1
|
Culley G, Henriques A, Hardy D, Wojcinski A, Chabert A, El Waly B, Poindron P, Callizot N. Amyloid-beta peptide toxicity in the aged brain is a one-way journey into Alzheimer's disease. Front Aging Neurosci 2025; 17:1569181. [PMID: 40370748 PMCID: PMC12075133 DOI: 10.3389/fnagi.2025.1569181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Aging is the primary risk factor for Alzheimer's disease (AD), and the aging brain shares many characteristics with the early stages of AD. This study investigates the interplay between aging and amyloid-beta (Aβ) induced pathology. We developed an AD-like in vivo model, using the stereotactic injection of Aβ1-42 oligomers into the hippocampi of aged mice. Cognitive impairments were assessed using a Y maze. Immunohistochemical and protein analyses were conducted to evaluate neuronal survival, synaptic function and number, levels of tau hyperphosphorylation, microglial activation, autophagy, and mitochondrial function. We compared baseline aging effects in young adult (3 months) and aged (16-18 months) healthy mice. We found that aged mice displayed significant deficits in working memory, synaptic density and neurogenesis, and an increased basal inflammation. In response to acute injury to the hippocampus with Aβ oligomer injection, aged mice suffered sustained deficits, including impaired cognitive function, further reduced neurogenesis and synaptic density, increased microglial activation, astrogliosis, mitochondrial stress, and lysosomal burden. Furthermore, in the weeks following injury, the aged mice show increased amyloid accumulation, microglial activation and phosphorylated tau propagation, expanding from the injection site to adjacent hippocampal regions. In contrast, the young adult mice exhibited only acute effects without long-term progression of pathology or neurodegeneration. We conclude that the aging brain environment increases susceptibility to an acute Aβ injury, creating fertile soil for the progression of AD, whereas younger brains are able to overcome this injury. The processes of aging should be considered as an integral factor in the development of the disease. Targeting aging mechanisms may provide new strategies for AD prevention and treatment, as well as for other neurodegenerative diseases.
Collapse
|
2
|
Mitani A, Shimizu T, Terai J, Maeda K, Suzuki K, Kioka K. Neuroplasticity in the motor cortex following the achievement of sufficient motor learning. Neurosci Lett 2025; 849:138117. [PMID: 39788482 DOI: 10.1016/j.neulet.2025.138117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Skilled motor training causes the cortical representation of the trained body parts to expand into regions of the motor cortex related to other body parts. However, the effect of neuroplastic changes on the neurons originally existing within the expanded area is not well understood. In this study, the extent of the neuroplastic changes after achieving sufficient motor learning and the impact of the expansion on the neurons related to movements of other body parts were investigated. Rats were trained to perform a single-pellet retrieval reaching task, and intracortical microstimulation in the motor cortex was used to assess neuroplastic changes. After 54 to 73 days of training, the trained rats achieved sufficient motor learning. In the motor cortex, the occurrence rate of evoked wrist movements increased to approximately double that of the control group in the expanded area. This finding suggests that the extent of neuroplastic changes in the occurrence rate of evoked movements in the motor cortex achieved through sufficient motor learning is approximately double. Additionally, stimulation in the expanded area predominantly evoked vibrissae movements in the control group; however, the occurrence rate and threshold of evoked vibrissae movements were not significantly changed in the expanded areas in the trained group. This observation may suggest that the expansion of cortical areas corresponding to the trained body parts does not disrupt the original function of movements of other parts in the expanded area.
Collapse
Affiliation(s)
- Akira Mitani
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan.
| | - Tomoko Shimizu
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan
| | - Jun Terai
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan
| | - Koji Maeda
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan
| | - Kohei Suzuki
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan
| | - Kazumi Kioka
- Laboratory of Neurorehabilitation, Department of Occupational Therapy, Biwako Professional University of Rehabilitation, 967 Kitasaka, Higashiomi, Shiga 527-0145, Japan
| |
Collapse
|
3
|
Economo MN, Komiyama T, Kubota Y, Schiller J. Learning and Control in Motor Cortex across Cell Types and Scales. J Neurosci 2024; 44:e1233242024. [PMID: 39358022 PMCID: PMC11459264 DOI: 10.1523/jneurosci.1233-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
The motor cortex is essential for controlling the flexible movements underlying complex behaviors. Behavioral flexibility involves the ability to integrate and refine new movements, thereby expanding an animal's repertoire. This review discusses recent strides in motor learning mechanisms across spatial and temporal scales, describing how neural networks are remodeled at the level of synapses, cell types, and circuits and across time as animals' learn new skills. It highlights how changes at each scale contribute to the evolving structure and function of neural circuits that accompanies the expansion and refinement of motor skills. We review new findings highlighted by advanced imaging techniques that have opened new vistas in optical physiology and neuroanatomy, revealing the complexity and adaptability of motor cortical circuits, crucial for learning and control. At the structural level, we explore the dynamic regulation of dendritic spines mediating corticocortical and thalamocortical inputs to the motor cortex. We delve into the role of perisynaptic astrocyte processes in maintaining synaptic stability during learning. We also examine the functional diversity among pyramidal neuron subtypes, their dendritic computations and unique contributions to single cell and network function. Further, we highlight how cortical activation is characterized by increased consistency and reduced strength as new movements are learned and how external inputs contribute to these changes. Finally, we consider the motor cortex's necessity as movements unfold over long time scales. These insights will continue to drive new research directions, enhancing our understanding of motor cortical circuit transformations that underpin behavioral changes expressed throughout an animal's life.
Collapse
Affiliation(s)
- Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215
| | - Takaki Komiyama
- Department of Neurobiology, University of California San Diego, La Jolla, California 92093
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, California 92093
- Department of Neurosciences, University of California San Diego, La Jolla, California 920937
| | - Yoshiyuki Kubota
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Support Unit for Electron Microscopy Techniques, Research Resources Division, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Haifa 31096, Israel
| |
Collapse
|
4
|
Dammavalam V, Rupert D, Lanio M, Jin Z, Nadkarni N, Tsirka SE, Bergese SD. Dementia after Ischemic Stroke, from Molecular Biomarkers to Therapeutic Options. Int J Mol Sci 2024; 25:7772. [PMID: 39063013 PMCID: PMC11276729 DOI: 10.3390/ijms25147772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is a leading cause of disability worldwide. While much of post-stroke recovery is focused on physical rehabilitation, post-stroke dementia (PSD) is also a significant contributor to poor functional outcomes. Predictive tools to identify stroke survivors at risk for the development of PSD are limited to brief screening cognitive tests. Emerging biochemical, genetic, and neuroimaging biomarkers are being investigated in an effort to unveil better indicators of PSD. Additionally, acetylcholinesterase inhibitors, NMDA receptor antagonists, dopamine receptor agonists, antidepressants, and cognitive rehabilitation are current therapeutic options for PSD. Focusing on the chronic sequelae of stroke that impair neuroplasticity highlights the need for continued investigative trials to better assess functional outcomes in treatments targeted for PSD.
Collapse
Affiliation(s)
- Vikalpa Dammavalam
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Deborah Rupert
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Marcos Lanio
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Neil Nadkarni
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| | - Stella E. Tsirka
- Department of Pharmacological Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Sergio D. Bergese
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (M.L.); (N.N.)
| |
Collapse
|
5
|
Handa T, Zhang Q, Aizawa H. Cholinergic modulation of interhemispheric inhibition in the mouse motor cortex. Cereb Cortex 2024; 34:bhae290. [PMID: 39042031 DOI: 10.1093/cercor/bhae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/19/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Interhemispheric inhibition of the homotopic motor cortex is believed to be effective for accurate unilateral motor function. However, the cellular mechanisms underlying interhemispheric inhibition during unilateral motor behavior remain unclear. Furthermore, the impact of the neuromodulator acetylcholine on interhemispheric inhibition and the associated cellular mechanisms are not well understood. To address this knowledge gap, we conducted recordings of neuronal activity from the bilateral motor cortex of mice during the paw-reaching task. Subsequently, we analyzed interhemispheric spike correlation at the cell-pair level, classifying putative cell types to explore the underlying cellular circuitry mechanisms of interhemispheric inhibition. We found a cell-type pair-specific enhancement of the interhemispheric spike correlation when the mice were engaged in the reaching task. We also found that the interhemispheric spike correlation was modulated by pharmacological acetylcholine manipulation. The local field responses to contralateral excitation differed along the cortical depths, and muscarinic receptor antagonism enhanced the inhibitory component of the field response in deep layers. The muscarinic subtype M2 receptor is predominantly expressed in deep cortical neurons, including GABAergic interneurons. These results suggest that GABAergic interneurons expressing muscarinic receptors in deep layers mediate the neuromodulation of interhemispheric inhibition in the homotopic motor cortex.
