1
|
McCrimmon CM, Toker D, Pahos M, Lozano K, Lin JJ, Parent J, Tidball A, Zheng J, Molnár L, Mody I, Novitch BG, Samarasinghe RA. Modeling Cortical Versus Hippocampal Network Dysfunction in a Human Brain Assembloid Model of Epilepsy and Intellectual Disability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611739. [PMID: 39282353 PMCID: PMC11398483 DOI: 10.1101/2024.09.07.611739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions by using human patient iPSC-derived cortical- and hippocampal-ganglionic eminence assembloids to model Developmental and Epileptic Encephalopathy 13 (DEE-13), a condition arising from gain-of-function mutations in the SCN8A gene. While cortical assembloids showed network hyperexcitability akin to epileptogenic tissue, hippocampal assembloids did not, and instead displayed network dysregulation patterns similar to in vivo hippocampal recordings from epilepsy patients. Predictive computational modeling, immunohistochemistry, and single-nucleus RNA sequencing revealed changes in excitatory and inhibitory neuron organization that were specific to hippocampal assembloids. These findings highlight the unique impacts of a single pathogenic variant across brain regions and establish hippocampal assembloids as a platform for studying neurodevelopmental disorders.
Collapse
|
2
|
Shallow MC, Tian L, Lin H, Lefton KB, Chen S, Dougherty JD, Culver JP, Lambo ME, Hengen KB. At the onset of active whisking, the input layer of barrel cortex exhibits a 24 h window of increased excitability that depends on prior experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597353. [PMID: 38895408 PMCID: PMC11185658 DOI: 10.1101/2024.06.04.597353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The development of motor control over sensory organs is a critical milestone in sensory processing, enabling active exploration and shaping of the sensory environment. However, whether the onset of sensory organ motor control directly influences the development of corresponding sensory cortices remains unknown. Here, we exploit the late onset of whisking behavior in mice to address this question in the somatosensory system. Using ex vivo electrophysiology, we discovered a transient increase in the intrinsic excitability of excitatory neurons in layer IV of the barrel cortex, which processes whisker input, precisely coinciding with the onset of active whisking at postnatal day 14 (P14). This increase in neuronal gain was specific to layer IV, independent of changes in synaptic strength, and required prior sensory experience. Strikingly, the effect was not observed in layer II/III of the barrel cortex or in the visual cortex upon eye opening, suggesting a unique interaction between the development of active sensing and the thalamocortical input layer in the somatosensory system. Predictive modeling indicated that changes in active membrane conductances alone could reliably distinguish P14 neurons in control but not whisker-deprived hemispheres. Our findings demonstrate an experience-dependent, lamina-specific refinement of neuronal excitability tightly linked to the emergence of active whisking. This transient increase in the gain of the thalamic input layer coincides with a critical period for synaptic plasticity in downstream layers, suggesting a role in facilitating cortical maturation and sensory processing. Together, our results provide evidence for a direct interaction between the development of motor control and sensory cortex, offering new insights into the experience-dependent development and refinement of sensory systems. These findings have broad implications for understanding the interplay between motor and sensory development, and how the mechanisms of perception cooperate with behavior.
