1
|
Saito M, Miyamoto K, Murakami I. Illumination by short-wavelength light inside the blind spot decreases light detectability. iScience 2024; 27:110612. [PMID: 39220265 PMCID: PMC11363485 DOI: 10.1016/j.isci.2024.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Although the optic disk corresponding to the blind spot contains no classical photoreceptors, it contains photopigment melanopsin. To clarify whether melanopsin is involved in light detection, we conducted detection tasks for light stimuli presented in the normal visual field, with and without another illumination inside the blind spot. We found that a blue blind-spot illumination decreased the light detectability on a dark background. This effect was replicable when it was determined immediately after the blind-spot illumination was turned off, suggesting the contribution of a sluggish system rather than scattering. Moreover, the aforementioned effect was not observed when the blind-spot illumination was in red, indicating wavelength specificity in favor of melanopsin's sensitivity profile. These findings suggest that melanopsin is activated by the blind-spot illumination and thereby interferes with light detection near the absolute threshold. Light detection originating from conventional photoreceptors is modulated by melanopsin-based computation presumably estimating a baseline noise level.
Collapse
Affiliation(s)
- Marina Saito
- Department of Psychology, the University of Tokyo, Tokyo 113-0033, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Faculty of Design and Architecture, Nagoya City University, Nagoya 467-8501, Japan
| | - Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Ikuya Murakami
- Department of Psychology, the University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Sanetra AM, Jeczmien-Lazur JS, Pradel K, Klich JD, Palus-Chramiec K, Janik ME, Bajkacz S, Izowit G, Nathan C, Piggins HD, Delogu A, Belle MD, Lewandowski MH, Chrobok L. A novel developmental critical period of orexinergic signaling in the primary visual thalamus. iScience 2024; 27:110352. [PMID: 39055917 PMCID: PMC11269934 DOI: 10.1016/j.isci.2024.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The orexinergic system of the lateral hypothalamus plays crucial roles in arousal, feeding behavior, and reward modulation. Most research has focused on adult rodents, overlooking orexins' potential role in the nervous system development. This study, using electrophysiological and molecular tools, highlights importance of orexinergic signaling in the postnatal development of the rodent dorsolateral geniculate nucleus (DLG), a primary visual thalamic center. Orexin activation of DLG thalamocortical neurons occurs in a brief seven-day window around eye-opening, concurrent to transient OX2 receptor expression. Blocking OX2 receptors during this period reduces sensitivity of DLG neurons to green and blue light and lowers spontaneous firing rates in adulthood. This research reveals critical and temporally confined role of orexin signaling in postnatal brain development, emphasizing its contribution to experience-dependent refinement in the DLG and its long-term impact on visual function.
Collapse
Affiliation(s)
- Anna M. Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Jagoda S. Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Institute for Systems Physiology, University of Cologne, Cologne, Germany
| | - Jasmin D. Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcelina E. Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
- The Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Christian Nathan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| | - Alessio Delogu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Mino D.C. Belle
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- University of Exeter Medical School, Hatherly Labs, Streatham Campus, Prince of Wales Road, Exeter, Devon, UK
| | - Marian H. Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Krakow, Poland
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Health and Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
van Dorp R, Rolleri E, Deboer T. Sleep and the sleep electroencephalogram in C57BL/6 and C3H/HeN mice. J Sleep Res 2024; 33:e14062. [PMID: 37803888 DOI: 10.1111/jsr.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Different mouse strains used in biomedical research show different phenotypes associated with their genotypes. Two mouse strains commonly used in biomedical sleep research are C57Bl/6 and C3H/He, the strains differ in numerous aspects, including their ability to secrete melatonin as well as the expression of several sleep-related genes. However, sleep regulation has only limitedly been compared between C3H/HeN and C57Bl/6 mice. We therefore compared sleep-wake behaviour and EEG-measured spectral brain activity for C57bl/6 and C3H/HeN mice during a 12:12 h light: dark baseline and during and after a 6 h sleep deprivation. The C3H mice spent more time in NREM sleep around the light-dark transition and more time in REM sleep during the dark phase compared with C57bl/6 mice. The C3H mice also showed more EEG activity in the 4.5-7.5 Hz range during all stages and a stronger 24 h modulation of EEG power density in almost all EEG frequencies during NREM sleep. After the sleep deprivation, C3H mice showed a stronger recovery response, which was expressed in both a larger increase in EEG slow wave activity (SWA) and more time spent in NREM sleep. We show large differences regarding sleep architecture and EEG activity between C3H and C57bl/6 mice. These differences include the amount of waking during the late dark phase, the 24 h amplitude in EEG power density, and the amount of REM sleep during the dark phase. We conclude that differences between mouse strains should be considered when selecting a model strain to improve the generalisability of studies investigating biomedical parameters related to sleep and circadian rhythms.
Collapse
Affiliation(s)
- Rick van Dorp
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisa Rolleri
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Li M, Sun H, Hou Z, Hao S, Jin L, Wang B. Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306451. [PMID: 37771182 DOI: 10.1002/smll.202306451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Understanding the signals from the physical microenvironment is critical for deciphering the processes of neurogenesis and neurodevelopment. The discovery of how surrounding physical signals shape human developing neurons is hindered by the bottleneck of conventional cell culture and animal models. Notwithstanding neural organoids provide a promising platform for recapitulating human neurogenesis and neurodevelopment, building neuronal physical microenvironment that accurately mimics the native neurophysical features is largely ignored in current organoid technologies. Here, it is discussed how the physical microenvironment modulates critical events during the periods of neurogenesis and neurodevelopment, such as neural stem cell fates, neural tube closure, neuronal migration, axonal guidance, optic cup formation, and cortical folding. Although animal models are widely used to investigate the impacts of physical factors on neurodevelopment and neuropathy, the important roles of human stem cell-derived neural organoids in this field are particularly highlighted. Considering the great promise of human organoids, building neural organoid microenvironments with mechanical forces, electrophysiological microsystems, and light manipulation will help to fully understand the physical cues in neurodevelopmental processes. Neural organoids combined with cutting-edge techniques, such as advanced atomic force microscopes, microrobots, and structural color biomaterials might promote the development of neural organoid-based research and neuroscience.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Zongkun Hou
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
5
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
6
|
Berry MH, Leffler J, Allen CN, Sivyer B. Functional subtypes of rodent melanopsin ganglion cells switch roles between night and day illumination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554902. [PMID: 38168436 PMCID: PMC10760181 DOI: 10.1101/2023.08.26.554902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs), contain the photopigment melanopsin, and influence both image and non-image forming behaviors. Despite being categorized into multiple types (M1-M6), physiological variability within these types suggests our current understanding of ipRGCs is incomplete. We used multi-electrode array (MEA) recordings and unbiased cluster analysis under synaptic blockade to identify 8 functional clusters of ipRGCs, each with distinct photosensitivity and response timing. We used Cre mice to drive the expression of channelrhodopsin in SON-ipRGCs, enabling the localization of distinct ipRGCs in the dorsal retina. Additionally, we conducted a retrospective unbiased cluster analysis of ipRGC photoresponses to light stimuli across scotopic, mesopic, and photopic intensities, aimed at activating both rod and cone inputs to ipRGCs. Our results revealed shared and distinct synaptic inputs to the identified functional clusters, demonstrating that ipRGCs encode visual information with high fidelity at low light intensities, but poorly at photopic light intensities, when melanopsin activation is highest. Collectively, our findings support a framework with at least 8 functional subtypes of ipRGCs, each encoding luminance with distinct spike outputs, highlighting the inherent functional diversity and complexity of ipRGCs and suggesting a reevaluation of their contributions to retinal function and visual perception under varying light conditions.
