1
|
Rachad EY, Deimel SH, Epple L, Gadgil YV, Jürgensen AM, Springer M, Lin CH, Nawrot MP, Lin S, Fiala A. Functional dissection of a neuronal brain circuit mediating higher-order associative learning. Cell Rep 2025; 44:115593. [PMID: 40249705 DOI: 10.1016/j.celrep.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025] Open
Abstract
A central feature characterizing the neural architecture of many species' brains is their capacity to form associative chains through learning. In elementary forms of associative learning, stimuli coinciding with reward or punishment become attractive or repulsive. Notably, stimuli previously learned as attractive or repulsive can themselves serve as reinforcers, establishing a cascading effect whereby they become associated with additional stimuli. When this iterative process is perpetuated, it results in higher-order associations. Here, we use odor conditioning in Drosophila and computational modeling to dissect the architecture of neuronal networks underlying higher-order associative learning. We show that the responsible circuit, situated in the mushroom bodies of the brain, is characterized by parallel processing of odor information and by recurrent excitatory and inhibitory feedback loops that empower odors to gain control over the dopaminergic valence-signaling system. Our findings establish a paradigmatic framework of a neuronal circuit diagram enabling the acquisition of associative chains.
Collapse
Affiliation(s)
- El Yazid Rachad
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | | | - Lisa Epple
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Yogesh Vasant Gadgil
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany
| | - Anna-Maria Jürgensen
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Magdalena Springer
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Chen-Han Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, University of Cologne, 50674 Cologne, Germany
| | - Suewei Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - André Fiala
- Molecular Neurobiology of Behavior, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Blanco Malerba S, Pieropan M, Burak Y, Azeredo da Silveira R. Random compressed coding with neurons. Cell Rep 2025; 44:115412. [PMID: 40111998 DOI: 10.1016/j.celrep.2025.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/20/2023] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Classical models of efficient coding in neurons assume simple mean responses-"tuning curves"- such as bell-shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells, for example, exhibit periodic responses that impart the neural population code with high accuracy. But do highly accurate codes require fine-tuning of the response properties? We address this question with the use of a simple model: a population of neurons with random, spatially extended, and irregular tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors. For optimal smoothness of the tuning curves, when local and global errors balance out, the neural population compresses information about a continuous stimulus into a low-dimensional representation, and the resulting distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to such "compressed efficient coding." Efficient codes do not require a finely tuned design-they emerge robustly from irregularity or randomness.
Collapse
Affiliation(s)
- Simone Blanco Malerba
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mirko Pieropan
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Yoram Burak
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rava Azeredo da Silveira
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Science, University of Basel, 4056 Basel, Switzerland; Department of Economics, University of Zurich, 8001 Zurich, Switzerland.
| |
Collapse
|
3
|
Hotama CF, Kralik JD, Jeong J. Critical Regions and Connections Form Pathways and Clusters in the Mouse Brain. Eur J Neurosci 2025; 61:e16673. [PMID: 39996373 DOI: 10.1111/ejn.16673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 11/26/2024] [Accepted: 12/30/2024] [Indexed: 02/26/2025]
Abstract
Connectome network analysis across multiple species should help identify principles of brain function. Here, we examined three fundamental properties-global efficiency, global betweenness centrality, and global clustering-in the mesoscale tract-tracing data of the mouse connectome; and conducted vulnerability analysis to identify the critical regions and connections based on the loss in network function when each brain region (213) and connection (16,594) was removed. Robustness tests examining noise effects were also conducted. There were five key findings. First, we identified eight critical regions and 38 critical connections, with more central, limbic regions dominant; and with robustness analysis showing (a) the importance of connection strength; and (b) the findings being robust to noise. Second, although critical regions and connections were significantly based on their local network properties, global influences sometimes deviated from local ones (e.g., critical globally but with lower local scores), thereby revealing global-level interactions. Third, the critical components organized into two main pathways (one from piriform cortex to globus pallidus; the other, entorhinal cortex to the amygdala), and two main clusters (centred on caudoputamen and entorhinal cortex). Fourth, for brain function, all main categories from perception to action were represented: e.g., olfaction (piriform cortex), learning and memory (entorhinal cortex), affect (amygdala and caudoputamen), and cognitive and motor processing (caudoputamen, globus pallidus). Finally, the claustrum was intriguingly identified as critical, perhaps for information integration and motor translation. Vulnerability analysis provides a unique approach to characterizing the fundamental structure of nervous systems.
Collapse
Affiliation(s)
- Christianus F Hotama
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jerald D Kralik
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeseung Jeong
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
4
|
Somashekar BP, Bhalla US. Discriminating neural ensemble patterns through dendritic computations in randomly connected feedforward networks. eLife 2025; 13:RP100664. [PMID: 39854248 PMCID: PMC11759408 DOI: 10.7554/elife.100664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity. Using rat hippocampal and cortical network statistics, we show that clustered convergence of axons from three to four different co-active ensembles is likely even in randomly connected networks, leading to representation of arbitrary input combinations in at least 10 target neurons in a 100,000 population. In the presence of larger ensembles, spatiotemporally ordered convergence of three to five axons from temporally ordered ensembles is also likely. These active clusters result in higher neuronal activation in the presence of strong dendritic nonlinearities and low background activity. We mathematically and computationally demonstrate a tight interplay between network connectivity, spatiotemporal scales of subcellular electrical and chemical mechanisms, dendritic nonlinearities, and uncorrelated background activity. We suggest that dendritic clustered and sequence computation is pervasive, but its expression as somatic selectivity requires confluence of physiology, background activity, and connectomics.
Collapse
Affiliation(s)
- Bhanu Priya Somashekar
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
5
|
Hernandez DE, Ciuparu A, Garcia da Silva P, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Chae H, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal identity and reward contingency signals during rule-reversal. Nat Commun 2025; 16:937. [PMID: 39843439 PMCID: PMC11754465 DOI: 10.1038/s41467-025-56023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues trigger responses in the cortical bulbar feedback axons which precede the behavioral report. Responses to the same sensory cue are strongly modulated upon changes in stimulus-reward contingency (rule-reversals). The re-shaping of individual bouton responses occurs within seconds of the rule-reversal events and is correlated with changes in behavior. Optogenetic perturbation of cortical feedback within the bulb disrupts the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback axons carry stimulus identity and reward contingency signals which are rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Oxford, Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- École Normale Supérieure, Paris, France
| | | | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Raul C Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania.
| | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
6
|
Fink AJP, Muscinelli SP, Wang S, Hogan MI, English DF, Axel R, Litwin-Kumar A, Schoonover CE. Experience-dependent reorganization of inhibitory neuron synaptic connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633450. [PMID: 39868262 PMCID: PMC11761011 DOI: 10.1101/2025.01.16.633450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Organisms continually tune their perceptual systems to the features they encounter in their environment1-3. We have studied how ongoing experience reorganizes the synaptic connectivity of neurons in the olfactory (piriform) cortex of the mouse. We developed an approach to measure synaptic connectivity in vivo, training a deep convolutional network to reliably identify monosynaptic connections from the spike-time cross-correlograms of 4.4 million single-unit pairs. This revealed that excitatory piriform neurons with similar odor tuning are more likely to be connected. We asked whether experience enhances this like-to-like connectivity but found that it was unaffected by odor exposure. Experience did, however, alter the logic of interneuron connectivity. Following repeated encounters with a set of odorants, inhibitory neurons that responded differentially to these stimuli exhibited a high degree of both incoming and outgoing synaptic connections within the cortical network. This reorganization depended only on the odor tuning of the inhibitory interneuron and not on the tuning of its pre- or postsynaptic partners. A computational model of this reorganized connectivity predicts that it increases the dimensionality of the entire network's responses to familiar stimuli, thereby enhancing their discriminability. We confirmed that this network-level property is present in physiological measurements, which showed increased dimensionality and separability of the evoked responses to familiar versus novel odorants. Thus, a simple, non-Hebbian reorganization of interneuron connectivity may selectively enhance an organism's discrimination of the features of its environment.