Collapse
Affiliation(s)
| | - Lucy Tian
- Department of Biology, Washington University in Saint Louis
| | - Hudson Lin
- Department of Biology, Washington University in Saint Louis
| | - Katheryn B Lefton
- Department of Biology, Washington University in Saint Louis
- Department of Neuroscience, Washington University in Saint Louis
| | - Siyu Chen
- Department of Genetics, Washington University in Saint Louis
| | | | - Joe P Culver
- Department of Radiology, Washington University in Saint Louis
| | - Mary E Lambo
- Department of Biology, Washington University in Saint Louis
| | - Keith B Hengen
- Department of Biology, Washington University in Saint Louis
| |
Collapse
|
3
|
Kim H, Lee K, Shim YM, Kim EE, Kim SK, Phi JH, Park CK, Choi SH, Park SH. Epigenetic Alteration of H3K27me3 as a Possible Oncogenic Mechanism of Central Neurocytoma. J Transl Med 2023; 103:100159. [PMID: 37088465 DOI: 10.1016/j.labinv.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Central neurocytoma (CN) is a low-grade neuronal tumor that mainly arises from the lateral ventricle (LV). This tumor remains poorly understood in the sense that no driver gene aberrations have been identified thus far. We investigated immunomarkers in fetal and adult brains and 45 supratentorial periventricular tumors to characterize the biomarkers, cell of origin, and tumorigenesis of CN. All CNs occurred in the LV. A minority involved the third ventricle, but none involved the fourth ventricle. As expected, next-generation sequencing performed using a brain-tumor-targeted gene panel in 7 CNs and whole exome sequencing in 5 CNs showed no driver mutations. Immunohistochemically, CNs were robustly positive for FGFR3 (100%), SSTR2 (92%), TTF-1 (Nkx2.1) (88%), GLUT-1 (84%), and L1CAM (76%), in addition to the well-known markers of CN, synaptophysin (100%) and NeuN (96%). TTF-1 was also positive in subependymal giant cell astrocytomas (100%, 5/5) and the pituicyte tumor family, including pituicytoma and spindle cell oncocytoma (100%, 5/5). Interestingly, 1 case of LV subependymoma (20%, 1/5) was positive for TTF-1, but all LV ependymomas were negative (0/5 positive). Because TTF-1-positive cells were detected in the medial ganglionic eminence around the foramen of Monro of the fetal brain and in the subventricular zone of the LV of the adult brain, CN may arise from subventricular TTF-1-positive cells undergoing neuronal differentiation. H3K27me3 loss was observed in all CNs and one case (20%) of LV subependymoma, suggesting that chromatin remodeling complexes or epigenetic alterations may be involved in the tumorigenesis of all CNs and some ST-subependymomas. Further studies are required to determine the exact tumorigenic mechanism of CN.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Dinh TT, Xiang M, Rajaraman A, Wang Y, Salazar N, Zhu Y, Roper W, Rhee S, Brulois K, O'Hara E, Kiefel H, Dinh TM, Bi Y, Gonzalez D, Bao EP, Red-Horse K, Balogh P, Gábris F, Gaszner B, Berta G, Pan J, Butcher EC. An NKX-COUP-TFII morphogenetic code directs mucosal endothelial addressin expression. Nat Commun 2022; 13:7448. [PMID: 36460642 PMCID: PMC9718832 DOI: 10.1038/s41467-022-34991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Immunoglobulin family and carbohydrate vascular addressins encoded by Madcam1 and St6gal1 control lymphocyte homing into intestinal tissues, regulating immunity and inflammation. The addressins are developmentally programmed to decorate endothelial cells lining gut post-capillary and high endothelial venules (HEV), providing a prototypical example of organ- and segment-specific endothelial specialization. We identify conserved NKX-COUP-TFII composite elements (NCCE) in regulatory regions of Madcam1 and St6gal1 that bind intestinal homeodomain protein NKX2-3 cooperatively with venous nuclear receptor COUP-TFII to activate transcription. The Madcam1 element also integrates repressive signals from arterial/capillary Notch effectors. Pan-endothelial COUP-TFII overexpression induces ectopic addressin expression in NKX2-3+ capillaries, while NKX2-3 deficiency abrogates expression by HEV. Phylogenetically conserved NCCE are enriched in genes involved in neuron migration and morphogenesis of the heart, kidney, pancreas and other organs. Our results define an NKX-COUP-TFII morphogenetic code that targets expression of mucosal vascular addressins.