Collapse
Affiliation(s)
- Michael H. Berry
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
- Medical Scientist Training program, Oregon Health & Science University, Portland, OR, 97239
| | - Joseph Leffler
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| | - Charles N. Allen
- Oregon Institute of Occupational Health Sciences, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239
| | - Benjamin Sivyer
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239
| |
Collapse
|
7
|
Kim AB, Beaver EM, Collins SG, Kriegsfeld LJ, Lockley SW, Wong KY, Yan L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats ( Arvicanthis niloticus). J Biol Rhythms 2023; 38:366-378. [PMID: 37222434 PMCID: PMC10364626 DOI: 10.1177/07487304231170068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Beyond visual perception, light has non-image-forming effects mediated by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). The present study first used multielectrode array recordings to show that in a diurnal rodent, Nile grass rats (Arvicanthis niloticus), ipRGCs generate rod/cone-driven and melanopsin-based photoresponses that stably encode irradiance. Subsequently, two ipRGC-mediated non-image-forming effects, namely entrainment of daily rhythms and light-induced arousal, were examined. Animals were first housed under a 12:12 h light/dark cycle (lights-on at 0600 h) with the light phase generated by a low-irradiance fluorescent light (F12), a daylight spectrum (D65) stimulating all photoreceptors, or a narrowband 480 nm spectrum (480) that maximized melanopsin stimulation and minimized S-cone stimulation (λmax 360 nm) compared to D65. Daily rhythms of locomotor activities showed onset and offset closer to lights-on and lights-off, respectively, in D65 and 480 than in F12, and higher day/night activity ratio under D65 versus 480 and F12, suggesting the importance of S-cone stimulation. To assess light-induced arousal, 3-h light exposures using 4 spectra that stimulated melanopsin equally but S-cones differentially were superimposed on F12 background lighting: D65, 480, 480 + 365 (narrowband 365 nm), and D65 - 365. Compared to the F12-only condition, all four pulses increased in-cage activity and promoted wakefulness, with 480 + 365 having the greatest and longest-lasting wakefulness-promoting effects, again indicating the importance of stimulating S-cones as well as melanopsin. These findings provide insights into the temporal dynamics of photoreceptor contributions to non-image-forming photoresponses in a diurnal rodent that may help guide future studies of lighting environments and phototherapy protocols that promote human health and productivity.
Collapse
Affiliation(s)
- Antony B. Kim
- Department of Architecture, University of California,
Berkeley, Berkeley, California
| | - Emma M. Beaver
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Stephen G. Collins
- Department of Psychology, Michigan State University,
East Lansing, Michigan
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California,
Berkeley, Berkeley, California
- Department of Integrative Biology, University of
California, Berkeley, Berkeley, California
- The Helen Wills Neuroscience Institute, University of
California, Berkeley, Berkeley, California
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders,
Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston,
Massachusetts
- Division of Sleep Medicine, Harvard Medical School, Boston,
Massachusetts
| | - Kwoon Y. Wong
- Department of Ophthalmology & Visual Sciences, Kellogg
Eye Center, University of Michigan, Ann Arbor, Michigan
- Department of Molecular, Cellular &
Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Lily Yan
- Department of Psychology, Michigan State University,
East Lansing, Michigan
- Neuroscience Program, Michigan State
University, East Lansing, Michigan
| |
Collapse
|
8
|
Kinane C, Calligaro H, Jandot A, Coutanson C, Haddjeri N, Bennis M, Dkhissi-Benyahya O. Dopamine modulates the retinal clock through melanopsin-dependent regulation of cholinergic waves during development. BMC Biol 2023; 21:146. [PMID: 37365544 DOI: 10.1186/s12915-023-01647-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The mammalian retina contains an autonomous circadian clock that controls various aspects of retinal physiology and function, including dopamine (DA) release by amacrine cells. This neurotransmitter plays a critical role in retina development, visual signalling, and phase resetting of the retinal clock in adulthood. Interestingly, bidirectional regulation between dopaminergic cells and melanopsin-expressing retinal ganglion cells has been demonstrated in the adult and during development. Additionally, the adult melanopsin knockout mouse (Opn4 -/-) exhibits a shortening of the endogenous period of the retinal clock. However, whether DA and / or melanopsin influence the retinal clock mechanism during its maturation is still unknown. RESULTS Using wild-type Per2 Luc and melanopsin knockout (Opn4 -/-::Per2 Luc) mice at different postnatal stages, we found that the retina generates self-sustained circadian rhythms from postnatal day 5 in both genotypes and that the ability to express these rhythms emerges in the absence of external time cues. Intriguingly, only in wild-type explants, DA supplementation lengthened the endogenous period of the clock during the first week of postnatal development through both D1- and D2-like dopaminergic receptors. Furthermore, the blockade of spontaneous cholinergic retinal waves, which drive DA release in the early developmental stages, shortened the period and reduced the light-induced phase shift of the retinal clock only in wild-type retinas. CONCLUSIONS These data suggest that DA modulates the molecular core of the clock through melanopsin-dependent regulation of acetylcholine retinal waves, thus offering an unprecedented role of DA and melanopsin in the endogenous functioning and the light response of the retinal clock during development.
Collapse
Affiliation(s)
- Chaimaa Kinane
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, University Cadi Ayyad, Marrakech, Morocco
| | - Hugo Calligaro
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
- Salk Institute for Biological Studies, La Lolla, CA, USA
| | - Antonin Jandot
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Christine Coutanson
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Nasser Haddjeri
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, University Cadi Ayyad, Marrakech, Morocco
| | - Ouria Dkhissi-Benyahya
- Inserm, Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 18 Avenue du Doyen Lépine, 69500, Bron, France.
| |
Collapse
|
9
|
Jain V, Liang PJM, Raja S, Mikhael M, Cameron MA. Light activation of the dopaminergic system occurs after eye-opening in the mouse retina. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1184627. [PMID: 38983102 PMCID: PMC11182289 DOI: 10.3389/fopht.2023.1184627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 07/11/2024]
Abstract
The neuromodulator dopamine plays a significant role in light adaptation, eye growth, and modulation of neuronal circuitry in the retina. Dopaminergic amacrine cells in the adult retina release dopamine in response to light stimulation, however, the light-induced activity of these cells in during postnatal development is not known. We assessed the activity of dopaminergic amacrine cells in the retina response to a light pulse in C57BL/6 wild-type animals across various postnatal ages. Expression of tyrosine hydroxylase (TH) in dopaminergic amacrine cells was apparent from postnatal day 3 (P3) and restricted to the dorso-temporal region; by P8 TH+ cells were uniformly distributed across the retina. TH cell density increased until P8 and then markedly decreased by P10 to then remain at this density into adulthood. Light-induced c-fos expression was observed in all light-pulsed retinae, however, no c-fos was ever found to be co-localised with TH prior to P12. At P14, one day after eye opening, 100% of TH cells co-localised with c-fos and this was maintained for all older ages analysed. Dopamine and its primary metabolite DOPAC were measured in the vitreous of animals P8-P30. Both analytes were found in the vitreous at all ages, however, a significant difference in dopamine concentration between dark and light-pulsed animals was only observed at P30. DOPAC concentration was found to be significantly light-induced from P16, and the amplitude of this difference increased over time. Our data suggests that dopaminergic cell activation and light-induced dopamine release in the retina is primarily driven by classical photoreceptors after eye-opening.
Collapse
Affiliation(s)
- Vrinda Jain
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | | | - Sushmitha Raja
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Meena Mikhael
- Mass Spectrometry Facility, Western Sydney University, Sydney, NSW, Australia
| | - Morven A. Cameron
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
10
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
11
|
Mouland JW, Watson AJ, Martial FP, Lucas RJ, Brown TM. Colour and melanopsin mediated responses in the murine retina. Front Cell Neurosci 2023; 17:1114634. [PMID: 36993934 PMCID: PMC10040579 DOI: 10.3389/fncel.2023.1114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction: Intrinsically photosensitive retinal ganglion cells (ipRGCs) integrate melanopsin and rod/cone-mediated inputs to signal to the brain. Whilst originally identified as a cell type specialised for encoding ambient illumination, several lines of evidence indicate a strong association between colour discrimination and ipRGC-driven responses. Thus, cone-mediated colour opponent responses have been widely found across ipRGC target regions in the mouse brain and influence a key ipRGC-dependent function, circadian photoentrainment. Although ipRGCs exhibiting spectrally opponent responses have also been identified, the prevalence of such properties have not been systematically evaluated across the mouse retina or yet been found in ipRGC subtypes known to influence the circadian system. Indeed, there is still uncertainty around the overall prevalence of cone-dependent colour opponency across the mouse retina, given the strong retinal gradient in S and M-cone opsin (co)-expression and overlapping spectral sensitivities of most mouse opsins.Methods: To address this, we use photoreceptor isolating stimuli in multielectrode recordings from human red cone opsin knock-in mouse (Opn1mwR) retinas to systematically survey cone mediated responses and the occurrence of colour opponency across ganglion cell layer (GCL) neurons and identify ipRGCs based on spectral comparisons and/or the persistence of light responses under synaptic blockade.Results: Despite detecting robust cone-mediated responses across the retina, we find cone opponency is rare, especially outside of the central retina (overall ~3% of GCL neurons). In keeping with previous suggestions we also see some evidence of rod-cone opponency (albeit even more rare under our experimental conditions), but find no evidence for any enrichment of cone (or rod) opponent responses among functionally identified ipRGCs.Conclusion: In summary, these data suggest the widespread appearance of cone-opponency across the mouse early visual system and ipRGC-related responses may be an emergent feature of central visual processing mechanisms.
