1
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Gross S, Danielyan L, Buechler C, Kubitza M, Klein K, Schwab M, Melter M, Weiss TS. Hepatic Amyloid Beta-42-Metabolizing Proteins in Liver Steatosis and Metabolic Dysfunction-Associated Steatohepatitis. Int J Mol Sci 2024; 25:8768. [PMID: 39201455 PMCID: PMC11354580 DOI: 10.3390/ijms25168768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Amyloid beta (Aβ) plays a major role in the pathogenesis of Alzheimer's disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aβ-42 levels and the expression of genes involved in the generation, degradation, and transport of Aβ proteins in liver samples from patients at different stages of metabolic dysfunction-associated liver disease (MASLD) and under steatotic conditions in vitro/in vivo. Amyloid precursor protein (APP), key Aβ-metabolizing proteins, and Aβ-42 were analyzed using RT-PCR, Western blotting, Luminex analysis in steatotic in vitro and fatty liver mouse models, and TaqMan qRT-PCR analysis in hepatic samples from patients with MASLD. Hepatocytes loaded with palmitic acid induced APP, presenilin, and neprilysin (NEP) expression, which was reversed by oleic acid. Increased APP and NEP, decreased BACE1, and unchanged Aβ-42 protein levels were found in the steatotic mouse liver compared to the normal liver. Aβ-42 concentrations were low in MASLD samples of patients with moderate to severe fibrosis compared to the livers of patients with mild or no MASLD. Consistent with the reduced Aβ-42 levels, the mRNA expression of proteins involved in APP degradation (ADAM9/10/17, BACE2) and Aβ-42 cleavage (MMP2/7/9, ACE) was increased. In the steatotic liver, the expression of APP- and Aβ-metabolizing proteins is increased, most likely related to oxidative stress, but does not affect hepatic Aβ-42 levels. Consistent with our previous findings, low Aβ-42 levels in patients with liver fibrosis appear to be caused by the reduced production and enhanced non-amyloidogenic processing of APP.
Collapse
Affiliation(s)
- Simon Gross
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, 72076 Tuebingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tuebingen, 72076 Tuebingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, 72076 Tuebingen, Germany
- Department of Biochemistry and Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael Melter
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas S. Weiss
- Children’s University Hospital (KUNO), University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Liver Cell Research, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Foret MK, Orciani C, Welikovitch LA, Huang C, Cuello AC, Do Carmo S. Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimer's-like transgenic rat model. Commun Biol 2024; 7:861. [PMID: 39004677 PMCID: PMC11247100 DOI: 10.1038/s42003-024-06552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAβ)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1. DNA damage was further evidenced by increased neuronal levels of XPD (Ercc2) and γH2AX foci, indicative of DNA double stranded breaks (DSBs), and by increased expression of Ercc6, Rad51, and Fen1, and decreased Sirt6 in hippocampal homogenates. We also found increased expression of synaptic plasticity genes (Grin2b (NR2B), CamkIIα, Bdnf, c-fos, and Homer1A) and increased protein levels of TOP2β. Our findings indicate that early accumulation of iAβ, prior to Aβ plaques, is accompanied by incipient oxidative stress and DSBs that may arise directly from oxidative stress or from maladaptive synaptic plasticity.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Park J, Won J, Yang E, Seo J, Cho J, Seong JB, Yeo HG, Kim K, Kim YG, Kim M, Jeon CY, Lim KS, Lee DS, Lee Y. Peroxiredoxin 1 inhibits streptozotocin-induced Alzheimer's disease-like pathology in hippocampal neuronal cells via the blocking of Ca 2+/Calpain/Cdk5-mediated mitochondrial fragmentation. Sci Rep 2024; 14:15642. [PMID: 38977865 PMCID: PMC11231305 DOI: 10.1038/s41598-024-66256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Oxidative stress plays an essential role in the progression of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. Streptozotocin (STZ)-induced abnormal brain insulin signaling and oxidative stress play crucial roles in the progression of Alzheimer's disease (AD)-like pathology. Peroxiredoxins (Prxs) are associated with protection from neuronal death induced by oxidative stress. However, the molecular mechanisms underlying Prxs on STZ-induced progression of AD in the hippocampal neurons are not yet fully understood. Here, we evaluated whether Peroxiredoxin 1 (Prx1) affects STZ-induced AD-like pathology and cellular toxicity. Prx1 expression was increased by STZ treatment in the hippocampus cell line, HT-22 cells. We evaluated whether Prx1 affects STZ-induced HT-22 cells using overexpression. Prx1 successfully protected the forms of STZ-induced AD-like pathology, such as neuronal apoptosis, synaptic loss, and tau phosphorylation. Moreover, Prx1 suppressed the STZ-induced increase of mitochondrial dysfunction and fragmentation by down-regulating Drp1 phosphorylation and mitochondrial location. Prx1 plays a role in an upstream signal pathway of Drp1 phosphorylation, cyclin-dependent kinase 5 (Cdk5) by inhibiting the STZ-induced conversion of p35 to p25. We found that STZ-induced of intracellular Ca2+ accumulation was an important modulator of AD-like pathology progression by regulating Ca2+-mediated Calpain activation, and Prx1 down-regulated STZ-induced intracellular Ca2+ accumulation and Ca2+-mediated Calpain activation. Finally, we identified that Prx1 antioxidant capacity affected Ca2+/Calpain/Cdk5-mediated AD-like pathology progress. Therefore, these findings demonstrated that Prx1 is a key factor in STZ-induced hippocampal neuronal death through inhibition of Ca2+/Calpain/Cdk5-mediated mitochondrial dysfunction by protecting against oxidative stress.
Collapse
Affiliation(s)
- Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Eunyeoung Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jiyeon Cho
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jung Bae Seong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Minji Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. Front Aging Neurosci 2024; 16:1400447. [PMID: 39006222 PMCID: PMC11239576 DOI: 10.3389/fnagi.2024.1400447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Heier JL, Boselli DJ, Parker LL. Antibody-free time-resolved terbium luminescence assays designed for cyclin-dependent kinase 5 (CDK5). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590988. [PMID: 38712268 PMCID: PMC11071522 DOI: 10.1101/2024.04.24.590988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Novel time-resolved terbium luminescence assays were developed for CDK5 and CDK2 by designing synthetic substrates which incorporate phospho-inducible terbium sensitizing motifs with kinase substrate consensus sequences. Substrates designed for CDK5 showed no phosphorylation by CDK2, opening the possibility for CDK5-specific assay development for selective drug discovery.
Collapse
|
7
|
Mansour HM. The interference between SARS-COV-2 and Alzheimer's disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res Rev 2024; 94:102195. [PMID: 38244862 DOI: 10.1016/j.arr.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has infected over 700 million people, with up to 30% developing neurological manifestations, including dementias. However, there is a lack of understanding of common molecular brain markers causing Alzheimer's disease (AD). COVID-19 has etiological cofactors with AD, making patients with AD a vulnerable population at high risk of experiencing more severe symptoms and worse consequences. Both AD and COVID-19 have upregulated several shared kinases, leading to the repositioning of kinase inhibitors (KIs) for the treatment of both diseases. This review provides an overview of the interactions between the immune system and the nervous system in relation to receptor tyrosine kinases, including epidermal growth factor receptors, vascular growth factor receptors, and non-receptor tyrosine kinases such as Bruton tyrosine kinase, spleen tyrosine kinase, c-ABL, and JAK/STAT. We will discuss the promising results of kinase inhibitors in pre-clinical and clinical studies for both COVID-19 and Alzheimer's disease (AD), as well as the challenges in repositioning KIs for these diseases. Understanding the shared kinases between AD and COVID-19 could help in developing therapeutic approaches for both.