Collapse
Affiliation(s)
- Thanh Theresa Dinh
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Yongzhi Wang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Clinical Science Malmo, Section of Surgery, Lund University, Malmo, Sweden
| | - Nicole Salazar
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Zhu
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Walter Roper
- Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ed O'Hara
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Truc M Dinh
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Yuhan Bi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | | | - Evan P Bao
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Peter Balogh
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopy Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Bruzelius A, Kidnapillai S, Drouin-Ouellet J, Stoker T, Barker RA, Rylander Ottosson D. Reprogramming Human Adult Fibroblasts into GABAergic Interneurons. Cells 2021; 10:cells10123450. [PMID: 34943958 PMCID: PMC8699824 DOI: 10.3390/cells10123450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
Direct reprogramming is an appealing strategy to generate neurons from a somatic cell by forced expression of transcription factors. The generated neurons can be used for both cell replacement strategies and disease modelling. Using this technique, previous studies have shown that γ-aminobutyric acid (GABA) expressing interneurons can be generated from different cell sources, such as glia cells or fetal fibroblasts. Nevertheless, the generation of neurons from adult human fibroblasts, an easily accessible cell source to obtain patient-derived neurons, has proved to be challenging due to the intrinsic blockade of neuronal commitment. In this paper, we used an optimized protocol for adult skin fibroblast reprogramming based on RE1 Silencing Transcription Factor (REST) inhibition together with a combination of GABAergic fate determinants to convert human adult skin fibroblasts into GABAergic neurons. Our results show a successful conversion in 25 days with upregulation of neuronal gene and protein expression levels. Moreover, we identified specific gene combinations that converted fibroblasts into neurons of a GABAergic interneuronal fate. Despite the well-known difficulty in converting adult fibroblasts into functional neurons in vitro, we could detect functional maturation in the induced neurons. GABAergic interneurons have relevance for cognitive impairments and brain disorders, such as Alzheimer’s and Parkinson’s diseases, epilepsy, schizophrenia and autism spectrum disorders.
Collapse
Affiliation(s)
- Andreas Bruzelius
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
| | - Srisaiyini Kidnapillai
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
| | | | - Tom Stoker
- Wellcome-MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (T.S.); (R.A.B.)
| | - Roger A. Barker
- Wellcome-MRC Cambridge Stem Cell Institute and John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (T.S.); (R.A.B.)
| | - Daniella Rylander Ottosson
- Group of Regenerative Neurophysiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (A.B.); (S.K.)
- Correspondence: ; Tel.: +46-222-0559
| |
Collapse
|
6
|
Conforti P, Besusso D, Brocchetti S, Campus I, Cappadona C, Galimberti M, Laporta A, Iennaco R, Rossi RL, Dickinson VB, Cattaneo E. RUES2 hESCs exhibit MGE-biased neuronal differentiation and muHTT-dependent defective specification hinting at SP1. Neurobiol Dis 2020; 146:105140. [PMID: 33065279 DOI: 10.1016/j.nbd.2020.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022] Open
Abstract
RUES2 cell lines represent the first collection of isogenic human embryonic stem cells (hESCs) carrying different pathological CAG lengths in the HTT gene. However, their neuronal differentiation potential has yet to be thoroughly evaluated. Here, we report that RUES2 during ventral telencephalic differentiation is biased towards medial ganglionic eminence (MGE). We also show that HD-RUES2 cells exhibit an altered MGE transcriptional signature in addition to recapitulating known HD phenotypes, with reduced expression of the neurodevelopmental regulators NEUROD1 and BDNF and increased cleavage of synaptically enriched N-cadherin. Finally, we identified the transcription factor SP1 as a common potential detrimental co-partner of muHTT by de novo motif discovery analysis on the LGE, MGE, and cortical genes differentially expressed in HD human pluripotent stem cells in our and additional datasets. Taken together, these observations suggest a broad deleterious effect of muHTT in the early phases of neuronal development that may unfold through its altered interaction with SP1.
