1
|
Zhang C, Vatan T, Speer CM. Activity-dependent synapse clustering underlies eye-specific competition in the developing retinogeniculate system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560055. [PMID: 39484601 PMCID: PMC11526857 DOI: 10.1101/2023.09.28.560055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Co-active synaptic connections are often spatially clustered to facilitate local dendritic computations underlying learning, memory, and basic sensory processing. In the mammalian visual system, retinal ganglion cell (RGC) axons converge to form clustered synaptic inputs that enable local signal integration in the dorsal lateral geniculate nucleus (dLGN) of the thalamus. While visual experience promotes retinogeniculate synapse clustering after eye-opening, the earliest events in cluster formation prior to visual experience are unknown. Here, using volumetric super-resolution single-molecule localization microscopy and eye-specific labeling of developing retinogeniculate synapses in mice, we show that synaptic clustering is eye-specific and activity-dependent during retinogeniculate refinement in the first postnatal week. We identified a subset of retinogeniculate synapses with multiple active zones that are surrounded by like-eye synapses and depleted of synapse clustering from the opposite eye. In mutant mice with disrupted spontaneous retinal wave activity, synapses with multiple active zones still form, but do not exhibit the synaptic clustering seen in controls. These results highlight a role for spontaneous retinal activity in regulating eye-specific synaptic clustering in circuits essential for visual perception and behavior.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| | - Tarlan Vatan
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, Maryland, USA. 20742
| |
Collapse
|
2
|
Matsumoto N, Barson D, Liang L, Crair MC. Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity. Science 2024; 385:eadh7814. [PMID: 39146415 DOI: 10.1126/science.adh7814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024]
Abstract
Spontaneous activity refines neural connectivity prior to the onset of sensory experience, but it remains unclear how such activity instructs axonal connectivity with subcellular precision. We simultaneously measured spontaneous retinal waves and the activity of individual retinocollicular axons and tracked morphological changes in axonal arbors across hours in vivo in neonatal mice. We demonstrate that the correlation of an axon branch's activity with neighboring axons or postsynaptic neurons predicts whether the branch will be added, stabilized, or eliminated. Desynchronizing individual axons from their local networks, changing the pattern of correlated activity, or blocking N-methyl-d-aspartate receptors all significantly altered single-axon morphology. These observations provide the first direct evidence in vivo that endogenous patterns of correlated neuronal activity instruct fine-scale refinement of axonal processes.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Daniel Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Liang Liang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
- Department of Ophthalmology & Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and organization of the retinal orientation selectivity map. Nat Commun 2024; 15:4829. [PMID: 38844438 PMCID: PMC11156980 DOI: 10.1038/s41467-024-49206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina.
Collapse
Affiliation(s)
- Dominic J Vita
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Fernanda S Orsi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Nathan G Stanko
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Natalie A Clark
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandre Tiriac
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
4
|
Foster M, Scheinost D. Brain states as wave-like motifs. Trends Cogn Sci 2024; 28:492-503. [PMID: 38582654 DOI: 10.1016/j.tics.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024]
Abstract
There is ample evidence of wave-like activity in the brain at multiple scales and levels. This emerging literature supports the broader adoption of a wave perspective of brain activity. Specifically, a brain state can be described as a set of recurring, sequential patterns of propagating brain activity, namely a wave. We examine a collective body of experimental work investigating wave-like properties. Based on these works, we consider brain states as waves using a scale-agnostic framework across time and space. Emphasis is placed on the sequentiality and periodicity associated with brain activity. We conclude by discussing the implications, prospects, and experimental opportunities of this framework.
Collapse
Affiliation(s)
- Maya Foster
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Burbridge TJ, Ratliff JM, Dwivedi D, Vrudhula U, Alvarado-Huerta F, Sjulson L, Ibrahim LA, Cheadle L, Fishell G, Batista-Brito R. Disruption of Cholinergic Retinal Waves Alters Visual Cortex Development and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588143. [PMID: 38644996 PMCID: PMC11030223 DOI: 10.1101/2024.04.05.588143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Retinal waves represent an early form of patterned spontaneous neural activity in the visual system. These waves originate in the retina before eye-opening and propagate throughout the visual system, influencing the assembly and maturation of subcortical visual brain regions. However, because it is technically challenging to ablate retina-derived cortical waves without inducing compensatory activity, the role these waves play in the development of the visual cortex remains unclear. To address this question, we used targeted conditional genetics to disrupt cholinergic retinal waves and their propagation to select regions of primary visual cortex, which largely prevented compensatory patterned activity. We find that loss of cholinergic retinal waves without compensation impaired the molecular and synaptic maturation of excitatory neurons located in the input layers of visual cortex, as well as layer 1 interneurons. These perinatal molecular and synaptic deficits also relate to functional changes observed at later ages. We find that the loss of perinatal cholinergic retinal waves causes abnormal visual cortex retinotopy, mirroring changes in the retinotopic organization of gene expression, and additionally impairs the processing of visual information. We further show that retinal waves are necessary for higher order processing of sensory information by impacting the state-dependent activity of layer 1 interneurons, a neuronal type that shapes neocortical state-modulation, as well as for state-dependent gain modulation of visual responses of excitatory neurons. Together, these results demonstrate that a brief targeted perinatal disruption of patterned spontaneous activity alters early cortical gene expression as well as synaptic and physiological development, and compromises both fundamental and, notably, higher-order functions of visual cortex after eye-opening.