Collapse
Affiliation(s)
- Takashi Handa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Qing Zhang
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Qin L, Chen D, Li X, Gao Y, Xia W, Dai H, Qiu L, Yang J, Zhang L. Sphenopalatine ganglion stimulation: a comprehensive evaluation across diseases in randomized controlled trials. Front Neurol 2024; 15:1352145. [PMID: 38813242 PMCID: PMC11135047 DOI: 10.3389/fneur.2024.1352145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Background Current literature extensively covers the use of sphenopalatine ganglion stimulation (SPGs) in treating a broad spectrum of medical conditions, such as allergic rhinitis, cluster headaches, and strokes. Nevertheless, a discernible gap in the systematic organization and analysis of these studies is evident. This paper aims to bridge this gap by conducting a comprehensive review and analysis of existing literature on SPGs across various medical conditions. Methods This study meticulously constructed a comprehensive database through systematic computerized searches conducted on PubMed, Embase, CNKI, Wanfang, VIP, and CBM up to May 2022. The inclusion criteria encompassed randomized controlled trials (RCTs) published in either Chinese or English, focusing on the therapeutic applications of SPGs for various medical conditions. Both qualitative and quantitative outcome indicators were considered eligible for inclusion. Results This comprehensive study reviewed 36 publications, comprising 10 high-quality, 23 medium-quality, and three low-quality articles. The study investigated various diseases, including allergic rhinitis (AR), ischemic strokes (IS), cluster headache (CH), primary trigeminal neuralgia (PTN), pediatric chronic secretory otitis (PCSO), refractory facial paralysis (RFP), chronic tension-type headache (CTTH), as well as the analysis of low-frequency sphenopalatine ganglion stimulation (LF-SPGs) in chronic cluster headache (CCH) and the impact of SPGs on Normal nasal cavity function (NNCF). SPGs demonstrate efficacy in the treatment of AR. Regarding the improvement of rhinoconjunctivitis quality of life questionnaire (RQLQ) scores, SPGs are considered the optimal intervention according to the SUCRA ranking. Concerning the improvement in Total Nasal Symptom Score (TNSS), Conventional Acupuncture Combined with Tradiational Chinese Medicine (CA-TCM) holds a significant advantage in the SUCRA ranking and is deemed the best intervention. In terms of increasing Effective Rate (ER), SPGs outperformed both conventional acupuncture (CA) and Western Medicine (WM; P < 0.05). In the context of SPGs treatment for IS, the results indicate a significant improvement in the 3-month outcomes, as evaluated by the modified Rankin Scale (mRS) in the context of Cerebral Cortical Infarction (CCI; P < 0.05). In the treatment of CH with SPGs, the treatment has been shown to have a statistically significant effect on the relief and disappearance of headaches (P < 0.05). The impact of SPGs on NNCF reveals statistically significant improvements (P < 0.05) in nasal airway resistance (NAR), nasal cavity volume (NCV), exhaled nitric oxide (eNO), substance P (SP), vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY). SPGs treatments for PCSO, RFP, and CTTH, when compared to control groups, yielded statistically significant results (P < 0.05). Conclusion SPGs demonstrate significant effectiveness in the treatment of AR, IS, and CH. Effective management of CCH may require addressing both autonomic dysregulation and deeper neural pathways. However, additional high-quality research is essential to clarify its effects on NNCF, PTN, PCSO, RFP, and CTTH. Systematic Review Registration PROSPERO, identifier CRD42021252073, https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=312429.
Collapse
Affiliation(s)
- Lingli Qin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dian Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xian Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Wanying Xia
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hanxi Dai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linjie Qiu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Raghavan P. Top-Down and Bottom-Up Mechanisms of Motor Recovery Poststroke. Phys Med Rehabil Clin N Am 2024; 35:235-257. [PMID: 38514216 DOI: 10.1016/j.pmr.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Stroke remains a leading cause of disability. Motor recovery requires the interaction of top-down and bottom-up mechanisms, which reinforce each other. Injury to the brain initiates a biphasic neuroimmune process, which opens a window for spontaneous recovery during which the brain is particularly sensitive to activity. Physical activity during this sensitive period can lead to rapid recovery by potentiating anti-inflammatory and neuroplastic processes. On the other hand, lack of physical activity can lead to early closure of the sensitive period and downstream changes in muscles, such as sarcopenia, muscle stiffness, and reduced cardiovascular capacity, and blood flow that impede recovery.
Collapse
Affiliation(s)
- Preeti Raghavan
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Takashima Y, Biane JS, Tuszynski MH. Selective plasticity of layer 2/3 inputs onto distal forelimb controlling layer 5 corticospinal neurons with skilled grasp motor training. Cell Rep 2024; 43:113986. [PMID: 38598336 DOI: 10.1016/j.celrep.2024.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.
Collapse
Affiliation(s)
| | - Jeremy S Biane
- Department of Psychiatry, UCSF, San Francisco, CA 94158, USA
| | - Mark H Tuszynski
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Department of Psychiatry, UCSF, San Francisco, CA 94158, USA; VA Medical Center, San Diego, CA 92161, USA.
| |
Collapse
|
9
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
10
|
Malley KM, Ruiz AD, Darrow MJ, Danaphongse T, Shiers S, Ahmad FN, Beltran CM, Stanislav BT, Price T, Ii RLR, Kilgard MP, Hays SA. Neural Mechanisms Responsible for Vagus Nerve Stimulation-Dependent Enhancement of Somatosensory Recovery. RESEARCH SQUARE 2024:rs.3.rs-3873435. [PMID: 38352490 PMCID: PMC10862979 DOI: 10.21203/rs.3.rs-3873435/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Impairments in somatosensory function are a common and often debilitating consequence of neurological injury, with few effective interventions. Building on success in rehabilitation for motor dysfunction, the delivery of vagus nerve stimulation (VNS) combined with tactile rehabilitation has emerged as a potential approach to enhance recovery of somatosensation. In order to maximize the effectiveness of VNS therapy and promote translation to clinical implementation, we sought to optimize the stimulation paradigm and identify neural mechanisms that underlie VNS-dependent recovery. To do so, we characterized the effect of tactile rehabilitation combined with VNS across a range of stimulation intensities on recovery of somatosensory function in a rat model of chronic sensory loss in the forelimb. Consistent with previous studies in other applications, we find that moderate intensity VNS yields the most effective restoration of somatosensation, and both lower and higher VNS intensities fail to enhance recovery compared to rehabilitation without VNS. We next used the optimized intensity to evaluate the mechanisms that underlie recovery. We find that moderate intensity VNS enhances transcription of Arc, a canonical mediator of synaptic plasticity, in the cortex, and that transcript levels were correlated with the degree of somatosensory recovery. Moreover, we observe that blocking plasticity by depleting acetylcholine in the cortex prevents the VNS-dependent enhancement of somatosensory recovery. Collectively, these findings identify neural mechanisms that subserve VNS-dependent somatosensation recovery and provide a basis for selecting optimal stimulation parameters in order to facilitate translation of this potential intervention.
Collapse
|
11
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Serradj N, Marino F, Moreno-López Y, Bernstein A, Agger S, Soliman M, Sloan A, Hollis E. Task-specific modulation of corticospinal neuron activity during motor learning in mice. Nat Commun 2023; 14:2708. [PMID: 37169765 PMCID: PMC10175564 DOI: 10.1038/s41467-023-38418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Plautz EJ, Barbay S, Frost SB, Stowe AM, Dancause N, Zoubina EV, Eisner-Janowicz I, Guggenmos DJ, Nudo RJ. Spared Premotor Areas Undergo Rapid Nonlinear Changes in Functional Organization Following a Focal Ischemic Infarct in Primary Motor Cortex of Squirrel Monkeys. J Neurosci 2023; 43:2021-2032. [PMID: 36788028 PMCID: PMC10027035 DOI: 10.1523/jneurosci.1452-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid. Maps of movement representations were derived using intracortical microstimulation techniques in primary motor cortex (M1), ventral premotor cortex (PMv), and dorsal premotor cortex (PMd) in 14 adult squirrel monkeys before and after a focal infarct in the M1 distal forelimb area. Maps were derived at baseline and at either 2 (n = 7) or 3 weeks (n = 7) postinfarct. In PMv the forelimb maps remained unchanged at 2 weeks but contracted significantly (-42.4%) at 3 weeks. In PMd the forelimb maps expanded significantly (+110.6%) at 2 weeks but contracted significantly (-57.4%) at 3 weeks. Motor deficits were equivalent at both time points. These results highlight two features of plasticity after M1 lesions. First, significant contraction of distal forelimb motor maps in both PMv and PMd is evident by 3 weeks. Second, an unpredictable nonlinear pattern of reorganization occurs in the distal forelimb representation in PMd, first expanding at 2 weeks, and then contracting at 3 weeks postinjury. Together with previous results demonstrating reliable map expansions in PMv several weeks to months after M1 injury, the subacute time period may represent a critical window for the timing of therapeutic interventions.SIGNIFICANCE STATEMENT The relationship between motor recovery and motor map reorganization after cortical injury has rarely been examined in acute/subacute periods. In nonhuman primates, premotor maps were examined at 2 and 3 weeks after injury to primary motor cortex. Although maps are known to expand late after injury, the present study demonstrates early map expansion at 2 weeks (dorsal premotor cortex) followed by contraction at 3 weeks (dorsal and ventral premotor cortex). This nonlinear map reorganization during a time of gradual behavioral recovery suggests that the relationship between map plasticity and motor recovery is much more complex than previously thought. It also suggests that rehabilitative motor training may have its most potent effects during this early dynamic phase of map reorganization.
Collapse
Affiliation(s)
- Erik J Plautz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Scott Barbay
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shawn B Frost
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ann M Stowe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Numa Dancause
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Elena V Zoubina
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Ines Eisner-Janowicz
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - David J Guggenmos
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Randolph J Nudo
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
14
|
Bickart KC, Olsen A, Dennis EL, Babikian T, Hoffman AN, Snyder A, Sheridan CA, Fischer JT, Giza CC, Choe MC, Asarnow RF. Frontoamygdala hyperconnectivity predicts affective dysregulation in adolescent moderate-severe TBI. FRONTIERS IN REHABILITATION SCIENCES 2023; 3:1064215. [PMID: 36684686 PMCID: PMC9845889 DOI: 10.3389/fresc.2022.1064215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023]
Abstract
In survivors of moderate to severe traumatic brain injury (msTBI), affective disruptions often remain underdetected and undertreated, in part due to poor understanding of the underlying neural mechanisms. We hypothesized that limbic circuits are integral to affective dysregulation in msTBI. To test this, we studied 19 adolescents with msTBI 17 months post-injury (TBI: M age 15.6, 5 females) as well as 44 matched healthy controls (HC: M age 16.4, 21 females). We leveraged two previously identified, large-scale resting-state (rsfMRI) networks of the amygdala to determine whether connectivity strength correlated with affective problems in the adolescents with msTBI. We found that distinct amygdala networks differentially predicted externalizing and internalizing behavioral problems in patients with msTBI. Specifically, patients with the highest medial amygdala connectivity were rated by parents as having greater externalizing behavioral problems measured on the BRIEF and CBCL, but not cognitive problems. The most correlated voxels in that network localize to the rostral anterior cingulate (rACC) and posterior cingulate (PCC) cortices, predicting 48% of the variance in externalizing problems. Alternatively, patients with the highest ventrolateral amygdala connectivity were rated by parents as having greater internalizing behavioral problems measured on the CBCL, but not cognitive problems. The most correlated voxels in that network localize to the ventromedial prefrontal cortex (vmPFC), predicting 57% of the variance in internalizing problems. Both findings were independent of potential confounds including ratings of TBI severity, time since injury, lesion burden based on acute imaging, demographic variables, and other non-amygdalar rsfMRI metrics (e.g., rACC to PCC connectivity), as well as macro- and microstructural measures of limbic circuitry (e.g., amygdala volume and uncinate fasciculus fractional anisotropy). Supporting the clinical significance of these findings, patients with msTBI had significantly greater externalizing problem ratings than healthy control participants and all the brain-behavior findings were specific to the msTBI group in that no similar correlations were found in the healthy control participants. Taken together, frontoamygdala pathways may underlie chronic dysregulation of behavior and mood in patients with msTBI. Future work will focus on neuromodulation techniques to directly affect frontoamygdala pathways with the aim to mitigate such dysregulation problems.