Collapse
Affiliation(s)
- Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Silvia Brocchetti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Ilaria Campus
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Claudio Cappadona
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Angela Laporta
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Raffaele Iennaco
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Riccardo L Rossi
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Vittoria Bocchi Dickinson
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy.
| |
Collapse
|
7
|
Murcia-Ramón R, Company V, Juárez-Leal I, Andreu-Cervera A, Almagro-García F, Martínez S, Echevarría D, Puelles E. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct Funct 2020; 225:2857-2869. [PMID: 33145610 PMCID: PMC7674375 DOI: 10.1007/s00429-020-02163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.
Collapse
Affiliation(s)
- Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Iris Juárez-Leal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
8
|
Kim DW, Washington PW, Wang ZQ, Lin SH, Sun C, Ismail BT, Wang H, Jiang L, Blackshaw S. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat Commun 2020; 11:4360. [PMID: 32868762 PMCID: PMC7459115 DOI: 10.1038/s41467-020-18231-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
The hypothalamus is a central regulator of many innate behaviors essential for survival, but the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control hypothalamic development, we have used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across 12 developmental time points between embryonic day 10 and postnatal day 45. This identified genes that delineated clear developmental trajectories for all major hypothalamic cell types, and readily distinguished major regional subdivisions of the developing hypothalamus. By using our developmental dataset, we were able to rapidly annotate previously unidentified clusters from existing scRNA-Seq datasets collected during development and to identify the developmental origins of major neuronal populations of the ventromedial hypothalamus. We further show that our approach can rapidly and comprehensively characterize mutants that have altered hypothalamic patterning, identifying Nkx2.1 as a negative regulator of prethalamic identity. These data serve as a resource for further studies of hypothalamic development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Parris Whitney Washington
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zoe Qianyi Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sonia Hao Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Changyu Sun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Basma Taleb Ismail
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hong Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lizhi Jiang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Center for Human Systems Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Yuan F, Chen X, Fang KH, Wang Y, Lin M, Xu SB, Huo HQ, Xu M, Ma L, Chen Y, He S, Liu Y. Induction of human somatostatin and parvalbumin neurons by expressing a single transcription factor LIM homeobox 6. eLife 2018; 7:37382. [PMID: 30251953 PMCID: PMC6181563 DOI: 10.7554/elife.37382] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023] Open
Abstract
Human GABAergic interneurons (GIN) are implicated in normal brain function and in numerous mental disorders. However, the generation of functional human GIN subtypes from human pluripotent stem cells (hPSCs) has not been established. By expressing LHX6, a transcriptional factor that is critical for GIN development, we induced hPSCs to form GINs, including somatostatin (SST, 29%) and parvalbumin (PV, 21%) neurons. Our RNAseq results also confirmed the alteration of GIN identity with the overexpression of LHX6. Five months after transplantation into the mouse brain, the human GABA precursors generated increased population of SST and PV neurons by overexpressing LHX6. Importantly, the grafted human GINs exhibited functional electrophysiological properties and even fast-spiking-like action potentials. Thus, expression of the single transcription factor LHX6 under our GIN differentiation condition is sufficient to robustly induce human PV and SST subtypes.