Collapse
Affiliation(s)
- Heba M Mansour
- General Administration of Innovative Products, Central Administration of Biological, Innovative Products, and Clinical Studies (Bio-INN), Egyptian Drug Authority (EDA), Giza, Egypt.
| |
Collapse
|
8
|
Lagunas-Rangel FA. Prediction of resveratrol target proteins: a bioinformatics analysis. J Biomol Struct Dyn 2024; 42:1088-1097. [PMID: 37011009 DOI: 10.1080/07391102.2023.2196698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Resveratrol is a natural compound with a wide range of biological functions that generate health benefits under normal conditions and in multiple diseases. This has attracted the attention of the scientific community, which has revealed that this compound exerts these effects through its action on different proteins. Despite the great efforts made, due to the challenges involved, not all the proteins with which resveratrol interacts have yet been identified. In this work, using protein target prediction bioinformatics systems, RNA sequencing analysis and protein-protein interaction networks, 16 proteins were identified as potential targets of resveratrol. Due to its biological relevance, the interaction of resveratrol with the predicted target CDK5 was further investigated. A docking analysis found that resveratrol can interact with CDK5 and be positioned in its ATP-binding pocket. Resveratrol forms hydrogen bonds between its three hydroxyl groups (-OH) and CDK5 residues C83, D86, K89 and D144. Molecular dynamics analysis showed that these bonds allow resveratrol to remain in the pocket and suggest inhibition of CDK5 activity. All this allows us to better understand how resveratrol acts and to consider CDK5 inhibition within its biological actions, mainly in neurodegenerative diseases where this protein has been shown to be relevant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Cui X, Zong S, Song W, Wang C, Liu Y, Zhang L, Xia P, Wang X, Zhao H, Wang L, Lu Z. Omaveloxolone ameliorates cognitive dysfunction in APP/PS1 mice by stabilizing the STAT3 pathway. Life Sci 2023; 335:122261. [PMID: 37951537 DOI: 10.1016/j.lfs.2023.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
AIMS To determine the availability and the potential molecular mechanisms underlying the therapeutic effect of omaveloxolone (RTA408) on Alzheimer's Disease (AD). MATERIALS AND METHODS This study employed network pharmacology to assess the feasibility of drug treatment of AD. To determine the cognitive status and emotional state of APPswe/PS1dE9 (APP/PS1) mice after the RTA408 treatment, three classical behavioral experiments (water maze, Y-maze, and open field test) were conducted. Immunofluorescence and immunohistochemical staining were utilized to evaluate hippocampal neuronal status and amyloid (Aβ) deposition in mice. RNA-seq and transcription factor prediction analyses were performed to explore the potential molecular mechanisms regulating the therapeutic effects of RTA408. Molecular docking was employed to predict the direct drug targets. To validate these molecular mechanisms, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and immunofluorescence analyses were performed in two instrumental cell lines, i.e., mouse hippocampal neuronal cells (HT22) and microglia (BV2). RESULTS RTA408 was revealed with the capability to reduce Aβ plaque deposition and to restore damaged neurons in the hippocampal region of APP/PS1 mice, ultimately leading to an improvement in cognitive function. This beneficial effect was achieved by balancing the STAT3 pathway. Specifically, RTA408 facilitated the activations of both STAT3/OXR1 and NRF2/ARE axes, thereby enhancing the compromised resistance in neurons to oxidative stress. RTA408 inhibited the NFκB/IL6/STAT3 pathway, effectively countering the neuroinflammation triggered by microglial activation. CONCLUSION RTA408 is revealed with promising potential in the treatment of AD based on preclinical data.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Wenao Song
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Le Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.
| |
Collapse
|
10
|
Alrefaie Z, Bashraheel J, Hammad HA, Ali SS, Alahmadi A. Hippocampal mitochondrial Ca ++ in experimentally induced Alzheimer's disease, link to calpains and impact of vitamin D3 supplementation. Saudi Pharm J 2023; 31:101834. [PMID: 38033745 PMCID: PMC10682656 DOI: 10.1016/j.jsps.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Vitamin D impact on hippocampal mitochondrial Ca++ and calpains was not previously investigated in Alzheimer's disease (AD). The current work aimed to assess the alteration in hippocampal mitochondrial Ca++, ATP & ADP and hippocampal calpains' level in (AlCl3)-induced AD model, and the effect of 2 regimens of vitamin D supplementation on these alterations. METHODS Forty male Wistar rats were randomized into 4 groups; control, AD (AlCl3100 mg/kg, p.o. daily for 42 days), AD and vitamin D co-treated group (AlCl3 as in AD group with vitamin D3 400 IU/kg/day, p.o. for 42 days) and AD, followed by vitamin D3 group (AlCl3 was given as in AD group for 42 days, then vitamin D3 for two weeks). AD was assessed by hippocampal levels of Aβ42, p-tau and spatial memory assessment in Morris water maze. Hippocampal mitochondrial Ca++, ATP and ADP levels besides to calpain-1 & 2 and cytochrome C were assessed in addition to CA1 histological examination. RESULTS AD animals showed impaired mitochondrial function as denoted by high Ca++ and decreased ATP and ADP and elevated calpain-1 & 2 and cytochrome C. Hippocampal CA1 region showed increased degenerated neurons and reduced thickness of its pyramidal layer. Vitamin D administration minimized the hippocampal mitochondrial impairement induced by AD and mitigated histological alterations even when supplemented post AD establishment. CONCLUSION Vitamin D administration to AD rats breaks the deleterious loop in the hippocampus that involves increased Ca++, calpain activation, mitochondrial failure, neuronal degeneration and AD disease progression.
Collapse
Affiliation(s)
- Zienab Alrefaie
- Medical Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jana Bashraheel
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam A. Hammad
- Medical Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Soad S. Ali
- Histology Department, Faculty of Medicine, Merit University, Sohage, Egypt
| | - Ahlam Alahmadi
- Biological Sciences Department, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
12
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-specificity protein phosphatase 6 (DUSP6) overexpression reduces amyloid load and improves memory deficits in male 5xFAD mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554335. [PMID: 37662269 PMCID: PMC10473733 DOI: 10.1101/2023.08.24.554335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP. Spatial learning memory of these mice was assessed in the Barnes maze, after which hippocampal tissues were isolated for downstream analysis. Results Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß 1-40 and Aß 1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation and microgliosis, which are increased in 5xFAD mice, were significantly reduced by dHc DUSP6 overexpression in both males and females. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulated expression of genes involved in inflammatory and extracellular signal-regulated kinase (ERK) pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. A limited number of differentially expressed genes (DEGs) (FDR<0.05) were identified in male mice; gene ontology analysis of DEGs (p<0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Notably, the msh homeobox 3 gene, Msx3 , previously shown to regulate microglial M1/M2 polarization and reduce neuroinflammation, was one of the most robustly upregulated genes in female and male wild type and 5xFAD mice overexpressing DUSP6. Conclusions In summary, our data indicate that DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
Collapse
|
13
|
Nguyen TH, Wang SL, Nguyen VB. Microorganism-Derived Molecules as Enzyme Inhibitors to Target Alzheimer's Diseases Pathways. Pharmaceuticals (Basel) 2023; 16:ph16040580. [PMID: 37111337 PMCID: PMC10146315 DOI: 10.3390/ph16040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It increases the risk of other serious diseases and causes a huge impact on individuals, families, and socioeconomics. AD is a complex multifactorial disease, and current pharmacological therapies are largely based on the inhibition of enzymes involved in the pathogenesis of AD. Natural enzyme inhibitors are the potential sources for targeting AD treatment and are mainly collected from plants, marine organisms, or microorganisms. In particular, microbial sources have many advantages compared to other sources. While several reviews on AD have been reported, most of these previous reviews focused on presenting and discussing the general theory of AD or overviewing enzyme inhibitors from various sources, such as chemical synthesis, plants, and marine organisms, while only a few reviews regarding microbial sources of enzyme inhibitors against AD are available. Currently, multi-targeted drug investigation is a new trend for the potential treatment of AD. However, there is no review that has comprehensively discussed the various kinds of enzyme inhibitors from the microbial source. This review extensively addresses the above-mentioned aspect and simultaneously updates and provides a more comprehensive view of the enzyme targets involved in the pathogenesis of AD. The emerging trend of using in silico studies to discover drugs concerning AD inhibitors from microorganisms and perspectives for further experimental studies are also covered here.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Doctoral Program in Applied Sciences, Tamkang University, New Taipei City 25137, Taiwan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
14
|
Abstract
Background: Cell cycle is critical for a wide range of cellular processes such as proliferation, differentiation and apoptosis in dividing cells. Neurons are postmitotic cells which have withdrawn from the cell division cycle. Recent data show us that inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs) may take part in the aetiology of neurodegenerative diseases. However, the mechanisms for cell cycle reentry in neurodegenerative disease remain unclear.Methods: Electronic databases such as Pubmed, Science Direct, Directory of Open Access Journals, PLOS were searched for relevant articles.Conclusion: The present work reviews basic aspects of cell cycle mechanism, as well as the evidence showing the expression of cell cycle proteins in neurodegenerative disease. We provide a brief summary of these findings and hope to highlight the interaction between the cell cycle reentry and neurodegenerative diseases. Moreover, we outline the possible signaling pathways. However more understanding of the mechanism of cell cycle is of great importance. Because these represents an alternative target for therapeutic interventions, leading to novel treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuxin Song
- School of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenpeng Peng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Aging. Cells 2023; 12:cells12050763. [PMID: 36899898 PMCID: PMC10001413 DOI: 10.3390/cells12050763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.