Collapse
Affiliation(s)
- Andrew J P Fink
- Department of Neurobiology, Northwestern University Evanston, IL
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
| | - Samuel P Muscinelli
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
| | - Shuqi Wang
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
- École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Marcus I Hogan
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
- Neuroscience Graduate Program, University of California Berkeley Berkeley, CA
| | | | - Richard Axel
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
- Howard Hughes Medical Institute
| | - Ashok Litwin-Kumar
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
| | - Carl E Schoonover
- Mortimer B. Zuckerman Mind Brain Behavior Institute Department of Neuroscience Columbia University New York, NY
- Allen Institute for Neural Dynamics Seattle, WA
| |
Collapse
|
7
|
Meissner-Bernard C, Zenke F, Friedrich RW. Geometry and dynamics of representations in a precisely balanced memory network related to olfactory cortex. eLife 2025; 13:RP96303. [PMID: 39804831 PMCID: PMC11733691 DOI: 10.7554/elife.96303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that 'focused' activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual's experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.
Collapse
Affiliation(s)
| | - Friedemann Zenke
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
8
|
Mena W, Baker K, Rubin A, Kohli S, Yoo Y, Bathellier B, Ziv Y, Rezaei-Mazinani S, Fleischmann A. Differential encoding of odor and place in mouse piriform and entorhinal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.05.561119. [PMID: 39829902 PMCID: PMC11741242 DOI: 10.1101/2023.10.05.561119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The integration of olfactory and spatial information is critical for guiding animal behavior. The lateral entorhinal cortex (LEC) is reciprocally interconnected with cortical areas for olfaction and the hippocampus and thus ideally positioned to encode odor-place associations. Here, we used mini-endoscopes to record neural activity in the mouse piriform cortex (PCx) and LEC. We show that in head-fixed mice, odor identity could be decoded from LEC ensembles, but less accurately than from PCx. In mice freely navigating a linear track, LEC ensemble activity at the odor ports was dominated by spatial information. Spatial position along the linear track could be decoded from LEC and PCx activity, however, PCx but not LEC exhibited strong behavior-driven modulation of positional information. Together, our data reveal that information about odor cues and spatial context is differentially encoded along the PCx-LEC axis.
Collapse
Affiliation(s)
- Wilson Mena
- Department of Neuroscience, Pasteur Institute, Paris, France
- Corresponding authors
| | - Keeley Baker
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, USA
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Shaun Kohli
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, USA
| | - Yun Yoo
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, USA
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, F-75012 Paris, France
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahab Rezaei-Mazinani
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
- Mines Saint-Étienne, Centre CMP, Département BEL, F-13541, Gardanne, France
- Corresponding authors
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, USA
- Corresponding authors
| |
Collapse
|
9
|
Gonzalez J, Torterolo P, Bolding KA, Tort AB. Communication subspace dynamics of the canonical olfactory pathway. iScience 2024; 27:111275. [PMID: 39628563 PMCID: PMC11613203 DOI: 10.1016/j.isci.2024.111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Understanding how different brain areas communicate is crucial for elucidating the mechanisms underlying cognition. A possible way for neural populations to interact is through a communication subspace, a specific region in the state-space enabling the transmission of behaviorally relevant spiking patterns. In the olfactory system, it remains unclear if different populations employ such a mechanism. Our study reveals that neuronal ensembles in the main olfactory pathway (olfactory bulb to olfactory cortex) interact through a communication subspace, which is driven by nasal respiration and allows feedforward and feedback transmission to occur segregated along the sniffing cycle. Moreover, our results demonstrate that subspace communication depends causally on the activity of both areas, is hindered during anesthesia, and transmits a low-dimensional representation of odor.
Collapse
Affiliation(s)
- Joaquín Gonzalez
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078, Brazil
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11200, Uruguay
| | | | - Adriano B.L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078, Brazil
| |
Collapse
|
10
|
Hu B, Temiz NZ, Chou CN, Rupprecht P, Meissner-Bernard C, Titze B, Chung S, Friedrich RW. Representational learning by optimization of neural manifolds in an olfactory memory network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623906. [PMID: 39605658 PMCID: PMC11601331 DOI: 10.1101/2024.11.17.623906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Higher brain functions depend on experience-dependent representations of relevant information that may be organized by attractor dynamics or by geometrical modifications of continuous "neural manifolds". To explore these scenarios we analyzed odor-evoked activity in telencephalic area pDp of juvenile and adult zebrafish, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. Rather, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of manifold capacity revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.
Collapse
Affiliation(s)
- Bo Hu
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Nesibe Z. Temiz
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
| | - Peter Rupprecht
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Claire Meissner-Bernard
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - Benjamin Titze
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
| | - SueYeon Chung
- Center for Computational Neuroscience, Flatiron Institute, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Rainer W. Friedrich
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
11
|
Grimaud J, Dorrell W, Jayakumar S, Pehlevan C, Murthy V. Bilateral Alignment of Receptive Fields in the Olfactory Cortex. eNeuro 2024; 11:ENEURO.0155-24.2024. [PMID: 39433407 PMCID: PMC11540595 DOI: 10.1523/eneuro.0155-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Each olfactory cortical hemisphere receives ipsilateral odor information directly from the olfactory bulb and contralateral information indirectly from the other cortical hemisphere. Since neural projections to the olfactory cortex (OC) are disordered and nontopographic, spatial information cannot be used to align projections from the two sides like in the visual cortex. Therefore, how bilateral information is integrated in individual cortical neurons is unknown. We have found, in mice, that the odor responses of individual neurons to selective stimulation of each of the two nostrils are significantly correlated, such that odor identity decoding optimized with information arriving from one nostril transfers very well to the other side. Nevertheless, these aligned responses are asymmetric enough to allow decoding of stimulus laterality. Computational analysis shows that such matched odor tuning is incompatible with purely random connections but is explained readily by Hebbian plasticity structuring bilateral connectivity. Our data reveal that despite the distributed and fragmented sensory representation in the OC, odor information across the two hemispheres is highly coordinated.