Collapse
Affiliation(s)
- Fang Yuan
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical Unveristy, Nanjing, China
| | - Xin Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai-Heng Fang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Wang
- Department of Neuroscience, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mingyan Lin
- Department of Neuroscience, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shi-Bo Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hai-Qin Huo
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lixiang Ma
- Department of Human Anatomy and Histology, Institute of Stem Cells and Regenerative Medicine, Fudan University Shanghai Medical School, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Beijing, China
| | - Shuijin He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical Unveristy, Nanjing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Li Y, Liu H, Dong Y. Significance of neurexin and neuroligin polymorphisms in regulating risk of Hirschsprung's disease. J Investig Med 2018; 66:1-8. [PMID: 29622757 PMCID: PMC5992363 DOI: 10.1136/jim-2017-000623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/27/2022]
Abstract
By performing a basic case-control study among a Chinese population, the aims of this study were to explore if single nucleotide polymorphisms (SNPs) within neurexin and neuroligin were associated with susceptibility to Hirschsprung's disease (HD). Eleven SNPs within neurexin and neuroligin were selected in this basic case-control study, and this study recruited 210 children with HD and 187 healthy children. The t-test and Χ2 test were used to find the difference between case and control in their clinical variables. OR and 95% CI were used to assess the association between HD susceptibility and neurexin/neuroligin polymorphisms/haplotypes. Several SNPs were significantly associated with altered risk of HD in the Chinese Han population, including rs1421589 within NRXN1, rs11795613 and rs4844285 within NLGN3, as well as rs5961397, rs7157669 and rs724373 within NLGX4X (all P<0.05). Further studies presented that the effects of rs1421589 within NRXN1, rs4844285 and rs11795613 within NLGN3, as well as rs5961397 within NLGX4X on HD phenotypes were also statistically significant (all P<0.05). Conclusively, the polymorphisms and haplotypes situated within neurexin and neuroligin were markedly associated with the onset of HD, implying that mutations of neurexin and neuroligin might serve as the treatment target for HD for the Chinese children.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Hui Liu
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| | - Yubin Dong
- Department of Pediatrics, Zhoukou Central Hospital, Zhoukou, Henan Province, China
| |
Collapse
|
11
|
ARX polyalanine expansion mutations lead to migration impediment in the rostral cortex coupled with a developmental deficit of calbindin-positive cortical GABAergic interneurons. Neuroscience 2017. [PMID: 28627419 DOI: 10.1016/j.neuroscience.2017.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Aristaless-related homeobox gene (ARX) is indispensable for interneuron development. Patients with ARX polyalanine expansion mutations of the first two tracts (namely PA1 and PA2) suffer from intellectual disability of varying severity, with seizures a frequent comorbidity. The impact of PA1 and PA2 mutations on the brain development is unknown, hindering the search for therapeutic interventions. Here, we characterized the disturbances to cortical interneuron development in mice modeling the two most common ARX polyalanine expansion mutations in human. We found a consistent ∼40-50% reduction of calbindin-positive interneurons, but not Stt+ or Cr+ interneurons, within the cortex of newborn hemizygous mice (p=0.024) for both mutant strains compared to wildtype (p=0.011). We demonstrate that this was a consequence of calbindin precursor cells being arrested or delayed at the ventral subpallium en route of tangential migration. Ex-vivo assay validated this migration deficit in PA1 cells (p=0.0002) suggesting that the defect is contributed by intrinsic loss of Arx function within migrating cells. Both humans and mice with PA1 mutations present with severe clinical features, including intellectual disability and infantile spasms. Our data further demonstrated the pathogenic mechanism was robustly shared between PA1 and PA2 mutations, as previously reported including Arx protein reduction and overlapping transcriptome profiles within the developing mouse brains. Data from our study demonstrated that cortical calbindin interneuron development and migration is negatively affected by ARX polyalanine expansion mutations. Understanding the cellular pathogenesis contributing to disease manifestation is necessary to screen efficacy of potential therapeutic interventions.
