1
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
2
|
Zheng J, Wang M, Wang S, Shao Z. Temperature Regulates Astroglia Morphogenesis Through Thermosensory Circuitry in Caenorhabditis elegans. Glia 2025; 73:985-1003. [PMID: 39780488 DOI: 10.1002/glia.24668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Astrocytes are the most abundant type of macroglia in the brain and play crucial roles in regulating neural development and functions. The diverse functions of astrocytes are largely determined by their morphology, which is regulated by genetic and environmental factors. However, whether and how the astrocyte morphology is affected by temperature remains largely unknown. Here we discovered that elevated cultivation temperature (26°C) stimulates Caenorhabditis elegans ventral CEPsh glia endfoot extension during early developmental stages. This extension depends on the activation of glutamate AWC neurons, which inhibit the postsynaptic cholinergic AIY interneurons through glutamate-gated chloride channels, GLC-3 and GLC-4. In responding to the thermosensory signal, the guanyl-nucleotide exchange factor EPHX-1 and Rho GTPase CDC-42/Cdc42 in the glia facilitate the endfoot extension via F-actin assembly. This study elucidates the significant role of thermosensory circuitry in glia morphogenesis and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Mengqing Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Shaocheng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
3
|
Fan Y, Tian Y, Han J. The Glutamate-gated Chloride Channel Facilitates Sleep by Enhancing the Excitability of Two Pairs of Neurons in the Ventral Nerve Cord of Drosophila. Neurosci Bull 2025:10.1007/s12264-025-01397-1. [PMID: 40304877 DOI: 10.1007/s12264-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 05/02/2025] Open
Abstract
Sleep, an essential and evolutionarily conserved behavior, is regulated by numerous neurotransmitter systems. In mammals, glutamate serves as the wake-promoting signaling agent, whereas in Drosophila, it functions as the sleep-promoting signal. However, the precise molecular and cellular mechanisms through which glutamate promotes sleep remain elusive. Our study reveals that disruption of glutamate signaling significantly diminishes nocturnal sleep, and a neural cell-specific knockdown of the glutamate-gated chloride channel (GluClα) markedly reduces nocturnal sleep. We identified two pairs of neurons in the ventral nerve cord (VNC) that receive glutamate signaling input, and the GluClα derived from these neurons is crucial for sleep promotion. Furthermore, we demonstrated that GluClα mediates the glutamate-gated inhibitory input to these VNC neurons, thereby promoting sleep. Our findings elucidate that GluClα enhances nocturnal sleep by mediating the glutamate-gated inhibitory input to two pairs of VNC neurons, providing insights into the mechanism of sleep promotion in Drosophila.
Collapse
Affiliation(s)
- Yaqian Fan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
4
|
Rachad EY, Deimel SH, Epple L, Gadgil YV, Jürgensen AM, Springer M, Lin CH, Nawrot MP, Lin S, Fiala A. Functional dissection of a neuronal brain circuit mediating higher-order associative learning. Cell Rep 2025; 44:115593. [PMID: 40249705 DOI: 10.1016/j.celrep.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025] Open
Abstract
A central feature characterizing the neural architecture of many species' brains is their capacity to form associative chains through learning. In elementary forms of associative learning, stimuli coinciding with reward or punishment become attractive or repulsive. Notably, stimuli previously learned as attractive or repulsive can themselves serve as reinforcers, establishing a cascading effect whereby they become associated with additional stimuli. When this iterative process is perpetuated, it results in higher-order associations. Here, we use odor conditioning in Drosophila and computational modeling to dissect the architecture of neuronal networks underlying higher-order associative learning. We show that the responsible circuit, situated in the mushroom bodies of the brain, is characterized by parallel processing of odor information and by recurrent excitatory and inhibitory feedback loops that empower odors to gain control over the dopaminergic valence-signaling system. Our findings establish a paradigmatic framework of a neuronal circuit diagram enabling the acquisition of associative chains.
Collapse
Affiliation(s)
- El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Lisa Epple
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Yogesh Vasant Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Anna-Maria Jürgensen
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Magdalena Springer
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Chen-Han Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
5
|
Nässel DR. What Drosophila can tell us about state-dependent peptidergic signaling in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104275. [PMID: 39956367 DOI: 10.1016/j.ibmb.2025.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Plasticity in animal behavior and physiology is largely due to modulatory and regulatory signaling with neuropeptides and peptide hormones (collectively abbreviated NPHs). The NPHs constitute a very large and versatile group of signaling substances that partake at different regulatory levels in most daily activities of an organism. This review summarizes key principles in NPH actions in the brain and in interorgan signaling, with focus on Drosophila. NPHs are produced by neurons, neurosecretory cells (NSCs) and other endocrine cells in NPH-specific and stereotypic patterns. Most of the NPHs have multiple (pleiotropic) functions and target several different neuronal circuits and/or peripheral tissues. Such divergent NPH signaling ensures orchestration of behavior and physiology in state-dependent manners. Conversely, many neurons, circuits, NSCs, or other cells, are targeted by multiple NPHs. This convergent signaling commonly conveys various signals reporting changes in the external and internal environment to central neurons/circuits. As an example of wider functional convergence, 26 different Drosophila NPHs act at many different levels to regulate food search and feeding. Convergence is also seen in hormonal regulation of peripheral functions. For instance, multiple NPHs target renal tubules to ensure osmotic homeostasis. Interestingly, several of the same osmoregulatory NPHs also regulate feeding, metabolism and stress. However, for some NPHs the cellular distribution and functions suggests multiple unrelated functions that are restricted to specific circuits. Thus, NPH signaling follows distinct patterns for each specific NPH, but taken together they form overlapping networks that modulate behavior and physiology.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
6
|
Samara E, Schilling T, Ribeiro IMA, Haag J, Leonte MB, Borst A. Columnar cholinergic neurotransmission onto T5 cells of Drosophila. Curr Biol 2025; 35:1269-1284.e6. [PMID: 40020661 DOI: 10.1016/j.cub.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Several nicotinic and muscarinic acetylcholine receptors (AChRs) are expressed in the brain of Drosophila melanogaster. However, the contribution of different AChRs to visual information processing remains poorly understood. T5 cells are the primary motion-sensing neurons in the OFF pathway and receive input from four different columnar cholinergic neurons, Tm1, Tm2, Tm4, and Tm9. We reasoned that different AChRs in T5 postsynaptic sites might contribute to direction selectivity, a central feature of motion detection. We show that the nicotinic nAChRα1, nAChRα3, nAChRα4, nAChRα5, nAChRα7, and nAChβ1 subunits localize on T5 dendrites. By targeting synaptic markers specifically to each cholinergic input neuron, we find a prevalence of the nAChRα5 in Tm1, Tm2, and Tm4-to-T5 synapses and of nAChRα7 in Tm9-to-T5 synapses. Knockdown of nAChRα4, nAChRα5, nAChRα7, or mAChR-B individually in T5 cells alters the optomotor response and reduces T5 directional selectivity. Our findings indicate the contribution of a consortium of postsynaptic receptors to input visual processing and, thus, to the computation of motion direction in T5 cells.
Collapse
Affiliation(s)
- Eleni Samara
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany.
| | - Tabea Schilling
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Inês M A Ribeiro
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Institute of Medical Psychology, Medical Faculty, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Maria-Bianca Leonte
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
7
|
Eom K, Kim D, Hyun JH. Engram and behavior: How memory is stored in the brain. Neurobiol Learn Mem 2025; 219:108047. [PMID: 40074071 DOI: 10.1016/j.nlm.2025.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
During the processing of information in humans, activated neurons behave in a specific way. The activity of these neurons leaves traces on the neurons, such as changes in synaptic or intrinsic properties. Formation of the memory traces is associated with molecular changes in the neurons. Hence, monitoring collective neural activities and following the trace of neural activities are important to neuroscience research. This collective or group of neurons is described as a 'neural ensemble', while the neural trace is described as a 'neural engram'. Both terms have been used and studied by neuroscientists for a long time. In this article, we discuss the development of these concepts, current research methods, and future areas of development.