Collapse
Affiliation(s)
- Julien Grimaud
- Molecules, Cells, and Organisms Graduate Program, Harvard University, Cambridge, Massachusetts 02138
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Cell Engineering Laboratory (CellTechs), SupBiotech, 94800 Villejuif, France
| | - William Dorrell
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Siddharth Jayakumar
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
| | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| | - Venkatesh Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138
- Kempner Institute for Natural and Artificial Intelligence, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
12
|
Wolf D, Oettl LL, Winkelmeier L, Linster C, Kelsch W. Anterior Olfactory Cortices Differentially Transform Bottom-Up Odor Signals to Produce Inverse Top-Down Outputs. J Neurosci 2024; 44:e0231242024. [PMID: 39266300 PMCID: PMC11529817 DOI: 10.1523/jneurosci.0231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Odor information arrives first in the main olfactory bulb and is then broadcasted to the olfactory cortices and striatum. Downstream regions have unique cellular and connectivity architectures that may generate different coding patterns to the same odors. To reveal region-specific response features, tuning and decoding of single-unit populations, we recorded responses to the same odors under the same conditions across regions, namely, the main olfactory bulb (MOB), the anterior olfactory nucleus (AON), the anterior piriform cortex (aPC), and the olfactory tubercle of the ventral striatum (OT), of awake male mice. We focused on chemically closely related aldehydes that still create distinct percepts. The MOB had the highest decoding accuracy for aldehydes and was the only region encoding chemical similarity. The MOB had the highest fraction of inhibited responses and narrowly tuned odor-excited responses in terms of timing and odor selectivity. Downstream, the interconnected AON and aPC differed in their response patterns to the same stimuli. While odor-excited responses dominated the AON, the aPC had a comparably high fraction of odor-inhibited responses. Both cortices share a main output target that is the MOB. This prompted us to test if the two regions convey also different net outputs. Aldehydes activated AON terminals in the MOB as a bulk signal but inhibited those from the aPC. The differential cortical projection responses generalized to complex odors. In summary, olfactory regions reveal specialized features in their encoding with AON and aPC differing in their local computations, thereby generating inverse net centrifugal and intercortical outputs.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Lars-Lennart Oettl
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Laurens Winkelmeier
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz 55131, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
13
|
Yang Y, Huang H, Zhu MY, Wei HR, Zhang M, Tang L, Gao W, Yang X, Zhang Z, Cao P, Tao W. A neural circuit for lavender-essential-oil-induced antinociception. Cell Rep 2024; 43:114800. [PMID: 39365703 DOI: 10.1016/j.celrep.2024.114800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
Lavender essential oil (LEO) has been shown to relieve pain in humans, but the underlying neural mechanisms remain unknown. Here, we found that inhalation exposure to 0.1% LEO confers antinociceptive effects in mice with complete Freund adjuvant (CFA)-induced inflammatory pain through activation of projections from the anterior piriform cortex (aPir) to the insular cortex (IC). Specifically, in vivo fiber photometry recordings and viral tracing data show that glutamatergic projections from the aPir (aPirGlu) innervate GABAergic neurons in the IC (ICGABA) to inhibit local glutamatergic neurons (ICGlu) that are hyperactivated in inflammatory pain. Optogenetic or chemogenetic activation of this aPirGlu→ICGABA→Glu pathway can recapitulate the antinociceptive effects of LEO inhalation in CFA mice. Conversely, artificial inhibition of IC-projecting aPirGlu neurons abolishes LEO-induced antinociception. Our study thus depicts an LEO-responsive olfactory system circuit mechanism for alleviating inflammatory pain via aPir→IC neural connections, providing evidence to support development of aroma-based treatments for alleviating pain.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hao Huang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Meng-Yu Zhu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Mingjun Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Lan Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xinlu Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Center for Advance Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Wenjuan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Howe JR, Chan CL, Lee D, Blanquart M, Lee JH, Romero HK, Zadina AN, Lemieux ME, Mills F, Desplats PA, Tye KM, Root CM. Control of innate olfactory valence by segregated cortical amygdala circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600895. [PMID: 38979308 PMCID: PMC11230396 DOI: 10.1101/2024.06.26.600895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Animals exhibit innate behaviors that are stereotyped responses to specific evolutionarily relevant stimuli in the absence of prior learning or experience. These behaviors can be reduced to an axis of valence, whereby specific odors evoke approach or avoidance responses. The posterolateral cortical amygdala (plCoA) mediates innate attraction and aversion to odor. However, little is known about how this brain area gives rise to behaviors of opposing motivational valence. Here, we sought to define the circuit features of plCoA that give rise to innate attraction and aversion to odor. We characterized the physiology, gene expression, and projections of this structure, identifying a divergent, topographic organization that selectively controls innate attraction and avoidance to odor. First, we examined odor-evoked responses in these areas and found sparse encoding of odor identity, but not valence. We next considered a topographic organization and found that optogenetic stimulation of the anterior and posterior domains of plCoA elicits attraction and avoidance, respectively, suggesting a functional axis for valence. Using single cell and spatial RNA sequencing, we identified the molecular cell types in plCoA, revealing an anteroposterior gradient in cell types, whereby anterior glutamatergic neurons preferentially express VGluT2 and posterior neurons express VGluT1. Activation of these respective cell types recapitulates appetitive and aversive behaviors, and chemogenetic inhibition reveals partial necessity for responses to innate appetitive or aversive odors. Finally, we identified topographically organized circuits defined by projections, whereby anterior neurons preferentially project to medial amygdala, and posterior neurons preferentially project to nucleus accumbens, which are respectively sufficient and necessary for innate attraction and aversion. Together, these data advance our understanding of how the olfactory system generates stereotypic, hardwired attraction and avoidance, and supports a model whereby distinct, topographically distributed plCoA populations direct innate olfactory responses by signaling to divergent valence-specific targets, linking upstream olfactory identity to downstream valence behaviors, through a population code. This suggests a novel amygdala circuit motif in which valence encoding is represented not by the firing properties of individual neurons, but by population level identity encoding that is routed through divergent targets to mediate distinct behaviors of opposing appetitive and aversive responses.
Collapse
Affiliation(s)
- James R. Howe
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Chung-Lung Chan
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- These authors contributed equally
| | - Donghyung Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marlon Blanquart
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James H. Lee
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haylie K. Romero
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abigail N. Zadina
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | | | - Fergil Mills
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
| | - Paula A. Desplats
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kay M. Tye
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
- Salk Institute for Biological Sciences, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Cory M. Root
- Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Wang P, Li S, Li A. Odor representation and coding by the mitral/tufted cells in the olfactory bulb. J Zhejiang Univ Sci B 2024; 25:824-840. [PMID: 39420520 PMCID: PMC11494158 DOI: 10.1631/jzus.b2400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/14/2024] [Indexed: 10/19/2024]
Abstract
The olfactory bulb (OB) is the first relay station in the olfactory system and functions as a crucial hub. It can represent odor information precisely and accurately in an ever-changing environment. As the only output neurons in the OB, mitral/tufted cells encode information such as odor identity and concentration. Recently, the neural strategies and mechanisms underlying odor representation and encoding in the OB have been investigated extensively. Here we review the main progress on this topic. We first review the neurons and circuits involved in odor representation, including the different cell types in the OB and the neural circuits within and beyond the OB. We will then discuss how two different coding strategies-spatial coding and temporal coding-work in the rodent OB. Finally, we discuss potential future directions for this research topic. Overall, this review provides a comprehensive description of our current understanding of how odor information is represented and encoded by mitral/tufted cells in the OB.
Collapse
Affiliation(s)
- Panke Wang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Shan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China
| | - An'an Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
16
|
Kehl MS, Mackay S, Ohla K, Schneider M, Borger V, Surges R, Spehr M, Mormann F. Single-neuron representations of odours in the human brain. Nature 2024; 634:626-634. [PMID: 39385026 PMCID: PMC11485236 DOI: 10.1038/s41586-024-08016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Olfaction is a fundamental sensory modality that guides animal and human behaviour1,2. However, the underlying neural processes of human olfaction are still poorly understood at the fundamental-that is, the single-neuron-level. Here we report recordings of single-neuron activity in the piriform cortex and medial temporal lobe in awake humans performing an odour rating and identification task. We identified odour-modulated neurons within the piriform cortex, amygdala, entorhinal cortex and hippocampus. In each of these regions, neuronal firing accurately encodes odour identity. Notably, repeated odour presentations reduce response firing rates, demonstrating central repetition suppression and habituation. Different medial temporal lobe regions have distinct roles in odour processing, with amygdala neurons encoding subjective odour valence, and hippocampal neurons predicting behavioural odour identification performance. Whereas piriform neurons preferably encode chemical odour identity, hippocampal activity reflects subjective odour perception. Critically, we identify that piriform cortex neurons reliably encode odour-related images, supporting a multimodal role of the human piriform cortex. We also observe marked cross-modal coding of both odours and images, especially in the amygdala and piriform cortex. Moreover, we identify neurons that respond to semantically coherent odour and image information, demonstrating conceptual coding schemes in olfaction. Our results bridge the long-standing gap between animal models and non-invasive human studies and advance our understanding of odour processing in the human brain by identifying neuronal odour-coding principles, regional functional differences and cross-modal integration.