Collapse
|
12
|
Nadadhur AG, Emperador Melero J, Meijer M, Schut D, Jacobs G, Li KW, Hjorth JJJ, Meredith RM, Toonen RF, Van Kesteren RE, Smit AB, Verhage M, Heine VM. Multi-level characterization of balanced inhibitory-excitatory cortical neuron network derived from human pluripotent stem cells. PLoS One 2017; 12:e0178533. [PMID: 28586384 PMCID: PMC5460818 DOI: 10.1371/journal.pone.0178533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Generation of neuronal cultures from induced pluripotent stem cells (hiPSCs) serve the studies of human brain disorders. However we lack neuronal networks with balanced excitatory-inhibitory activities, which are suitable for single cell analysis. We generated low-density networks of hPSC-derived GABAergic and glutamatergic cortical neurons. We used two different co-culture models with astrocytes. We show that these cultures have balanced excitatory-inhibitory synaptic identities using confocal microscopy, electrophysiological recordings, calcium imaging and mRNA analysis. These simple and robust protocols offer the opportunity for single-cell to multi-level analysis of patient hiPSC-derived cortical excitatory-inhibitory networks; thereby creating advanced tools to study disease mechanisms underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Aishwarya G. Nadadhur
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Javier Emperador Melero
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Marieke Meijer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Desiree Schut
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Gerbren Jacobs
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - J. J. Johannes Hjorth
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Rhiannon M. Meredith
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Ronald E. Van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vivi M. Heine
- Department of Pediatrics / Child Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Xiao Y, Wang W, Chen L, Chen J, Jiang P, Fu X, Nie X, Kwan H, Liu Y, Zhao X. The effects of short-term high-fat feeding on exercise capacity: multi-tissue transcriptome changes by RNA sequencing analysis. Lipids Health Dis 2017; 16:28. [PMID: 28153015 PMCID: PMC5290644 DOI: 10.1186/s12944-017-0424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The effects of short-term high fat diets on physiology are elusive and the molecular changes following fat overconsumption remain largely unknown. In this study, we aimed to evaluate exercise capacity in mice fed with a high fat diet (HFD) for 3 days and investigate the molecular mechanisms in the early response to high-fat feeding. METHODS Exercise capacity was assessed by weight-loaded swimming test in mice fed a control diet (10 kcal% fat) or a HFD (60 kcal% fat) for 3 days. Global gene expression of ten important tissues (brain, heart, liver, spleen, lung, kidney, stomach, duodenum, skeletal muscle and blood) was analyzed using RNA Sequencing. RESULTS A HFD for just 3 days can induce 71% decrease of exercise performance prior to substantial weight gain (P <0.01). Principle component analysis revealed that differential gene expression patterns existed in the ten tissues. Out of which, the brain, spleen and lung were demonstrated to have more pronounced transcriptional changes than other tissues. Biological process analysis for differentially expressed genes in the brain, spleen and lung showed that dysregulation of peripheral and central immune response had been implicated in the early stage of HFD exposure. Neurotransmission related genes and circulatory system process related genes were significantly down-regulated in the brain and lung, respectively. CONCLUSIONS Our findings provide new insights for the deleterious effects of high-fat feeding, especially revealing that the lung maybe as a new important target attacked by short-term high-fat feeding.
Collapse
Affiliation(s)
- Ya Xiao
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanshan Wang
- Experimental Animal Center, Southern Medical University, Guangzhou, China
| | - Liguo Chen
- Department of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Pingping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoli Nie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hiuyee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Bode C, Richter F, Spröte C, Brigadski T, Bauer A, Fietz S, Fritschy JM, Richter A. Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 2017; 287:44-53. [PMID: 27780732 DOI: 10.1016/j.expneurol.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
GABAergic disinhibition has been suggested to play a critical role in the pathophysiology of several basal ganglia disorders, including dystonia, a common movement disorder. Previous studies have shown a deficit of striatal GABAergic interneurons (IN) in the dtsz mutant hamster, one of the few phenotypic animal models of dystonia. However, mechanisms underlying this deficit are largely unknown. In the present study, we investigated the migration and maturation of striatal IN during postnatal development (18days of age) and at age of highest severity of dystonia (33days of age) in this hamster model. In line with previous findings, the density of GAD67-positive IN and the level of parvalbumin mRNA, a marker for fast spiking GABAergic IN, were lower in the dtsz mutant than in control hamsters. However, an unaltered density of Nkx2.1 labeled cells and Nkx2.1 mRNA level suggested that the migration of GABAergic IN into the striatum was not retarded. Therefore, different factors that indicate maturation of GABAergic IN were determined. While mRNA of the KCC2 cation/chloride transporters and the cytosolic carboanhydrase VII, used as markers for the so called GABA switch, as well as BDNF were unaltered, we found a reduced number of IN expressing the alpha1 subunit of the GABAA-receptor (37.5%) in dtsz hamsters at an age of 33days, but not after spontaneous remission of dystonia at an age of 90days. Since IN shift expression from alpha2 to alpha1 subunits during postnatal maturation, this result together with a decreased parvalbumin mRNA expression suggest a delayed maturation of striatal GABAergic IN in this animal model, which might underlie abnormal neuronal activity and striatal plasticity.