Collapse
|
16
|
Liu S, Zhang Z, Li L, Yao L, Ma Z, Li J. ADAM10- and γ-secretase-dependent cleavage of the transmembrane protein PTPRT attenuates neurodegeneration in the mouse model of Alzheimer's disease. FASEB J 2023; 37:e22734. [PMID: 36583697 DOI: 10.1096/fj.202201396r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022]
Abstract
PTPRT (receptor-type tyrosine-protein phosphatase T), a brain-specific type 1 transmembrane protein, plays an important role in neurodevelopment and synapse formation. However, whether abnormal PTPRT signaling is associated with Alzheimer's disease (AD) remains elusive. Here, we report that Ptprt mRNA expression is found to be downregulated in the brains of both human and mouse models of AD. We further identified that the PTPRT intracellular domain (PICD), which is released by ADAM10- and γ-secretase-dependent cleavage of PTPRT, efficiently translocates to the nucleus via a conserved nuclear localization signal (NLS). We show that inhibition of nuclear translocation of PICD leads to an accumulation of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), a substrate of PTPRT-eventually resulting in neuronal cell death. Consistently, RNA sequencing reveals that overexpression of PICD leads to changes in the expression of genes that are functionally associated with synapse formation, cell adhesion, and protein dephosphorylation. Moreover, overexpression of PICD not only decreases the level of phospho-STAT3Y705 and amyloid β production in the hippocampus of APP/PS1 mice but also partially improves synaptic function and behavioral deficits in this mouse model of AD. These findings suggest that a novel role of the ADAM 10- and γ-secretase-dependent cleavage of PTPRT may alleviate the AD-like neurodegenerative processes.
Collapse
Affiliation(s)
- Siling Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhongyu Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lianwei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Li Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jiali Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Institute on Drug Dependence, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming, China.,National Research Facility for Phenotypic and Genetic Analysis of Model Animals, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
17
|
Xie W, Guo D, Li J, Yue L, Kang Q, Chen G, Zhou T, Wang H, Zhuang K, Leng L, Li H, Chen Z, Gao W, Zhang J. CEND1 deficiency induces mitochondrial dysfunction and cognitive impairment in Alzheimer's disease. Cell Death Differ 2022; 29:2417-2428. [PMID: 35732922 PMCID: PMC9751129 DOI: 10.1038/s41418-022-01027-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative disease featured with memory loss and cognitive function impairments. Chronic mitochondrial stress is a vital pathogenic factor for AD and finally leads to massive neuronal death. However, the underlying mechanism is unclear. By proteomic analysis, we identified a new mitochondrial protein, cell-cycle exit and neuronal differentiation 1 (CEND1), which was decreased significantly in the brain of 5xFAD mice. CEND1 is a neuronal specific protein and locates in the presynaptic mitochondria. Depletion of CEND1 leads to increased mitochondrial fission mediated by upregulation of dynamin related protein 1 (Drp1), resulting in abnormal mitochondrial functions. CEND1 deficiency leads to cognitive impairments in mice. Overexpression of CEND1 in the hippocampus of 5xFAD mice rescued cognitive deficits. Moreover, we identified that CDK5/p25 interacted with and phosphorylated CEND1 which promoted its degradation. Our study provides new mechanistic insights in mitochondrial function regulations by CEND1 in Alzheimer's disease.
Collapse
Affiliation(s)
- Wenting Xie
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dong Guo
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jieyin Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Yue
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Qi Kang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guimiao Chen
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Tingwen Zhou
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Han Wang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kai Zhuang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lige Leng
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huifang Li
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenyi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China
| | - Weiwei Gao
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
| | - Jie Zhang
- Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, Fujian, 350004, China.
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
18
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
19
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
20
|
Gao P, Wang Z, Lei M, Che J, Zhang S, Zhang T, Hu Y, Shi L, Cui L, Liu J, Noda M, Peng Y, Long J. Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer's disease. Pharmacol Res 2022; 180:106227. [PMID: 35452800 DOI: 10.1016/j.phrs.2022.106227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) has become a major public health problem that affects the elderly population. Therapeutic compounds with curative effects are not available due to the complex pathogenesis of AD. Daphnetin, a natural coumarin derivative and inhibitor of various kinases, has anti-inflammatory and antioxidant activities. In this study, we found that daphnetin improved spatial learning and memory in an amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mouse model of AD. Daphnetin markedly decreased the levels of amyloid-β peptide 1-40 (Aβ40) and 1-42 (Aβ42) in the cerebral cortex, downregulated the expressions of enzymes involved in APP processing, e.g., beta-site APP-cleaving enzyme (BACE), nicastrin and presenilin enhancer protein 2 (PEN2). We further found the reduced serum levels of inflammatory factors, including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine (C-C motif) ligand 3 (CCL3), while daphnetin increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels in the serum. Interestingly, daphnetin markedly decreased the expression of glial fibrillary acidic protein (GFAP) and the upstream regulatory molecule- phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in APP/PS1 mice, and mainly inhibited the phosphorylation of STAT3 at Ser727 to decrease GFAP expression evidenced in a LPS-activated glial cell model. These results suggest that daphnetin ameliorates cognitive deficits and that Aβ deposition in APP/PS1 mice is mainly correlated with astrocyte activation and APP processing.
Collapse
Affiliation(s)
- Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengyao Lei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiaxing Che
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Le Shi
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
21
|
Li C, Wang R, Zhang Y, Hu C, Ma Q. PIAS3 suppresses damage in an Alzheimer's disease cell model by inducing the STAT3-associated STAT3/Nestin/Nrf2/HO-1 pathway. Mol Med 2021; 27:150. [PMID: 34837964 PMCID: PMC8626961 DOI: 10.1186/s10020-021-00410-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most common form of dementia, is caused by the degeneration of the central nervous system (CNS). A previous study reported that signal transducer and activator of transcription 3 (STAT3) is activated during AD development; nonetheless, the related mechanism remains unknown. Thus, this study used a cell model to explore whether and how the protein inhibitor of activated STAT3 (PIAS3) is involved in AD development. METHODS Cerebrospinal fluid (CSF) specimens of 30 patients with AD and 10 normal participants were included in this study. SH-SY5Y cells were used to constructed AD model. Relevant indices were then detected and analyzed. RESULTS The results showed that compared with the control group, PIAS3 expression was substantially decreased in patients with AD and amyloid beta (Aβ)-treated SH-SY5Y cells. PIAS3 overexpression was able to reverse the detrimental effects of Aβ treatment on cell survival and growth. Further, it could also ameliorate apoptosis and oxidative stress in Aβ-treated SH-SY5Y cells. Additionally, PIAS3 was shown to reduce the activated form of STAT3 and increase the activity of the downstream Nestin/nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway. CONCLUSIONS STAT3 reactivation by colivelin treatment negated the influence of PIAS3 on the survival, growth, apoptosis, and oxidative stress of Aβ-treated SH-SY5Y cells.