Collapse
Affiliation(s)
- Marcel S Kehl
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Sina Mackay
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Kathrin Ohla
- Science & Research, dsm-firmenich, Satigny, Switzerland
| | | | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany.
| | - Florian Mormann
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
17
|
Zhou YS, Tao HB, Lv SS, Liang KQ, Shi WY, Liu KY, Li YY, Chen LY, Zhou L, Yin SJ, Zhao QR. Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice. Acta Pharmacol Sin 2024; 45:2045-2060. [PMID: 38862816 PMCID: PMC11420205 DOI: 10.1038/s41401-024-01275-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/24/2024] [Indexed: 06/13/2024]
Abstract
Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hao-Bo Tao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Si-Si Lv
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Qin Liang
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Wen-Yi Shi
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ke-Yi Liu
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Yun-Yun Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Lv-Yi Chen
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ling Zhou
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Shi-Jin Yin
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Qian-Ru Zhao
- Department of Chemical Biology, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
18
|
Miyamoto K, Stark J, Kathrotia M, Luu A, Victoriano J, Chan CL, Lee D, Root CM. The Orbitofrontal Cortex Is Required for Learned Modulation of Innate Olfactory Behavior. eNeuro 2024; 11:ENEURO.0343-24.2024. [PMID: 39406479 PMCID: PMC11493560 DOI: 10.1523/eneuro.0343-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Animals have evolved innate responses to cues including social, food, and predator odors. In the natural environment, animals are faced with choices that involve balancing risk and reward where innate significance may be at odds with internal need. The ability to update the value of a cue through learning is essential for navigating changing and uncertain environments. However, the mechanisms involved in this modulation are not well defined in mammals. We have established a new olfactory assay that challenges a thirsty mouse to choose an aversive odor over an attractive odor in foraging for water, thus overriding their innate behavioral response to odor. Innately, mice prefer the attractive odor port over the aversive odor port. However, decreasing the probability of water at the attractive port leads mice to prefer the aversive port, reflecting a learned override of the innate response to the odors. The orbitofrontal cortex (OFC) is a fourth-order olfactory brain area, involved in flexible value association, with behaviorally relevant outputs throughout the limbic system. We performed optogenetic and chemogenetic silencing experiments that demonstrate the OFC is necessary for this learned modulation of innate aversion to odor. Further, we characterized odor evoked c-fos expression in learned and control mice and found significant suppression of activity in the bed nucleus of the stria terminalis, lateral septum, and central and medial amygdala. These findings reveal that the OFC is necessary for the learned override of innate behavior and may signal to limbic structures to modulate innate response to odor.
Collapse
Affiliation(s)
- Kiana Miyamoto
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Jeremy Stark
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Mayuri Kathrotia
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Amanda Luu
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Joelle Victoriano
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Chung Lung Chan
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Donghyung Lee
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| | - Cory M Root
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, San Diego, California 92093-0357
| |
Collapse
|
19
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Giaffar H, Shuvaev S, Rinberg D, Koulakov AA. The primacy model and the structure of olfactory space. PLoS Comput Biol 2024; 20:e1012379. [PMID: 39255274 PMCID: PMC11423968 DOI: 10.1371/journal.pcbi.1012379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
Understanding sensory processing involves relating the stimulus space, its neural representation, and perceptual quality. In olfaction, the difficulty in establishing these links lies partly in the complexity of the underlying odor input space and perceptual responses. Based on the recently proposed primacy model for concentration invariant odor identity representation and a few assumptions, we have developed a theoretical framework for mapping the odor input space to the response properties of olfactory receptors. We analyze a geometrical structure containing odor representations in a multidimensional space of receptor affinities and describe its low-dimensional implementation, the primacy hull. We propose the implications of the primacy hull for the structure of feedforward connectivity in early olfactory networks. We test the predictions of our theory by comparing the existing receptor-ligand affinity and connectivity data obtained in the fruit fly olfactory system. We find that the Kenyon cells of the insect mushroom body integrate inputs from the high-affinity (primacy) sets of olfactory receptors in agreement with the primacy theory.
Collapse
Affiliation(s)
- Hamza Giaffar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Sergey Shuvaev
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dmitry Rinberg
- Neuroscience Institute, New York University Langone Health, New York, New York, United States of America
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Alexei A. Koulakov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
21
|
Wolf D, Hartig R, Zhuo Y, Scheller MF, Articus M, Moor M, Grinevich V, Linster C, Russo E, Weber-Fahr W, Reinwald JR, Kelsch W. Oxytocin induces the formation of distinctive cortical representations and cognitions biased toward familiar mice. Nat Commun 2024; 15:6274. [PMID: 39054324 PMCID: PMC11272796 DOI: 10.1038/s41467-024-50113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Social recognition is essential for the formation of social structures. Many times, recognition comes with lesser exploration of familiar animals. This lesser exploration has led to the assumption that recognition may be a habituation memory. The underlying memory mechanisms and the thereby acquired cortical representations of familiar mice have remained largely unknown, however. Here, we introduce an approach directly examining the recognition process from volatile body odors among male mice. We show that volatile body odors emitted by mice are sufficient to identify individuals and that more salience is assigned to familiar mice. Familiarity is encoded by reinforced population responses in two olfactory cortex hubs and communicated to other brain regions. The underlying oxytocin-induced plasticity promotes the separation of the cortical representations of familiar from other mice. In summary, neuronal encoding of familiar animals is distinct and utilizes the cortical representational space more broadly, promoting storage of complex social relationships.
Collapse
Affiliation(s)
- David Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Yi Zhuo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max F Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Mirko Articus
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Marcel Moor
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Christiane Linster
- Computational Physiology Laboratory, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Eleonora Russo
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127, Pisa, Italy
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
- Department of Neuroimaging, Translational Imaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
22
|
Zhang YJ, Lee JY, Igarashi KM. Circuit dynamics of the olfactory pathway during olfactory learning. Front Neural Circuits 2024; 18:1437575. [PMID: 39036422 PMCID: PMC11258029 DOI: 10.3389/fncir.2024.1437575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
The olfactory system plays crucial roles in perceiving and interacting with their surroundings. Previous studies have deciphered basic odor perceptions, but how information processing in the olfactory system is associated with learning and memory is poorly understood. In this review, we summarize recent studies on the anatomy and functional dynamics of the mouse olfactory learning pathway, focusing on how neuronal circuits in the olfactory bulb (OB) and olfactory cortical areas integrate odor information in learning. We also highlight in vivo evidence for the role of the lateral entorhinal cortex (LEC) in olfactory learning. Altogether, these studies demonstrate that brain regions throughout the olfactory system are critically involved in forming and representing learned knowledge. The role of olfactory areas in learning and memory, and their susceptibility to dysfunction in neurodegenerative diseases, necessitate further research.
Collapse
Affiliation(s)
- Yutian J. Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Jason Y. Lee
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, United States
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, United States
- Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, Irvine, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, United States
| |
Collapse
|
23
|
Federman N, Romano SA, Amigo-Duran M, Salomon L, Marin-Burgin A. Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex. Nat Commun 2024; 15:5572. [PMID: 38956072 PMCID: PMC11220071 DOI: 10.1038/s41467-024-49897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Olfaction is influenced by contextual factors, past experiences, and the animal's internal state. Whether this information is integrated at the initial stages of cortical odour processing is not known, nor how these signals may influence odour encoding. Here we revealed multiple and diverse non-olfactory responses in the primary olfactory (piriform) cortex (PCx), which dynamically enhance PCx odour discrimination according to behavioural demands. We performed recordings of PCx neurons from mice trained in a virtual reality task to associate odours with visual contexts to obtain a reward. We found that learning shifts PCx activity from encoding solely odours to a regime in which positional, contextual, and associative responses emerge on odour-responsive neurons that become mixed-selective. The modulation of PCx activity by these non-olfactory signals was dynamic, improving odour decoding during task engagement and in rewarded contexts. This improvement relied on the acquired mixed-selectivity, demonstrating how integrating extra-sensory inputs in sensory cortices can enhance sensory processing while encoding the behavioural relevance of stimuli.