Collapse
Affiliation(s)
- Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | - Christine Spröte
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Tanja Brigadski
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Center of Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Minocha S, Valloton D, Brunet I, Eichmann A, Hornung JP, Lebrand C. NG2 glia are required for vessel network formation during embryonic development. eLife 2015; 4. [PMID: 26651999 PMCID: PMC4764555 DOI: 10.7554/elife.09102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/29/2015] [Indexed: 01/13/2023] Open
Abstract
The NG2(+) glia, also known as polydendrocytes or oligodendrocyte precursor cells, represent a new entity among glial cell populations in the central nervous system. However, the complete repertoire of their roles is not yet identified. The embryonic NG2(+) glia originate from the Nkx2.1(+) progenitors of the ventral telencephalon. Our analysis unravels that, beginning from E12.5 until E16.5, the NG2(+) glia populate the entire dorsal telencephalon. Interestingly, their appearance temporally coincides with the establishment of blood vessel network in the embryonic brain. NG2(+) glia are closely apposed to developing cerebral vessels by being either positioned at the sprouting tip cells or tethered along the vessel walls. Absence of NG2(+) glia drastically affects the vascular development leading to severe reduction of ramifications and connections by E18.5. By revealing a novel and fundamental role for NG2(+) glia, our study brings new perspectives to mechanisms underlying proper vessels network formation in embryonic brains.
Collapse
Affiliation(s)
- Shilpi Minocha
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Delphine Valloton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Cecile Lebrand
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Silbereis JC, Nobuta H, Tsai HH, Heine VM, McKinsey GL, Meijer DH, Howard MA, Petryniak MA, Potter GB, Alberta JA, Baraban SC, Stiles CD, Rubenstein JLR, Rowitch DH. Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 2014; 81:574-87. [PMID: 24507192 DOI: 10.1016/j.neuron.2013.11.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 12/21/2022]
Abstract
Abnormal GABAergic interneuron density, and imbalance of excitatory versus inhibitory tone, is thought to result in epilepsy, neurodevelopmental disorders, and psychiatric disease. Recent studies indicate that interneuron cortical density is determined primarily by the size of the precursor pool in the embryonic telencephalon. However, factors essential for regulating interneuron allocation from telencephalic multipotent precursors are poorly understood. Here we report that Olig1 represses production of GABAergic interneurons throughout the mouse brain. Olig1 deletion in mutant mice results in ectopic expression and upregulation of Dlx1/2 genes in the ventral medial ganglionic eminences and adjacent regions of the septum, resulting in an ∼30% increase in adult cortical interneuron numbers. We show that Olig1 directly represses the Dlx1/2 I12b intergenic enhancer and that Dlx1/2 functions genetically downstream of Olig1. These findings establish Olig1 as an essential repressor of Dlx1/2 and interneuron production in developing mammalian brain.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hiroko Nobuta
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hui-Hsin Tsai
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Vivi M Heine
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gabriel L McKinsey
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dimphna H Meijer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mackenzie A Howard
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Magda A Petryniak
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gregory B Potter
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Scott C Baraban
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
17
|