Collapse
Affiliation(s)
- Chen Li
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Ruili Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Chunting Hu
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| | - Qiaoya Ma
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Xiwu Road, Xi’an, 710004 Shaanxi People’s Republic of China
| |
Collapse
|
22
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Martinez-Usatorre A, De Palma M. Alzheimer's drug turns macrophages against cancer. NATURE CANCER 2021; 2:1119-1121. [PMID: 35122064 DOI: 10.1038/s43018-021-00284-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
24
|
Schultz B, Taday J, Menezes L, Cigerce A, Leite MC, Gonçalves CA. Calpain-Mediated Alterations in Astrocytes Before and During Amyloid Chaos in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1415-1430. [PMID: 34719501 DOI: 10.3233/jad-215182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-β clearance in astrocytes, as opposed to amyloid-β accumulation in neurons.
Collapse
Affiliation(s)
- Bruna Schultz
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Menezes
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson Cigerce
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Leite
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
26
|
Zhang Z, Li XG, Wang ZH, Song M, Ping Yu S, Su Kang S, Liu X, Zhang Z, Xie M, Liu GP, Wang JZ, Ye K. δ-Secretase-cleaved Tau stimulates Aβ production via upregulating STAT1-BACE1 signaling in Alzheimer's disease. Mol Psychiatry 2021; 26:586-603. [PMID: 30382187 PMCID: PMC6684859 DOI: 10.1038/s41380-018-0286-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
δ-Secretase, an age-dependent asparagine protease, cleaves both amyloid precursor protein (APP) and Tau and is required for amyloid plaque and neurofibrillary tangle pathologies in Alzheimer's disease (AD). However, whether δ-secretase activation is sufficient to trigger AD pathogenesis remains unknown. Here we show that the fragments of δ-secretase-cleavage, APP (586-695) and Tau(1-368), additively drive AD pathogenesis and cognitive dysfunctions. Tau(1-368) strongly augments BACE1 expression and Aβ generation in the presence of APP. The Tau(1-368) fragment is more robust than full-length Tau in binding active STAT1, a BACE1 transcription factor, and promotes its nuclear translocation, upregulating BACE1 and Aβ production. Notably, Aβ-activated SGK1 or JAK2 kinase phosphorylates STAT1 and induces its association with Tau(1-368). Inhibition of these kinases diminishes stimulatory effect of Tau(1-368). Knockout of STAT1 abolishes AD pathologies induced by δ-secretase-generated APP and Tau fragments. Thus, we show that Tau may not only be a downstream effector of Aβ in the amyloid hypothesis, but also act as a driving force for Aβ, when cleaved by δ-secretase.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao-Guang Li
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhi-Hao Wang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingke Song
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Aneasthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Manling Xie
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gong-Ping Liu
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian-Zhi Wang
- Pathophysiology Department, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
27
|
Millot P, San C, Bennana E, Porte B, Vignal N, Hugon J, Paquet C, Hosten B, Mouton-Liger F. STAT3 inhibition protects against neuroinflammation and BACE1 upregulation induced by systemic inflammation. Immunol Lett 2020; 228:129-134. [PMID: 33096140 DOI: 10.1016/j.imlet.2020.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Abnormal activation of the transcriptional factor STAT3 (signal transducer and activator of transcription 3) was recently associated with Alzheimer Disease (AD). STAT3 phosphorylation is critical for cytokine secretion linked to neuroinflammation. Moreover, STAT3 may act as a transcriptional regulator of BACE1 (β-APP cleaving enzyme-1), the key enzyme in amyloid β (Aβ) production. We have previously shown that neuroinflammation and increased brain BACE1 levels triggered by LPS-induced systemic inflammation in wild-type mice are associated with an enhanced STAT3 activation. Using this LPS model, the goal of this study was to investigate if a STAT3 inhibitor administration could be protective against neuroinflammation and abnormal BACE1 regulation. Our results show that intraperitoneal injection of Stattic, a molecule that selectively inhibits the activation of STAT3, decreases LPS-induced microglial activation in the hippocampus. In addition, STAT3 inhibition reduced brain levels of cytokines IL-6, IL-1β and TNF-α triggered by LPS systemic administration. A significant reduction of BACE1 levels was observed in the hippocampus of mice treated with LPS and Stattic compared to those exposed to LPS alone. Taking together, our results show that Stattic can protect hippocampus against two pathological hallmarks of AD, and pave the way for further explorations of the therapeutic potential of STAT3 inhibition in AD.
Collapse
Affiliation(s)
- Périne Millot
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Carine San
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP. Nord Université de Paris, SaintLouis Hospital, Paris, France
| | - Evangeline Bennana
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Baptiste Porte
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Nicolas Vignal
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP. Nord Université de Paris, SaintLouis Hospital, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP. Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Jacques Hugon
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Claire Paquet
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France
| | - Benoit Hosten
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Unité Claude Kellershohn, Institut de Recherche Saint-Louis, APHP. Nord Université de Paris, SaintLouis Hospital, Paris, France
| | - François Mouton-Liger
- INSERM U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France; Centre de Neurologie Cognitive/CMRR Paris Nord Ile de France, APHP Nord Université de Paris, Lariboisière Hospital, Paris, France.
| |
Collapse
|
28
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
29
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
30
|
Abdul Manap AS, Madhavan P, Vijayabalan S, Chia A, Fukui K. Explicating anti-amyloidogenic role of curcumin and piperine via amyloid beta (A β) explicit pathway: recovery and reversal paradigm effects. PeerJ 2020; 8:e10003. [PMID: 33062432 PMCID: PMC7532763 DOI: 10.7717/peerj.10003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/30/2020] [Indexed: 12/28/2022] Open
Abstract
Previously, we reported the synergistic effects of curcumin and piperine in cell cultures as potential anti-cholinesterase and anti-amyloidogenic agents. Due to limited findings on the enrolment of these compounds on epigenetic events in AD, we aimed at elucidating the expression profiles of Aβ42-induced SH-SY5Y cells using microarray profiling. In this study, an optimized concentration of 35 µM of curcumin and piperine in combination was used to treat Aβ42 fibril and high-throughput microarray profiling was performed on the extracted RNA. This was then compared to curcumin and piperine used singularly at 49.11 µM and 25 µM, respectively. Our results demonstrated that in the curcumin treated group, from the top 10 upregulated and top 10 downregulated significantly differentially expressed genes (p < 0.05; fold change ≥ 2 or ≤ -2), there were five upregulated and three downregulated genes involved in the amyloidogenic pathway. While from top 10 upregulated and top 10 downregulated significantly differentially expressed genes (p < 0.05; fold change ≥ 2 or ≤ - 2) in the piperine treated group, there were four upregulated and three downregulated genes involved in the same pathway, whereas there were five upregulated and two downregulated genes involved (p < 0.05; fold change ≥ 2 or ≤ - 2) in the curcumin-piperine combined group. Four genes namely GABARAPL1, CTSB, RAB5 and AK5 were expressed significantly in all groups. Other genes such as ITPR1, GSK3B, PPP3CC, ERN1, APH1A, CYCS and CALM2 were novel putative genes that are involved in the pathogenesis of AD. We revealed that curcumin and piperine have displayed their actions against Aβ via the modulation of various mechanistic pathways. Alterations in expression profiles of genes in the neuronal cell model may explain Aβ pathology post-treatment and provide new insights for remedial approaches of a combined treatment using curcumin and piperine.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Shantini Vijayabalan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Adeline Chia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Koji Fukui
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| |
Collapse
|
31
|
Cdk5 Phosphorylation of STAT3 in Dorsal Root Ganglion Neurons Is Involved in Promoting Axonal Regeneration After Peripheral Nerve Injury. Int Neurourol J 2020; 24:S19-27. [PMID: 32482054 PMCID: PMC7285696 DOI: 10.5213/inj.2040158.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The goal of this study is to investigate the role of cyclin-dependent kinase 5 (Cdk5) in axonal regeneration in dorsal root ganglion (DRG) neurons after peripheral nerve injury. METHODS Crush injury was given on the sciatic nerve in rats. The DRG tissues were prepared 1, 3, and 7 days after injury and used for western blotting and immunofluorescence staining experiments. Primary DRG neurons were prepared and treated with Cdk5 inhibitor roscovitine or used for transfections with plasmid constructs. After immunofluorescence staining, neurite length of DRG neurons was analyzed and compared among experimental groups. In addition, roscovitine was injected into the DRG in vivo, and the sciatic nerve after injury was prepared and used for immunofluorescence staining to analyze axonal regeneration in nerve sections. RESULTS Levels of Cdk5 and p25 were increased in DRG neurons after sciatic nerve injury (SNI). Levels of S727-p-STAT3, but not Y705-p-STAT3, were increased in the DRG. Immunofluorescence staining revealed that Cdk5 and STAT3 proteins were mostly colocalized in DRG neurons and Y705-p-STAT3 signals were localized within the nucleus area of DRG neurons. A blockade of Cdk5 activity by roscovitine or by transfection with dominant negative Cdk5 (dn-Cdk5) and nonphosphorylatable forms of STAT3 (S727A or Y705F) resulted in significant reductions of the neurite outgrowth of cultured DRG neurons. In vivo administration of roscovitine into the DRG markedly attenuated distal elongation of regenerating axons in the sciatic nerve after injury. CONCLUSION Our study demonstrated that Cdk5 activity induced from DRG neurons after SNI increased phosphorylation of STAT3. The activation of Cdk5-STAT3 pathway may be involved in promoting axonal regeneration in the peripheral nerve after injury.