Collapse
Grants
- 108878 Canadian International Development Agency (Agence Canadienne de Développement International)
- PICT2018-0880 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-0360 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2020-1536 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2016-2758 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PICT2017-4023 Ministry of Science, Technology and Productive Innovation, Argentina | National Agency for Science and Technology, Argentina | Fondo para la Investigación Científica y Tecnológica (Fund for Scientific and Technological Research)
- PIP2787 Ministerio de Ciencia, Tecnología e Innovación Productiva (Ministry of Science, Technology and Productive Innovation, Argentina)
- SPIRIT 216044 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- Fondo para la convergencia estructural del Mercosur–FOCEM grant cOF 03/11
Collapse
Affiliation(s)
- Noel Federman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Sebastián A Romano
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| | - Macarena Amigo-Duran
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Lucca Salomon
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, PhD Program, Buenos Aires, Argentina
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
25
|
Lewis SM, Suarez LM, Rigolli N, Franks KM, Steinmetz NA, Gire DH. The spiking output of the mouse olfactory bulb encodes large-scale temporal features of natural odor environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582978. [PMID: 38496526 PMCID: PMC10942328 DOI: 10.1101/2024.03.01.582978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In natural odor environments, odor travels in plumes. Odor concentration dynamics change in characteristic ways across the width and length of a plume. Thus, spatiotemporal dynamics of plumes have informative features for animals navigating to an odor source. Population activity in the olfactory bulb (OB) has been shown to follow odor concentration across plumes to a moderate degree (Lewis et al., 2021). However, it is unknown whether the ability to follow plume dynamics is driven by individual cells or whether it emerges at the population level. Previous research has explored the responses of individual OB cells to isolated features of plumes, but it is difficult to adequately sample the full feature space of plumes as it is still undetermined which features navigating mice employ during olfactory guided search. Here we released odor from an upwind odor source and simultaneously recorded both odor concentration dynamics and cellular response dynamics in awake, head-fixed mice. We found that longer timescale features of odor concentration dynamics were encoded at both the cellular and population level. At the cellular level, responses were elicited at the beginning of the plume for each trial, signaling plume onset. Plumes with high odor concentration elicited responses at the end of the plume, signaling plume offset. Although cellular level tracking of plume dynamics was observed to be weak, we found that at the population level, OB activity distinguished whiffs and blanks (accurately detected odor presence versus absence) throughout the duration of a plume. Even ~20 OB cells were enough to accurately discern odor presence throughout a plume. Our findings indicate that the full range of odor concentration dynamics and high frequency fluctuations are not encoded by OB spiking activity. Instead, relatively lower-frequency temporal features of plumes, such as plume onset, plume offset, whiffs, and blanks, are represented in the OB.
Collapse
Affiliation(s)
- Suzanne M. Lewis
- Department of Psychology, University of Washington, Seattle, WA, United States
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Lucas M. Suarez
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Nicola Rigolli
- Laboratoire de Physique, École Normale Supérieure (LPENS), Paris, France
| | - Kevin M. Franks
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Nicholas A. Steinmetz
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - David H. Gire
- Department of Psychology, University of Washington, Seattle, WA, United States
| |
Collapse
|
26
|
McKissick O, Klimpert N, Ritt JT, Fleischmann A. Odors in space. Front Neural Circuits 2024; 18:1414452. [PMID: 38978957 PMCID: PMC11228174 DOI: 10.3389/fncir.2024.1414452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.
Collapse
Affiliation(s)
- Olivia McKissick
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Nell Klimpert
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jason T Ritt
- Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Alexander Fleischmann
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
27
|
Ye Y, Wang Y, Zhuang Y, Tan H, Zuo Z, Yun H, Yuan K, Zhou W. Decomposition of an odorant in olfactory perception and neural representation. Nat Hum Behav 2024; 8:1150-1162. [PMID: 38499771 DOI: 10.1038/s41562-024-01849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Molecules-the elementary units of substances-are commonly considered the units of processing in olfactory perception, giving rise to undifferentiated odour objects invariant to environmental variations. By selectively perturbing the processing of chemical substructures with adaptation ('the psychologist's microelectrode') in a series of psychophysical and neuroimaging experiments (458 participants), we show that two perceptually distinct odorants sharing part of their structural features become significantly less discernible following adaptation to a third odorant containing their non-shared structural features, in manners independent of olfactory intensity, valence, quality or general olfactory adaptation. The effect is accompanied by reorganizations of ensemble activity patterns in the posterior piriform cortex that parallel subjective odour quality changes, in addition to substructure-based neural adaptations in the anterior piriform cortex and amygdala. Central representations of odour quality and the perceptual outcome thus embed submolecular structural information and are malleable by recent olfactory encounters.
Collapse
Affiliation(s)
- Yuting Ye
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Psychology, School of Public Affairs, Xiamen University, Xiamen, China
| | - Yanqing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Yuan Zhuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huibang Tan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Sino-Dannish College, University of Chinese Academy of Sciences, Beijing, China
| | - Hanqi Yun
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiqi Yuan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
28
|
Cai L, Argunşah AÖ, Damilou A, Karayannis T. A nasal chemosensation-dependent critical window for somatosensory development. Science 2024; 384:652-660. [PMID: 38723089 DOI: 10.1126/science.adn5611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.
Collapse
Affiliation(s)
- Linbi Cai
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ali Özgür Argunşah
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Angeliki Damilou
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Theofanis Karayannis
- Laboratory of Neural Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
30
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
31
|
Eckert MA, Benitez A, Soler ZM, Dubno JR, Schlosser RJ. Gray matter and episodic memory associations with olfaction in middle-aged to older adults. Int Forum Allergy Rhinol 2024; 14:961-971. [PMID: 37897207 PMCID: PMC11045322 DOI: 10.1002/alr.23290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Age-related declines in olfaction contribute to low quality of life and appear to occur with declines in cognitive function, including diminished episodic memory. We tested the hypothesis that low gray matter volume within cortical regions that support olfaction and episodic memory can explain age-related differences in olfactory and episodic memory functions. METHODS T1-weighted images, Sniffin' Sticks olfactory measures, and the NIH Toolbox-Cognition Battery were administered to 131 middle-aged to older adults (50-86 years; 66% female). Correlation was used to examine the associations between these measures. A network-based image processing approach was then used to examine the degree to which spatial patterns of gray matter variance were related to the olfactory and cognitive measures. Structural equation modeling was used to characterize the relative specificity of olfactory, cognitive, gray matter, and aging associations. RESULTS Olfactory threshold, discrimination, and identification exhibited small to medium effect size associations with episodic memory performance (rs = 0.27-0.42, ps < 0.002). Gray matter volume within medial temporal and orbitofrontal cortex was also related to olfactory (discrimination and identification) and episodic memory function (rs = 0.21-0.36, ps < 0.019). Age and episodic memory explained the same variance in olfaction that was explained by the medial temporal and orbitofrontal pattern of gray matter volume. CONCLUSIONS The results of this cross-sectional study suggest that identifying mechanisms contributing to differences in medial temporal and orbitofrontal cortex will advance our understanding of co-morbid olfactory and cognitive declines.
Collapse
Affiliation(s)
- Mark A. Eckert
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | | | - Zachary M. Soler
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | - Judy R. Dubno
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| | - Rodney J. Schlosser
- Department of Otolaryngology – Head and Neck Surgery, Medical University of South Carolina
| |
Collapse
|
32
|
Matsumoto Y, Miwa H, Katayama KI, Watanabe A, Yamada K, Ito T, Nakagawa S, Aruga J. Slitrk4 is required for the development of inhibitory neurons in the fear memory circuit of the lateral amygdala. Front Mol Neurosci 2024; 17:1386924. [PMID: 38736483 PMCID: PMC11082273 DOI: 10.3389/fnmol.2024.1386924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Hideki Miwa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Arata Watanabe
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute, Wako-shi, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute, Wako-shi, Japan
- Department of Medical Pharmacology, Nagasaki University Institute of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
33
|
Throesch BT, Bin Imtiaz MK, Muñoz-Castañeda R, Sakurai M, Hartzell AL, James KN, Rodriguez AR, Martin G, Lippi G, Kupriyanov S, Wu Z, Osten P, Izpisua Belmonte JC, Wu J, Baldwin KK. Functional sensory circuits built from neurons of two species. Cell 2024; 187:2143-2157.e15. [PMID: 38670072 PMCID: PMC11293795 DOI: 10.1016/j.cell.2024.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
A central question for regenerative neuroscience is whether synthetic neural circuits, such as those built from two species, can function in an intact brain. Here, we apply blastocyst complementation to selectively build and test interspecies neural circuits. Despite approximately 10-20 million years of evolution, and prominent species differences in brain size, rat pluripotent stem cells injected into mouse blastocysts develop and persist throughout the mouse brain. Unexpectedly, the mouse niche reprograms the birth dates of rat neurons in the cortex and hippocampus, supporting rat-mouse synaptic activity. When mouse olfactory neurons are genetically silenced or killed, rat neurons restore information flow to odor processing circuits. Moreover, they rescue the primal behavior of food seeking, although less well than mouse neurons. By revealing that a mouse can sense the world using neurons from another species, we establish neural blastocyst complementation as a powerful tool to identify conserved mechanisms of brain development, plasticity, and repair.