Collapse
Affiliation(s)
- Kisang Eom
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donguk Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jung Ho Hyun
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Biomedical Sciences & Engineering Major of Interdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, Republic of Korea.
| |
Collapse
|
8
|
Majeed M, Liao CP, Hobert O. Nervous system-wide analysis of all C. elegans cadherins reveals neuron-specific functions across multiple anatomical scales. SCIENCE ADVANCES 2025; 11:eads2852. [PMID: 39983000 PMCID: PMC11844738 DOI: 10.1126/sciadv.ads2852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Differential expression of cell adhesion proteins is a hallmark of cell-type diversity across the animal kingdom. Gene family-wide characterization of their organismal expression and function is, however, lacking. Using genome-engineered reporter alleles, we established an atlas of expression of the entire set of 12 cadherin gene family members in the nematode Caenorhabditis elegans, revealing differential expression across neuronal classes, a dichotomy between broadly and narrowly expressed cadherins, and several context-dependent temporal transitions in expression across development. Engineered mutant null alleles of cadherins were analyzed for defects in morphology, behavior, neuronal soma positions, neurite neighborhood topology and fasciculation, and localization of synapses in many parts of the nervous system. This analysis revealed a restricted pattern of neuronal differentiation defects at discrete subsets of anatomical scales, including a novel role of cadherins in experience-dependent electrical synapse formation. In total, our analysis results in previously little explored perspectives on cadherin deployment and function.
Collapse
Affiliation(s)
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Ispizua JI, Rodríguez-Caron M, Tassara FJ, Kim KY, Insussarry Perkins C, Barzi M, Carpio-Romero C, Vasquez MF, Hansen CN, Gargiulo J, Rosato E, de la Iglesia H, Ellisman MH, Ceriani MF. Daily ultrastructural remodeling of clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.06.622332. [PMID: 39990321 PMCID: PMC11844358 DOI: 10.1101/2024.11.06.622332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
In Drosophila, about 250 clock neurons in the brain form a network that orchestrates circadian rhythmicity. Among them, eight small Lateral ventral Neurons (s-LNvs) play a critical role, synchronizing the circadian ensemble via the neuropeptide Pigment-Dispersing Factor (PDF). Moreover, their neurites show daily variations in morphology, PDF levels, synaptic markers and connectivity. This process, called circadian structural plasticity, is ill-defined at the subcellular level. Here, we present 3D volumes of the s-LNv terminals generated by Serial Block-face Scanning Electron Microscopy (SBEM) at three key time points, two hours before lights-ON, two hours after lights-ON, and two hours after lights-OFF. We report a reduction in the number of neuronal varicosities at night, which reflects (and probably regulates) the cycling of the components we found therein. Indeed, in the morning we observed more presynaptic sites and increased accumulation and release of dense core vesicles. These rhythms were paralleled by periodic changes in mitochondrial structure that suggest daily modulation of their activity. We propose that circadian plasticity of the functionally relevant structures within presynaptic varicosities cyclically modulates the influence of the s-LNvs on the clock network.
Collapse
|
10
|
Gualtieri C, Vonhoff FJ. Visualization of Synapses in Larval Stages of Drosophila melanogaster Using the GRASP Technique. Methods Mol Biol 2025; 2910:253-262. [PMID: 40220104 DOI: 10.1007/978-1-0716-4446-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The flow of information within the nervous system occurs via precise connections between synaptic partners. In recent years, the development of various methods to visualize synaptic contacts has helped elucidate the connectivity within complex neuronal networks. One such method is the GRASP (GFP Reconstitution Across Synaptic Partners) technique that consists of the expression of a portion of the green fluorescent protein (GFP) at each side of the synapse, allowing the reconstitution of green fluorescence depending on the proximity of the cells expressing such tools. In Drosophila, various studies have shown the successful application of GRASP in adult flies to identify synaptic partners, whereas its use at earlier stages such as in first instar larval stages remains less common. Therefore, we provide here a detailed protocol for the visualization of GRASP-based neuronal contacts within previously established synaptic partners in first and third instar larvae.
Collapse
Affiliation(s)
- Claudia Gualtieri
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA
| | - Fernando J Vonhoff
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, USA.
| |
Collapse
|
11
|
Tsetsenis T. Monitoring Synapses via Trans-synaptic GFP Complementation. Methods Mol Biol 2025; 2910:127-134. [PMID: 40220097 DOI: 10.1007/978-1-0716-4446-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Over the last years, the analysis of synaptic connectivity in the mammalian brain has been accelerated by the use of techniques combining electrophysiology, light microscopy, viral tracing, and genetic manipulations in animal models. Of particular interest are methods that aim to label synapses by tethering complementary split GFP fragments in opposing sites of the synaptic cleft. Here, I describe SynView, a method for monitoring synapse formation based on GFP complementation and provide a detailed protocol for use in neuronal cultures from mouse hippocampus.
Collapse
Affiliation(s)
- Theodoros Tsetsenis
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Qin J, Yang T, Li K, Liu T, Zhang W. Pharyngeal mechanosensory neurons control food swallow in Drosophila melanogaster. eLife 2024; 12:RP88614. [PMID: 39630079 PMCID: PMC11616994 DOI: 10.7554/elife.88614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
As the early step of food ingestion, the swallow is under rigorous sensorimotor control. Nevertheless, the mechanisms underlying swallow control at a molecular and circuitry level remain largely unknown. Here, we find that mutation of the mechanotransduction channel genes nompC, Tmc, or piezo impairs the regular pumping rhythm of the cibarium during feeding of the fruit fly Drosophila melanogaster. A group of multi-dendritic mechanosensory neurons, which co-express the three channels, wrap the cibarium and are crucial for coordinating the filling and emptying of the cibarium. Inhibition of them causes difficulty in food emptying in the cibarium, while their activation leads to difficulty in cibarium filling. Synaptic and functional connections are detected between the pharyngeal mechanosensory neurons and the motor circuit that controls swallow. This study elucidates the role of mechanosensation in swallow, and provides insights for a better understanding of the neural basis of food swallow.
Collapse
Affiliation(s)
- Jierui Qin
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Tingting Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Kexin Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
- Tsinghua-Peking Center for Life ScienceBeijingChina
| | - Ting Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Wei Zhang
- Tsinghua-Peking Center for Life ScienceBeijingChina
| |
Collapse
|
13
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. SCIENCE ADVANCES 2024; 10:eadq9183. [PMID: 39536115 PMCID: PMC11559607 DOI: 10.1126/sciadv.adq9183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Early-life experience influences subsequent maturation and function of the adult brain, sometimes even in a sex-specific manner, but underlying molecular mechanisms are poorly understood. We describe here how juvenile experience defines sexually dimorphic synaptic connectivity in the adult Caenorhabditis elegans nervous system. Starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo/CELSR. During postembryonic development, FMI-1 promotes and maintains synaptic connectivity of PHB to a command interneuron, AVA, in both sexes, but a serotonin-dependent transcriptional regulatory cassette antagonizes FMI-1 expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node is the CREB-target LIN-29, a Zn finger transcription factor that integrates four layers of information: sexual specificity, past experience, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| | | | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
14
|
Kays I, Chen BE. Tracking and measuring local protein synthesis in vivo. Development 2024; 151:dev202908. [PMID: 39373391 DOI: 10.1242/dev.202908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Detecting when and how much of a protein molecule is synthesized is important for understanding cell function, but current methods either cannot be performed in vivo or have poor temporal resolution. Here, we developed a technique to detect and quantify subcellular protein synthesis events in real time in vivo. This Protein Translation Reporting (PTR) technique uses a genetic tag that produces a stoichiometric ratio of a small peptide portion of a split fluorescent protein and the protein of interest during protein synthesis. We show that the split fluorescent protein peptide can generate fluorescence within milliseconds upon binding the larger portion of the fluorescent protein, and that the fluorescence intensity is directly proportional to the number of molecules of the protein of interest synthesized. Using PTR, we tracked and measured protein synthesis events in single cells over time in vivo. We use different color split fluorescent proteins to detect multiple genes or alleles in single cells simultaneously. We also split a photoswitchable fluorescent protein to photoconvert the reconstituted fluorescent protein to a different channel to continually reset the time of detection of synthesis events.