Collapse
Affiliation(s)
- Kevin C. Bickart
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,Department of Neurology, UCLA, Los Angeles, CA, United States,Correspondence: Kevin C. Bickart
| | - Alexander Olsen
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States,Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, University Hospital, Trondheim, Norway
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Talin Babikian
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States
| | - Ann N. Hoffman
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States
| | - Aliyah Snyder
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States
| | - Christopher A. Sheridan
- Wake Forest School of Medicine, Radiology Informatics and Image Processing Laboratory, Winston-Salem, NC, United States,Wake Forest School of Medicine, Department of Radiology, Section of Neuroradiology, Winston-Salem, NC, United States
| | - Jesse T. Fischer
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States
| | - Christopher C. Giza
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,UCLA Mattel Children's Hospital, Department of Pediatrics, Division of Neurology, Los Angeles, CA, United States
| | - Meeryo C. Choe
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,UCLA Mattel Children's Hospital, Department of Pediatrics, Division of Neurology, Los Angeles, CA, United States
| | - Robert F. Asarnow
- BrainSPORT, Department of Neurosurgery, UCLA, Los Angeles, CA, United States,Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States
| |
Collapse
|
15
|
Kanishka, Jha SK. Compensatory cognition in neurological diseases and aging: A review of animal and human studies. AGING BRAIN 2023; 3:100061. [PMID: 36911258 PMCID: PMC9997140 DOI: 10.1016/j.nbas.2022.100061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Specialized individual circuits in the brain are recruited for specific functions. Interestingly, multiple neural circuitries continuously compete with each other to acquire the specialized function. However, the dominant among them compete and become the central neural network for that particular function. For example, the hippocampal principal neural circuitries are the dominant networks among many which are involved in learning processes. But, in the event of damage to the principal circuitry, many times, less dominant networks compensate for the primary network. This review highlights the psychopathologies of functional loss and the aspects of functional recuperation in the absence of the hippocampus.
Collapse
Affiliation(s)
- Kanishka
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Hollis E, Li Y. Nicotinic acetylcholine signaling is required for motor learning but not for rehabilitation from spinal cord injury. Neural Regen Res 2023; 18:364-367. [PMID: 35900431 PMCID: PMC9396487 DOI: 10.4103/1673-5374.346544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Chavushyan VA, Simonyan KV, Danielyan MH, Avetisyan LG, Darbinyan LV, Isoyan AS, Lorikyan AG, Hovhannisyan LE, Babakhanyan MA, Sukiasyan LM. Pathology and prevention of brain microvascular and neuronal dysfunction induced by a high-fructose diet in rats. Metab Brain Dis 2023; 38:269-286. [PMID: 36271967 DOI: 10.1007/s11011-022-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/08/2022] [Indexed: 02/03/2023]
Abstract
A high-fructose diet causes metabolic abnormalities in rats, and the cluster of complications points to microvascular and neuronal disorders of the brain. The aim of this study was to evaluate i) the involvement of microvascular disorders and neuronal plasticity in the deleterious effects of a high-fructose diet on the rat brain and ii) a comparative assessment of the effectiveness of Phytocollection therapy (with antidiabetic, antioxidant, and acetylcholinesterase inhibitory activities) compared to Galantamine as first-line therapy for dementia and Diabeton as first-line therapy for hyperglycemia. The calcium adenosine triphosphate non-injection histoangiological method was used to assess capillary network diameter and density. A high-fructose diet resulted in a significant decrease in the diameter and density of the capillary bed, and pharmacological manipulations had a modulatory effect on microcirculatory adaptive mechanisms. In vivo single-unit extracellular recording was used to investigate short-term plasticity in the medial prefrontal cortex. Differences in the parameters of spike background activity and expression of excitatory and inhibitory responses of cortical neurons have been discovered, allowing for flexibility and neuronal function stabilization in pathology and pharmacological prevention. Integration of the coupling mechanism between microvascular function and neuronal spike activity could delay the progressive decline in cognitive function in rats fed a high fructose diet.
Collapse
Affiliation(s)
- V A Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - K V Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia.
| | - M H Danielyan
- Histochemistry and Electron Microscopy Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L G Avetisyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L V Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A S Isoyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - A G Lorikyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
| | - L E Hovhannisyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - M A Babakhanyan
- G.S. Davtyan Institute of Hydroponics Problems NAS RA, 0082, Yerevan, Armenia
| | - L M Sukiasyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, 0028, Yerevan, Armenia
- Yerevan State Medical University After M. Heratsi, 0025, Yerevan, Armenia
| |
Collapse
|
18
|
Preclinical and randomized clinical evaluation of the p38α kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat Commun 2022; 13:5308. [PMID: 36130946 PMCID: PMC9492778 DOI: 10.1038/s41467-022-32944-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.
Collapse
|
19
|
Higo N. Motor Cortex Plasticity During Functional Recovery Following Brain Damage. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although brain damage causes functional impairment, it is often followed by partial or total recovery of function. Recovery is believed to occur primarily because of brain plasticity. Both human and animal studies have significantly contributed to uncovering the neuronal basis of plasticity. Recent advances in brain imaging technology have enabled the investigation of plastic changes in living human brains. In addition, animal experiments have revealed detailed changes at the neural and genetic levels. In this review, plasticity in motor-related areas of the cerebral cortex, which is one of the most well-studied areas of the neocortex in terms of plasticity, is reviewed. In addition, the potential of technological interventions to enhance plasticity and promote functional recovery following brain damage is discussed. Novel neurorehabilitation technologies are expected to be established based on the emerging research on plasticity from the last several decades.
Collapse
|
20
|
Ramos-Castaneda JA, Barreto-Cortes CF, Losada-Floriano D, Sanabria-Barrera SM, Silva-Sieger FA, Garcia RG. Efficacy and Safety of Vagus Nerve Stimulation on Upper Limb Motor Recovery After Stroke. A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:889953. [PMID: 35847207 PMCID: PMC9283777 DOI: 10.3389/fneur.2022.889953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Background Upper limb motor impairment is one of the main complications of stroke, affecting quality of life both for the patient and their family. The aim of this systematic review was to summarize the scientific evidence on the safety and efficacy of Vagus Nerve Stimulation (VNS) on upper limb motor recovery after stroke. Methods A systematic review and meta-analysis of studies that have evaluated the efficacy or safety of VNS in stroke patients was performed. The primary outcome was upper limb motor recovery. A search of articles published on MEDLINE, CENTRAL, EBSCO and LILACS up to December 2021 was performed, and a meta-analysis was developed to calculate the overall effects. Results Eight studies evaluating VNS effects on motor function in stroke patients were included, of which 4 used implanted and 4 transcutaneous VNS. It was demonstrated that VNS, together with physical rehabilitation, increased upper limb motor function on average 7.06 points (95%CI 4.96; 9.16) as assessed by the Fugl-Meyer scale. Likewise, this improvement was significantly greater when compared to a control intervention (mean difference 2.48, 95%CI 0.98; 3.98). No deaths or serious adverse events related to the intervention were reported. The most frequent adverse events were dysphonia, dysphagia, nausea, skin redness, dysgeusia and pain related to device implantation. Conclusion VNS, together with physical rehabilitation, improves upper limb motor function in stroke patients. Additionally, VNS is a safe intervention.
Collapse
Affiliation(s)
- Jorge A. Ramos-Castaneda
- Fundación Cardiovascular de Colombia, Bucaramanga, Colombia
- Research Group Innovación y Cuidado, Faculty of Nursing, Universidad Antonio Nariño, Neiva, Colombia
- *Correspondence: Jorge A. Ramos-Castaneda
| | | | | | | | | | - Ronald G. Garcia
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| |
Collapse
|
21
|
Shah SA, Gautam R, Lowder R, Mauer EA, Carullo RB, Parlatore DE, Gerber LM, Schiff ND, Traube C. Quantitative Electroencephalographic Markers of Delirium in the Pediatric Intensive Care Unit: Insights From a Heterogenous Convenience Sample. J Neuropsychiatry Clin Neurosci 2022; 33:219-224. [PMID: 33757305 DOI: 10.1176/appi.neuropsych.20070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Little is known about the underlying neurophysiology of pediatric delirium. In adult patients, the sensitivity of EEG to clinical symptoms of delirium has been noted, with a slowing of background activity (alpha) and an increase in slow-wave activity (delta-theta). In this pilot study, the authors extended this investigation to a pediatric cohort. METHODS In a convenience sample, 23 critically ill children were screened for delirium, using the Cornell Assessment for Pediatric Delirium (CAPD), every 12 hours throughout their pediatric intensive care unit stay as part of standard intensive care unit procedure, and EEGs were performed as part of their clinical care. After hospital discharge, EEGs were reviewed using quantitative analysis, and the maximum delta-alpha ratio (DAR; eyes closed) was derived for each 12-hour period. DAR values were compared between delirious and nondelirious episodes, and the linear relationship between DAR and CAPD was assessed. RESULTS Higher DARs were associated with episodes of delirium. The DAR also positively correlated with CAPD assessments, with higher DARs relating to higher delirium scores. CONCLUSIONS Future prospective studies may further investigate this relationship in a more homogeneous and larger sample, and the DAR should be considered to track delirium and assess the effectiveness of therapeutic interventions.