Collapse
Affiliation(s)
- Joshua W. Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Joshua W. Mouland
| | - Alex J. Watson
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Timothy M. Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Randjelović P, Stojanović N, Ilić I, Vučković D. The effect of reducing blue light from smartphone screen on subjective quality of sleep among students. Chronobiol Int 2023; 40:335-342. [PMID: 36744480 DOI: 10.1080/07420528.2023.2173606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The exposure of humans to artificial light at night (ALAN) with predominant blue part of the visible spectrum is strongly influencing circadian rhythm and sleep through melanopsin-containing retinal ganglion cells (RGC). We hypothesized that reducing the amount of emitted blue light from screens of mobile phones during the night will increase sleep quality in our student population. The aim of the work was to investigate the effect of reducing blue light from smartphone screen during the night on subjective quality of sleep among students of medicine. The target population was students of medicine aged 20 to 22 years old of both sexes. The primary outcome of the study was subjective sleep quality, assessed by the Serbian version of the Pittsburgh Sleep Quality Index (PSQI). The mean total PSQI score before intervention was 6.83 ± 2.73 (bad), while after the intervention the same score was statistically significant reduced to 3.93 ± 1.68 (good) with large effect size. The study has shown that a reduction of blue light emission from LED backlight screens of mobile phones during the night leads to improved subjective quality of sleep in students, as well as improvement in daytime functioning and going to sleep.
Collapse
Affiliation(s)
- Pavle Randjelović
- Faculty of Medicine, Department of Physiology, University of Niš, Niš, Serbia
| | - Nikola Stojanović
- Faculty of Medicine, Department of Physiology, University of Niš, Niš, Serbia
| | - Ivan Ilić
- Faculty of Medicine, Institute of Pathology, University of Niš, Niš, Serbia
| | - Dragan Vučković
- Faculty of Electronic Engineering, Department of Power Engineering, University of Niš, Niš, Serbia
| |
Collapse
|
13
|
Takahashi TM, Hirano A, Kanda T, Saito VM, Ashitomi H, Tanaka KZ, Yokoshiki Y, Masuda K, Yanagisawa M, Vogt KE, Tokuda T, Sakurai T. Optogenetic induction of hibernation-like state with modified human Opsin4 in mice. CELL REPORTS METHODS 2022; 2:100336. [PMID: 36452866 PMCID: PMC9701604 DOI: 10.1016/j.crmeth.2022.100336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 05/28/2023]
Abstract
We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 μW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.
Collapse
Affiliation(s)
- Tohru M. Takahashi
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Arisa Hirano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- JST PRESTO, Japan
| | - Takeshi Kanda
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Viviane M. Saito
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Hiroto Ashitomi
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Yasufumi Yokoshiki
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Kosaku Masuda
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Masashi Yanagisawa
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Kaspar E. Vogt
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takashi Tokuda
- JST PRESTO, Japan
- Institute of Innovative Research (IIR), Tokyo Institute of Technology, Tokyo, Japan
| | - Takeshi Sakurai
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- International Integrative Institute for Sleep medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
15
|
Fragmented day-night cycle induces reduced light avoidance, excessive weight gain during early development, and binge-like eating during adulthood in mice. Physiol Behav 2022; 253:113851. [PMID: 35609722 DOI: 10.1016/j.physbeh.2022.113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Fragmented day-night (FDN) cycles are environments in which multiple periods of light and dark alternate across a 24 h period. Exposure to FDN cycles disrupts circadian rhythms, resulting in period lengthening and alterations to mood in mice. A constant light environment, which also induces period lengthening, is linked to mood and metabolic disturbances and disruption to the development of the circadian clock. This study aims to determine how exposure to the FDN cycle impacts development in mice, with the hypothesis that there would be similar and adverse effects as observed in constant light conditions. Our study used CD-1 mice reared under the FDN cycle compared to the commonly used 12 h light: 12 h dark consolidated day-night cycle. During the first week of development, mouse pups reared under the FDN cycle gained bodyweight at a faster rate and did not avoid aberrant light exposure in comparison to 12:12 LD reared mouse pups. Developmental exposure to the FDN cycle lasted two weeks, and then mice were transferred to the 12:12 LD cycle, where after 2 weeks, bodyweight was similar between FDN reared and 12:12 LD reared mice at 1-month and 2-months old. When re-exposed to the FDN cycle during adulthood, FDN reared pups exhibited binge-like eating behaviors and reduced light avoidance. This study shows that the unnatural distribution of light and dark across the 24 h day can cause disruptions during early development that can reappear during adulthood when placed in the same stressful light-dark environment as adults.
Collapse
|
16
|
Melanopsin retinal ganglion cells mediate light-promoted brain development. Cell 2022; 185:3124-3137.e15. [PMID: 35944541 DOI: 10.1016/j.cell.2022.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/10/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023]
Abstract
During development, melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) become light sensitive much earlier than rods and cones. IpRGCs project to many subcortical areas, whereas physiological functions of these projections are yet to be fully elucidated. Here, we found that ipRGC-mediated light sensation promotes synaptogenesis of pyramidal neurons in various cortices and the hippocampus. This phenomenon depends on activation of ipRGCs and is mediated by the release of oxytocin from the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) into cerebral-spinal fluid. We further characterized a direct connection between ipRGCs and oxytocin neurons in the SON and mutual projections between oxytocin neurons in the SON and PVN. Moreover, we showed that the lack of ipRGC-mediated, light-promoted early cortical synaptogenesis compromised learning ability in adult mice. Our results highlight the importance of light sensation early in life on the development of learning ability and therefore call attention to suitable light environment for infant care.
Collapse
|
17
|
Liu AL, Liu YF, Wang G, Shao YQ, Yu CX, Yang Z, Zhou ZR, Han X, Gong X, Qian KW, Wang LQ, Ma YY, Zhong YM, Weng SJ, Yang XL. The role of ipRGCs in ocular growth and myopia development. SCIENCE ADVANCES 2022; 8:eabm9027. [PMID: 35675393 PMCID: PMC9176740 DOI: 10.1126/sciadv.abm9027] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The increasing global prevalence of myopia calls for elaboration of the pathogenesis of this disease. Here, we show that selective ablation and activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) in developing mice induced myopic and hyperopic refractive shifts by modulating the corneal radius of curvature (CRC) and axial length (AL) in an opposite way. Melanopsin- and rod/cone-driven signals of ipRGCs were found to influence refractive development by affecting the AL and CRC, respectively. The role of ipRGCs in myopia progression is evidenced by attenuated form-deprivation myopia magnitudes in ipRGC-ablated and melanopsin-deficient animals and by enhanced melanopsin expression/photoresponses in form-deprived eyes. Cell subtype-specific ablation showed that M1 subtype cells, and probably M2/M3 subtype cells, are involved in ocular development. Thus, ipRGCs contribute substantially to mouse eye growth and myopia development, which may inspire novel strategies for myopia intervention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Shi-Jun Weng
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| | - Xiong-Li Yang
- Corresponding author. (X.-L.Y.); (S.-J.W.); (Y.-M.Z.)