Collapse
Affiliation(s)
- Ibrahim Kays
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada
| | - Brian E Chen
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montréal, Québec, H3G 1A4, Canada
- Departments of Medicine and Neurology & Neurosurgery, McGill University, Montréal, Québec, H3G 1A4, Canada
| |
Collapse
|
15
|
Deng X, Zhu S. Ephrin-mediated dendrite-dendrite repulsion regulates compartment-specific targeting of dendrites in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620860. [PMID: 39554189 PMCID: PMC11565762 DOI: 10.1101/2024.10.29.620860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Neurons often forms synaptic contacts at specific subcellular domains to differentially regulate the activity of target neurons. However, how dendrites are targeted to specific subcellular domains of axons is rarely studied. Here we use Drosophila mushroom body out neurons (MBONs) and local dopaminergic neurons (DANs) as a model system to study how dendrites and axons are targeted to specific subcellular domains (compartments) of mushroom body axonal lobes to form synaptic contacts. We found that Ephrin-mediated dendrite-dendrite repulsion between neighboring compartments restricts the projection of MBON dendrites to their specific compartments and prevents the formation of ectopic synaptic connections with DAN axons in neighboring compartments. Meanwhile, DAN neurons in a subset of compartments may also depend on their partner MBONs for projecting their axons to a specific compartment and cover the same territory as their partner MBON dendrites. Our work reveals that compartment-specific targeting of MBON dendrites and DAN axons is regulated in part by a combination of dendrite-dendrite repulsion between neighboring compartments and dendrite-axon interactions within the same compartment.
Collapse
|
16
|
Deng X, Sandoval IC, Zhu S. Slit regulates compartment-specific targeting of dendrites and axons in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620851. [PMID: 39554193 PMCID: PMC11565903 DOI: 10.1101/2024.10.29.620851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Proper functioning of the nervous system requires precise neuronal connections at subcellular domains, which can be achieved by projection of axons or dendrites to subcellular domains of target neurons. Here we studied subcellular-specific targeting of dendrites and axons in the Drosophila mushroom body (MB), where mushroom body output neurons (MBONs) and local dopaminergic neurons (DAN) project their dendrites and axons, respectively, to specific compartments of MB axons. Through genetic ablation, we demonstrate that compartment-specific targeting of MBON dendrites and DAN axons involves mutual repulsion of MBON dendrites and/or DAN axons between neighboring compartments. We further show that Slit expressed in subset of DANs mediates such repulsion by acting through different Robo receptors in different neurons. Loss of Slit-mediated repulsion leads to projection of MBON dendrites and DAN axons into neighboring compartments, resulting formation of ectopic synaptic contacts between MBONs and DANs and changes in olfactory-associative learning. Together, our findings suggest that Slit-mediated repulsion controls compartment-specific targeting of MBON dendrites and DAN axons, which ensures precise connections between MBON dendrites and DAN axons and proper learning and memory formation.
Collapse
|
17
|
Cowen MH, Haskell D, Zoga K, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. Nat Commun 2024; 15:9301. [PMID: 39468047 PMCID: PMC11519495 DOI: 10.1038/s41467-024-53590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA
| | - Dustin Haskell
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristi Zoga
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirthi C Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA, USA
| | | | - Michael P Hart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
19
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
20
|
Ligunas GD, Paniagua GF, LaBelle J, Ramos-Martinez A, Shen K, Gerlt EH, Aguilar K, Nguyen N, Materna SC, Woo S. Tissue-specific and endogenous protein labeling with split fluorescent proteins. Dev Biol 2024; 514:109-116. [PMID: 38908500 PMCID: PMC11463824 DOI: 10.1016/j.ydbio.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
The ability to label proteins by fusion with genetically encoded fluorescent proteins is a powerful tool for understanding dynamic biological processes. However, current approaches for expressing fluorescent protein fusions possess drawbacks, especially at the whole organism level. Expression by transgenesis risks potential overexpression artifacts while fluorescent protein insertion at endogenous loci is technically difficult and, more importantly, does not allow for tissue-specific study of broadly expressed proteins. To overcome these limitations, we have adopted the split fluorescent protein system mNeonGreen21-10/11 (split-mNG2) to achieve tissue-specific and endogenous protein labeling in zebrafish. In our approach, mNG21-10 is expressed under a tissue-specific promoter using standard transgenesis while mNG211 is inserted into protein-coding genes of interest using CRISPR/Cas-directed gene editing. Each mNG2 fragment on its own is not fluorescent, but when co-expressed the fragments self-assemble into a fluorescent complex. Here, we report successful use of split-mNG2 to achieve differential labeling of the cytoskeleton genes tubb4b and krt8 in various tissues. We also demonstrate that by anchoring the mNG21-10 component to specific cellular compartments, the split-mNG2 system can be used to manipulate protein localization. Our approach should be broadly useful for a wide range of applications.
Collapse
Affiliation(s)
- Gloria D Ligunas
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA, USA
| | - German F Paniagua
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Jesselynn LaBelle
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA, USA
| | - Adela Ramos-Martinez
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Kyle Shen
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Emma H Gerlt
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Kaddy Aguilar
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Ngoc Nguyen
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| | - Stefan C Materna
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA
| | - Stephanie Woo
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA; Quantitative and Systems Biology Graduate Group, University of California, Merced, CA, USA; Health Sciences Research Institute, University of California, Merced, CA, USA.
| |
Collapse
|
21
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. Nat Methods 2024; 21:1725-1735. [PMID: 39103446 PMCID: PMC11399108 DOI: 10.1038/s41592-024-02375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated split-TurboID (CaST) labels activated cells within 10 min with an exogenously delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST readout can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA, USA
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Isak K Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Neuroscience Graduate Group, University of California, Davis, Davis, CA, USA
| | - Sruti S Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - David E Olson
- Center for Neuroscience, University of California, Davis, Davis, CA, USA
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, USA
| | - Christina K Kim
- Center for Neuroscience, University of California, Davis, Davis, CA, USA.
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA, USA.