Ferri A, Favaro R, Beccari L, Bertolini J, Mercurio S, Nieto-Lopez F, Verzeroli C, La Regina F, De Pietri Tonelli D, Ottolenghi S, Bovolenta P, Nicolis SK. Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development 2013; 140:1250-61. [PMID: 23444355 DOI: 10.1242/dev.073411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Sox2 transcription factor is active in stem/progenitor cells throughout the developing vertebrate central nervous system. However, its conditional deletion at E12.5 in mouse causes few brain developmental problems, with the exception of the postnatal loss of the hippocampal radial glia stem cells and the dentate gyrus. We deleted Sox2 at E9.5 in the telencephalon, using a Bf1-Cre transgene. We observed embryonic brain defects that were particularly severe in the ventral, as opposed to the dorsal, telencephalon. Important tissue loss, including the medial ganglionic eminence (MGE), was detected at E12.5, causing the subsequent impairment of MGE-derived neurons. The defect was preceded by loss of expression of the essential ventral determinants Nkx2.1 and Shh, and accompanied by ventral spread of dorsal markers. This phenotype is reminiscent of that of mice mutant for the transcription factor Nkx2.1 or for the Shh receptor Smo. Nkx2.1 is known to mediate the initial activation of ventral telencephalic Shh expression. A partial rescue of the normal phenotype at E14.5 was obtained by administration of a Shh agonist. Experiments in Medaka fish indicate that expression of Nkx2.1 is regulated by Sox2 in this species also. We propose that Sox2 contributes to Nkx2.1 expression in early mouse development, thus participating in the region-specific activation of Shh, thereby mediating ventral telencephalic patterning induction.
Collapse
Affiliation(s)
- Anna Ferri
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135:1348-69. [PMID: 22427329 PMCID: PMC3338922 DOI: 10.1093/brain/aws019] [Citation(s) in RCA: 698] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94913-0628, USA.
| | | | | | | | | |
Collapse
|
19
|
Tagne JB, Gupta S, Gower AC, Shen SS, Varma S, Lakshminarayanan M, Cao Y, Spira A, Volkert TL, Ramirez MI. Genome-wide analyses of Nkx2-1 binding to transcriptional target genes uncover novel regulatory patterns conserved in lung development and tumors. PLoS One 2012; 7:e29907. [PMID: 22242187 PMCID: PMC3252372 DOI: 10.1371/journal.pone.0029907] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 12/07/2011] [Indexed: 01/10/2023] Open
Abstract
The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors.
Collapse
Affiliation(s)
- Jean-Bosco Tagne
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Sumeet Gupta
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Adam C. Gower
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Steven S. Shen
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Saaket Varma
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Yuxia Cao
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Avrum Spira
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Clinical and Translational Science Institute (CTSI), Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Thomas L. Volkert
- Center for Microarray Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Maria I. Ramirez
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, Arlotta P. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 2011; 69:763-79. [PMID: 21338885 PMCID: PMC3061282 DOI: 10.1016/j.neuron.2011.01.015] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2010] [Indexed: 01/08/2023]
Abstract
In the mammalian cerebral cortex, the developmental events governing the integration of excitatory projection neurons and inhibitory interneurons into balanced local circuitry are poorly understood. We report that different subtypes of projection neurons uniquely and differentially determine the laminar distribution of cortical interneurons. We find that in Fezf2⁻/⁻ cortex, the exclusive absence of subcerebral projection neurons and their replacement by callosal projection neurons cause distinctly abnormal lamination of interneurons and altered GABAergic inhibition. In addition, experimental generation of either corticofugal neurons or callosal neurons below the cortex is sufficient to recruit cortical interneurons to these ectopic locations. Strikingly, the identity of the projection neurons generated, rather than strictly their birthdate, determines the specific types of interneurons recruited. These data demonstrate that in the neocortex individual populations of projection neurons cell-extrinsically control the laminar fate of interneurons and the assembly of local inhibitory circuitry.
Collapse
Affiliation(s)
- Simona Lodato
- Center for Regenerative Medicine and Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|