| |
Collapse
|
18
|
Caval-Holme FS, Aranda ML, Chen AQ, Tiriac A, Zhang Y, Smith B, Birnbaumer L, Schmidt TM, Feller MB. The Retinal Basis of Light Aversion in Neonatal Mice. J Neurosci 2022; 42:4101-4115. [PMID: 35396331 PMCID: PMC9121827 DOI: 10.1523/jneurosci.0151-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Aversive responses to bright light (photoaversion) require signaling from the eye to the brain. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) encode absolute light intensity and are thought to provide the light signals for photoaversion. Consistent with this, neonatal mice exhibit photoaversion before the developmental onset of image vision, and melanopsin deletion abolishes photoaversion in neonates. It is not well understood how the population of ipRGCs, which constitutes multiple physiologically distinct types (denoted M1-M6 in mouse), encodes light stimuli to produce an aversive response. Here, we provide several lines of evidence that M1 ipRGCs that lack the Brn3b transcription factor drive photoaversion in neonatal mice. First, neonatal mice lacking TRPC6 and TRPC7 ion channels failed to turn away from bright light, while two photon Ca2+ imaging of their acutely isolated retinas revealed reduced photosensitivity in M1 ipRGCs, but not other ipRGC types. Second, mice in which all ipRGC types except for Brn3b-negative M1 ipRGCs are ablated exhibited normal photoaversion. Third, pharmacological blockade or genetic knockout of gap junction channels expressed by ipRGCs, which reduces the light sensitivity of M2-M6 ipRGCs in the neonatal retina, had small effects on photoaversion only at the brightest light intensities. Finally, M1s were not strongly depolarized by spontaneous retinal waves, a robust source of activity in the developing retina that depolarizes all other ipRGC types. M1s therefore constitute a separate information channel between the neonatal retina and brain that could ensure behavioral responses to light but not spontaneous retinal waves.SIGNIFICANCE STATEMENT At an early stage of development, before the maturation of photoreceptor input to the retina, neonatal mice exhibit photoaversion. On exposure to bright light, they turn away and emit ultrasonic vocalizations, a cue to their parents to return them to the nest. Neonatal photoaversion is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs), a small percentage of the retinal ganglion cell population that express the photopigment melanopsin and depolarize directly in response to light. This study shows that photoaversion is mediated by a subset of ipRGCs, called M1-ipRGCs. Moreover, M1-ipRGCs have reduced responses to retinal waves, providing a mechanism by which the mouse distinguishes light stimulation from developmental patterns of spontaneous activity.
Collapse
Affiliation(s)
- Franklin S Caval-Holme
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Andy Q Chen
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| | - Benjamin Smith
- School of Optometry, University of California Berkeley, Berkeley, California 94720
| | - Lutz Birnbaumer
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709
- Institute of Biomedical Research, School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina C1107AFF
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
19
|
Hartstein LE, Behn CD, Akacem LD, Stack N, Wright KP, LeBourgeois MK. High sensitivity of melatonin suppression response to evening light in preschool-aged children. J Pineal Res 2022; 72:e12780. [PMID: 34997782 PMCID: PMC8933063 DOI: 10.1111/jpi.12780] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Light at night in adults suppresses melatonin in a nonlinear intensity-dependent manner. In children, bright light of a single intensity before bedtime has a robust melatonin suppressing effect. To our knowledge, whether evening light of different intensities is related to melatonin suppression in young children is unknown. Healthy, good-sleeping children (n = 36; 3.0-4.9 years; 39% male) maintained a stable sleep schedule for 7 days followed by a 29.5-h in-home dim-light circadian assessment (~1.5 lux). On the final night of the protocol, children received a 1-h light exposure (randomized to one of 15 light levels, ranging 5-5000 lux, with ≥2 participants assigned to each light level) in the hour before habitual bedtime. Salivary melatonin was measured to calculate the magnitude of melatonin suppression during light exposure compared with baseline levels from the previous evening, as well as the degree of melatonin recovery 50 min after the end of light exposure. Melatonin levels were suppressed between 69.4% and 98.7% (M = 85.4 ± 7.2%) during light exposure across the full range of intensities examined. Overall, we did not observe a light intensity-dependent melatonin suppression response; however, children exposed to the lowest quartile of light intensities (5-40 lux) had an average melatonin suppression (77.5 ± 7.0%) which was significantly lower than that observed at each of the three higher quartiles of light intensities (86.4 ± 5.6%, 89.2 ± 6.3%, and 87.1 ± 5.0%, respectively). We further found that melatonin levels remained below 50% baseline for at least 50 min after the end of light exposure for the majority (62%) of participants, and recovery was not influenced by light intensity. These findings indicate that preschool-aged children are highly sensitive to light exposure in the hour before bedtime and suggest the lighting environment may play a crucial role in the development and the maintenance of behavioral sleep problems through impacts on the circadian timing system.
Collapse
Affiliation(s)
- Lauren E. Hartstein
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Division of Endocrinology, Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Lameese D. Akacem
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Nora Stack
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | | |
Collapse
|
20
|
Tir S, Steel LCE, Tam SKE, Semo M, Pothecary CA, Vyazovskiy VV, Foster RG, Peirson SN. Rodent models in translational circadian photobiology. PROGRESS IN BRAIN RESEARCH 2022; 273:97-116. [PMID: 35940726 DOI: 10.1016/bs.pbr.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last decades remarkable advances have been made in the understanding of the photobiology of circadian rhythms. The identification of a third photoreceptive system in the mammalian eye, in addition to the rods and cones that mediate vision, has transformed our appreciation of the role of light in regulating physiology and behavior. These photosensitive retinal ganglion cells (pRGCs) express the blue-light sensitive photopigment melanopsin and project to the suprachiasmatic nuclei (SCN)-the master circadian pacemaker-as well as many other brain regions. Much of our understanding of the fundamental mechanisms of the pRGCs, and the processes that they regulate, comes from mouse and other rodent models. Here we describe the contribution of rodent models to circadian photobiology, including both their strengths and limitations. In addition, we discuss how an appreciation of both rodent and human data is important for translational circadian photobiology. Such an approach enables a bi-directional flow of information whereby an understanding of basic mechanisms derived from mice can be integrated with studies from humans. Progress in this field is being driven forward at several levels of analysis, not least by the use of personalized light measurements and photoreceptor specific stimuli in human studies, and by studying the impact of environmental, rather than laboratory, lighting on different rodent models.
Collapse
Affiliation(s)
- Selma Tir
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Laura C E Steel
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - S K E Tam
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ma'ayan Semo
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Carina A Pothecary
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V Vyazovskiy
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute (SCNi), Kavli Institute for NanoScience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Guido ME, Marchese NA, Rios MN, Morera LP, Diaz NM, Garbarino-Pico E, Contin MA. Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cell Mol Neurobiol 2022; 42:59-83. [PMID: 33231827 PMCID: PMC11441211 DOI: 10.1007/s10571-020-00997-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
In recent decades, a number of novel non-visual opsin photopigments belonging to the family of G protein- coupled receptors, likely involved in a number of non-image-forming processes, have been identified and characterized in cells of the inner retina of vertebrates. It is now known that the vertebrate retina is composed of visual photoreceptor cones and rods responsible for diurnal/color and nocturnal/black and white vision, and cells like the intrinsically photosensitive retinal ganglion cells (ipRGCs) and photosensitive horizontal cells in the inner retina, both detecting blue light and expressing the photopigment melanopsin (Opn4). Remarkably, these non-visual photopigments can continue to operate even in the absence of vision under retinal degeneration. Moreover, inner retinal neurons and Müller glial cells have been shown to express other photopigments such as the photoisomerase retinal G protein-coupled receptor (RGR), encephalopsin (Opn3), and neuropsin (Opn5), all able to detect blue/violet light and implicated in chromophore recycling, retinal clock synchronization, neuron-to-glia communication, and other activities. The discovery of these new photopigments in the inner retina of vertebrates is strong evidence of novel light-regulated activities. This review focuses on the features, localization, photocascade, and putative functions of these novel non-visual opsins in an attempt to shed light on their role in the inner retina of vertebrates and in the physiology of the whole organism.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| | - Natalia A Marchese
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Maximiliano N Rios
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Luis P Morera
- Instituto de Organizaciones Saludables, Universidad Siglo 21, Córdoba, Argentina
| | - Nicolás M Diaz
- Department of Ophthalmology, University of Washington School of Medicine, 750 Republican St., Campus, Box 358058, Seattle, WA, 98109, USA
| | - Eduardo Garbarino-Pico
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - María Ana Contin
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
22
|