- Department of Neurology, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
22
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Kandagedon B, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in Drosophila. J Neurosci 2024; 44:e2377232024. [PMID: 38937100 PMCID: PMC11326870 DOI: 10.1523/jneurosci.2377-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct β 1R, Oct β 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Maureen M Sampson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Binu Kandagedon
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Kenneth Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Giselle D Burns
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Marylyn E Makar
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
23
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
24
|
Rohrbach EW, Asuncion JD, Meera P, Kralovec M, Deshpande SA, Schweizer FE, Krantz DE. Heterogeneity in the projections and excitability of tyraminergic/octopaminergic neurons that innervate the Drosophila reproductive tract. Front Mol Neurosci 2024; 17:1374896. [PMID: 39156129 PMCID: PMC11327148 DOI: 10.3389/fnmol.2024.1374896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024] Open
Abstract
Aminergic nuclei in mammals are generally composed of relatively small numbers of cells with broad projection patterns. Despite the gross similarity of many individual neurons, recent transcriptomic, anatomic and behavioral studies suggest previously unsuspected diversity. Smaller clusters of aminergic neurons in the model organism Drosophila melanogaster provide an opportunity to explore the ramifications of neuronal diversity at the level of individual cells. A group of approximately 10 tyraminergic/octopaminergic neurons innervates the female reproductive tract in flies and has been proposed to regulate multiple activities required for fertility. The projection patterns of individual neurons within the cluster are not known and it remains unclear whether they are functionally heterogenous. Using a single cell labeling technique, we show that each region of the reproductive tract is innervated by a distinct subset of tyraminergic/octopaminergic cells. Optogenetic activation of one subset stimulates oviduct contractions, indicating that the cluster as a whole is not required for this activity, and underscoring the potential for functional diversity across individual cells. Using whole cell patch clamp, we show that two adjacent and morphologically similar cells are tonically inhibited, but each responds differently to injection of current or activation of the inhibitory GluCl receptor. GluCl appears to be expressed at relatively low levels in tyraminergic/octopaminergic neurons within the cluster, suggesting that it may regulate their excitability via indirect pathways. Together, our data indicate that specific tyraminergic/octopaminergic cells within a relatively homogenous cluster have heterogenous properties and provide a platform for further studies to determine the function of each cell.
Collapse
Affiliation(s)
- Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pratap Meera
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mason Kralovec
- UCLA College of Arts and Sciences, Los Angeles, CA, United States
| | - Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Felix E. Schweizer
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David E. Krantz
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
25
|
Früh S, Boudkkazi S, Koppensteiner P, Sereikaite V, Chen LY, Fernandez-Fernandez D, Rem PD, Ulrich D, Schwenk J, Chen Z, Le Monnier E, Fritzius T, Innocenti SM, Besseyrias V, Trovò L, Stawarski M, Argilli E, Sherr EH, van Bon B, Kamsteeg EJ, Iascone M, Pilotta A, Cutrì MR, Azamian MS, Hernández-García A, Lalani SR, Rosenfeld JA, Zhao X, Vogel TP, Ona H, Scott DA, Scheiffele P, Strømgaard K, Tafti M, Gassmann M, Fakler B, Shigemoto R, Bettler B. Monoallelic de novo AJAP1 loss-of-function variants disrupt trans-synaptic control of neurotransmitter release. SCIENCE ADVANCES 2024; 10:eadk5462. [PMID: 38985877 PMCID: PMC11235169 DOI: 10.1126/sciadv.adk5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Adherens junction-associated protein 1 (AJAP1) has been implicated in brain diseases; however, a pathogenic mechanism has not been identified. AJAP1 is widely expressed in neurons and binds to γ-aminobutyric acid type B receptors (GBRs), which inhibit neurotransmitter release at most synapses in the brain. Here, we show that AJAP1 is selectively expressed in dendrites and trans-synaptically recruits GBRs to presynaptic sites of neurons expressing AJAP1. We have identified several monoallelic AJAP1 variants in individuals with epilepsy and/or neurodevelopmental disorders. Specifically, we show that the variant p.(W183C) lacks binding to GBRs, resulting in the inability to recruit them. Ultrastructural analysis revealed significantly decreased presynaptic GBR levels in Ajap1-/- and Ajap1W183C/+ mice. Consequently, these mice exhibited reduced GBR-mediated presynaptic inhibition at excitatory and inhibitory synapses, along with impaired synaptic plasticity. Our study reveals that AJAP1 enables the postsynaptic neuron to regulate the level of presynaptic GBR-mediated inhibition, supporting the clinical relevance of loss-of-function AJAP1 variants.
Collapse
Affiliation(s)
- Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sami Boudkkazi
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Vita Sereikaite
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Li-Yuan Chen
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Diego Fernandez-Fernandez
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Pascal D. Rem
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jochen Schwenk
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ziyang Chen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Elodie Le Monnier
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, Netherlands
| | - Maria Iascone
- Laboratorio Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | | | - Mahshid S. Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - Tiphanie P. Vogel
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Herda Ona
- Division of Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Scheiffele
- Biocenter, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Bernd Fakler
- Institute of Physiology II, University of Freiburg, Hermann-Herderstrasse 7, 79104 Freiburg, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Xue E, Lee ACK, Chow KT, Ng DKP. Promotion and Detection of Cell-Cell Interactions through a Bioorthogonal Approach. J Am Chem Soc 2024; 146:17334-17347. [PMID: 38767615 PMCID: PMC11212048 DOI: 10.1021/jacs.4c04317] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions. It involves the use of a maleimide-appended tetrazine-caged boron dipyrromethene (BODIPY)-based fluorescent probe and a maleimide-substituted bicyclo[6.1.0]non-4-yne (BCN) to modify the membrane of macrophage (RAW 264.7) and cancer (HT29, HeLa, and A431) cells, respectively, via maleimide-thiol conjugation. After modification, the two kinds of cells interact strongly through inverse electron-demand Diels-Alder reaction of the surface tetrazine and BCN moieties. The coupling also disrupts the tetrazine quenching unit, restoring the fluorescence emission of the BODIPY core on the cell-cell interface, and promotes phagocytosis. Hence, this approach can promote and facilitate the detection of intercellular interactions, rendering it potentially useful for macrophage-based immunotherapy.
Collapse
Affiliation(s)
- Evelyn
Y. Xue
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| | - Alan Chun Kit Lee
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, N.T., Hong Kong, China
- Department
of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Kwan T. Chow
- Department
of Biomedical Sciences, City University
of Hong Kong, Kowloon, Hong Kong, China
| | - Dennis K. P. Ng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin,
N.T., Hong Kong, China
| |
Collapse
|
27
|
Contreras EG, Kautzmann S, Klämbt C. The Drosophila blood-brain barrier invades the nervous system in a GPCR-dependent manner. Front Cell Neurosci 2024; 18:1397627. [PMID: 38846639 PMCID: PMC11153769 DOI: 10.3389/fncel.2024.1397627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The blood-brain barrier (BBB) represents a crucial interface between the circulatory system and the brain. In Drosophila melanogaster, the BBB is composed of perineurial and subperineurial glial cells. The perineurial glial cells are small mitotically active cells forming the outermost layer of the nervous system and are engaged in nutrient uptake. The subperineurial glial cells form occluding septate junctions to prevent paracellular diffusion of macromolecules into the nervous system. To address whether the subperineurial glia just form a simple barrier or whether they establish specific contacts with both the perineurial glial cells and inner central nervous system (CNS) cells, we undertook a detailed morphological analysis. Using genetically encoded markers alongside with high-resolution laser scanning confocal microscopy and transmission electron microscopy, we identified thin cell processes extending into the perineurial layer and into the CNS cortex. Interestingly, long cell processes were observed reaching the glia ensheathing the neuropil of the central brain. GFP reconstitution experiments highlighted multiple regions of membrane contacts between subperineurial and ensheathing glia. Furthermore, we identify the G-protein-coupled receptor (GPCR) Moody as negative regulator of the growth of subperineurial cell processes. Loss of moody triggered a massive overgrowth of subperineurial cell processes into the CNS cortex and, moreover, affected the polarized localization of the xenobiotic transporter Mdr65. Finally, we found that GPCR signaling, but not septate junction formation, is responsible for controlling membrane overgrowth. Our findings support the notion that the Drosophila BBB is able to bridge the communication gap between circulation and synaptic regions of the brain by long cell processes.