Collapse
|
32
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
33
|
Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21061992. [PMID: 32183348 PMCID: PMC7139812 DOI: 10.3390/ijms21061992] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease directly implicated in Alzheimer’s disease (AD) pathogenesis through amyloid-β (Aβ) deposition, which may cause the development and progression of dementia. Despite extensive studies to explore drugs targeting Aβ, clinical benefits have not been reported in large clinical trials in AD patients or presymptomatic individuals at a risk for AD. However, recent studies on CAA and AD have provided novel insights regarding CAA- and AD-related pathogenesis. This work has revealed potential therapeutic targets, including Aβ drainage pathways, Aβ aggregation, oxidative stress, and neuroinflammation. The functional significance and therapeutic potential of bioactive molecules such as cilostazol and taxifolin have also become increasingly evident. Furthermore, recent epidemiological studies have demonstrated that serum levels of a soluble form of triggering receptor expressed on myeloid cells 2 (TREM2) may have clinical significance as a potential novel predictive biomarker for dementia incidence. This review summarizes recent advances in CAA and AD research with a focus on discussing future research directions regarding novel therapeutic approaches and predictive biomarkers for CAA and AD.
Collapse
|
34
|
Dókus LE, Yousef M, Bánóczi Z. Modulators of calpain activity: inhibitors and activators as potential drugs. Expert Opin Drug Discov 2020; 15:471-486. [DOI: 10.1080/17460441.2020.1722638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Levente Endre Dókus
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
35
|
Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in Amyloid-beta Pathology of Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1206-1215. [PMID: 31820699 DOI: 10.2174/1567205016666191210094435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease with irreversible cognitive
impairment. So far, successful treatment and prevention for this disease are deficient in spite of delaying
the progression of cognitive impairment and dementia. Cyclin dependent kinase 5 (Cdk5), a
unique member of the cyclin-dependent kinase family, is involved in AD pathogenesis and may be a
pathophysiological mediator that links the major pathological features of AD. Cdk5 dysregulation interferes
with the proteolytic processing of Amyloid-beta Protein Precursor (APP) and modulates amyloidbeta
(Aβ) by affecting three enzymes called α-, β- and γ-secretase, which are critical for the hydrolysis
of APP. Given that the accumulation and deposition of Aβ derived from APP are a common hinge point
in the numerous pathogenic hypotheses of AD, figuring out that influence of specific mechanisms of
Cdk5 on Aβ pathology will deepen our understanding of AD.
Collapse
Affiliation(s)
- Tao-Tao Lu
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Chengqun Wan
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Wenming Yang
- Departmentof Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031 Anhui Province, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| |
Collapse
|
36
|
Ham HJ, Han SB, Yun J, Yeo IJ, Ham YW, Kim SH, Park PH, Choi DY, Hong JT. Bee venom phospholipase A2 ameliorates amyloidogenesis and neuroinflammation through inhibition of signal transducer and activator of transcription-3 pathway in Tg2576 mice. Transl Neurodegener 2019; 8:26. [PMID: 31592103 PMCID: PMC6774221 DOI: 10.1186/s40035-019-0167-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Background Neuroinflammation and accumulation of β-amyloid (Aβ) play a significant role in the onset and progression of Alzheimer’s disease (AD). Our previous study demonstrated that signal transducer and activator of transcription-3 (STAT3) plays a major role in neuroinflammation and amyloidogenesis. Methods In the present study, we investigated the inhibitory effect of bee venom phospholipase A2 (bvPLA2) on memory deficiency in Tg2576 mice, which demonstrate genetic characteristics of AD and the mechanism of its action at the cellular and animal level. For in vivo study, we examined the effect of bvPLA2 on improving memory by conducting several behavioral tests with the administration of bvPLA2 (1 mg/kg) to Tg2576 mice. For in vitro study, we examined the effect of bvPLA2 on amyloidogenesis and neuroinflammation by treating bvPLA2 on LPS-activated BV2 cells. Results We found that bvPLA2 alleviated memory impairment in Tg2576 mice, as demonstrated in the behavioral tests assessing memory. In the bvPLA2-treated group, Aβ, amyloid precursor protein (APP), and β-secretase 1 (BACE1) levels and β-secretase activity were significantly decreased. Expression of pro-inflammatory cytokines and inflammation-related proteins decreased in the brain of bvPLA2-treated group, whereas anti-inflammatory cytokines increased. In addition, bvPLA2 reduced STAT3 phosphorylation in the brains of the bvPLA2-treated group. At the cellular level, bvPLA2 inhibits production of nitric oxide, pro-inflammatory cytokines, and inflammation-related proteins including p-STAT3. Additionally, bvPLA2 inhibits the production of Aβ in cultured BV-2 cells. Results from the docking experiment, pull-down assay, and the luciferase assay show that bvPLA2 directly binds STAT3 and, thus, regulates gene expression levels. Moreover, when the STAT3 inhibitor and bvPLA2 were administered together, the anti-amyloidogenic and anti-inflammatory effects were further enhanced than when they were administered alone. Conclusion These results suggest that bvPLA2 could restore memory by inhibiting the accumulation of Aβ and inflammatory responses via blockage of STAT3 activity. Electronic supplementary material The online version of this article (10.1186/s40035-019-0167-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyeon Joo Ham
- 1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Sang-Bae Han
- 1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Jaesuk Yun
- 1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - In Jun Yeo
- 1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| | - Young Wan Ham
- 2Department of Chemistry, Utah Valley University, 800 W University Pkwy, Orem, UT 84058 USA
| | - Se Hyun Kim
- INISTst Co., LTD, 767, Sinsu-ro, Suji-gu, Yongin-si, 16827 Gyeonggi-do Republic of Korea
| | - Pil-Hoon Park
- 4College of Pharmacy, Yeungnam University, 280 Daehak Road, Gyeonsan, Gyeongbuk, 38541 Republic of Korea
| | - Dong-Young Choi
- 4College of Pharmacy, Yeungnam University, 280 Daehak Road, Gyeonsan, Gyeongbuk, 38541 Republic of Korea
| | - Jin Tae Hong
- 1College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160 Republic of Korea
| |
Collapse
|
37
|
Barrett T, Marchalant Y, Park KH. p35 Hemizygous Deletion in 5xFAD Mice Increases Aβ Plaque Load in Males but Not in Females. Neuroscience 2019; 417:45-56. [DOI: 10.1016/j.neuroscience.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022]
|
38
|
Affiliation(s)
- Krishna Kant Gupta
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| |
Collapse
|
39
|
Zhu BL, Long Y, Luo W, Yan Z, Lai YJ, Zhao LG, Zhou WH, Wang YJ, Shen LL, Liu L, Deng XJ, Wang XF, Sun F, Chen GJ. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain 2019; 142:176-192. [PMID: 30596903 DOI: 10.1093/brain/awy305] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022] Open
Abstract
MMP13 (matrix metallopeptidase 13) plays a key role in bone metabolism and cancer development, but has no known functions in Alzheimer's disease. In this study, we used high-throughput small molecule screening in SH-SY5Y cells that stably expressed a luciferase reporter gene driven by the BACE1 (β-site amyloid precursor protein cleaving enzyme 1) promoter, which included a portion of the 5' untranslated region (5'UTR). We identified that CL82198, a selective inhibitor of MMP13, decreased BACE1 protein levels in cultured neuronal cells. This effect was dependent on PI3K (phosphatidylinositide 3-kinase) signalling, and was unrelated to BACE1 gene transcription and protein degradation. Further, we found that eukaryotic translation initiation factor 4B (eIF4B) played a key role, as the mutation of eIF4B at serine 422 (S422R) or deletion of the BACE1 5'UTR attenuated MMP13-mediated BACE1 regulation. In APPswe/PS1E9 mice, an animal model of Alzheimer's disease, hippocampal Mmp13 knockdown or intraperitoneal CL82198 administration reduced BACE1 protein levels and the related amyloid-β precursor protein processing, amyloid-β load and eIF4B phosphorylation, whereas spatial and associative learning and memory performances were improved. Collectively, MMP13 inhibition/CL82198 treatment exhibited therapeutic potential for Alzheimer's disease, via the translational regulation of BACE1.