Collapse
Affiliation(s)
- Timothy J Burbridge
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Jacob M Ratliff
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Deepanjali Dwivedi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, KSA
| | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, 220 Longwood Ave., Boston, MA 02115
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Psychiatry and Behavioral Sciences, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
6
|
Vita DJ, Orsi FS, Stanko NG, Clark NA, Tiriac A. Development and Organization of the Retinal Orientation Selectivity Map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.585774. [PMID: 38585937 PMCID: PMC10996665 DOI: 10.1101/2024.03.27.585774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Orientation or axial selectivity, the property of neurons in the visual system to respond preferentially to certain angles of a visual stimuli, plays a pivotal role in our understanding of visual perception and information processing. This computation is performed as early as the retina, and although much work has established the cellular mechanisms of retinal orientation selectivity, how this computation is organized across the retina is unknown. Using a large dataset collected across the mouse retina, we demonstrate functional organization rules of retinal orientation selectivity. First, we identify three major functional classes of retinal cells that are orientation selective and match previous descriptions. Second, we show that one orientation is predominantly represented in the retina and that this predominant orientation changes as a function of retinal location. Third, we demonstrate that neural activity plays little role on the organization of retinal orientation selectivity. Lastly, we use in silico modeling followed by validation experiments to demonstrate that the overrepresented orientation aligns along concentric axes. These results demonstrate that, similar to direction selectivity, orientation selectivity is organized in a functional map as early as the retina. One Sentence Summary Development and organization of retinal orientation selectivity.
Collapse
|
7
|
Krizan J, Song X, Fitzpatrick MJ, Shen N, Soto F, Kerschensteiner D. Predation without direction selectivity. Proc Natl Acad Sci U S A 2024; 121:e2317218121. [PMID: 38483997 PMCID: PMC10962952 DOI: 10.1073/pnas.2317218121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/27/2024] [Indexed: 03/19/2024] Open
Abstract
Across the animal kingdom, visual predation relies on motion-sensing neurons in the superior colliculus (SC) and its orthologs. These neurons exhibit complex stimulus preferences, including direction selectivity, which is thought to be critical for tracking the unpredictable escape routes of prey. The source of direction selectivity in the SC is contested, and its contributions to predation have not been tested experimentally. Here, we use type-specific cell removal to show that narrow-field (NF) neurons in the mouse SC guide predation. In vivo recordings demonstrate that direction-selective responses of NF cells are independent of recently reported stimulus-edge effects. Monosynaptic retrograde tracing reveals that NF cells receive synaptic input from direction-selective ganglion cells. When we eliminate direction selectivity in the retina of adult mice, direction-selective responses in the SC, including in NF cells, are lost. However, eliminating retinal direction selectivity does not affect the hunting success or strategies of mice, even when direction selectivity is removed after mice have learned to hunt, and despite abolishing the gaze-stabilizing optokinetic reflex. Thus, our results identify the retinal source of direction selectivity in the SC. They show that NF cells in the SC guide predation, an essential spatial orienting task, independent of their direction selectivity, revealing behavioral multiplexing of complex neural feature preferences and highlighting the importance of feature-selective manipulations for neuroethology.
Collapse
Affiliation(s)
- Jenna Krizan
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Graduate program in Neuroscience, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Xiayingfang Song
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Graduate program in Biomedical Engineering, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| | - Michael J. Fitzpatrick
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Graduate program in Neuroscience, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
8
|
Hunt JE, Pratt KG, Molnár Z. Ocular Necessities: A Neuroethological Perspective on Vertebrate Visual Development. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:96-108. [PMID: 38447544 PMCID: PMC11152017 DOI: 10.1159/000536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/24/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.