Collapse
Affiliation(s)
| | | | - Christian Klämbt
- Multiscale Imaging Center, Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
29
|
Zhang R, Anguiano M, Aarrestad IK, Lin S, Chandra J, Vadde SS, Olson DE, Kim CK. Rapid, biochemical tagging of cellular activity history in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.06.556431. [PMID: 38798353 PMCID: PMC11118534 DOI: 10.1101/2023.09.06.556431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Intracellular calcium (Ca2+) is ubiquitous to cell signaling across all biology. While existing fluorescent sensors and reporters can detect activated cells with elevated Ca2+ levels, these approaches require implants to deliver light to deep tissue, precluding their noninvasive use in freely-behaving animals. Here we engineered an enzyme-catalyzed approach that rapidly and biochemically tags cells with elevated Ca2+ in vivo. Ca2+-activated Split-TurboID (CaST) labels activated cells within 10 minutes with an exogenously-delivered biotin molecule. The enzymatic signal increases with Ca2+ concentration and biotin labeling time, demonstrating that CaST is a time-gated integrator of total Ca2+ activity. Furthermore, the CaST read-out can be performed immediately after activity labeling, in contrast to transcriptional reporters that require hours to produce signal. These capabilities allowed us to apply CaST to tag prefrontal cortex neurons activated by psilocybin, and to correlate the CaST signal with psilocybin-induced head-twitch responses in untethered mice.
Collapse
Affiliation(s)
- Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis, Davis, CA 95616
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
| | - Maribel Anguiano
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Isak K. Aarrestad
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
| | - Sophia Lin
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - Joshua Chandra
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95618
| | - Sruti S. Vadde
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| | - David E. Olson
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Chemistry, University of California, Davis, Davis, CA 95616
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA 95817
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, CA 95616
- Department of Neurology, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
30
|
Liao CP, Majeed M, Hobert O. Experience-dependent, sexually dimorphic synaptic connectivity defined by sex-specific cadherin expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593207. [PMID: 38766005 PMCID: PMC11100761 DOI: 10.1101/2024.05.08.593207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
We describe here the molecular mechanisms by which juvenile experience defines patterns of sexually dimorphic synaptic connectivity in the adult nervous system of the nematode C. elegans. We show that starvation of juvenile males disrupts serotonin-dependent activation of the CREB transcription factor in a nociceptive sensory neuron, PHB. CREB acts through a cascade of transcription factors to control expression of an atypical cadherin protein, FMI-1/Flamingo. During postembryonic development, FMI-1/Flamingo has the capacity to promote and maintain synaptic connectivity of the PHB nociceptive sensory to a command interneuron, AVA, in both sexes, but the serotonin transcriptional regulatory cassette antagonizes FMI-1/Flamingo expression in males, thereby establishing sexually dimorphic connectivity between PHB and AVA. A critical regulatory node in this process is the CREB-target LIN-29, a Zn finger transcription factor which integrates four different layers of information - sexual specificity, past feeding status, time and cell-type specificity. Our findings provide the mechanistic details of how an early juvenile experience defines sexually dimorphic synaptic connectivity.
Collapse
Affiliation(s)
- Chien-Po Liao
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| | - Maryam Majeed
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
- Present address: Allen Institute for Brain Science, Seattle,
USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard
Hughes Medical Institute, New York, NY 10027, USA
| |
Collapse
|
31
|
Çoban B, Poppinga H, Rachad EY, Geurten B, Vasmer D, Rodriguez Jimenez FJ, Gadgil Y, Deimel SH, Alyagor I, Schuldiner O, Grunwald Kadow IC, Riemensperger TD, Widmann A, Fiala A. The caloric value of food intake structurally adjusts a neuronal mushroom body circuit mediating olfactory learning in Drosophila. Learn Mem 2024; 31:a053997. [PMID: 38862177 PMCID: PMC11199950 DOI: 10.1101/lm.053997.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Associative learning enables the adaptive adjustment of behavioral decisions based on acquired, predicted outcomes. The valence of what is learned is influenced not only by the learned stimuli and their temporal relations, but also by prior experiences and internal states. In this study, we used the fruit fly Drosophila melanogaster to demonstrate that neuronal circuits involved in associative olfactory learning undergo restructuring during extended periods of low-caloric food intake. Specifically, we observed a decrease in the connections between specific dopaminergic neurons (DANs) and Kenyon cells at distinct compartments of the mushroom body. This structural synaptic plasticity was contingent upon the presence of allatostatin A receptors in specific DANs and could be mimicked optogenetically by expressing a light-activated adenylate cyclase in exactly these DANs. Importantly, we found that this rearrangement in synaptic connections influenced aversive, punishment-induced olfactory learning but did not impact appetitive, reward-based learning. Whether induced by prolonged low-caloric conditions or optogenetic manipulation of cAMP levels, this synaptic rearrangement resulted in a reduction of aversive associative learning. Consequently, the balance between positive and negative reinforcing signals shifted, diminishing the ability to learn to avoid odor cues signaling negative outcomes. These results exemplify how a neuronal circuit required for learning and memory undergoes structural plasticity dependent on prior experiences of the nutritional value of food.
Collapse
Affiliation(s)
- Büşra Çoban
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Haiko Poppinga
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Bart Geurten
- Department of Zoology, Otago University, Dunedin 9016, New Zealand
| | - David Vasmer
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Yogesh Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Idan Alyagor
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | | | - Annekathrin Widmann
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Liao QQ, Shu X, Sun W, Mandapaka H, Xie F, Zhang Z, Dai T, Wang S, Zhao J, Jiang H, Zhang L, Lin J, Li SW, Coin I, Yang F, Peng J, Li K, Wu H, Zhou F, Yang B. Capturing Protein-Protein Interactions with Acidic Amino Acids Reactive Cross-Linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308383. [PMID: 38073323 DOI: 10.1002/smll.202308383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Indexed: 05/18/2024]
Abstract
Acidic residues (Asp and Glu) have a high prevalence on protein surfaces, but cross-linking reactions targeting these residues are limited. Existing methods either require high-concentration coupling reagents or have low structural compatibility. Here a previously reported "plant-and-cast" strategy is extended to develop heterobifunctional cross-linkers. These cross-linkers first react rapidly with Lys sidechains and then react with Asp and Glu sidechains, in a proximity-enhanced fashion. The cross-linking reaction proceeds at neutral pH and room temperature without coupling reagents. The efficiency and robustness of cross-linking using model proteins, ranging from small monomeric proteins to large protein complexes are demonstrated. Importantly, it is shown that this type of cross-linkers are efficient at identifying protein-protein interactions involving acidic domains. The Cross-linking mass spectrometry (XL-MS) study with p53 identified 87 putative binders of the C-terminal domain of p53. Among them, SARNP, ZRAB2, and WBP11 are shown to regulate the expression and alternative splicing of p53 target genes. Thus, these carboxylate-reactive cross-linkers will further expand the power of XL-MS in the analysis of protein structures and protein-protein interactions.
Collapse
Affiliation(s)
- Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wei Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hyma Mandapaka
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Feng Xie
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhengkui Zhang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tong Dai
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shuai Wang
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital Fudan University, Shanghai, 200438, China
| | - Shu-Wei Li
- Nanjing Apollomics Biotech, Inc, Nanjing, Jiangsu, 210033, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103, Leipzig, Germany
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, KS, 67260, USA
| | - Fangfang Zhou
- Institute of Biology and Medical Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
33
|
Kaufhold D, Maristany de Las Casas E, Ocaña-Fernández MDÁ, Cazala A, Yuan M, Kulik A, Cholvin T, Steup S, Sauer JF, Eyre MD, Elgueta C, Strüber M, Bartos M. Spine plasticity of dentate gyrus parvalbumin-positive interneurons is regulated by experience. Cell Rep 2024; 43:113806. [PMID: 38377001 DOI: 10.1016/j.celrep.2024.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Experience-driven alterations in neuronal activity are followed by structural-functional modifications allowing cells to adapt to these activity changes. Structural plasticity has been observed for cortical principal cells. However, how GABAergic interneurons respond to experience-dependent network activity changes is not well understood. We show that parvalbumin-expressing interneurons (PVIs) of the dentate gyrus (DG) possess dendritic spines, which undergo behaviorally induced structural dynamics. Glutamatergic inputs at PVI spines evoke signals with high spatial compartmentalization defined by neck length. Mice experiencing novel contexts form more PVI spines with elongated necks and exhibit enhanced network and PVI activity and cFOS expression. Enhanced green fluorescent protein reconstitution across synaptic partner-mediated synapse labeling shows that experience-driven PVI spine growth boosts targeting of PVI spines over shafts by glutamatergic synapses. Our findings propose a role for PVI spine dynamics in regulating PVI excitation by their inputs, which may allow PVIs to dynamically adjust their functional integration in the DG microcircuitry in relation to network computational demands.