Collapse
Affiliation(s)
- Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei Luo
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Li-Ge Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Wei-Hui Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, 136 ZhongshanEr Lu, Yuzhong District, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin-Lin Shen
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| | - Fei Sun
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, China
| |
Collapse
|
40
|
Zeb A, Son M, Yoon S, Kim JH, Park SJ, Lee KW. Computational Simulations Identified Two Candidate Inhibitors of Cdk5/p25 to Abrogate Tau-associated Neurological Disorders. Comput Struct Biotechnol J 2019; 17:579-590. [PMID: 31073393 PMCID: PMC6495220 DOI: 10.1016/j.csbj.2019.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 01/26/2023] Open
Abstract
Deregulation of Cdk5 is a hallmark in neurodegenerative diseases and its complex with p25 forms Cdk5/p25, thereby causes severe neuropathological insults. Cdk5/p25 abnormally phosphorylates tau protein, and induces tau-associated neurofibrillary tangles in neurological disorders. Therefore, the pharmacological inhibition of Cdk5/p25 alleviates tau-associated neurological disorders. Herein, computational simulations probed two candidate inhibitors of Cdk5/p25. Structure-based pharmacophore investigated the essential complementary chemical features of ATP-binding site of Cdk5 in complex with roscovitine. Resultant pharmacophore harbored polar interactions with Cys83 and Asp86 residues and non-polar interactions with Ile10, Phe80, and Lys133 residues of Cdk5. The chemical space of selected pharmacophore was comprised of two hydrogen bond donors, one hydrogen bond acceptor, and three hydrophobic features. Decoy test validation of pharmacophore obtained highest Guner-Henry score (0.88) and enrichment factor score (7.23). The screening of natural product drug-like databases by validated pharmacophore retrieved 1126 compounds as candidate inhibitors of Cdk5/p25. The docking of candidate inhibitors filtered 10 molecules with docking score >80.00 and established polar and non-polar interactions with the ATP-binding site residues of Cdk5/p25. Finally, molecular dynamics simulation and binding free energy analyses identified two candidate inhibitors of Cdk5/p25. During 30 ns simulation, the candidate inhibitors established <3.0 Å root mean square deviation and stable hydrogen bond interactions with the ATP-binding site residues of Cdk5/p25. The final candidate inhibitors obtained lowest binding free energies of -122.18 kJ/mol and - 117.26 kJ/mol with Cdk5/p25. Overall, we recommend two natural product candidate inhibitors to target the pharmacological inhibition of Cdk5/p25 in tau-associated neurological disorders.
Collapse
Key Words
- 2D, Two-dimentional
- 3D, Three-dimentional
- AD, Alzheimer's disease
- ADMET, Absorption, distribution, metabolism, excretion, and toxicity
- ASP, Astex statistical potential
- Aβ, Amyloid beta
- BBB, Blood-brain barrier
- CGMC, Cyclin-dependent kinases, mitogen-activated protein kinases, glycogen synthase kinases, and Cdk-like kinases
- Cdk5, Cyclin-dependent kinase 5
- Cdk5/p25 inhibitors
- Cdks, Cyclin-dependent kinases
- DS, Discovery Studio
- EF, Enrichment factor
- GA, Genetic algorithm
- GFA, Genetic Function Approximation
- GH, Guner-Henry
- GOLD, Genetic optimization of ligand docking
- GROMACS, Groningen Machine for Chemical Simulation
- H-bond, Hydrogen bond
- HBA, Hydrogen bond acceptor
- HBD, Hydrogen bond donor
- HD, Hungtington's disease
- HYP, Hydrophobic
- IBS, InterBioScreen
- K, kelvin
- MD, Molecular dynamics
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Molecular docking
- Molecular dynamics simulation
- NPT, Number particle, pressure, and temperature
- NVT, Number of particles, volume, and temperature
- P5, A 24-residues mimetic peptide of p35
- PD, Parkinson's disease
- PDB, Protein databank
- PLP, Piecewise linear potential
- PME, Particle mesh ewald
- RMSD, Root mean square deviation
- ROF, Rule of five
- Structure-based pharmacophore modeling
- TAT, Twin-arginine targeting
- TIP3P, Transferable intermolecular potential with 3 points
- Tau-pathogenesis
- ZNPD, Zinc Natural Product Database
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Minky Son
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Sanghwa Yoon
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21 Plus), Research Institute of Natural Science (RINS), Geyongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| | - Seok Ju Park
- Department of Internal Medicine, College of Medicine, Busan Paik Hospital, Inje University, Busan 47392, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Sciences (BK21 Plus), Research Institute of Natural Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Gyeongnam, Republic of Korea
| |
Collapse
|
41
|
Cortés N, Guzmán-Martínez L, Andrade V, González A, Maccioni RB. CDK5: A Unique CDK and Its Multiple Roles in the Nervous System. J Alzheimers Dis 2019; 68:843-855. [DOI: 10.3233/jad-180792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nicole Cortés
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Leonardo Guzmán-Martínez
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Víctor Andrade
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Andrea González
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
| | - Ricardo B. Maccioni
- Laboratory of Neurosciences, Faculty of Sciences, University of Chile, Santiago, Chile
- International Center for Biomedicine (ICC), Santiago, Chile
- Department of Neurological Sciences, Faculty of Medicine, East Campus, University of Chile, Santiago, Chile
| |
Collapse
|
42
|
Tang H, Ma M, Wu Y, Deng M, Hu F, Almansoub H, Huang H, Wang D, Zhou L, Wei N, Man H, Lu Y, Liu D, Zhu L. Activation of MT2 receptor ameliorates dendritic abnormalities in Alzheimer's disease via C/EBPα/miR-125b pathway. Aging Cell 2019; 18:e12902. [PMID: 30706990 PMCID: PMC6413662 DOI: 10.1111/acel.12902] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/26/2018] [Accepted: 12/16/2018] [Indexed: 01/24/2023] Open
Abstract
Impairments of dendritic trees and spines have been found in many neurodegenerative diseases, including Alzheimer's disease (AD), in which the deficits of melatonin signal pathway were reported. Melatonin receptor 2 (MT2) is widely expressed in the hippocampus and mediates the biological functions of melatonin. It is known that melatonin application is protective to dendritic abnormalities in AD. However, whether MT2 is involved in the neuroprotection and the underlying mechanisms are not clear. Here, we first found that MT2 is dramatically reduced in the dendritic compartment upon the insult of oligomer Aβ. MT2 activation prevented the Aβ-induced disruption of dendritic complexity and spine. Importantly, activation of MT2 decreased cAMP, which in turn inactivated transcriptional factor CCAAT/enhancer-binding protein α(C/EBPα) to suppress miR-125b expression and elevate the expression of its target, GluN2A. In addition, miR-125b mimics fully blocked the protective effects of MT2 activation on dendritic trees and spines. Finally, injection of a lentivirus containing a miR-125b sponge into the hippocampus of APP/PS1 mice effectively rescued the dendritic abnormalities and learning/memory impairments. Our data demonstrated that the cAMP-C/EBPα/miR-125b/GluN2A signaling pathway is important to the neuroprotective effects of MT2 activation in Aβ-induced dendritic injuries and learning/memory disorders, providing a novel therapeutic target for the treatment of AD synaptopathy.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Mei Ma
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ying Wu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Man‐Fei Deng