Slow vision: Measuring melanopsin-mediated light effects in animal models. PROGRESS IN BRAIN RESEARCH 2022; 273:117-143. [DOI: 10.1016/bs.pbr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
24
|
Rodgers J, Bano‐Otalora B, Belle MDC, Paul S, Hughes R, Wright P, McDowell R, Milosavljevic N, Orlowska‐Feuer P, Martial FP, Wynne J, Ballister ER, Storchi R, Allen AE, Brown T, Lucas RJ. Using a bistable animal opsin for switchable and scalable optogenetic inhibition of neurons. EMBO Rep 2021; 22:e51866. [PMID: 33655694 PMCID: PMC8097317 DOI: 10.15252/embr.202051866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 11/09/2022] Open
Abstract
There is no consensus on the best inhibitory optogenetic tool. Since Gi/o signalling is a native mechanism of neuronal inhibition, we asked whether Lamprey Parapinopsin ("Lamplight"), a Gi/o-coupled bistable animal opsin, could be used for optogenetic silencing. We show that short (405 nm) and long (525 nm) wavelength pulses repeatedly switch Lamplight between stable signalling active and inactive states, respectively, and that combining these wavelengths can be used to achieve intermediate levels of activity. These properties can be applied to produce switchable neuronal hyperpolarisation and suppression of spontaneous spike firing in the mouse hypothalamic suprachiasmatic nucleus. Expressing Lamplight in (predominantly) ON bipolar cells can photosensitise retinas following advanced photoreceptor degeneration, with 405 and 525 nm stimuli producing responses of opposite sign in the output neurons of the retina. We conclude that bistable animal opsins can co-opt endogenous signalling mechanisms to allow optogenetic inhibition that is scalable, sustained and reversible.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | | | - Mino D C Belle
- Institute of Biomedical and Clinical SciencesUniversity of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Sarika Paul
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Rebecca Hughes
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Phillip Wright
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Richard McDowell
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nina Milosavljevic
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Patrycja Orlowska‐Feuer
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Franck P Martial
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jonathan Wynne
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Edward R Ballister
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Department of Biomedical EngineeringColumbia UniversityNew YorkNYUSA
| | - Riccardo Storchi
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Annette E Allen
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Timothy Brown
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Robert J Lucas
- Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
25
|
Chen WY, Han X, Cui LJ, Yu CX, Sheng WL, Yu J, Yuan F, Zhong YM, Yang XL, Weng SJ. Cell-Subtype-Specific Remodeling of Intrinsically Photosensitive Retinal Ganglion Cells in Streptozotocin-Induced Diabetic Mice. Diabetes 2021; 70:1157-1169. [PMID: 33574020 DOI: 10.2337/db20-0775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
Recent evidence suggests that melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), a neuronal class regulating nonimage forming (NIF) vision and generally thought to be injury resistant, are dysfunctional in certain neurodegenerative diseases. Although disrupted NIF visual functions have been reported in patients and animals with diabetes, it remains controversial whether ipRGCs exhibit remodeling during diabetes and if so, whether such remodeling is variable among ipRGC subtypes. Here, we demonstrate that survival, soma-dendritic profiles, and melanopsin-based functional activity of M1 ipRGCs were unaltered in streptozotocin-induced 3-month diabetic mice. Such resistance remained at 6 months after streptozotocin administration. In contrast, M2/M3 ipRGCs underwent significant remodeling in diabetic mice, manifested by enlarged somata and increased dendritic branching complexity. Consistent with the unaltered melanopsin levels, the sensitivity of melanopsin-based activity was unchanged in surviving M2 cells, but their response gain displayed a compensatory enhancement. Meanwhile, the pupillary light reflex, a NIF visual function controlled by M2 cells, was found to be impaired in diabetic animals. The resistance of M1 cells might be attributed to the adjacency of their dendrites to capillaries, which makes them less disturbed by the impaired retinal blood supply at the early stage of diabetes.
Collapse
Affiliation(s)
- Wei-Yi Chen
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Han
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling-Jie Cui
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yu
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Long Sheng
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Yu
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yuan
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong-Mei Zhong
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong-Li Yang
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Jun Weng
- Department of Ophthalmology and Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Markwell EL, Feigl B, Zele AJ. Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin Exp Optom 2021; 93:137-49. [DOI: 10.1111/j.1444-0938.2010.00479.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Emma L Markwell
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Beatrix Feigl
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| | - Andrew J Zele
- Visual Science and Medical Retina Laboratory, Institute of Health and Biomedical Innovation and School of Optometry, Queensland University of Technology, Brisbane, Queensland, Australia
E‐mail:
| |
Collapse
|
27
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
28
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
29
|
Pottackal J, Walsh HL, Rahmani P, Zhang K, Justice NJ, Demb JB. Photoreceptive Ganglion Cells Drive Circuits for Local Inhibition in the Mouse Retina. J Neurosci 2021; 41:1489-1504. [PMID: 33397711 PMCID: PMC7896016 DOI: 10.1523/jneurosci.0674-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/11/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) exhibit melanopsin-dependent light responses that persist in the absence of rod and cone photoreceptor-mediated input. In addition to signaling anterogradely to the brain, ipRGCs signal retrogradely to intraretinal circuitry via gap junction-mediated electrical synapses with amacrine cells (ACs). However, the targets and functions of these intraretinal signals remain largely unknown. Here, in mice of both sexes, we identify circuitry that enables M5 ipRGCs to locally inhibit retinal neurons via electrical synapses with a nonspiking GABAergic AC. During pharmacological blockade of rod- and cone-mediated input, whole-cell recordings of corticotropin-releasing hormone-expressing (CRH+) ACs reveal persistent visual responses that require both melanopsin expression and gap junctions. In the developing retina, ipRGC-mediated input to CRH+ ACs is weak or absent before eye opening, indicating a primary role for this input in the mature retina (i.e., in parallel with rod- and cone-mediated input). Among several ipRGC types, only M5 ipRGCs exhibit consistent anatomical and physiological coupling to CRH+ ACs. Optogenetic stimulation of local CRH+ ACs directly drives IPSCs in M4 and M5, but not M1-M3, ipRGCs. CRH+ ACs also inhibit M2 ipRGC-coupled spiking ACs, demonstrating direct interaction between discrete networks of ipRGC-coupled interneurons. Together, these results demonstrate a functional role for electrical synapses in translating ipRGC activity into feedforward and feedback inhibition of local retinal circuits.SIGNIFICANCE STATEMENT Melanopsin directly generates light responses in intrinsically photosensitive retinal ganglion cells (ipRGCs). Through gap junction-mediated electrical synapses with retinal interneurons, these uniquely photoreceptive RGCs may also influence the activity and output of neuronal circuits within the retina. Here, we identified and studied an electrical synaptic circuit that, in principle, could couple ipRGC activity to the chemical output of an identified retinal interneuron. Specifically, we found that M5 ipRGCs form electrical synapses with corticotropin-releasing hormone-expressing amacrine cells, which locally release GABA to inhibit specific RGC types. Thus, ipRGCs are poised to influence the output of diverse retinal circuits via electrical synapses with interneurons.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program
- Department of Ophthalmology and Visual Science
- Department of Cellular and Molecular Physiology
- Department of Neuroscience, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
30
|
Photosensitive ganglion cells: A diminutive, yet essential population. ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA 2020; 96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Our visual system has evolved to provide us with an image of the scene that surrounds us, informing us of its texture, colour, movement, and depth with an enormous spatial and temporal resolution, and for this purpose, the image formation (IF) dedicates the vast majority of our retinal ganglion cell (RGC) population and much of our cerebral cortex. On the other hand, a minuscule proportion of RGCs, in addition to receiving information from classic cone and rod photoreceptors, express melanopsin and are intrinsically photosensitive (ipRGC). These ipRGC are dedicated to non-image-forming (NIF) visual functions, of which we are unaware, but which are essential for aspects related to our daily physiology, such as the timing of our circadian rhythms and our pupillary light reflex, among many others. Before the discovery of ipRGCs, it was thought that the IF and NIF functions were distinct compartments regulated by different RGCs, but this concept has evolved in recent years with the discovery of new types of ipRGCs that innervate subcortical IF regions, and therefore have IF visual functions. Six different types of ipRGCs are currently known. These are termed M1-M6, and differ in their morphological, functional, molecular properties, central projections, and visual behaviour responsibilities. A review is presented on the melanopsin visual system, the most active field of research in vision, for which knowledge has grown exponentially during the last two decades, when RGCs giving rise to this pathway were first discovered.