Collapse
Affiliation(s)
- Dorthe Kaufhold
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | | | - Aurore Cazala
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mei Yuan
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Akos Kulik
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thibault Cholvin
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Steup
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mark D Eyre
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Michael Strüber
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, 60528 Frankfurt am Main, Germany
| | - Marlene Bartos
- Institute of Physiology I, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
34
|
Abubaker MB, Hsu FY, Feng KL, Chu LA, de Belle JS, Chiang AS. Asymmetric neurons are necessary for olfactory learning in the Drosophila brain. Curr Biol 2024; 34:946-957.e4. [PMID: 38320552 DOI: 10.1016/j.cub.2024.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
Animals have complementary parallel memory systems that process signals from various sensory modalities. In the brain of the fruit fly Drosophila melanogaster, mushroom body (MB) circuitry is the primary associative neuropil, critical for all stages of olfactory memory. Here, our findings suggest that active signaling from specific asymmetric body (AB) neurons is also crucial for this process. These AB neurons respond to odors and electric shock separately and exhibit timing-sensitive neuronal activity in response to paired stimulation while leaving a decreased memory trace during retrieval. Our experiments also show that rutabaga-encoded adenylate cyclase, which mediates coincidence detection, is required for learning and short-term memory in both AB and MB. We observed additive effects when manipulating rutabaga co-expression in both structures. Together, these results implicate the AB in playing a critical role in associative olfactory learning and short-term memory.
Collapse
Affiliation(s)
| | - Fu-Yu Hsu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Lin Feng
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - J Steven de Belle
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA; Department of Psychological Sciences, University of San Diego, San Diego, CA 92110, USA; School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; MnemOdyssey LLC, Escondido, CA 92027, USA
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 35053, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
35
|
Castaneda AN, Huda A, Whitaker IBM, Reilly JE, Shelby GS, Bai H, Ni L. Functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango in Drosophila (FLIPSOT). PLoS Genet 2024; 20:e1011190. [PMID: 38483970 PMCID: PMC10965055 DOI: 10.1371/journal.pgen.1011190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/26/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.
Collapse
Affiliation(s)
- Allison N. Castaneda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ainul Huda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Iona B. M. Whitaker
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Julianne E. Reilly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Grace S. Shelby
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hua Bai
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
36
|
Gercke D, Lenz F, Jose J. Split-GFP complementation at the bacterial cell surface for antibody-free labeling and quantification of heterologous protein display. Enzyme Microb Technol 2024; 174:110391. [PMID: 38176324 DOI: 10.1016/j.enzmictec.2023.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1-10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.
Collapse
Affiliation(s)
- David Gercke
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany
| | - Florian Lenz
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany
| | - Joachim Jose
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
37
|
Ligunas GD, Paniagua G, LaBelle J, Ramos-Martinez A, Shen K, Gerlt EH, Aguilar K, Nguyen A, Materna SC, Woo S. Tissue-specific and endogenous protein labeling with split fluorescent proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.581822. [PMID: 38464062 PMCID: PMC10925240 DOI: 10.1101/2024.02.28.581822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The ability to label proteins by fusion with genetically encoded fluorescent proteins is a powerful tool for understanding dynamic biological processes. However, current approaches for expressing fluorescent protein fusions possess drawbacks, especially at the whole organism level. Expression by transgenesis risks potential overexpression artifacts while fluorescent protein insertion at endogenous loci is technically difficult and, more importantly, does not allow for tissue-specific study of broadly expressed proteins. To overcome these limitations, we have adopted the split fluorescent protein system mNeonGreen21-10/11 (split-mNG2) to achieve tissue-specific and endogenous protein labeling in zebrafish. In our approach, mNG21-10 is expressed under a tissue-specific promoter using standard transgenesis while mNG211 is inserted into protein-coding genes of interest using CRISPR/Cas-directed gene editing. Each mNG2 fragment on its own is not fluorescent, but when co-expressed the fragments self-assemble into a fluorescent complex. Here, we report successful use of split-mNG2 to achieve differential labeling of the cytoskeleton genes tubb4b and krt8 in various tissues. We also demonstrate that by anchoring the mNG21-10 component to specific cellular compartments, the split-mNG2 system can be used to manipulate protein function. Our approach should be broadly useful for a wide range of applications.
Collapse
Affiliation(s)
- Gloria D. Ligunas
- Department of Molecular Cell Biology, University of California, Merced, CA USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA USA
| | - German Paniagua
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| | - Jesselynn LaBelle
- Department of Molecular Cell Biology, University of California, Merced, CA USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA USA
| | | | - Kyle Shen
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| | - Emma H. Gerlt
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| | - Kaddy Aguilar
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| | - Alice Nguyen
- Department of Molecular Cell Biology, University of California, Merced, CA USA
| | - Stefan C. Materna
- Department of Molecular Cell Biology, University of California, Merced, CA USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA USA
- Health Sciences Research Institute, University of California, Merced, CA USA
| | - Stephanie Woo
- Department of Molecular Cell Biology, University of California, Merced, CA USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, CA USA
- Health Sciences Research Institute, University of California, Merced, CA USA
| |
Collapse
|
38
|
Yim H, Choe DT, Bae JA, Choi MK, Kang HM, Nguyen KCQ, Ahn S, Bahn SK, Yang H, Hall DH, Kim JS, Lee J. Comparative connectomics of dauer reveals developmental plasticity. Nat Commun 2024; 15:1546. [PMID: 38413604 PMCID: PMC10899629 DOI: 10.1038/s41467-024-45943-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
A fundamental question in neurodevelopmental biology is how flexibly the nervous system changes during development. To address this, we reconstructed the chemical connectome of dauer, an alternative developmental stage of nematodes with distinct behavioral characteristics, by volumetric reconstruction and automated synapse detection using deep learning. With the basic architecture of the nervous system preserved, structural changes in neurons, large or small, were closely associated with connectivity changes, which in turn evoked dauer-specific behaviors such as nictation. Graph theoretical analyses revealed significant dauer-specific rewiring of sensory neuron connectivity and increased clustering within motor neurons in the dauer connectome. We suggest that the nervous system in the nematode has evolved to respond to harsh environments by developing a quantitatively and qualitatively differentiated connectome.