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Hasan.a.m.m. Almansoub
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - He‐Zhou Huang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Ding‐Qi Wang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Lan‐Ting Zhou
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Na Wei
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pathology, School of Basic MedicineZhengzhou UniversityZhengzhouChina
| | - Hengye Man
- Department of BiologyBoston UniversityBostonMassachusetts
| | - Youming Lu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| | - Dan Liu
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
- Department of Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ling‐Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- The Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
43
|
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer's disease. Mol Neurodegener 2018; 13:64. [PMID: 30541602 PMCID: PMC6291983 DOI: 10.1186/s13024-018-0299-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease (AD), the most prevalent neurodegenerative disease of aging, affects one in eight older Americans. Nearly all drug treatments tested for AD today have failed to show any efficacy. There is a great need for therapies to prevent and/or slow the progression of AD. The major challenge in AD drug development is lack of clarity about the mechanisms underlying AD pathogenesis and pathophysiology. Several studies support the notion that AD is a multifactorial disease. While there is abundant evidence that amyloid plays a role in AD pathogenesis, other mechanisms have been implicated in AD such as tangle formation and spread, dysregulated protein degradation pathways, neuroinflammation, and loss of support by neurotrophic factors. Therefore, current paradigms of AD drug design have been shifted from single target approach (primarily amyloid-centric) to developing drugs targeted at multiple disease aspects, and from treating AD at later stages of disease progression to focusing on preventive strategies at early stages of disease development. Here, we summarize current strategies and new trends of AD drug development, including pre-clinical and clinical trials that target different aspects of disease (mechanism-based versus non-mechanism based, e.g. symptomatic treatments, lifestyle modifications and risk factor management).
Collapse
Affiliation(s)
- Jiqing Cao
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Jianwei Hou
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jing Ping
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY 10468 USA
- Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- The Central Hospital of The Hua Zhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Cao L, Cao X, Zhou Y, Nagpure BV, Wu ZY, Hu LF, Yang Y, Sethi G, Moore PK, Bian JS. Hydrogen sulfide inhibits ATP-induced neuroinflammation and Aβ 1-42 synthesis by suppressing the activation of STAT3 and cathepsin S. Brain Behav Immun 2018; 73:603-614. [PMID: 29981830 DOI: 10.1016/j.bbi.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/24/2018] [Accepted: 07/04/2018] [Indexed: 02/02/2023] Open
Abstract
Neuroinflammation and excessive β-amyloid1-42 (Aβ1-42) generation contribute to the pathogenesis of Alzheimer's disease (AD). Emerging evidence has demonstrated that hydrogen sulfide (H2S), an endogenous gasotransmitter, produces therapeutic effects in AD; however, the underlying mechanisms remain largely elusive. In the present study, we investigated the effects of H2S on exogenous ATP-induced inflammation and Aβ1-42 production in both BV-2 and primary cultured microglial cells and analyzed the potential mechanism(s) mediating these effects. Our results showed that NaHS, an H2S donor, inhibited exogenous ATP-stimulated inflammatory responses as manifested by the reduction of pro-inflammatory cytokines, ROS and activation of nuclear factor-κB (NF-κB) pathway. Furthermore, NaHS also suppressed the enhanced production of Aβ1-42 induced by exogenous ATP, which is probably due to its inhibitory effect on exogenous ATP-boosted expression of amyloid precursor protein (APP) and activation of β- and γ-secretase enzymes. Thereafter, we found that exogenous ATP-induced inflammation and Aβ1-42 production requires the activation of signal transducer and activator of transcription 3 (STAT3) and cathepsin S (Cat S) as inhibition of the activity of either proteins attenuated the effect of exogenous ATP. Intriguingly, NaHS suppressed exogenous ATP-induced phosphorylation of STAT3 and the activation of Cat S. In addition, we observed that NaHS led to the persulfidation of Cat S at cysteine-25. Importantly, mutation of cysteine-25 into serine attenuated the activity of Cat S stimulated by exogenous ATP and subsequent inflammation and Aβ1-42 production, indicating its involvement in H2S-mediated effect. Taken together, our data provide a novel understanding of H2S-mediated effect on neuroinflammation and Aβ1-42 production by suppressing the activation of STAT3 and Cat S.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yebo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bhushan Vijay Nagpure
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Li Fang Hu
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Philp K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
45
|
Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Med Res Rev 2018; 39:608-630. [PMID: 30260518 PMCID: PMC6585958 DOI: 10.1002/med.21534] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/11/2018] [Accepted: 07/29/2018] [Indexed: 01/02/2023]
Abstract
Alzheimer’s disease (AD) is the most common (60% to 80%) age‐related disease associated with dementia and is characterized by a deterioration of behavioral and cognitive capacities leading to death in few years after diagnosis, mainly due to complications from chronic illness. The characteristic hallmarks of the disease are extracellular senile plaques (SPs) and intracellular neurofibrillary tangles (NFTs) with neuropil threads, which are a direct result of amyloid precursor protein (APP) processing to Aβ, and τ hyperphosphorylation. However, many indirect underlying processes play a role in this event. One of these underlying mechanisms leading to these histological hallmarks is the uncontrolled hyperactivation of a family of cysteine proteases called calpains. Under normal physiological condition calpains participate in many processes of cells’ life and their activation is tightly controlled. However, with an increase in age, increased oxidative stress and other excitotoxicity assaults, this regulatory system becomes impaired and result in increased activation of these proteases involving them in the pathogenesis of various diseases including neurodegeneration like AD. Reviewed here is a pool of data on the implication of calpains in the pathogenesis of AD, the underlying molecular mechanism, and the potential of targeting these enzymes for AD therapeutics.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Henok Kessete Afewerky
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tanko Mahamane Salissou Maibouge
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bishwajit Ghose
- Department of Social Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, Key Laboratory of Education Ministry of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Neurodegenerative Disorders, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
46
|
Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, Yamakawa S, Kritskiy O, Gjoneska E, Tsai LH. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons. Cell Rep 2018; 20:1319-1334. [PMID: 28793257 DOI: 10.1016/j.celrep.2017.07.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes.