Collapse
Affiliation(s)
- Sudhin A Shah
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Richa Gautam
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Ryan Lowder
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Elizabeth A Mauer
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Renata B Carullo
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Dorin E Parlatore
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Linda M Gerber
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Nicholas D Schiff
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| | - Chani Traube
- Departments of Rehabilitation Medicine (Shah, Lowder), Pediatrics (Traube), and Population Health Sciences (Mauer, Gerber), Cornell University Joan and Sanford I Weill Medical College, New York; Clinical and Translational Science Center, Cornell University Joan and Sanford I Weill Medical College, New York (Gautam); Department of Pediatrics, New York-Presbyterian Hospital, New York (Carullo, Parlatore, Traube); Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York (Shah, Schiff); Department of Neurology, Weill Cornell Medicine, New York (Schiff); and Rockefeller University Hospital, New York (Schiff)
| |
Collapse
|
22
|
Geranmayeh F. Cholinergic neurotransmitter system: a potential marker for post-stroke cognitive recovery. Brain 2022; 145:1576-1578. [PMID: 35438715 PMCID: PMC9166539 DOI: 10.1093/brain/awac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
This scientific commentary refers to ‘Cholinergic and hippocampal systems facilitate cross-domain cognitive recovery after stroke’ by O’Sullivan et al. (https://doi.org/10.1093/brain/awac070).
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Clinical Language and Cognition Group, Department of Brain Sciences, Imperial
College, London, UK,E-mail:
| |
Collapse
|
23
|
Dawson J, Abdul-Rahim AH. Paired vagus nerve stimulation for treatment of upper extremity impairment after stroke. Int J Stroke 2022; 17:1061-1066. [PMID: 35377261 DOI: 10.1177/17474930221094684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of a paired vagus nerve stimulation (VNS) system for the treatment of moderate to severe upper extremity motor deficits associated with chronic ischaemic stroke has recently been approved by the U.S Food and Drug Administration. This treatment aims to increase task specific neuroplasticity through activation of cholinergic and noradrenergic networks during rehabilitation therapy. A recent pivotal phase III trial showed that VNS paired with rehabilitation led to improvements in upper extremity impairment and function in people with moderate to severe arm weakness an average of three years after ischaemic stroke. The between group difference following six weeks of in-clinic therapy and 90 days of home exercise therapy was three points on the upper extremity Fugl Meyer score. A clinically meaningful response defined as a greater than or equal to six point improvement was seen in approximately half of people treated with VNS compared to approximately a quarter of people treated with rehabilitation alone. Further post-marketing research should aim to establish whether the treatment is also of use for people with intracerebral haemorrhage, in people with more severe arm weakness, and for other post stroke impairments. In addition, high quality randomised studies of non-invasive VNS are required.
Collapse
Affiliation(s)
- Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 236381
| | - Azmil Husin Abdul-Rahim
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 9QQ, UK 3526
| |
Collapse
|
24
|
Nivins S, Kennedy E, Thompson B, Gamble GD, Alsweiler JM, Metcalfe R, McKinlay CJD, Harding JE. Associations between neonatal hypoglycaemia and brain volumes, cortical thickness and white matter microstructure in mid-childhood: An MRI study. Neuroimage Clin 2022; 33:102943. [PMID: 35063925 PMCID: PMC8856905 DOI: 10.1016/j.nicl.2022.102943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
Neonatal hypoglycaemia is associated with damage to the brain in the acute phase. In mid-childhood, neonatal hypoglycaemia is associated with smaller brain regions. Deep grey matter regions such as the caudate and thalamus are implicated. Children with neonatal hypoglycemia had smaller occipital lobe cortical thickness. Grey matter may be especially vulnerable to long-term effects of neonatal hypoglycemia.
Neonatal hypoglycaemia is a common metabolic disorder that may cause brain damage, most visible in parieto-occipital regions on MRI in the acute phase. However, the long term effects of neonatal hypoglycaemia on the brain are not well understood. We investigated the association between neonatal hypoglycaemia and brain volumes, cortical thickness and white matter microstructure at 9–10 years. Children born at risk of neonatal hypoglycaemia at ≥ 36 weeks’ gestation who took part in a prospective cohort study underwent brain MRI at 9–10 years. Neonatal hypoglycaemia was defined as at least one hypoglycaemic episode (at least one consecutive blood glucose concentration < 2.6 mmol/L) or interstitial episode (at least 10 min of interstitial glucose concentrations < 2.6 mmol/L). Brain volumes and cortical thickness were computed using Freesurfer. White matter microstructure was assessed using tract-based spatial statistics. Children who had (n = 75) and had not (n = 26) experienced neonatal hypoglycaemia had similar combined parietal and occipital lobe volumes and no differences in white matter microstructure at nine years of age. However, those who had experienced neonatal hypoglycaemia had smaller caudate volumes (mean difference: −557 mm3, 95% confidence interval (CI), −933 to −182, p = 0.004) and smaller thalamus (−0.03%, 95%CI, −0.06 to 0.00; p = 0.05) and subcortical grey matter (−0.10%, 95%CI −0.20 to 0.00, p = 0.05) volumes as percentage of total brain volume, and thinner occipital lobe cortex (−0.05 mm, 95%CI −0.10 to 0.00, p = 0.05) than those who had not. The finding of smaller caudate volumes after neonatal hypoglycaemia was consistent across analyses of pre-specified severity groups, clinically detected hypoglycaemic episodes, and severity and frequency of hypoglycaemic events. Neonatal hypoglycaemia is associated with smaller deep grey matter brain regions and thinner occipital lobe cortex but not altered white matter microstructure in mid-childhood.
Collapse
Affiliation(s)
- Samson Nivins
- Liggins Institute, University of Auckland, New Zealand
| | | | - Benjamin Thompson
- Liggins Institute, University of Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada; Centre for Eye and Vision Research, 17W Science Park, Hong Kong
| | | | - Jane M Alsweiler
- Auckland District Health Board, Auckland, New Zealand; Department of Paediatrics: Child and Youth Health, University of Auckland, New Zealand
| | | | - Christopher J D McKinlay
- Liggins Institute, University of Auckland, New Zealand; Kidz First Neonatal Care, Counties Manukau Health, New Zealand
| | | | | |
Collapse
|
25
|
Physical exercise promotes integration of grafted cells and functional recovery in an acute stroke rat model. Stem Cell Reports 2022; 17:276-288. [PMID: 35030322 PMCID: PMC8828662 DOI: 10.1016/j.stemcr.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
Human neural progenitor cell (hNPC) transplantation holds great potential to treat neurological diseases. However, hNPC grafts take a long time to differentiate into mature neurons due to their intrinsically prolonged developmental timetable. Here, we report that postoperative physical exercise (PE), a prevailing rehabilitation intervention, promotes the neuronal commitment, maturation, and integration of engrafted hNPCs, evidenced by forming more synapses, receiving more synaptic input from host neurons, and showing higher neuronal activity levels. More important, NPC transplantation, combined with PE, shows significant improvement in both structural and behavioral outcomes in stroke-damaged rats. PE enhances ingrowth of blood vessels around the infarction region and neural tract reorganization along the ischemic boundary. The combination of NPC transplantation and postoperative PE creates both a neurotrophic/growth factor-enriched proneuronal microenvironment and an ideal condition for activity-dependent plasticity to give full play to its effects. Our study provides a potential approach to treating patients with stroke injury. Physical exercise boosts the maturation and integration of engrafted human NPCs This strategy brings about both structural and behavioral improvements in stroke rats This strategy creates a neurotrophic factor-enriched microenvironment Activity-dependent plasticity is also involved in this process
Collapse
|
26
|
O’Sullivan MJ, Oestreich LKL, Wright P, Clarkson AN. OUP accepted manuscript. Brain 2022; 145:1698-1710. [PMID: 35188545 PMCID: PMC9166559 DOI: 10.1093/brain/awac070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael J. O’Sullivan
- UQ Centre for Clinical Research and Institute of Molecular Bioscience, The
University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women’s Hospital,
Brisbane, Australia
- Correspondence to: Prof Michael J. O’Sullivan Office of Research
& Implementation Building 34, Royal Brisbane and Women’s Hospital Butterfield St,
Herston, 4029, QLD, Australia E-mail:
| | - Lena K. L. Oestreich
- UQ Centre for Clinical Research and Institute of Molecular Bioscience, The
University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging, The University of Queensland,
Brisbane, Australia
| | - Paul Wright
- Institute of Psychiatry, Psychology and Neuroscience, King’s College
London, London, UK
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New
Zealand, University of Otago, Dunedin 9011, New
Zealand
| |
Collapse
|
27
|
Nemkova S. Modern approaches to the diagnostics and treatment of the consequences of traumatic brain injury in children and adolescents. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:20-29. [DOI: 10.17116/jnevro202212206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Li Y, Hollis E. Basal Forebrain Cholinergic Neurons Selectively Drive Coordinated Motor Learning in Mice. J Neurosci 2021; 41:10148-10160. [PMID: 34750228 PMCID: PMC8660044 DOI: 10.1523/jneurosci.1152-21.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
Motor control requires precise temporal and spatial encoding across distinct motor centers that is refined through the repetition of learning. The recruitment of motor regions requires modulatory input to shape circuit activity. Here, we identify a role for the baso-cortical cholinergic pathway in the acquisition of a coordinated motor skill in mice. Targeted depletion of basal forebrain cholinergic neurons results in significant impairments in training on the rotarod task of coordinated movement. Cholinergic neuromodulation is required during training sessions as chemogenetic inactivation of cholinergic neurons also impairs task acquisition. Rotarod learning is known to drive refinement of corticostriatal neurons arising in both medial prefrontal cortex (mPFC) and motor cortex, and we have found that cholinergic input to both motor regions is required for task acquisition. Critically, the effects of cholinergic neuromodulation are restricted to the acquisition stage, as depletion of basal forebrain cholinergic neurons after learning does not affect task execution. Our results indicate a critical role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning.SIGNIFICANCE STATEMENT Acetylcholine release from basal forebrain cholinergic neuron terminals rapidly modulates neuronal excitability, circuit dynamics, and cortical coding; all processes required for processing complex sensory information, cognition, and attention. We found that depletion or transient silencing of cholinergic inputs to anatomically isolated motor areas, medial prefrontal cortex (mPFC) and motor cortex, selectively led to significant impairments on coordinated motor learning; disrupting this baso-cortical network after acquisition elicited no effect on task execution. Our results indicate a pivotal role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning. These findings support the concept that cognitive components (such as attention) are indispensable in the adjustment of motor output and training-induced improvements in motor performance.