Collapse
Affiliation(s)
- Hyunsoo Yim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daniel T Choe
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - J Alexander Bae
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Kyu Choi
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hae-Mook Kang
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ken C Q Nguyen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Soungyub Ahn
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Kyu Bahn
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea
| | - Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - David H Hall
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jinseop S Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, South Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Basic Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
39
|
Palchaudhuri S, Osypenko D, Schneggenburger R. Fear Learning: An Evolving Picture for Plasticity at Synaptic Afferents to the Amygdala. Neuroscientist 2024; 30:87-104. [PMID: 35822657 DOI: 10.1177/10738584221108083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unraveling the neuronal mechanisms of fear learning might allow neuroscientists to make links between a learned behavior and the underlying plasticity at specific synaptic connections. In fear learning, an innocuous sensory event such as a tone (called the conditioned stimulus, CS) acquires an emotional value when paired with an aversive outcome (unconditioned stimulus, US). Here, we review earlier studies that have shown that synaptic plasticity at thalamic and cortical afferents to the lateral amygdala (LA) is critical for the formation of auditory-cued fear memories. Despite the early progress, it has remained unclear whether there are separate synaptic inputs that carry US information to the LA to act as a teaching signal for plasticity at CS-coding synapses. Recent findings have begun to fill this gap by showing, first, that thalamic and cortical auditory afferents can also carry US information; second, that the release of neuromodulators contributes to US-driven teaching signals; and third, that synaptic plasticity additionally happens at connections up- and downstream of the LA. Together, a picture emerges in which coordinated synaptic plasticity in serial and parallel circuits enables the formation of a finely regulated fear memory.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Majeed M, Han H, Zhang K, Cao WX, Liao CP, Hobert O, Lu H. Toolkits for detailed and high-throughput interrogation of synapses in C. elegans. eLife 2024; 12:RP91775. [PMID: 38224479 PMCID: PMC10945580 DOI: 10.7554/elife.91775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Visualizing synaptic connectivity has traditionally relied on time-consuming electron microscopy-based imaging approaches. To scale the analysis of synaptic connectivity, fluorescent protein-based techniques have been established, ranging from the labeling of specific pre- or post-synaptic components of chemical or electrical synapses to transsynaptic proximity labeling technology such as GRASP and iBLINC. In this paper, we describe WormPsyQi, a generalizable image analysis pipeline that automatically quantifies synaptically localized fluorescent signals in a high-throughput and robust manner, with reduced human bias. We also present a resource of 30 transgenic strains that label chemical or electrical synapses throughout the nervous system of the nematode Caenorhabditis elegans, using CLA-1, RAB-3, GRASP (chemical synapses), or innexin (electrical synapse) reporters. We show that WormPsyQi captures synaptic structures in spite of substantial heterogeneity in neurite morphology, fluorescence signal, and imaging parameters. We use these toolkits to quantify multiple obvious and subtle features of synapses - such as number, size, intensity, and spatial distribution of synapses - in datasets spanning various regions of the nervous system, developmental stages, and sexes. Although the pipeline is described in the context of synapses, it may be utilized for other 'punctate' signals, such as fluorescently tagged neurotransmitter receptors and cell adhesion molecules, as well as proteins in other subcellular contexts. By overcoming constraints on time, sample size, cell morphology, and phenotypic space, this work represents a powerful resource for further analysis of synapse biology in C. elegans.
Collapse
Affiliation(s)
- Maryam Majeed
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Haejun Han
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
| | - Keren Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Wen Xi Cao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Hang Lu
- The Parker H Petit Institute of Bioengineering and Bioscience, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
41
|
Jung H, Han D, Lee C, Kaang BK. Synaptic Engram. ADVANCES IN NEUROBIOLOGY 2024; 38:131-145. [PMID: 39008014 DOI: 10.1007/978-3-031-62983-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The concept of the engram refers to structural and/or physiological changes that underlie memory associations during learning. However, the precise biological basis of the engram remains elusive, with ongoing controversy regarding whether it resides at the cellular level or within the synaptic connections between activated cells. Here, we briefly review the studies investigating the cellular engram and the challenges they encounter. Subsequently, we delve into the biological basis of the engram within synaptic connections. In this regard, we introduce the history of synaptic engrams and discuss recent findings suggesting that synaptic plasticity serves as a substrate for memory. Additionally, we provide an overview of key technologies utilized in the study of synaptic plasticity.
Collapse
Affiliation(s)
- Hyunsu Jung
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Daehee Han
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Chaery Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science (IBS), Daejeon, South Korea.
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea.
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
42
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
43
|
Moghimianavval H, Mohapatra S, Liu AP. A Mammalian-Based Synthetic Biology Toolbox to Engineer Membrane-Membrane Interfaces. Methods Mol Biol 2024; 2774:43-58. [PMID: 38441757 DOI: 10.1007/978-1-0716-3718-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Intercellular membrane-membrane interfaces are compartments with specialized functions and unique biophysical properties that are essential in numerous cellular processes including cell signaling, development, and immunity. Using synthetic biology to engineer or to create novel cellular functions in the intercellular regions has led to an increasing need for a platform that allows generation of functionalized intercellular membrane-membrane interfaces. Here, we present a synthetic biology platform to engineer functional membrane-membrane interfaces using a pair of dimerizing proteins in both cell-free and cellular environments. We envisage this platform to be a helpful tool for synthetic biologists who wish to engineer novel intercellular signaling and communication systems.
Collapse
Affiliation(s)
| | - Sonisilpa Mohapatra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Binu K, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and conditional epitope-tagging of endogenous G protein coupled receptors in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573472. [PMID: 38234787 PMCID: PMC10793450 DOI: 10.1101/2023.12.27.573472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein coupled receptors (GPCRs) in Drosophila , we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Octβ1R, Octβ2R, two isoforms of OAMB, and mGluR. The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show that 5-HT1A and 5-HT2B localize to the mushroom bodies and central complex respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their function at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the mushroom bodies as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor. Significance Statement In Drosophila , despite remarkable advances in both connectomic and genomic studies, antibodies to many aminergic GPCRs are not available. We have overcome this obstacle using evolutionary conservation to identify loci in GPCRs amenable to epitope-tagging, and CRISPR/Cas9 genome editing to generated eight novel lines. This method also may be applied to other GPCRs and allows cell-specific expression of the tagged locus. We have used the tagged alleles we generated to address several questions that remain poorly understood. These include the relationship between pre- and post-synaptic sites that express the same receptor, and the use of relatively distant targets by pre-synaptic release sites that may employ volume transmission as well as standard synaptic signaling.
Collapse
|
45
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
46
|
Cowen MH, Reddy KC, Chalasani SH, Hart MP. Conserved autism-associated genes tune social feeding behavior in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570116. [PMID: 38106124 PMCID: PMC10723370 DOI: 10.1101/2023.12.05.570116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Animal foraging is an essential and evolutionarily conserved behavior that occurs in social and solitary contexts, but the underlying molecular pathways are not well defined. We discover that conserved autism-associated genes (NRXN1(nrx-1), NLGN3(nlg-1), GRIA1,2,3(glr-1), GRIA2(glr-2), and GLRA2,GABRA3(avr-15)) regulate aggregate feeding in C. elegans, a simple social behavior. NRX-1 functions in chemosensory neurons (ADL and ASH) independently of its postsynaptic partner NLG-1 to regulate social feeding. Glutamate from these neurons is also crucial for aggregate feeding, acting independently of NRX-1 and NLG-1. Compared to solitary counterparts, social animals show faster presynaptic release and more presynaptic release sites in ASH neurons, with only the latter requiring nrx-1. Disruption of these distinct signaling components additively converts behavior from social to solitary. Aggregation induced by circuit activation is also dependent on nrx-1. Collectively, we find that aggregate feeding is tuned by conserved autism-associated genes through complementary synaptic mechanisms, revealing molecular principles driving social feeding.