Collapse
Affiliation(s)
- Hidekuni Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jemmie Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard Rueda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeta Gjoneska
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Transient enhancement of proliferation of neural progenitors and impairment of their long-term survival in p25 transgenic mice. Oncotarget 2018; 7:39148-39161. [PMID: 27283769 PMCID: PMC5129921 DOI: 10.18632/oncotarget.9834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/29/2016] [Indexed: 12/26/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) regulates important neuronal functions via p35. p35 undergoes cleavage in response to neuronal activity and neurotoxic conditions to release its subunit p25. Although p25 has been implicated in various neurodegenerative diseases, the mechanisms by which p25 mediates neurodegenerative impairment have not been fully elucidated. We aimed to determine the role of p25-mediated neurodegeneration on neurogenesis in an inducible transgenic mouse line overexpressing p25 (p25 TG) in the forebrain. Adult neuronal progenitor cells (NPCs) were labeled with BrdU in vivo, which were significantly increased in numbers in the subventricular zone, the hippocampus, and the cortex of p25 TG mice. Consistently, more mitotic cells were observed in p25 TG mice than in controls, even in the cortex and the CA1, which are not neurogenic regions. BrdU-positive cells were negative for GFAP or γ-H2AX, suggesting that they are not astrocytes or dying cells. Neurospheres derived from the dentate gyrus and the cortex were significantly increased in p25 TG mice and can be differentiated into astrocytes and neurons. However, p25 TG decreased the long-term survival of proliferating NPCs and severely impaired adult neurogenesis. A Transwell co-culture system was used to assess the influence of p25-expressing primary neurons on adult NPCs. Co-culture with p25-expressing neurons downregulated Ki67 expression and upregulated cleaved caspase-3, indicating that the paracrine signaling in cell-cell communication is essential for NPC survival and proliferation. Moreover, increased CDK5 activity impairs Wnt activation. This study demonstrates that hyperactivation of p25 may temporarily enhance NPC proliferation, but impair their long-term survival.
Collapse
|
48
|
Wilkaniec A, Gąssowska-Dobrowolska M, Strawski M, Adamczyk A, Czapski GA. Inhibition of cyclin-dependent kinase 5 affects early neuroinflammatory signalling in murine model of amyloid beta toxicity. J Neuroinflammation 2018; 15:1. [PMID: 29301548 PMCID: PMC5753486 DOI: 10.1186/s12974-017-1027-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5) belongs to the family of proline-directed serine/threonine kinases and plays a critical role in neuronal differentiation, migration, synaptogenesis, plasticity, neurotransmission and apoptosis. The deregulation of Cdk5 activity was observed in post mortem analysis of brain tissue of Alzheimer's disease (AD) patients, suggesting the involvement of Cdk5 in the pathomechanism of this neurodegenerative disease. However, our recent study demonstrated the important function of Cdk5 in regulating inflammatory reaction. METHODS Since the role of Cdk5 in regulation of inflammatory signalling in AD is unknown, we investigated the involvement of Cdk5 in neuroinflammation induced by single intracerebroventricular (icv) injection of amyloid beta protein (Aβ) oligomers in mouse. The brain tissue was analysed up to 35 days post injection. Roscovitine (intraperitoneal administration) was used as a potent Cdk5 inhibitor. The experiments were also performed on human neuroblastoma SH-SY5Y as well as mouse BV2 cell lines treated with exogenous oligomeric Aβ. RESULTS Our results demonstrated that single injection of Aβ oligomers induces long-lasting activation of microglia and astrocytes in the hippocampus. We observed also profound, early inflammatory response in the mice hippocampus, leading to the significant elevation of pro-inflammatory cytokines expression (e.g. TNF-α, IL-1β, IL-6). Moreover, Aβ oligomers elevated the formation of truncated protein p25 in mouse hippocampus and induced overactivation of Cdk5 in neuronal cells. Importantly, administration of roscovitine reduced the inflammatory processes evoked by Aβ in the hippocampus, leading to the significant decrease of cytokines level. CONCLUSIONS These studies clearly show the involvement of Cdk5 in modulation of brain inflammatory response induced by Aβ and may indicate this kinase as a novel target for pharmacological intervention in AD.
Collapse
Affiliation(s)
- Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Marcin Strawski
- Laboratory of Electrochemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Grzegorz A Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
49
|
Cui GH, Wu J, Mou FF, Xie WH, Wang FB, Wang QL, Fang J, Xu YW, Dong YR, Liu JR, Guo HD. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 2018; 32:654-668. [PMID: 28970251 DOI: 10.1096/fj.201700600r] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Administration of exosomes derived from mesenchymal stromal cells (MSCs) could improve some neurologic conditions by transferring functional biomolecules to recipient cells. Furthermore, exosomes from hypoxic progenitor cells exerted better therapeutic effects in organ injury through specific cargoes. However, there are no related reports about whether exosomes derived from MSCs or hypoxia-preconditioned MSCs (PC-MSCs) could prevent memory deficits in Alzheimer disease (AD). In this study, the exosomes derived from MSCs or PC-MSCs were systemically administered to transgenic APP/PS1 mice. The expression of miR-21 in MSCs was significantly increased after hypoxic treatment. Injection of exosomes from normoxic MSCs could rescue cognition and memory impairment according to results of the Morris water maze test, reduced plaque deposition, and Aβ levels in the brain; could decrease the activation of astrocytes and microglia; could down-regulate proinflammatory cytokines (TNF-α and IL-1β); and could up-regulate anti-inflammatory cytokines (IL-4 and -10) in AD mice, as well as reduce the activation of signal transducer and activator of transcription 3 (STAT3) and NF-κB. Compared to the group administered exosomes from normoxic MSCs, in the group administered exosomes from PC-MSCs, learning and memory capabilities were significantly improved; the plaque deposition and Aβ levels were lower, and expression of growth-associated protein 43, synapsin 1, and IL-10 was increased; and the levels of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, TNF-α, IL-1β, and activation of STAT3 and NF-κB were sharply decreased. More importantly, exosomes from PC-MSCs effectively increased the level of miR-21 in the brain of AD mice. Additionally, replenishment of miR-21 restored the cognitive deficits in APP/PS1 mice and prevented pathologic features. Taken together, these findings suggest that exosomes from PC-MSCs could improve the learning and memory capabilities of APP/PS1 mice, and that the underlying mechanism may lie in the restoration of synaptic dysfunction and regulation of inflammatory responses through regulation of miR-21.-Cui, G.-H., Wu, J., Mou, F.-F., Xie, W.-H., Wang, F.-B., Wang, Q.-L., Fang, J., Xu, Y.-W., Dong, Y.-R., Liu, J.-R., Guo, H.-D. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice.
Collapse
Affiliation(s)
- Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Hua Xie
- Department of Constipation, Acupuncture, and Moxibustion, Hospital of Anhui Province, Hefei, China
| | - Fu-Bo Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiang-Li Wang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Fang
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan-Wu Xu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - You-Rong Dong
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Ren Liu
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Choi JY, Hwang CJ, Lee DY, Gu SM, Lee HP, Choi DY, Oh KW, Han SB, Hong JT. (E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) Phenol Ameliorates LPS-Mediated Memory Impairment by Inhibition of STAT3 Pathway. Neuromolecular Med 2017; 19:555-570. [PMID: 29052076 PMCID: PMC5683055 DOI: 10.1007/s12017-017-8469-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) is pathologically characterized by an excessive accumulation of amyloid-beta (Aβ) fibrils within the brain. We tested the anti-inflammatory and anti-amyloidogenic effects of (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. We examined whether MMPP (5 mg/kg in drinking water for 1 month) prevents amyloidogenesis and cognitive impairment on AD model mice induced by intraperitoneal LPS (250 μg/kg daily 7 times) injections. Additionally, we investigated the anti-neuroinflammatory and anti-amyloidogenic effect of MMPP (1, 5, and 10 μg/mL) in LPS (1 μg/mL)-treated cultured astrocytes and microglial BV-2 cells. MMPP treatment reduced LPS-induced memory loss. This memory recovery effect was associated with the reduction of LPS-induced inflammatory proteins; cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as activation of microglial cells and astrocytes in the brain. Furthermore, MMPP reduced LPS-induced β-secretase and Aβ generation. In in vitro study, LPS-induced expression of inflammatory proteins and amyloidogenic proteins was decreased in microglial BV-2 cells and cultured astrocytes by MMPP treatment. Moreover, MMPP treatment suppressed DNA binding activities of the activation of STAT3 in in vivo and in vitro. These results indicated that MMPP inhibits LPS-induced amyloidogenesis and neuroinflammation via inhibition of STAT3.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Do Yeon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sun Mi Gu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-ro, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|