Collapse
Affiliation(s)
- Yue Li
- Burke Neurological Institute, White Plains, New York 10605
| | - Edmund Hollis
- Burke Neurological Institute, White Plains, New York 10605
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
29
|
Cholinergic modulation of sensory processing in awake mouse cortex. Sci Rep 2021; 11:17525. [PMID: 34471145 PMCID: PMC8410938 DOI: 10.1038/s41598-021-96696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
Cholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer's Disease, disrupts sensory behaviours.
Collapse
|
30
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
31
|
Mirza Agha B, Akbary R, Ghasroddashti A, Nazari-Ahangarkolaee M, Whishaw IQ, Mohajerani MH. Cholinergic upregulation by optogenetic stimulation of nucleus basalis after photothrombotic stroke in forelimb somatosensory cortex improves endpoint and motor but not sensory control of skilled reaching in mice. J Cereb Blood Flow Metab 2021; 41:1608-1622. [PMID: 33103935 PMCID: PMC8221755 DOI: 10.1177/0271678x20968930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A network of cholinergic neurons in the basal forebrain innerve the forebrain and are proposed to contribute to a variety of functions including cortical plasticity, attention, and sensorimotor behavior. This study examined the contribution of the nucleus basalis cholinergic projection to the sensorimotor cortex on recovery on a skilled reach-to-eat task following photothrombotic stroke in the forelimb region of the somatosensory cortex. Mice were trained to perform a single pellet skilled reaching task and their pre and poststroke performance, from Day 4 to Day 28 poststroke, was assessed frame-by-frame by video analysis with endpoint, movement and sensorimotor integration measures. Somatosensory forelimb lesions produced impairments in endpoint and movement component measures of reaching and increased the incidence of fictive eating, a sensory impairment in mistaking a missed reach for a successful reach. Upregulated acetylcholine (ACh) release, as measured by local field potential recording, elicited via optogenetic stimulation of the nucleus basalis improved recovery of reaching and improved movement scores but did not affect sensorimotor integration impairment poststroke. The results show that the mouse cortical forelimb somatosensory region contributes to forelimb motor behavior and suggest that ACh upregulation could serve as an adjunct to behavioral therapy for acute treatment of stroke.
Collapse
Affiliation(s)
- Behroo Mirza Agha
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Roya Akbary
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Arashk Ghasroddashti
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Mojtaba Nazari-Ahangarkolaee
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
32
|
Yeh TY, Liu PH. Removal of a compressive mass causes a transient disruption of blood-brain barrier but a long-term recovery of spiny stellate neurons in the rat somatosensory cortex. Restor Neurol Neurosci 2021; 39:111-127. [PMID: 34024792 DOI: 10.3233/rnn-201085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In the cranial cavity, a space-occupying mass such as epidural hematoma usually leads to compression of brain. Removal of a large compressive mass under the cranial vault is critical to the patients. OBJECTIVE The purpose of this study was to examine whether and to what extent epidural decompression of the rat primary somatosensory cortex affects the underlying microvessels, spiny stellate neurons and their afferent fibers. METHODS Rats received epidural decompression with preceding 1-week compression by implantation of a bead. The thickness of cortex was measured using brain coronal sections. The permeability of blood-brain barrier (BBB) was assessed by Evans Blue and immunoglobulin G extravasation. The dendrites and dendritic spines of the spiny stellate neurons were revealed by Golgi-Cox staining and analyzed. In addition, the thalamocortical afferent (TCA) fibers in the cortex were illustrated using anterograde tracing and examined. RESULTS The cortex gradually regained its thickness over time and became comparable to the sham group at 3 days after decompression. Although the diameter of cortical microvessels were unaltered, a transient disruption of the BBB was observed at 6 hours and 1 day after decompression. Nevertheless, no brain edema was detected. In contrast, the dendrites and dendritic spines of the spiny stellate neurons and the TCA fibers were markedly restored from 2 weeks to 3 months after decompression. CONCLUSIONS Epidural decompression caused a breakdown of the BBB, which was early-occurring and short-lasting. In contrast, epidural decompression facilitated a late-onset and prolonged recovery of the spiny stellate neurons and their afferent fibers.
Collapse
Affiliation(s)
- Tzu-Yin Yeh
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| | - Pei-Hsin Liu
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan.,Medical Physiology, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
33
|
Ikeda S, Washida K, Tanaka T, Kitajima E, Chiba T, Fukuma K, Yoshimoto T, Saito S, Hattori Y, Ihara M. A Nationwide Multi-Center Questionnaire Survey on the Real-World State and Issues Regarding Post-Stroke Complications in Japan. J Stroke Cerebrovasc Dis 2021; 30:105656. [PMID: 33571877 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/17/2021] [Accepted: 01/31/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Post-stroke complications affect stroke survivors across the world, although data on them are limited. We conducted a questionnaire survey to examine the real-world state and issues regarding post-stroke complications in Japan, which represents a super-aged society. MATERIALS AND METHODS In 2018, a nationwide multi-center questionnaire survey was conducted in the top 500 Japanese hospitals regarding the number of stroke patients treated. Three questionnaires regarding post-stroke complications were mailed to the doctors responsible for stroke management. RESULTS Responses were obtained from 251 hospitals (50.2%). The chief doctors responsible for stroke management answered the questionnaires. The number of stroke patients in the departments of neurology and neurosurgery was 338.3 ± 195.3 and 295.8 ± 121.8. Hospitals were classified using the categories secondary (n =142) and tertiary hospitals (n = 106); most hospitals were acute hospitals. Dementia was the most common complication (30.9%), followed by dysphagia (29.3%), and apathy (16.3%). Dementia was thought to be more common by neurologists than neurosurgeons, while apathy and bladder-rectal disorder were thought to be more common by neurosurgeons than neurologists (p = 0.001). The most difficult complication to treat was dysphagia (40.4%), followed by dementia (33.9%), epilepsy (4.1%), and fall (4.1%). Dementia was considered to lack clinical evidence regarding treatment (32.8%), followed by dysphagia (25.3%), and epilepsy (14.1%). Epilepsy was considered to lack clinical evidence among hospitals with a larger number of stroke cases (p = 0.044). CONCLUSION This study revealed the current state and issues regarding post-stroke complications in Japan. Clinicians should be aware of the importance of post-stroke complications, although data on them remain unsatisfactory.
Collapse
Affiliation(s)
- Shuhei Ikeda
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Kazuo Washida
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Tomotaka Tanaka
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Erika Kitajima
- Department of Medical Engineering, Faculty of Healthcare Sciences, Dokkyo University, Hyogo, Japan.
| | - Tetsuya Chiba
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Kazuki Fukuma
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Takeshi Yoshimoto
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Yorito Hattori
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
34
|
Joy MT, Carmichael ST. Encouraging an excitable brain state: mechanisms of brain repair in stroke. Nat Rev Neurosci 2021; 22:38-53. [PMID: 33184469 PMCID: PMC10625167 DOI: 10.1038/s41583-020-00396-7] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Stroke induces a plastic state in the brain. This period of enhanced plasticity leads to the sprouting of new axons, the formation of new synapses and the remapping of sensory-motor functions, and is associated with motor recovery. This is a remarkable process in the adult brain, which is normally constrained in its levels of neuronal plasticity and connectional change. Recent evidence indicates that these changes are driven by molecular systems that underlie learning and memory, such as changes in cellular excitability during memory formation. This Review examines circuit changes after stroke, the shared mechanisms between memory formation and brain repair, the changes in neuronal excitability that underlie stroke recovery, and the molecular and pharmacological interventions that follow from these findings to promote motor recovery in animal models. From these findings, a framework emerges for understanding recovery after stroke, central to which is the concept of neuronal allocation to damaged circuits. The translation of the concepts discussed here to recovery in humans is underway in clinical trials for stroke recovery drugs.