Collapse
Affiliation(s)
- Mara H. Cowen
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| | - Kirthi C. Reddy
- Molecular Neurobiology Laboratory, Salk Institute, La Jolla, CA
| | | | - Michael P. Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
- Autism Spectrum Program of Excellence, Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
47
|
Minegishi M, Kuchimaru T, Nishikawa K, Isagawa T, Iwano S, Iida K, Hara H, Miura S, Sato M, Watanabe S, Shiomi A, Mabuchi Y, Hamana H, Kishi H, Sato T, Sawaki D, Sato S, Hanazono Y, Suzuki A, Kohro T, Kadonosono T, Shimogori T, Miyawaki A, Takeda N, Shintaku H, Kizaka-Kondoh S, Nishimura S. Secretory GFP reconstitution labeling of neighboring cells interrogates cell-cell interactions in metastatic niches. Nat Commun 2023; 14:8031. [PMID: 38052804 PMCID: PMC10697979 DOI: 10.1038/s41467-023-43855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Cancer cells inevitably interact with neighboring host tissue-resident cells during the process of metastatic colonization, establishing a metastatic niche to fuel their survival, growth, and invasion. However, the underlying mechanisms in the metastatic niche are yet to be fully elucidated owing to the lack of methodologies for comprehensively studying the mechanisms of cell-cell interactions in the niche. Here, we improve a split green fluorescent protein (GFP)-based genetically encoded system to develop secretory glycosylphosphatidylinositol-anchored reconstitution-activated proteins to highlight intercellular connections (sGRAPHIC) for efficient fluorescent labeling of tissue-resident cells that neighbor on and putatively interact with cancer cells in deep tissues. The sGRAPHIC system enables the isolation of metastatic niche-associated tissue-resident cells for their characterization using a single-cell RNA sequencing platform. We use this sGRAPHIC-leveraged transcriptomic platform to uncover gene expression patterns in metastatic niche-associated hepatocytes in a murine model of liver metastasis. Among the marker genes of metastatic niche-associated hepatocytes, we identify Lgals3, encoding galectin-3, as a potential pro-metastatic factor that accelerates metastatic growth and invasion.
Collapse
Affiliation(s)
- Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Takahiro Kuchimaru
- RIKEN Cluster for Pioneering Research, Saitama, Japan.
- Graduate School of Medicine, Jichi Medical University, Tochigi, Japan.
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
- Data Science Center, Jichi Medical University, Tochigi, Japan.
| | | | - Takayuki Isagawa
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Data Science Center, Jichi Medical University, Tochigi, Japan
| | - Satoshi Iwano
- RIKEN Center for Brain Science, Saitama, Japan
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - Kei Iida
- Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Hiromasa Hara
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Shizuka Miura
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Marika Sato
- MediGear International Corporation, Kanagawa, Japan
| | | | | | - Yo Mabuchi
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
- School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroshi Hamana
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tatsuyuki Sato
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Daigo Sawaki
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Clinical Pharmacology, Jichi Medical University, Tochigi, Japan
| | - Shigeru Sato
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yutaka Hanazono
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Atsushi Suzuki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takahide Kohro
- Data Science Center, Jichi Medical University, Tochigi, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | | | | | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
48
|
Valiente-Gabioud AA, Garteizgogeascoa Suñer I, Idziak A, Fabritius A, Basquin J, Angibaud J, Nägerl UV, Singh SP, Griesbeck O. Fluorescent sensors for imaging of interstitial calcium. Nat Commun 2023; 14:6220. [PMID: 37798285 PMCID: PMC10556026 DOI: 10.1038/s41467-023-41928-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Calcium in interstitial fluids is central to systemic physiology and a crucial ion pool for entry into cells through numerous plasma membrane channels. Its study has been limited by the scarcity of methods that allow monitoring in tight inter-cell spaces of living tissues. Here we present high performance ultra-low affinity genetically encoded calcium biosensors named GreenT-ECs. GreenT-ECs combine large fluorescence changes upon calcium binding and binding affinities (Kds) ranging from 0.8 mM to 2.9 mM, making them tuned to calcium concentrations in extracellular organismal fluids. We validated GreenT-ECs in rodent hippocampal neurons and transgenic zebrafish in vivo, where the sensors enabled monitoring homeostatic regulation of tissue interstitial calcium. GreenT-ECs may become useful for recording very large calcium transients and for imaging calcium homeostasis in inter-cell structures in live tissues and organisms.
Collapse
Affiliation(s)
- Ariel A Valiente-Gabioud
- Max Planck Institute for Biological Intelligence, Tools for Bio-Imaging, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Inés Garteizgogeascoa Suñer
- Institute de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), 808 Route de Lennik, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Agata Idziak
- Institut Interdisciplinaire de Neurosciences, Synaptic Plasticity and Super-Resolution Microscopy, CNRS - Université de Bordeaux - 146 rue Léo-Saignat, Bordeaux, France
| | - Arne Fabritius
- Max Planck Institute for Biological Intelligence, Tools for Bio-Imaging, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Jérome Basquin
- Structural Cell Biology, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Julie Angibaud
- Institut Interdisciplinaire de Neurosciences, Synaptic Plasticity and Super-Resolution Microscopy, CNRS - Université de Bordeaux - 146 rue Léo-Saignat, Bordeaux, France
| | - U Valentin Nägerl
- Institut Interdisciplinaire de Neurosciences, Synaptic Plasticity and Super-Resolution Microscopy, CNRS - Université de Bordeaux - 146 rue Léo-Saignat, Bordeaux, France
| | - Sumeet Pal Singh
- Institute de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), 808 Route de Lennik, Université Libre de Bruxelles (ULB), 1070, Brussels, Belgium
| | - Oliver Griesbeck
- Max Planck Institute for Biological Intelligence, Tools for Bio-Imaging, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
49
|
Salzberg Y, Haque R, Oren-Suissa M. The synaptic basis for sexual dimorphism in the invertebrate nervous system. Curr Opin Neurobiol 2023; 82:102757. [PMID: 37572555 PMCID: PMC10506627 DOI: 10.1016/j.conb.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Many animal behaviors are manifested differently in the two sexes of a given species, but how such sexual dimorphism is imprinted in the nervous system is not always clear. One mechanism involved is synaptic dimorphism, by which the same neurons exist in the two sexes, but form synapses that differ in features such as anatomy, molecular content or fate. While some evidence for synaptic dimorphism exists in humans and mammals, identifying these mechanisms in invertebrates has proven simpler, due to their smaller nervous systems and absence of external regulation by sex hormones. This review aims to present the current status of the field in invertebrates, the available toolkit for the study of synaptic dimorphism, and the standing questions that still remain incompletely answered.
Collapse
Affiliation(s)
- Yehuda Salzberg
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rizwanul Haque
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Meital Oren-Suissa
- Department of Brain Science, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
50
|
Harish RK, Gupta M, Zöller D, Hartmann H, Gheisari A, Machate A, Hans S, Brand M. Real-time monitoring of an endogenous Fgf8a gradient attests to its role as a morphogen during zebrafish gastrulation. Development 2023; 150:dev201559. [PMID: 37665167 PMCID: PMC10565248 DOI: 10.1242/dev.201559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Morphogen gradients impart positional information to cells in a homogenous tissue field. Fgf8a, a highly conserved growth factor, has been proposed to act as a morphogen during zebrafish gastrulation. However, technical limitations have so far prevented direct visualization of the endogenous Fgf8a gradient and confirmation of its morphogenic activity. Here, we monitor Fgf8a propagation in the developing neural plate using a CRISPR/Cas9-mediated EGFP knock-in at the endogenous fgf8a locus. By combining sensitive imaging with single-molecule fluorescence correlation spectroscopy, we demonstrate that Fgf8a, which is produced at the embryonic margin, propagates by diffusion through the extracellular space and forms a graded distribution towards the animal pole. Overlaying the Fgf8a gradient curve with expression profiles of its downstream targets determines the precise input-output relationship of Fgf8a-mediated patterning. Manipulation of the extracellular Fgf8a levels alters the signaling outcome, thus establishing Fgf8a as a bona fide morphogen during zebrafish gastrulation. Furthermore, by hindering Fgf8a diffusion, we demonstrate that extracellular diffusion of the protein from the source is crucial for it to achieve its morphogenic potential.
Collapse
Affiliation(s)
- Rohit Krishnan Harish
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Mansi Gupta
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Daniela Zöller
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Hella Hartmann
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Ali Gheisari
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- CMCB Technology Platform, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Anja Machate
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Stefan Hans
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Michael Brand
- CRTD – Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
- PoL – Cluster of Excellence Physics of Life, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| |
Collapse
|