Collapse
Affiliation(s)
- Benjamin T Throesch
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Muhammad Khadeesh Bin Imtiaz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Masahiro Sakurai
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrea L Hartzell
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Kiely N James
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Alberto R Rodriguez
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Greg Martin
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Sergey Kupriyanov
- Mouse Genetics Core, The Scripps Research Institute, La Jolla, San Diego, CA, USA
| | - Zhuhao Wu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Juan Carlos Izpisua Belmonte
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Altos Labs, San Diego, CA, USA
| | - Jun Wu
- Salk Institute for Biological Studies, La Jolla, San Diego, CA, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Kristin K Baldwin
- Department of Neuroscience, The Scripps Research Institute, La Jolla, San Diego, CA, USA; Neuroscience Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, USA; Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
34
|
A Dehaqani A, Michelon F, Patella P, Petrucco L, Piasini E, Iurilli G. A mechanosensory feedback that uncouples external and self-generated sensory responses in the olfactory cortex. Cell Rep 2024; 43:114013. [PMID: 38551962 DOI: 10.1016/j.celrep.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Sampling behaviors have sensory consequences that can hinder perceptual stability. In olfaction, sniffing affects early odor encoding, mimicking a sudden change in odor concentration. We examined how the inhalation speed affects the representation of odor concentration in the main olfactory cortex. Neurons combine the odor input with a global top-down signal preceding the sniff and a mechanosensory feedback generated by the air passage through the nose during inhalation. Still, the population representation of concentration is remarkably sniff invariant. This is because the mechanosensory and olfactory responses are uncorrelated within and across neurons. Thus, faster odor inhalation and an increase in concentration change the cortical activity pattern in distinct ways. This encoding strategy affords tolerance to potential concentration fluctuations caused by varying inhalation speeds. Since mechanosensory reafferences are widespread across sensory systems, the coding scheme described here may be a canonical strategy to mitigate the sensory ambiguities caused by movements.
Collapse
Affiliation(s)
- Alireza A Dehaqani
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; CIMeC, University of Trento, 38068 Rovereto, Italy
| | - Filippo Michelon
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy; CIMeC, University of Trento, 38068 Rovereto, Italy
| | - Paola Patella
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Luigi Petrucco
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Eugenio Piasini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Giuliano Iurilli
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy.
| |
Collapse
|
35
|
Zak JD, Reddy G, Konanur V, Murthy VN. Distinct information conveyed to the olfactory bulb by feedforward input from the nose and feedback from the cortex. Nat Commun 2024; 15:3268. [PMID: 38627390 PMCID: PMC11021479 DOI: 10.1038/s41467-024-47366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
Sensory systems are organized hierarchically, but feedback projections frequently disrupt this order. In the olfactory bulb (OB), cortical feedback projections numerically match sensory inputs. To unravel information carried by these two streams, we imaged the activity of olfactory sensory neurons (OSNs) and cortical axons in the mouse OB using calcium indicators, multiphoton microscopy, and diverse olfactory stimuli. Here, we show that odorant mixtures of increasing complexity evoke progressively denser OSN activity, yet cortical feedback activity is of similar sparsity for all stimuli. Also, representations of complex mixtures are similar in OSNs but are decorrelated in cortical axons. While OSN responses to increasing odorant concentrations exhibit a sigmoidal relationship, cortical axonal responses are complex and nonmonotonic, which can be explained by a model with activity-dependent feedback inhibition in the cortex. Our study indicates that early-stage olfactory circuits have access to local feedforward signals and global, efficiently formatted information about odor scenes through cortical feedback.
Collapse
Affiliation(s)
- Joseph D Zak
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Department of Psychology, University of Illinois Chicago, Chicago, IL, 60607, USA.
| | - Gautam Reddy
- Physics & Informatics Laboratories, NTT Research, Inc., Sunnyvale, CA, 94085, USA
- Department of Physics, Princeton University, Princeton, NJ, 08540, USA
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
| | - Vaibhav Konanur
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Venkatesh N Murthy
- Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, 02134, USA
| |
Collapse
|
36
|
Okumura T, Kida I, Yokoi A, Nakai T, Nishimoto S, Touhara K, Okamoto M. Semantic context-dependent neural representations of odors in the human piriform cortex revealed by 7T MRI. Hum Brain Mapp 2024; 45:e26681. [PMID: 38656060 PMCID: PMC11041378 DOI: 10.1002/hbm.26681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Olfactory perception depends not only on olfactory inputs but also on semantic context. Although multi-voxel activity patterns of the piriform cortex, a part of the primary olfactory cortex, have been shown to represent odor perception, it remains unclear whether semantic contexts modulate odor representation in this region. Here, we investigated whether multi-voxel activity patterns in the piriform cortex change when semantic context modulates odor perception and, if so, whether the modulated areas communicate with brain regions involved in semantic and memory processing beyond the piriform cortex. We also explored regional differences within the piriform cortex, which are influenced by olfactory input and semantic context. We used 2 × 2 combinations of word labels and odorants that were perceived as congruent and measured piriform activity with a 1-mm isotropic resolution using 7T MRI. We found that identical odorants labeled with different words were perceived differently. This labeling effect was observed in multi-voxel activity patterns in the piriform cortex, as the searchlight decoding analysis distinguished identical odors with different labels for half of the examined stimulus pairs. Significant functional connectivity was observed between parts of the piriform cortex that were modulated by labels and regions associated with semantic and memory processing. While the piriform multi-voxel patterns evoked by different olfactory inputs were also distinguishable, the decoding accuracy was significant for only one stimulus pair, preventing definitive conclusions regarding the locational differences between areas influenced by word labels and olfactory inputs. These results suggest that multi-voxel patterns of piriform activity can be modulated by semantic context, possibly due to communication between the piriform cortex and the semantic and memory regions.
Collapse
Affiliation(s)
- Toshiki Okumura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyoJapan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)OsakaJapan
| | - Ikuhiro Kida
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)OsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Atsushi Yokoi
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)OsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Tomoya Nakai
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)OsakaJapan
| | - Shinji Nishimoto
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT)OsakaJapan
- Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI‐IRCN), Institutes for Advanced Study, The University of TokyoTokyoJapan
| | - Masako Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of TokyoTokyoJapan
| |
Collapse
|
37
|
Sharma AA, Nenert R, Goodman AM, Szaflarski JP. Brain temperature and free water increases after mild COVID-19 infection. Sci Rep 2024; 14:7450. [PMID: 38548815 PMCID: PMC10978935 DOI: 10.1038/s41598-024-57561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
38
|
Terral G, Harrell E, Lepousez G, Wards Y, Huang D, Dolique T, Casali G, Nissant A, Lledo PM, Ferreira G, Marsicano G, Roux L. Endogenous cannabinoids in the piriform cortex tune olfactory perception. Nat Commun 2024; 15:1230. [PMID: 38336844 PMCID: PMC10858223 DOI: 10.1038/s41467-024-45161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Sensory perception depends on interactions between external inputs transduced by peripheral sensory organs and internal network dynamics generated by central neuronal circuits. In the sensory cortex, desynchronized network states associate with high signal-to-noise ratio stimulus-evoked responses and heightened perception. Cannabinoid-type-1-receptors (CB1Rs) - which influence network coordination in the hippocampus - are present in anterior piriform cortex (aPC), a sensory paleocortex supporting olfactory perception. Yet, how CB1Rs shape aPC network activity and affect odor perception is unknown. Using pharmacological manipulations coupled with multi-electrode recordings or fiber photometry in the aPC of freely moving male mice, we show that systemic CB1R blockade as well as local drug infusion increases the amplitude of gamma oscillations in aPC, while simultaneously reducing the occurrence of synchronized population events involving aPC excitatory neurons. In animals exposed to odor sources, blockade of CB1Rs reduces correlation among aPC excitatory units and lowers behavioral olfactory detection thresholds. These results suggest that endogenous endocannabinoid signaling promotes synchronized population events and dampen gamma oscillations in the aPC which results in a reduced sensitivity to external sensory inputs.