Collapse
Affiliation(s)
- Mary T Joy
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Yuan R, Biswal BB, Zaborszky L. Functional Subdivisions of Magnocellular Cell Groups in Human Basal Forebrain: Test-Retest Resting-State Study at Ultra-high Field, and Meta-analysis. Cereb Cortex 2020; 29:2844-2858. [PMID: 30137295 DOI: 10.1093/cercor/bhy150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/11/2018] [Indexed: 12/23/2022] Open
Abstract
The heterogeneous neuronal subgroups of the basal forebrain corticopetal system (BFcs) have been shown to modulate cortical functions through their cholinergic, gamma-aminobutyric acid-ergic, and glutamatergic projections to the entire cortex. Although previous studies suggested that the basalo-cortical projection system influences various cognitive functions, particularly via its cholinergic component, these studies only focused on certain parts of the BFcs or nearby structures, leaving aside a more systematic picture of the functional connectivity of BFcs subcompartments. Moreover, these studies lacked the high-spatial resolution and the probability maps needed to identify specific subcompartments. Recent advances in the ultra-high field 7T functional magnetic resonance imaging (fMRI) provided potentially unprecedented spatial resolution of functional MRI images to study the subdivision of the BFcs. In this study, the BF space containing corticopetal cells was divided into 3 functionally distinct subdivisions based on functional connection to cortical regions derived from fMRI. The overall functional connection of each BFcs subdivision was examined with a test-retest study. Finally, a meta-analysis was used to study the related functional topics of each BF subdivision. Our results demonstrate distinct functional connectivity patterns of these subdivisions along the rostrocaudal axis of the BF. All three compartments have shown consistent segregation and overlap at specific target regions including the hippocampus, insula, thalamus, and the cingulate gyrus, suggesting functional integration and separation in BFcs.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
36
|
Goncalves DF, Guzman MS, Gros R, Massensini AR, Bartha R, Prado VF, Prado MAM. Striatal Acetylcholine Helps to Preserve Functional Outcomes in a Mouse Model of Stroke. ASN Neuro 2020; 12:1759091420961612. [PMID: 32967452 PMCID: PMC7521057 DOI: 10.1177/1759091420961612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Acetylcholine (ACh) has been suggested to facilitate plasticity and
improve functional recovery after different types of brain lesions.
Interestingly, numerous studies have shown that striatal cholinergic
interneurons are relatively resistant to acute ischemic insults, but
whether ACh released by these neurons enhances functional recovery
after stroke is unknown. We investigated the role of endogenous
striatal ACh in stroke lesion volume and functional outcomes following
middle cerebral artery occlusion to induce focal ischemia in
striatum-selective vesicular acetylcholine transporter-deficient mice
(stVAChT-KO). As transporter expression is almost completely
eliminated in the striatum of stVAChT-KO mice, ACh release is nearly
abolished in this area. Conversely, in other brain areas, VAChT
expression and ACh release are preserved. Our results demonstrate a
larger infarct size after ischemic insult in stVAChT-KO mice, with
more pronounced functional impairments and increased mortality than in
littermate controls. These changes are associated with increased
activation of GSK-3, decreased levels of β-catenin, and a higher
permeability of the blood–brain barrier in mice with loss of VAChT in
striatum neurons. These results support a framework in which
endogenous ACh secretion originating from cholinergic interneurons in
the striatum helps to protect brain tissue against ischemia-induced
damage and facilitates brain recovery by supporting blood–brain
barrier function.
Collapse
Affiliation(s)
- Daniela F Goncalves
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica S Guzman
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - Robert Gros
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada
| | - André R Massensini
- Neuroscience Centre, Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robert Bartha
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| | - Vania F Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Marco A M Prado
- Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
37
|
Dutcher AM, Truong KV, Miller DD, Allred RP, Nudi E, Jones TA. Training in a cooperative bimanual skilled reaching task, the popcorn retrieval task, improves unimanual function after motor cortical infarcts in rats. Behav Brain Res 2020; 396:112900. [PMID: 32941880 DOI: 10.1016/j.bbr.2020.112900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Disuse of the paretic hand after stroke is encouraged by compensatory reliance on the nonparetic hand, to exacerbate impairment and potentially constrain motor rehabilitation efficacy. Rodent stroke model findings support that learning new unimanual skills with the nonparetic forelimb diminishes functional improvements that can be driven by rehabilitative training of the paretic forelimb. The influence of learning new ways of skillfully using the two hands together on paretic side function is much less clear. To begin to explore this, we developed a new cooperative bimanual skilled reaching task for rats, the Popcorn Retrieval Task. After motor cortical infarcts impaired an established unimanual reaching skill in the paretic forelimb, rats underwent a 7 week period of de novo bimanual training (BiT) or no-training control procedures (Cont). Probes of paretic forelimb unimanual performance revealed significant improvements during and after the training period in BiT vs. Cont. We additionally observed a striking change in the bimanual task strategy over training days: a switch from the paretic to the nonparetic forelimb for initiating reach-to-grasp sequences. This motivated another study to test whether rats that established the bimanual skill prior to the infarcts would similarly switch handedness, which they did not, though paretic paw use for manipulative movements diminished. These results indicate that unimanual function of the paretic side can be improved by novel bimanual skill practice, even when it involves compensatory reliance on the nonparetic hand. They further support the suitability of the Popcorn Retrieval Task for studying bimanual skill learning effects in rats.
Collapse
Affiliation(s)
| | | | | | | | - Evan Nudi
- Psychology Department, United States
| | - Theresa A Jones
- Institute for Neuroscience, United States; Psychology Department, United States.
| |
Collapse
|
38
|
Koroleva ES, Tolmachev IV, Alifirova VM, Boiko AS, Levchuk LA, Loonen AJM, Ivanova SA. Serum BDNF's Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain Sci 2020; 10:E623. [PMID: 32916851 PMCID: PMC7564457 DOI: 10.3390/brainsci10090623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. METHODS fifty patients were included after acute recovery from ischemic stroke: 21 first received classical rehabilitation followed by 'motor rehabilitation using motion sensors and augmented reality' (AR-rehabilitation), 14 only received AR-rehabilitation, and 15 were only observed. Serum BDNF levels were measured on the first day of stroke, on the 14th day, before AR-based rehabilitation (median, 45th day), and after the AR-based rehabilitation (median, 82nd day). Motor impairment was quantified clinically using the Fugl-Meyer scale (FMA); functional disability and activities of daily living (ADL) were measured using the Modified Rankin Scale (mRS). For comparison, serum BDNF was measured in 50 healthy individuals. RESULTS BDNF levels were found to significantly increase during the phase with AR-based rehabilitation. The pattern of the sequentially measured BDNF levels was similar in the treated patients. Untreated patients had significantly lower BDNF levels at the endpoint. CONCLUSIONS the fluctuations of BDNF levels are not consistently related to motor improvement but seem to react to active treatment. Without active rehabilitation treatment, BDNF tends to decrease.
Collapse
Affiliation(s)
- Ekaterina S. Koroleva
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Ivan V. Tolmachev
- Department of Medical and Biological Cybernetics, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia;
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Anton J. M. Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
39
|
Long-range inputome of cortical neurons containing corticotropin-releasing hormone. Sci Rep 2020; 10:12209. [PMID: 32699360 PMCID: PMC7376058 DOI: 10.1038/s41598-020-68115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 12/31/2022] Open
Abstract
Dissection of the neural circuits of the cerebral cortex is essential for studying mechanisms underlying brain function. Herein, combining a retrograde rabies tracing system with fluorescent micro-optical sectional tomography, we investigated long-range input neurons of corticotropin-releasing hormone containing neurons in the six main cortical areas, including the prefrontal, somatosensory, motor, auditory, and visual cortices. The whole brain distribution of input neurons showed similar patterns to input neurons distributed mainly in the adjacent cortical areas, thalamus, and basal forebrain. Reconstruction of continuous three-dimensional datasets showed the anterior and middle thalamus projected mainly to the rostral cortex whereas the posterior and lateral projected to the caudal cortex. In the basal forebrain, immunohistochemical staining showed these cortical areas received afferent information from cholinergic neurons in the substantia innominata and lateral globus pallidus, whereas cholinergic neurons in the diagonal band nucleus projected strongly to the prefrontal and visual cortex. Additionally, dense neurons in the zona incerta and ventral hippocampus were found to project to the prefrontal cortex. These results showed general patterns of cortical input circuits and unique connection patterns of each individual area, allowing for valuable comparisons among the organisation of different cortical areas and new insight into cortical functions.
Collapse
|
40
|
Lin YH, Yao MC, Wu HY, Dong J, Ni HY, Kou XL, Chang L, Luo CX, Zhu DY. HDAC2 (Histone deacetylase 2): A critical factor in environmental enrichment-mediated stroke recovery. J Neurochem 2020; 155:679-696. [PMID: 32415988 DOI: 10.1111/jnc.15043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022]
Abstract
Environmental enrichment (EE) is a generally accepted strategy to promote stroke recovery and its beneficial effect is positively correlated with neuroplasticity. However, the mechanisms underlying it remain elusive. Histone deacetylase 2 (HDAC2), a negative regulator of neuroplasticity, is up-regulated after stroke. Thus, we hypothesized that HDAC2 may participate in EE-mediated stroke recovery. In this study, focal stroke was induced by photothrombosis in male mice exposing to EE or standard housing (SH) conditions. Recombinant virus vectors, including Ad-HDAC2-Flag, AAV-CAG-EGFP-Cre, LV-shHDAC2, or their controls were microinjected into the motor cortex at 3 days before stroke. Grid-walking and cylinder tasks were conducted to assess motor function. Western blot and immunostaining were used to uncover the mechanisms underlying EE-mediated stroke recovery. We found that EE exposure reversed stroke-induced HDAC2 up-regulation, implicating HDAC2 in EE-mediated functional recovery. Importantly, EE-dependent stroke recovery was counteracted by over-expressing HDAC2, and HDAC2 knockdown promoted functional recovery from stroke to the similar extent as EE exposure. Moreover, the knockdown of HDAC2 epigenetically enhanced expressions of neurotrophins and neuroplasticity-related proteins, with similar effects as EE, and consequently, whole brain and corticospinal tract (CST) rewiring. Together, our findings indicate that HDAC2 is critical for EE-dependent functional restoration. Precisely targeting HDAC2 may mimic EE and serve as a novel therapeutic strategy for stroke recovery.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Meng-Cheng Yao
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Yin Wu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jian Dong
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huan-Yu Ni
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Kou
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institution of Stem Cells and Neuroregeneration, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Vaucher E, Laliberté G, Higgins MC, Maheux M, Jolicoeur P, Chamoun M. Cholinergic potentiation of visual perception and vision restoration in rodents and humans. Restor Neurol Neurosci 2020; 37:553-569. [PMID: 31839615 DOI: 10.3233/rnn-190947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cholinergic system is a potent neuromodulator system that plays a critical role in cortical plasticity, attention, and learning. Recently, it was found that boosting this system during perceptual learning robustly enhances sensory perception in rodents. In particular, pairing cholinergic activation with visual stimulation increases neuronal responses, cue detection ability, and long-term facilitation in the primary visual cortex. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation, and modulation of the excitatory/inhibitory balance. Some studies currently examine this effect in humans. OBJECTIVE The present article reviews the research from our laboratory, examining whether potentiating the central cholinergic system could help visual perception and restoration. METHODS Electrophysiological or pharmacological enhancement of the cholinergic system are administered during a visual training. Electrophysiological responses and perceptual learning performance are investigated before and after the training in rats and humans. This approach's ability to restore visual capacities following a visual deficit induced by a partial optic nerve crush is also investigated in rats. RESULTS The coupling of visual training to cholinergic stimulation improved visual discrimination and visual acuity in rats, and improved residual vision after a deficit. These changes were due to muscarinic and nicotinic transmissions and were associated with a functional improvement of evoked potentials. In humans, potentiation of cholinergic transmission with 5 mg of donepezil showed improved learning and ocular dominance plasticity, although this treatment was ineffective in augmenting the perceptual threshold and electroencephalography. CONCLUSIONS Potential therapeutic outcomes ought to facilitate vision restoration using commercially available cholinergic agents combined with visual stimulation in order to prevent irreversible vision loss in patients. This approach has the potential to help a large population of visually impaired individuals.