Collapse
|
31
|
Harrison KR, Reifler AN, Chervenak AP, Wong KY. Prolonged Melanopsin-based Photoresponses Depend in Part on RPE65 and Cellular Retinaldehyde-binding Protein (CRALBP). Curr Eye Res 2020; 46:515-523. [PMID: 32841098 DOI: 10.1080/02713683.2020.1815793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and can signal light continuously for many hours. Melanopsin is excited when its chromophore 11-cis-retinal absorbs a photon and becomes all-trans-retinal, which must be reisomerized to 11-cis-retinal to regenerate photoexcitable melanopsin. Due to the great distance separating ipRGCs from the retinal pigment epithelium (RPE) whose retinoid cycle produces 11-cis-retinal, ipRGCs had been assumed to regenerate all melanopsin molecules autonomously. Surprisingly, we previously found that pharmacologically inhibiting the retinoid cycle rendered melanopsin-based responses to prolonged illumination less sustained, suggesting that the RPE may supply retinoids to help ipRGCs regenerate melanopsin during extended photostimulation. However, the specificity of those drugs is unclear. Here, we reexamined the role of the retinoid cycle, and tested whether the RPE-to-ipRGC transport of retinoids utilizes cellular retinaldehyde-binding protein (CRALBP), present throughout the RPE and Müller glia. METHODS To measure melanopsin-mediated photoresponses in isolation, all animals were 8- to 12-month-old rod/cone-degenerate mice. We genetically knocked out RPE-specific 65 kDa protein (RPE65), a critical enzyme in the retinoid cycle. We also knocked out the CRALBP gene rlbp1 mainly in Foxg1-expressing Müller cells. We obtained multielectrode-array recordings from ipRGCs in a novel RPE-attached mouse retina preparation, and imaged pupillary light reflexes in vivo. RESULTS Melanopsin-based ipRGC responses to prolonged light became less tonic in both knockout lines, and pupillary light reflexes were also less sustained in RPE65-knockout than control mice. CONCLUSIONS These results confirm that ipRGCs rely partly on the retinoid cycle to continuously regenerate melanopsin during prolonged photostimulation, and suggest that CRALBP in Müller glia likely transports 11-cis-retinal from the RPE to ipRGCs - this is the first proposed functional role for CRALBP in the inner retina.
Collapse
Affiliation(s)
- Krystal R Harrison
- Departments of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Aaron N Reifler
- Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Andrew P Chervenak
- Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kwoon Y Wong
- Departments of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Sghari S, Davies WIL, Gunhaga L. Elucidation of Cellular Mechanisms That Regulate the Sustained Contraction and Relaxation of the Mammalian Iris. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32882011 PMCID: PMC7476664 DOI: 10.1167/iovs.61.11.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose In mammals, pupil constriction and dilation form the pupillary light reflex (PLR), which is mediated by both brain-regulated (parasympathetic) and local iris-driven reflexes. To better understand the cellular mechanisms that regulate pupil physiological dynamics via central and local photoreception, we have examined the regulation of the PLR via parasympathetic and local activation, respectively. Methods In this study, the PLR was examined in mouse enucleated eyes ex vivo in real-time under different ionic conditions in response to acetylcholine and/or blue light (480 nm). The use of pupillometry recordings captured the relaxation, contraction, and pupil escape (redilation) processes for 10 minutes up to 1 hour. Results Among others, our results show that ryanodine receptor channels are the main driver for iridal stimulation-contraction coupling, in which extracellular influx of Ca2+ is required for amplification of pupil constriction. Both local and parasympathetic iridal activations are necessary, but not sufficient for sustained pupil constriction. Moreover, the degree of membrane potential repolarization in the dark is correlated with the latency and velocity of iridal constriction. Furthermore, pupil escape is driven by membrane potential hyperpolarization where voltage-gated potassium channels play a crucial role. Conclusions Together, this study presents new mechanisms regulating synchronized pupil dilation and contraction, sustained pupil constriction, iridal stimulation-contraction coupling, and pupil escape.
Collapse
Affiliation(s)
- Soufien Sghari
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Foster RG, Hughes S, Peirson SN. Circadian Photoentrainment in Mice and Humans. BIOLOGY 2020; 9:biology9070180. [PMID: 32708259 PMCID: PMC7408241 DOI: 10.3390/biology9070180] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/26/2022]
Abstract
Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a λmax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100’s lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.
Collapse
|
34
|
Zandi B, Klabes J, Khanh TQ. Prediction accuracy of L- and M-cone based human pupil light models. Sci Rep 2020; 10:10988. [PMID: 32620793 PMCID: PMC7335057 DOI: 10.1038/s41598-020-67593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Multi-channel LED luminaires offer a powerful tool to vary retinal receptor signals while keeping visual parameters such as color or brightness perception constant. This technology could provide new fields of application in indoor lighting since the spectrum can be enhanced individually to the users' favor or task. One possible application would be to optimize a light spectrum by using the pupil diameter as a parameter to increase the visual acuity. A spectral- and time-dependent pupil model is the key requirement for this aim. We benchmarked in our work selected L- and M-cone based pupil models to find the estimation error in predicting the pupil diameter for chromatic and polychromatic spectra at 100 cd/m2. We report an increased estimation error up to 1.21 mm for 450 nm at 60-300 s exposure time. At short exposure times, the pupil diameter was approximately independent of the used spectrum, allowing to use the luminance for a pupil model. Polychromatic spectra along the Planckian locus showed at 60-300 s exposure time, a prediction error within a tolerance range of ± 0.5 mm. The time dependency seems to be more essential than the spectral dependency when using polychromatic spectra.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Julian Klabes
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
35
|
Abstract
A small fraction of mammalian retinal ganglion cells are directly photoreceptive thanks to their expression of the photopigment melanopsin. These intrinsically photosensitive retinal ganglion cells (ipRGCs) have well-established roles in a variety of reflex responses to changes in ambient light intensity, including circadian photoentrainment. In this article, we review the growing evidence, obtained primarily from laboratory mice and humans, that the ability to sense light via melanopsin is also an important component of perceptual and form vision. Melanopsin photoreception has low temporal resolution, making it fundamentally biased toward detecting changes in ambient light and coarse patterns rather than fine details. Nevertheless, melanopsin can indirectly impact high-acuity vision by driving aspects of light adaptation ranging from pupil constriction to changes in visual circuit performance. Melanopsin also contributes directly to perceptions of brightness, and recent data suggest that this influences the appearance not only of overall scene brightness, but also of low-frequency patterns.
Collapse
Affiliation(s)
- Robert J Lucas
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Annette E Allen
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Nina Milosavljevic
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Riccardo Storchi
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Tom Woelders
- Centre for Biological Timing and Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
36
|
Shimura A, Sugiura K, Inoue M, Misaki S, Tanimoto Y, Oshima A, Tanaka T, Yokoi K, Inoue T. Which sleep hygiene factors are important? comprehensive assessment of lifestyle habits and job environment on sleep among office workers. Sleep Health 2020; 6:288-298. [PMID: 32360019 DOI: 10.1016/j.sleh.2020.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although several lifestyle habits are associated with sleep, it is unclear which factors are important. Among office workers, the effect of job environment should also be considered. The multivariate analyses on the effects of lifestyle habits and job environment on sleep among office workers was conducted. METHODS A cross-sectional survey of 6,342 employees from 29 companies was conducted in 2017-2019. Complete responses and informed consent were provided by 5,640 participants. The survey examined demographic variables, sleep schedules, Pittsburgh Sleep Quality Index (PSQI), Brief Job Stress Questionnaire (BJSQ), and lifestyle habits. RESULTS Mean values were as follows: age, 36.9 years (±10.2); PSQI, 6.52 (±2.83); and total sleep time, 6h06m (±1h40m) on work days and 7h39m (±1h58m) on free days. After adjusting for job environment and demographic variables, irregular meal time (1.45-2.86), not eating vegetables every day (1.35), nightcap (2.74-3.55), weight gain (1.20-1.42), lack of sunlight in the morning in the bedroom (1.48-1.60), waking up before dawn (2.18), electronic display use in bed (1.50), and daily caffeine intake (1.27) were significantly associated with sleep disturbance. Irregular meal time (1.51-2.37), lack of morning breakfast (1.74-2.95), having dinner within 2 hours before bed time (0.49-0.64), not eating vegetables every day (1.52), lack of sunlight exposure in the morning (1.43-2.01), and caffeine use every day (1.42) were also associated with eveningness (p<.01). CONCLUSION Each sleep hygiene factor had a different effect size. Sleep hygiene interventions to promote worker sleep health should prioritize factors in accordance with effect size.