Collapse
Affiliation(s)
- Geoffrey Terral
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Evan Harrell
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Gabriel Lepousez
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Yohan Wards
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Dinghuang Huang
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Giulio Casali
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Antoine Nissant
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Pierre-Marie Lledo
- Perception and Memory Unit, CNRS, Joint Research Unit 3571, Université Paris Cité, Institut Pasteur, 75015, Paris, France
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Lisa Roux
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
39
|
Sung SH, Suh JM, Hwang YJ, Jang HW, Park JG, Jun SC. Data-centric artificial olfactory system based on the eigengraph. Nat Commun 2024; 15:1211. [PMID: 38332010 PMCID: PMC10853498 DOI: 10.1038/s41467-024-45430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Recent studies of electronic nose system tend to waste significant amount of important data in odor identification. Until now, the sensitivity-oriented data composition has made it difficult to discover meaningful data to apply artificial intelligence in terms of in-depth analysis for odor attributes specifying the identities of gas molecules, ultimately resulting in hindering the advancement of the artificial olfactory technology. Here, we realize a data-centric approach to implement standardized artificial olfactory systems inspired by human olfactory mechanisms by formally defining and utilizing the concept of Eigengraph in electrochemisty. The implicit odor attributes of the eigengraphs were mathematically substantialized as the Fourier transform-based Mel-Frequency Cepstral Coefficient feature vectors. Their effectiveness and applicability in deep learning processes for gas classification have been clearly demonstrated through experiments on complex mixed gases and automobile exhaust gases. We suggest that our findings can be widely applied as source technologies to develop standardized artificial olfactory systems.
Collapse
Affiliation(s)
- Seung-Hyun Sung
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Finance Division, Daejeon Metropolitan Office of Education, Daejeon, 35239, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yun Ji Hwang
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea.
| | - Jeon Gue Park
- Artificial Intelligence Laboratory, Tutorus Labs Inc., Seoul, 06595, Republic of Korea.
- Center for Educational Research, College of Education, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Abstract
Historically, the human sense of smell has been regarded as the odd stepchild of the senses, especially compared to the sensory bravado of seeing, touching, and hearing. The idea that the human olfaction has little to contribute to our experience of the world is commonplace, though with the emergence of COVID-19 there has rather been a sea change in this understanding. An ever increasing body of work has convincingly highlighted the keen capabilities of the human nose and the sophistication of the human olfactory system. Here, we provide a concise overview of the neuroscience of human olfaction spanning the last 10-15 years, with focus on the peripheral and central mechanisms that underlie how odor information is processed, packaged, parceled, predicted, and perturbed to serve odor-guided behaviors. We conclude by offering some guideposts for harnessing the next decade of olfactory research in all its shapes and forms.
Collapse
Affiliation(s)
| | - Jay A Gottfried
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Szewczyk LM, Lipiec MA, Liszewska E, Meyza K, Urban-Ciecko J, Kondrakiewicz L, Goncerzewicz A, Rafalko K, Krawczyk TG, Bogaj K, Vainchtein ID, Nakao-Inoue H, Puscian A, Knapska E, Sanders SJ, Jan Nowakowski T, Molofsky AV, Wisniewska MB. Astrocytic β-catenin signaling via TCF7L2 regulates synapse development and social behavior. Mol Psychiatry 2024; 29:57-73. [PMID: 37798419 PMCID: PMC11078762 DOI: 10.1038/s41380-023-02281-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
The Wnt/β-catenin pathway contains multiple high-confidence risk genes that are linked to neurodevelopmental disorders, including autism spectrum disorder. However, its ubiquitous roles across brain cell types and developmental stages have made it challenging to define its impact on neural circuit development and behavior. Here, we show that TCF7L2, which is a key transcriptional effector of the Wnt/β-catenin pathway, plays a cell-autonomous role in postnatal astrocyte maturation and impacts adult social behavior. TCF7L2 was the dominant Wnt effector that was expressed in both mouse and human astrocytes, with a peak during astrocyte maturation. The conditional knockout of Tcf7l2 in postnatal astrocytes led to an enlargement of astrocytes with defective tiling and gap junction coupling. These mice also exhibited an increase in the number of cortical excitatory and inhibitory synapses and a marked increase in social interaction by adulthood. These data reveal an astrocytic role for developmental Wnt/β-catenin signaling in restricting excitatory synapse numbers and regulating adult social behavior.
Collapse
Affiliation(s)
- Lukasz Mateusz Szewczyk
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Marcin Andrzej Lipiec
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ksenia Meyza
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ludwika Kondrakiewicz
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Goncerzewicz
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ilia Davidovich Vainchtein
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Johnson & Johnson, Neuroscience Therapeutic Area, San Diego, CA, USA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alicja Puscian
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- New York Genome Center, New York, NY, USA
| | - Tomasz Jan Nowakowski
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Anna Victoria Molofsky
- Department of Psychiatry and Behavioral Sciences/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| | - Marta Barbara Wisniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
42
|
Simoes de Souza F, Restrepo D. Olfactory cortex: Temporal segregation of inputs from the two nostrils. Curr Biol 2023; 33:R1286-R1288. [PMID: 38113838 DOI: 10.1016/j.cub.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Piriform cortex processes odor information coming from two nostrils to give rise to unified perception of odorant identity and intensity. A new study reveals that human piriform cortex harbours distinct representations of odor input from ipsilateral and contralateral nostrils through temporal segregation.
Collapse
Affiliation(s)
- Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Dikeçligil GN, Yang AI, Sanghani N, Lucas T, Chen HI, Davis KA, Gottfried JA. Odor representations from the two nostrils are temporally segregated in human piriform cortex. Curr Biol 2023; 33:5275-5287.e5. [PMID: 37924807 DOI: 10.1016/j.cub.2023.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether the primary olfactory cortex (piriform cortex [PC]) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial electroencephalogram (iEEG) signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time course of odor identity coding using machine-learning approaches and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ∼480-ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs, with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.
Collapse
Affiliation(s)
- Gülce Nazlı Dikeçligil
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Andrew I Yang
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Nisha Sanghani
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lucas
- Department of Neurosurgery and Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Licht T, Yunerman M, Maor I, Lawabny N, Oz Rokach R, Shiff I, Mizrahi A, Rokni D. Adaptive olfactory circuitry restores function despite severe olfactory bulb degeneration. Curr Biol 2023; 33:4857-4868.e6. [PMID: 37858342 PMCID: PMC10681124 DOI: 10.1016/j.cub.2023.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
The olfactory bulb (OB) is a critical component of mammalian olfactory neuroanatomy. Beyond being the first and sole relay station for olfactory information to the rest of the brain, it also contains elaborate stereotypical circuitry that is considered essential for olfaction. Indeed, substantial lesions of the OB in rodents lead to anosmia. Here, we examined the circuitry that underlies olfaction in a mouse model with severe developmental degeneration of the OB. These mice could perform odor-guided tasks and even responded normally to innate olfactory cues. Despite the near total loss of the OB, piriform cortices in these mice responded to odors, and its neural activity sufficed to decode odor identity. We found that sensory neurons express the full repertoire of olfactory receptors, and their axons project primarily to the rudiments of the OB but also, ectopically, to olfactory cortical regions. Within the OB, the number of principal neurons was greatly reduced, and the morphology of their dendrites was abnormal, extending over large regions within the OB. Glomerular organization was totally lost in the severe cases of OB degeneration and altered in the more conserved OBs. This study shows that olfactory functionality can be preserved despite reduced and aberrant circuitry that is missing many of the elements believed to be essential for olfaction, and it may explain reported retention of olfaction in humans with degenerated OBs.