Collapse
Affiliation(s)
- Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada
| | - Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Charlotte Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Manon Maheux
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Jolicoeur
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
42
|
Jaffe PI, Brainard MS. Acetylcholine acts on songbird premotor circuitry to invigorate vocal output. eLife 2020; 9:e53288. [PMID: 32425158 PMCID: PMC7237207 DOI: 10.7554/elife.53288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine is well-understood to enhance cortical sensory responses and perceptual sensitivity in aroused or attentive states. Yet little is known about cholinergic influences on motor cortical regions. Here we use the quantifiable nature of birdsong to investigate how acetylcholine modulates the cortical (pallial) premotor nucleus HVC and shapes vocal output. We found that dialyzing the cholinergic agonist carbachol into HVC increased the pitch, amplitude, tempo and stereotypy of song, similar to the natural invigoration of song that occurs when males direct their songs to females. These carbachol-induced effects were associated with increased neural activity in HVC and occurred independently of basal ganglia circuitry. Moreover, we discovered that the normal invigoration of female-directed song was also accompanied by increased HVC activity and was attenuated by blocking muscarinic acetylcholine receptors. These results indicate that, analogous to its influence on sensory systems, acetylcholine can act directly on cortical premotor circuitry to adaptively shape behavior.
Collapse
Affiliation(s)
- Paul I Jaffe
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Departments of Physiology and Psychiatry, University of California, San FranciscoSan FranciscoUnited States
- Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
43
|
Bahr-Hosseini M, Saver JL. Mechanisms of action of acute and subacute sphenopalatine ganglion stimulation for ischemic stroke. Int J Stroke 2020; 15:839-848. [PMID: 32326842 DOI: 10.1177/1747493020920739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sphenopalatine ganglion stimulation (SPG-Stim) for ischemic stroke, starting 8-24 h after onset and continuing through five days in a pooled analysis of two recent, randomized, sham-controlled trials, improved outcome of acute ischemic stroke patients with confirmed cortical involvement. As a neuromodulatory therapy, SPG-Stim differs substantially from existing pharmacologic (lytic and antiplatelets) and device (endovascular thrombectomy) acute ischemic stroke treatments. AIM Focused review of SPG anatomy, physiology, and neurovascular and neurobiologic mechanisms of action mediating benefit of SPG-Stim in acute ischemic stroke. SUMMARY OF REVIEW Located posterior to the maxillary sinus, the SPG is the main source of parasympathetic innervation to the anterior circulation. Preclinical and human studies delineate four distinct mechanisms of action by which the SPG-Stim may confer benefit in acute ischemic stroke: (1) collateral vasodilation and enhanced cerebral blood flow, mediated by release of neurotransmitters with vasodilatory effects, nitric oxide, and acetylcholine, (2) stimulation frequency- and intensity-dependent stabilization of the blood-brain barrier, reducing edema (3) direct acute neuroprotection from activation of the central cholinergic system with resulting anti-inflammatory, anti-apoptotic, and anti-excitatory effects; and (4) neuroplasticity enhancement from enhanced central cholinergic and adrenergic neuromodulation of cortical networks and nitrous oxide release stimulating neurogenesis. CONCLUSION The benefit of SPG-Stim in acute ischemic stroke is likely conferred not only by potent collateral augmentation, but also blood-barrier stabilization, direct neuroprotection, and neuroplasticity enhancement. Further studies clarifying the relative contribution of these mechanisms and the stimulation protocols that maximize each may help optimize SPG-Stim as a therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Mersedeh Bahr-Hosseini
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| |
Collapse
|
44
|
Effect of acetylcholinesterase inhibitors on post-stroke cognitive impairment and vascular dementia: A meta-analysis. PLoS One 2020; 15:e0227820. [PMID: 32032361 PMCID: PMC7006920 DOI: 10.1371/journal.pone.0227820] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
Cognitive impairment is a common complication observed after a stroke. Currently there are no definitively proven pharmacologic therapies for recovery from post-stroke cognitive impairment and vascular dementia. In this meta-analysis, we evaluated the efficacy and safety of cholinesterase inhibitors in their improvement of cognition in patients with post-stroke cognitive impairment and vascular dementia. We conducted a meta-analysis using seven eligible studies from 305 published articles. We investigated the differences in Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog) scores, before and after cholinergic augmentation in patients with post-stroke cognitive impairment and vascular dementia. MMSE and ADAS-cog scores were also compared during the subsequent follow-up periods. MMSE score of patients with post-stroke cognitive impairment was increased after cholinergic augmentation throughout the 24 weeks with mean differences [MD] of 3.000, 1.732, 1.578 1.516, and 1.222, at 4, 4-8, 8-12, 12-18, and 18-24 weeks, respectively. In addition, ADAS-cog scores decreased at 6, 12, 18, and 24 weeks by pharmaceutical augmentation, but not with placebo with mean differences [MD] of -2.333, -2.913, -2.767, -2.416, and -1.859, respectively. This meta-analysis shows that acetylcholinesterase inhibitors maintain a stable pattern of improved cognitive function in patients with post stroke cognitive impairment and vascular dementia without the increased risk of side effects.
Collapse
|
45
|
Heredia M, Rodríguez N, Sánchez Robledo V, Criado JM, de la Fuente A, Devesa J, Devesa P, Sánchez Riolobos A. Factors Involved in the Functional Motor Recovery of Rats with Cortical Ablation after GH and Rehabilitation Treatment: Cortical Cell Proliferation and Nestin and Actin Expression in the Striatum and Thalamus. Int J Mol Sci 2019; 20:ijms20225770. [PMID: 31744113 PMCID: PMC6888370 DOI: 10.3390/ijms20225770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Previously we demonstrated, in rats, that treatment with growth hormone (GH) and rehabilitation, carried out immediately after a motor cortical ablation, significantly improved the motor affectation produced by the lesion and induced the re-expression of nestin in the contralateral motor cortex. Here we analyze cortical proliferation after ablation of the frontal motor cortex and investigate the re-expression of nestin in the contralateral motor cortex and the role of the striatum and thalamus in motor recovery. The rats were subjected to ablation of the frontal motor cortex in the dominant hemisphere or sham-operated and immediately treated with GH or the vehicle (V), for five days. At 1 dpi (days post-injury), all rats received daily injections (for four days) of bromodeoxyuridine and five rats were sacrificed at 5 dpi. The other 15 rats (n = 5/group) underwent rehabilitation and were sacrificed at 25 dpi. GH induced the greatest number of proliferating cells in the perilesional cortex. GH and rehabilitation produced the functional recovery of the motor lesion and increased the expression of nestin in the striatum. In the thalamic ventral nucleus ipsilateral to the lesion, cells positive for nestin and actin were detected, but this was independent on GH. Our data suggest that GH-induced striatal nestin is involved in motor recovery.
Collapse
Affiliation(s)
- Margarita Heredia
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
- Correspondence: (M.H.); (J.D.); Tel.: +34-9232-9454-0 (M.H); +34-9810-292-8 (J.D.)
| | - Natalia Rodríguez
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
| | - Virginia Sánchez Robledo
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
| | - José María Criado
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
| | - Antonio de la Fuente
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
| | - Jesús Devesa
- Scientific Direction, Medical Center Foltra, Travesía de Montouto 24, 15894 Teo, Spain
- Correspondence: (M.H.); (J.D.); Tel.: +34-9232-9454-0 (M.H); +34-9810-292-8 (J.D.)
| | - Pablo Devesa
- Research and Development, Medical Center Foltra, Travesía de Montouto 24, 15894 Teo, Spain;
| | - Adelaida Sánchez Riolobos
- Department of Physiology and Pharmacology, Institute of Neurosciences of Castilla and León (INCyL), University of Salamanca, Avenida Alfonso X El Sabio s/n, 37007 Salamanca, Spain; (N.R.); (V.S.R.); (J.M.C.); (A.d.l.F.); (A.S.R.)