Collapse
Affiliation(s)
- Akiyoshi Shimura
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan; Department of Sleep and Psychiatry, Kanno Hospital, Saitama, Japan; Sakurajuji Medical Corporation, Tokyo, Japan; Department of R&D, Children and Future Co., Ltd., Tokyo, Japan.
| | - Ko Sugiura
- Department of R&D, Children and Future Co., Ltd., Tokyo, Japan; Department of Economics, University of Houston, Houston TX, USA
| | - Manami Inoue
- Department of R&D, Children and Future Co., Ltd., Tokyo, Japan; Medical Course, Shiga University of Medical Science, Otsu-shi, Shiga, Japan
| | | | | | | | - Tomoko Tanaka
- Department of R&D, Children and Future Co., Ltd., Tokyo, Japan
| | - Katsunori Yokoi
- Department of R&D, Children and Future Co., Ltd., Tokyo, Japan; School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
37
|
Mure LS, Vinberg F, Hanneken A, Panda S. Functional diversity of human intrinsically photosensitive retinal ganglion cells. Science 2020; 366:1251-1255. [PMID: 31806815 DOI: 10.1126/science.aaz0898] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/06/2019] [Indexed: 11/02/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive (S3140), Salt Lake City, UT 84132, USA
| | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Hu H, Kang C, Hou X, Zhang Q, Meng Q, Jiang J, Hao W. Blue Light Deprivation Produces Depression-Like Responses in Mongolian Gerbils. Front Psychiatry 2020; 11:233. [PMID: 32322220 PMCID: PMC7156555 DOI: 10.3389/fpsyt.2020.00233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Depression is a leading cause of disability worldwide and is a major contributor to the overall global burden of disease, but its etiology is poorly understood. It has been reported that a disrupted biological rhythm, in terms of a shortened light duration and total darkness, can cause depression-like behaviors in animals. Blue light was reported to have an inhibitory effect on melatonin, which is considered an important clock rhythm biomarker. In the present study, we investigated the effects of blue light deprivation on depressive-like behaviors in gerbils and explored the underlying mechanisms. METHODS Gerbils were housed under white light with a filter to block the blue light or without a filter. The behaviors of the gerbils were observed. The biological rhythm, 5-HT, hypothalamic-pituitary-adrenal (HPA) axis and melanopsin pathway were analyzed. RESULTS We found that blue light deprivation (BLD) induced depression-like behavior in gerbils. Melatonin lost its rhythm, and corticosterone (CORT) levels decreased in the morning in the BLD group. Lower corticotropin-releasing hormone (CRH) in the hypothalamus and lower adrenocorticotropin hormone (ACTH)/CORT in serum were observed after BLD. Furthermore, 5-HT in the serum and brain were decreased after BLD. Additionally, BLD affected the blue light sensitivity protein melanopsin and its pathway, with downregulation of the proteins melanopsin, PKCα, and c-Fos and the mRNA levels of c-fos and trpc3 and upregulation of the protein p-PKCα. CONCLUSIONS Our findings indicated that BLD might produce depression-like behaviors in gerbils. Melatonin arrhythmicity, HPA axis abnormalities, 5-HT decreases and melanopsin pathway changes might be associated with the depression behavioral phenotype in gerbils.
Collapse
Affiliation(s)
- Hong Hu
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Qi Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
39
|
Eleftheriou CG, Wright P, Allen AE, Elijah D, Martial FP, Lucas RJ. Melanopsin Driven Light Responses Across a Large Fraction of Retinal Ganglion Cells in a Dystrophic Retina. Front Neurosci 2020; 14:320. [PMID: 32317928 PMCID: PMC7147324 DOI: 10.3389/fnins.2020.00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/18/2020] [Indexed: 02/02/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin and project to central targets, allowing them to contribute to both image-forming and non-image forming vision. Recent studies have highlighted chemical and electrical synapses between ipRGCs and neurons of the inner retina, suggesting a potential influence from the melanopsin-born signal to affect visual processing at an early stage of the visual pathway. We investigated melanopsin responses in ganglion cell layer (GCL) neurons of both intact and dystrophic mouse retinas using 256 channel multi-electrode array (MEA) recordings. A wide 200 μm inter-electrode spacing enabled a pan-retinal visualization of melanopsin's influence upon GCL activity. Upon initial stimulation of dystrophic retinas with a long, bright light pulse, over 37% of units responded with an increase in firing (a far greater fraction than can be expected from the anatomically characterized number of ipRGCs). This relatively widespread response dissipated with repeated stimulation even at a quite long inter-stimulus interval (ISI; 120 s), to leave a smaller fraction of responsive units (<10%; more in tune with the predicted number of ipRGCs). Visually intact retinas appeared to lack such widespread melanopsin responses indicating that it is a feature of dystrophy. Taken together, our data reveal the potential for anomalously widespread melanopsin responses in advanced retinal degeneration. These could be used to probe the functional reorganization of retinal circuits in degeneration and should be taken into account when using retinally degenerate mice as a model of disease.
Collapse
Affiliation(s)
- Cyril G. Eleftheriou
- Burke Neurological Institute at Weill Cornell Medicine, White Plains, NY, United States
| | - Phillip Wright
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Annette E. Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel Elijah
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Franck P. Martial
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Robert J. Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
Tu HY, Matsuyama T. Multielectrode Array Recording of Mouse Retinas Transplanted with Stem Cell-Derived Retinal Sheets. Methods Mol Biol 2020; 2092:207-220. [PMID: 31786791 DOI: 10.1007/978-1-0716-0175-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Retinal multielectrode array (MEA) recording allows us to examine the action potentials of retinal ganglion cells and field potentials of photoreceptors and bipolar cells. In addition to studying the retinal circuitry, it has become one of the standard examination tools for the characterization of stem cell-derived retinal transplantation in degenerated retinas. Besides the detection of responses to simple light stimulation, it is also necessary to consider the spatial correlation of the graft and the electrodes, in order to unbiasedly reveal the locally reconstructed retinal circuitry after transplantation. Here, we introduce our newly developed protocol of MEA recording and analysis that may serve as a standard for evaluating transplanted retinas.
Collapse
Affiliation(s)
- Hung-Ya Tu
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan.
| | - Take Matsuyama
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| |
Collapse
|
41
|
Mure LS, Hatori M, Ruda K, Benegiamo G, Demas J, Panda S. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment. Cell Rep 2019; 25:2497-2509.e4. [PMID: 30485815 PMCID: PMC6396282 DOI: 10.1016/j.celrep.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for β-arrestin 1 (βARR1) and β-arrestin 2. β-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, βαrr2–/–mice exhibit prolonged ipRGC responses after cessation of a light pulse. β-arrestin 1 primes melanopsin for regeneration. Therefore, βαrr1–/– ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either β-arrestin atten-uates ipRGC response under prolonged illumination, suggesting that β-arrestin 2-mediated deactivation and β-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which β-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination. The mechanism by which melanopsin-expressing retinal ganglion cells (mRGCs) tonically respond to continuous illumination is unknown. Mure et al. show that phosphorylation-dependent binding of β-arrestin 1 and 2 coordinately deactivate and regenerate melanopsin photopigment to enable sustained firing of mRGCs in response to prolonged illumination.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Keio University School of Medicine, Tokyo, Japan
| | - Kiersten Ruda
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Giorgia Benegiamo
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Caval-Holme F, Zhang Y, Feller MB. Gap Junction Coupling Shapes the Encoding of Light in the Developing Retina. Curr Biol 2019; 29:4024-4035.e5. [PMID: 31708397 PMCID: PMC6927338 DOI: 10.1016/j.cub.2019.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
Abstract
Detection of ambient illumination in the developing retina prior to maturation of conventional photoreceptors is mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs) and is critical for driving several physiological processes, including light aversion, pupillary light reflexes, and photoentrainment of circadian rhythms. The strategies by which ipRGCs encode variations in ambient light intensity at these early ages are not known. Using unsupervised clustering of two-photon calcium responses followed by inspection of anatomical features, we found that the population activity of the neonatal retina could be modeled as six functional groups that were composed of mixtures of ipRGC subtypes and non-ipRGC cell types. By combining imaging, whole-cell recording, pharmacology, and anatomical techniques, we found that functional mixing of cell types is mediated in part by gap junction coupling. Together, these data show that both cell-autonomous intrinsic light responses and gap junction coupling among ipRGCs contribute to the proper encoding of light intensity in the developing retina.