Collapse
Affiliation(s)
- Tamar Licht
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| | - Michael Yunerman
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ido Maor
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Naheel Lawabny
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Renana Oz Rokach
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Idit Shiff
- Genomics Applications Laboratory, Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Adi Mizrahi
- Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Dan Rokni
- Department of Medical Neurobiology, Faculty of Medicine and IMRIC, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel.
| |
Collapse
|
45
|
Dikecligil GN, Yang AI, Sanghani N, Lucas T, Chen HI, Davis KA, Gottfried JA. Odor representations from the two nostrils are temporally segregated in human piriform cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528521. [PMID: 36824705 PMCID: PMC9948982 DOI: 10.1101/2023.02.14.528521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The human olfactory system has two discrete channels of sensory input, arising from olfactory epithelia housed in the left and right nostrils. Here, we asked whether primary olfactory cortex (piriform cortex, PC) encodes odor information arising from the two nostrils as integrated or distinct stimuli. We recorded intracranial EEG signals directly from PC while human subjects participated in an odor identification task where odors were delivered to the left, right, or both nostrils. We analyzed the time-course of odor-identity coding using machine learning approaches, and found that uni-nostril odor inputs to the ipsilateral nostril are encoded ~480 ms faster than odor inputs to the contralateral nostril on average. During naturalistic bi-nostril odor sampling, odor information emerged in two temporally segregated epochs with the first epoch corresponding to the ipsilateral and the second epoch corresponding to the contralateral odor representations. These findings reveal that PC maintains distinct representations of odor input from each nostril through temporal segregation, highlighting an olfactory coding scheme at the cortical level that can parse odor information across nostrils within the course of a single inhalation.
Collapse
|
46
|
Srinivasan S, Daste S, Modi MN, Turner GC, Fleischmann A, Navlakha S. Effects of stochastic coding on olfactory discrimination in flies and mice. PLoS Biol 2023; 21:e3002206. [PMID: 37906721 PMCID: PMC10618007 DOI: 10.1371/journal.pbio.3002206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/21/2023] [Indexed: 11/02/2023] Open
Abstract
Sparse coding can improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's benefits: similar sensory stimuli have significant overlap and responses vary across trials. To elucidate the effects of these 2 factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination-the mushroom body (MB) and the piriform cortex (PCx). We found that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the observed variability arises from noise within central circuits rather than sensory noise. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though these benefits only accrue with extended training with more trials. Overall, we have uncovered a conserved, stochastic coding scheme in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all (WTA) inhibitory circuit, that improves discrimination with training.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Simon Daste
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Mehrab N. Modi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Glenn C. Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island, United States of America
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, United States of America
| | - Saket Navlakha
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
47
|
Orloff MA, Boorman ED. Cognitive maps: Constructing a route with your snout. Curr Biol 2023; 33:R963-R965. [PMID: 37751711 DOI: 10.1016/j.cub.2023.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Humans construct cognitive maps of the physical, imagined, and abstract world around us based on visually sampled information. A new study shows how the human brain can also use olfactory cues to form and use cognitive maps.
Collapse
Affiliation(s)
- Mark A Orloff
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Erie D Boorman
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, 135 Young Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Trejo DH, Ciuparu A, da Silva PG, Velasquez CM, Rebouillat B, Gross MD, Davis MB, Muresan RC, Albeanu DF. Fast updating feedback from piriform cortex to the olfactory bulb relays multimodal reward contingency signals during rule-reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557267. [PMID: 37745564 PMCID: PMC10515864 DOI: 10.1101/2023.09.12.557267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigated whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engaged head-fixed mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues triggered cortical bulbar feedback responses which preceded the behavioral report. Responses to the same sensory cue were strongly modulated upon changes in stimulus-reward contingency (rule reversals). The re-shaping of individual bouton responses occurred within seconds of the rule-reversal events and was correlated with changes in the behavior. Optogenetic perturbation of cortical feedback within the bulb disrupted the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback carries reward contingency signals and is rapidly re-formatted according to changes in the behavioral context.
Collapse
Affiliation(s)
| | - Andrei Ciuparu
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
| | - Pedro Garcia da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – Champalimaud Neuroscience Program, Lisbon, Portugal
| | - Cristina M. Velasquez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address – University of Oxford, UK
| | - Benjamin Rebouillat
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- current address –École Normale Supérieure, Paris, France
| | | | | | - Raul C. Muresan
- Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Dinu F. Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School for Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
49
|
Barwich AS, Severino GJ. The Wire Is Not the Territory: Understanding Representational Drift in Olfaction With Dynamical Systems Theory. Top Cogn Sci 2023. [PMID: 37690113 DOI: 10.1111/tops.12689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Representational drift is a phenomenon of increasing interest in the cognitive and neural sciences. While investigations are ongoing for other sensory cortices, recent research has demonstrated the pervasiveness in which it occurs in the piriform cortex for olfaction. This gradual weakening and shifting of stimulus-responsive cells has critical implications for sensory stimulus-response models and perceptual decision-making. While representational drift may complicate traditional sensory processing models, it could be seen as an advantage in olfaction, as animals live in environments with constantly changing and unpredictable chemical information. Non-topographical encoding in the olfactory system may aid in contextualizing reactions to promiscuous odor stimuli, facilitating adaptive animal behavior and survival. This article suggests that traditional models of stimulus-(neural) response mapping in olfaction may need to be reevaluated and instead motivates the use of dynamical systems theory as a methodology and conceptual framework.
Collapse
Affiliation(s)
- Ann-Sophie Barwich
- Cognitive Science Program, Indiana University
- Department of History and Philosophy of Science and Medicine, Indiana University
| | | |
Collapse
|
50
|
Perszyk EE, Davis XS, Djordjevic J, Jones-Gotman M, Trinh J, Hutelin Z, Veldhuizen MG, Koban L, Wager TD, Kober H, Small DM. Odour-imagery ability is linked to food craving, intake, and adiposity change in humans. Nat Metab 2023; 5:1483-1493. [PMID: 37640944 DOI: 10.1038/s42255-023-00874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well-known that food-cue reactivity (FCR) is positively associated with body mass index (BMI)1 and weight change2, but the mechanisms underlying these relationships are incompletely understood. One prominent theory of craving posits that the elaboration of a desired substance through sensory imagery intensifies cravings, thereby promoting consumption3. Olfaction is integral to food perception, yet the ability to imagine odours varies widely4. Here we test in a basic observational study whether this large variation in olfactory imagery drives FCR strength to promote adiposity in 45 adults (23 male). We define odour-imagery ability as the extent to which imagining an odour interferes with the detection of a weak incongruent odour (the 'interference effect'5). As predicted in our preregistration, the interference effect correlates with the neural decoding of imagined, but not real, odours. These perceptual and neural measures of odour imagery are in turn associated with FCR, defined by the rated craving intensity of liked foods and cue-potentiated intake. Finally, odour imagery exerts positive indirect effects on changes in BMI and body-fat percentage over one year via its influences on FCR. These findings establish odour imagery as a driver of FCR that in turn confers risk for weight gain.
Collapse
Affiliation(s)
- Emily E Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Xue S Davis
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jelena Djordjevic
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Marilyn Jones-Gotman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Trinh
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zach Hutelin
- Modern Diet and Physiology Research Center, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maria G Veldhuizen
- Department of Anatomy, Faculty of Medicine, Mersin University, Ciftlikkoy Campus, Mersin, Turkey
| | - Leonie Koban
- Lyon Neuroscience Research Center (CRNL), CNRS, INSERM, University Claude Bernard Lyon 1, Bron, France
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hedy Kober
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|