| |
Collapse
|
46
|
Rehabilitative Training Interacts with Ischemia-Instigated Spine Dynamics to Promote a Lasting Population of New Synapses in Peri-Infarct Motor Cortex. J Neurosci 2019; 39:8471-8483. [PMID: 31511430 DOI: 10.1523/jneurosci.1141-19.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/23/2019] [Accepted: 09/02/2019] [Indexed: 11/21/2022] Open
Abstract
After subtotal infarcts of primary motor cortex (M1), motor rehabilitative training (RT) promotes improvements in paretic forelimb function that have been linked with its promotion of structural and functional reorganization of peri-infarct cortex, but how the reorganization unfolds is scantly understood. Cortical infarcts also instigate a prolonged period of dendritic spine turnover in peri-infarct cortex. Here we investigated the possibility that synaptic structural responses to RT in peri-infarct cortex reflect, in part, interactions with ischemia-instigated spine turnover. This was tested after artery-targeted photothrombotic M1 infarcts or Sham procedures in adult (4 months) C57BL/6 male and female GFP-M line (n = 24) and male yellow fluorescent protein-H line (n = 5) mice undergoing RT in skilled reaching or no-training control procedures. Regardless of training condition, spine turnover was increased out to 5 weeks postinfarct relative to Sham, as was the persistence of new spines formed within a week postinfarct. However, compared with no-training controls, new spines formed during postinfarct weeks 2-4 in mice undergoing RT persisted in much greater proportions to later time points, by a magnitude that predicted behavioral improvements in the RT group. These results indicate that RT interacts with ischemia-instigated spine turnover to promote preferential stabilization of newly formed spines, which is likely to yield a new population of mature synapses in peri-infarct cortex that could contribute to cortical functional reorganization and behavioral improvement. The findings newly implicate ischemia-instigated spine turnover as a mediator of cortical synaptic structural responses to RT and newly establish the experience dependency of new spine fates in the postischemic turnover context.SIGNIFICANCE STATEMENT Motor rehabilitation, the main treatment for motor impairments after stroke, is far from sufficient to normalize function. A better understanding of neural substrates of rehabilitation-induced behavioral improvements could be useful for understanding how to optimize it. Here, we investigated the nature and time course of synaptic responses to motor rehabilitative training in vivo Focal ischemia instigated a period of synapse turnover in peri-infarct motor cortex of mice. Rehabilitative training increased the stability of new synapses formed during the initial weeks after the infarct, the magnitude of which was correlated with improvements in skilled motor performance. Therefore, the maintenance of new synapses formed after ischemia could represent a structural mechanism of rehabilitative training efficacy.
Collapse
|
47
|
Kosugi A, Castagnola E, Carli S, Ricci D, Fadiga L, Taoka M, Iriki A, Ushiba J. Fast Electrophysiological Mapping of Rat Cortical Motor Representation on a Time Scale of Minutes during Skin Stimulation. Neuroscience 2019; 414:245-254. [PMID: 31301365 DOI: 10.1016/j.neuroscience.2019.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
The topographic map of motor cortical representation, called the motor map, is not invariant, but can be altered by motor learning, neurological injury, and functional recovery from injury. Although much attention has been paid to short-term changes of the motor map, robust measures have not been established. The existing mapping methods are time-consuming, and the obtained maps are confounded by time preference. The purpose of this study was to examine the dynamics of the motor map on a timescale of minutes during transient somatosensory input by a fast motor mapping technique. We applied 32-channel micro-electrocorticographic electrode arrays to the rat sensorimotor cortex for cortical stimulation, and the topographic profile of motor thresholds in forelimb muscle was identified by fast motor mapping. Sequential motor maps were obtained every few minutes before, during, and just after skin stimulation to the dorsal forearm using a wool buff. During skin stimulation, the motor map expanded and the center of gravity of the map was shifted caudally. The expansion of the map persisted for at least a few minutes after the end of skin stimulation. Although the motor threshold of the hotspot was not changed, the area in which it was decreased appeared caudally to the hotspot, which may be in the somatosensory cortex. The present study demonstrated rapid enlargement of the forelimb motor map in the order of a few minutes induced by skin stimulation. This helps to understand the spatial dynamism of motor cortical representation that is modulated rapidly by somatosensory input.
Collapse
Affiliation(s)
- Akito Kosugi
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Center for Sensorimotor Neural Engineering, San Diego State University, San Diego, CA, United States
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy; Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Miki Taoka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Center for Biosystems Dynamics Research, Saitama, Japan
| | - Junichi Ushiba
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan; Keio Institute of Pure and Applied Sciences, Keio University, Kanagawa, Japan.
| |
Collapse
|
48
|
Carreras I, Aytan N, Choi JK, Tognoni CM, Kowall NW, Jenkins BG, Dedeoglu A. Dual dose-dependent effects of fingolimod in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:10972. [PMID: 31358793 PMCID: PMC6662857 DOI: 10.1038/s41598-019-47287-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Lipid metabolism is abnormal in Alzheimer’s disease (AD) brain leading to ceramide and sphingosine accumulation and reduced levels of brain sphingosine-1-phosphate (S1P). We hypothesize that changes in S1P signaling are central to the inflammatory and immune-pathogenesis of AD and the therapeutic benefits of fingolimod, a structural analog of sphingosine that is FDA approved for the treatment of multiple sclerosis. We recently reported that the neuroprotective effects of fingolimod in 5xFAD transgenic AD mice treated from 1–3 months of age were greater at 1 mg/kg/day than at 5 mg/kg/day. Here we performed a dose-response study using fingolimod from 0.03 to 1 mg/kg/day in 5xFAD mice treated from 1–8 months of age. At 1 mg/kg/day, fingolimod decreased both peripheral blood lymphocyte counts and brain Aβ levels, but at the lowest dose tested (0.03 mg/kg/day), we detected improved memory, decreased activation of brain microglia and astrocytes, and restored hippocampal levels of GABA and glycerophosphocholine with no effect on circulating lymphocyte counts. These findings suggests that, unlike the case in multiple sclerosis, fingolimod may potentially have therapeutic benefits in AD at low doses that do not affect peripheral lymphocyte function.
Collapse
Affiliation(s)
- Isabel Carreras
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA. .,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA.
| | - Nurgul Aytan
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Ji-Kyung Choi
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA
| | - Christina M Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Neil W Kowall
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Bruce G Jenkins
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA. .,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA. .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA.
| |
Collapse
|
49
|
Biane JS, Takashima Y, Scanziani M, Conner JM, Tuszynski MH. Reorganization of Recurrent Layer 5 Corticospinal Networks Following Adult Motor Training. J Neurosci 2019; 39:4684-4693. [PMID: 30948479 PMCID: PMC6561695 DOI: 10.1523/jneurosci.3442-17.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/27/2023] Open
Abstract
Recurrent synaptic connections between neighboring neurons are a key feature of mammalian cortex, accounting for the vast majority of cortical inputs. Although computational models indicate that reorganization of recurrent connectivity is a primary driver of experience-dependent cortical tuning, the true biological features of recurrent network plasticity are not well identified. Indeed, whether rewiring of connections between cortical neurons occurs during behavioral training, as is widely predicted, remains unknown. Here, we probe M1 recurrent circuits following motor training in adult male rats and find robust synaptic reorganization among functionally related layer 5 neurons, resulting in a 2.5-fold increase in recurrent connection probability. This reorganization is specific to the neuronal subpopulation most relevant for executing the trained motor skill, and behavioral performance was impaired following targeted molecular inhibition of this subpopulation. In contrast, recurrent connectivity is unaffected among neighboring layer 5 neurons largely unrelated to the trained behavior. Training-related corticospinal cells also express increased excitability following training. These findings establish the presence of selective modifications in recurrent cortical networks in adulthood following training.SIGNIFICANCE STATEMENT Recurrent synaptic connections between neighboring neurons are characteristic of cortical architecture, and modifications to these circuits are thought to underlie in part learning in the adult brain. We now show that there are robust changes in recurrent connections in the rat motor cortex upon training on a novel motor task. Motor training results in a 2.5-fold increase in recurrent connectivity, but only within the neuronal subpopulation most relevant for executing the new motor behavior; recurrent connectivity is unaffected among adjoining neurons that do not execute the trained behavior. These findings demonstrate selective reorganization of recurrent synaptic connections in the adult neocortex following novel motor experience, and illuminate fundamental properties of cortical function and plasticity.
Collapse
Affiliation(s)
| | | | - Massimo Scanziani
- Neurobiology, University of California, San Diego, California 92093
- Howard Hughes Medical Institute, San Diego, California, 92093, and
| | | | - Mark H Tuszynski
- Departments of Neurosciences,
- Veterans Administration Medical Center, San Diego, California 92161
| |
Collapse
|
50
|
Stroke Induces a BDNF-Dependent Improvement in Cognitive Flexibility in Aged Mice. Neural Plast 2019; 2019:1460890. [PMID: 31191635 PMCID: PMC6525942 DOI: 10.1155/2019/1460890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/10/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
Stroke remains a leading cause of disability worldwide. Recently, we have established an animal model of stroke that results in delayed impairment in spatial memory, allowing us to better investigate cognitive deficits. Young and aged brains show different recovery profiles after stroke; therefore, we assessed aged-related differences in poststroke cognition. As neurotrophic support diminishes with age, we also investigated the involvement of brain-derived neurotrophic factor (BDNF) in these differences. Young (3-6 months old) and aged (16-21 months old) mice were trained in operant touchscreen chambers to complete a visual pairwise discrimination (VD) task. Stroke or sham surgery was induced using the photothrombotic model to induce a bilateral prefrontal cortex stroke. Five days poststroke, an additional cohort of aged stroke animals were treated with intracerebral hydrogels loaded with the BDNF decoy, TrkB-Fc. Following treatment, animals underwent the reversal and rereversal task to identify stroke-induced cognitive deficits at days 17 and 37 poststroke, respectively. Assessment of sham animals using Cox regression and log-rank analyses showed aged mice exhibit an increased impairment on VD reversal and rereversal learning compared to young controls. Stroke to young mice revealed no impairment on either task. In contrast, stroke to aged mice facilitated a significant improvement in reversal learning, which was dampened in the presence of the BDNF decoy, TrkB-Fc. In addition, aged stroke control animals required significantly less consecutive days and correction trials to master the reversal task, relative to aged shams, an effect dampened by TrkB-Fc. Our findings support age-related differences in recovery of cognitive function after stroke. Interestingly, aged stroke animals outperformed their sham counterparts, suggesting reopening of a critical window for recovery that is being mediated by BDNF.
Collapse
|