Collapse
Affiliation(s)
- Franklin Caval-Holme
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yizhen Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
43
|
Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, Mattar P, Hattar S, Schmidt TM, Renna JM, Cayouette M. Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Rep 2019; 23:2416-2428. [PMID: 29791852 DOI: 10.1016/j.celrep.2018.04.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022] Open
Abstract
Newborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina. This effect is partly mediated by light-evoked activity in ipRGCs, as dark rearing or silencing of ipRGCs leads a subset of cones to mislocalize. Furthermore, ablation of ipRGCs alters the cone transcriptome and decreases expression of the dopamine receptor D4, while injection of L-DOPA or D4 receptor agonist rescues the displaced cone phenotype observed in dark-reared animals. These results show that early light-mediated activity in ipRGCs influences neuronal lamination and identify ipRGC-elicited dopamine release as a mechanism influencing cone position.
Collapse
Affiliation(s)
- Adele R Tufford
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | | | | | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron M Earley
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Samer Hattar
- National Institute of Mental Health, Bethesda, MD, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
44
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Thompson S, Blodi FR, Larson DR, Anderson MG, Stasheff SF. The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice. Invest Ophthalmol Vis Sci 2019; 60:2110-2117. [PMID: 31095679 PMCID: PMC6735810 DOI: 10.1167/iovs.19-26881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice. Methods Responses to light were assessed by visual water task, circadian phase shifting, and negative masking behavior. The mechanism of abnormal responses was investigated by anterior eye exam, electroretinogram, melanopsin cell quantification, and multielectrode recording of retinal ganglion cell activity. Results Visual acuity was not different in Efemp1R345W mice. However, amplitudes of circadian phase shifting (P = 0.016) and negative masking (P < 0.0001) were increased in Efemp1R345W mice. This phenotype was not explained by anterior eye defects or amplified outer retina responses. Instead, we identified increased melanopsin-generated responses to light in the ganglion cell layer of the retina (P < 0.01). Conclusions Efemp1R345W increases the sensitivity to light of behavioral responses driven by detection of irradiance. An amplified response to light in melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) is consistent with this phenotype. The major concern with this effect of the malattia leventinese mutation is the potential for abnormal regulation of physiology by light to negatively affect health.
Collapse
Affiliation(s)
- Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, United States.,Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Demelza R Larson
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,Biology Department, College of St. Benedict & St. John's University, Collegeville, Minnesota, United States
| | - Michael G Anderson
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States.,Center for Neurosciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
46
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
47
|
Lucas JA, Schmidt TM. Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Dev 2019; 14:8. [PMID: 31470901 PMCID: PMC6716945 DOI: 10.1186/s13064-019-0132-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/12/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) respond directly to light and have been shown to mediate a broad variety of visual behaviors in adult animals. ipRGCs are also the first light sensitive cells in the developing retina, and have been implicated in a number of retinal developmental processes such as pruning of retinal vasculature and refinement of retinofugal projections. However, little is currently known about the properties of the six ipRGC subtypes during development, and how these cells act to influence retinal development. We therefore sought to characterize the structure, physiology, and birthdate of the most abundant ipRGC subtypes, M1, M2, and M4, at discrete postnatal developmental timepoints. METHODS We utilized whole cell patch clamp to measure the electrophysiological and morphological properties of ipRGC subtypes through postnatal development. We also used EdU labeling to determine the embryonic timepoints at which ipRGC subtypes terminally differentiate. RESULTS Our data show that ipRGC subtypes are distinguishable from each other early in postnatal development. Additionally, we find that while ipRGC subtypes terminally differentiate at similar embryonic stages, the subtypes reach adult-like morphology and physiology at different developmental timepoints. CONCLUSIONS This work provides a broad assessment of ipRGC morphological and physiological properties during the postnatal stages at which they are most influential in modulating retinal development, and lays the groundwork for further understanding of the specific role of each ipRGC subtype in influencing retinal and visual system development.
Collapse
Affiliation(s)
- Jasmine A. Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL USA
| | | |
Collapse
|
48
|
Palumaa T, Gilhooley MJ, Jagannath A, Hankins MW, Hughes S, Peirson SN. Melanopsin: photoreceptors, physiology and potential. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Hartstein LE, LeBourgeois MK, Berthier NE. Light correlated color temperature and task switching performance in preschool-age children: Preliminary insights. PLoS One 2018; 13:e0202973. [PMID: 30161180 PMCID: PMC6117001 DOI: 10.1371/journal.pone.0202973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/13/2018] [Indexed: 11/18/2022] Open
Abstract
Data from a growing number of experimental studies show that exposure to higher correlated color temperature (CCT) ambient light, containing more blue light, can positively impact alertness and cognitive performance in older children and adults. To date, few if any studies have examined whether light exposure influences cognitive task performance in preschool-age children, who are in the midst of rapid developmental changes in attention and executive function skills. In this study, healthy children aged 4.5-5.5 years (n = 20; 11 females) completed measures of sustained attention and task switching twice while being exposed to LED light set to either 3500K (a lower CCT) or 5000K (a higher CCT). A control group (n = 18; 10 females) completed the tasks twice under only the 3500K lighting condition. Although the lighting condition did not impact performance on the sustained attention task, exposure to the higher CCT light lead to greater improvement in preschool-age children's task switching performance (F(1,36) = 4.41, p = 0.04). Children in the control group showed a 6.5% increase in task switching accuracy between time points, whereas those in the experimental group improved by 15.2%. Our primary finding-that exposure to light at a higher correlated color temperature leads to greater improvement in task switching performance-indicates that the relationship between the spectral power distribution of light and executive function abilities is present early in cognitive development. These data have implications for designing learning environments and suggest that light may be an important contextual factor in the lives of young children in both the home and the classroom.
Collapse
Affiliation(s)
- Lauren E. Hartstein
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America
- Lighting Enabled Systems & Applications Engineering Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States of America
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
- * E-mail:
| | - Monique K. LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Neil E. Berthier
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States of America
| |
Collapse
|
50
|
Rodgers J, Hughes S, Pothecary CA, Brown LA, Hickey DG, Peirson SN, Hankins MW. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue. Hum Mol Genet 2018; 27:2589-2603. [PMID: 29718372 PMCID: PMC6048994 DOI: 10.1093/hmg/ddy150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/02/2022] Open
Abstract
Melanopsin (OPN4) is an opsin photopigment expressed within intrinsically photosensitive retinal ganglion cells (ipRGCs) that mediate non-image forming (NIF) responses to light. Two single-nucleotide polymorphisms (SNPs) in human melanopsin (hOPN4), Pro10Leu and Thr394Ile, have recently been associated with abnormal NIF responses to light, including seasonal affective disorder. It has been suggested these behavioural changes are due to altered melanopsin signalling. However, there is currently no direct evidence to support this. Here we have used ipRGC-specific delivery of hOPN4 wild-type (WT), Pro10Leu or Thr394Ile adeno-associated viruses (AAV) to determine the functional consequences of hOPN4 SNPs on melanopsin-driven light responses and associated behaviours. Immunohistochemistry confirmed hOPN4 AAVs exclusively transduced mouse ipRGCs. Behavioural phenotyping performed before and after AAV injection demonstrated that both hOPN4 Pro10Leu and Thr394Ile could functionally rescue pupillary light responses and circadian photoentrainment in Opn4-/- mice, with no differences in NIF behaviours detected for animals expressing either SNP compared to hOPN4 WT. Multi-electrode array recordings revealed that ipRGCs expressing hOPN4 Thr394Ile exhibit melanopsin-driven light responses with significantly attenuated response amplitude, decreased sensitivity and faster offset kinetics compared to hOPN4 WT. IpRGCs expressing hOpn4 Pro10Leu also showed reduced response amplitude. Collectively these data suggest Thr394Ile and Pro10Leu may be functionally significant SNPs, which result in altered melanopsin signalling. To our knowledge, this study provides the first direct evidence for the effects of hOPN4 polymorphisms on melanopsin-driven light responses and NIF behaviours in vivo, providing further insight into the role of these SNPs in melanopsin function and human physiology.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Doron G Hickey
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, OMPI G, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|