10.1016/j.neulet.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental role in mitochondrial transport and mutations in some of related encoding genes cause peripheral neuropathy (TUBB3, NEFL, HSPB1, HSPB8, HSPB3, DNAJB2). In this review, we address the abnormalities in mitochondrial dynamics and their role in determining CMT disease and related neuropathies.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy.
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Anna Sagnelli
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| |
Collapse
|