Collapse
Affiliation(s)
- Jasper Elan Hunt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kara Geo Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Kerschensteiner D, Feller MB. Mapping the Retina onto the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041512. [PMID: 38052498 PMCID: PMC10835620 DOI: 10.1101/cshperspect.a041512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Vision begins in the retina, which extracts salient features from the environment and encodes them in the spike trains of retinal ganglion cells (RGCs), the output neurons of the eye. RGC axons innervate diverse brain areas (>50 in mice) to support perception, guide behavior, and mediate influences of light on physiology and internal states. In recent years, complete lists of RGC types (∼45 in mice) have been compiled, detailed maps of their dendritic connections drawn, and their light responses surveyed at scale. We know less about the RGCs' axonal projection patterns, which map retinal information onto the brain. However, some organizing principles have emerged. Here, we review the strategies and mechanisms that govern developing RGC axons and organize their innervation of retinorecipient brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences
- Department of Neuroscience
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Willshaw DJ, Gale NM. Reanalysis of EphA3 Knock-In Double Maps in Mouse Suggests That Stochasticity in Topographic Map Formation Acts at the Retina Rather than between Competing Mechanisms at the Colliculus. eNeuro 2023; 10:ENEURO.0135-23.2023. [PMID: 37852780 PMCID: PMC10668230 DOI: 10.1523/eneuro.0135-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
It has been suggested that stochasticity acts in the formation of topographically ordered maps in the visual system through the opposing chemoaffinity and neural activity forces acting on the innervating nerve fibers being held in an unstable equilibrium. Evidence comes from the Islet2-EphA3 knock-in mouse, in which ∼50% of the retinal ganglion cells, distributed across the retina, acquire the EphA3 receptor, thus having an enhanced density of EphA which specifies retinotopic order along the rostrocaudal (RC) axis of the colliculus. Sampling EphA3 knock-in maps in heterozygotes at different positions along the mediolateral (ML) extent of the colliculus had found single 1D maps [as in wild types (WTs)], double maps (as in homozygous knock-ins) or both single and double maps. We constructed full 2D maps from the same mouse dataset. We found either single maps or maps where the visual field projects rostrally, with a part-projection more caudally to form a double map, the extent and location of this duplication varying considerably. Contrary to previous analyses, there was no strict demarcation between heterozygous and homozygous maps. These maps were replicated in a computational model where, as the level of EphA3 was increased, there was a smooth transition from single to double maps. Our results suggest that the diversity in these retinotopic maps has its origin in a variability over the retina in the effective amount of EphA3, such as through variability in gene expression or the proportion of EphA3+ retinal ganglion cells, rather than the result of competing mechanisms acting at the colliculus.
Collapse
Affiliation(s)
- David J Willshaw
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| | - Nicholas M Gale
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
11
|
Tikidji-Hamburyan RA, Govindaiah G, Guido W, Colonnese MT. Synaptic and circuit mechanisms prevent detrimentally precise correlation in the developing mammalian visual system. eLife 2023; 12:e84333. [PMID: 37211984 PMCID: PMC10202458 DOI: 10.7554/elife.84333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The developing visual thalamus and cortex extract positional information encoded in the correlated activity of retinal ganglion cells by synaptic plasticity, allowing for the refinement of connectivity. Here, we use a biophysical model of the visual thalamus during the initial visual circuit refinement period to explore the role of synaptic and circuit properties in the regulation of such neural correlations. We find that the NMDA receptor dominance, combined with weak recurrent excitation and inhibition characteristic of this age, prevents the emergence of spike-correlations between thalamocortical neurons on the millisecond timescale. Such precise correlations, which would emerge due to the broad, unrefined connections from the retina to the thalamus, reduce the spatial information contained by thalamic spikes, and therefore we term them 'parasitic' correlations. Our results suggest that developing synapses and circuits evolved mechanisms to compensate for such detrimental parasitic correlations arising from the unrefined and immature circuit.
Collapse
Affiliation(s)
| | - Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of LouisvilleLouisvilleUnited States
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
12
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
13
|
Tarchick MJ, Clute DA, Renna JM. Modeling cholinergic retinal waves: starburst amacrine cells shape wave generation, propagation, and direction bias. Sci Rep 2023; 13:2834. [PMID: 36808155 PMCID: PMC9938278 DOI: 10.1038/s41598-023-29572-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Stage II cholinergic retinal waves are one of the first instances of neural activity in the visual system as they are present at a developmental timepoint in which light-evoked activity remains largely undetectable. These waves of spontaneous neural activity sweeping across the developing retina are generated by starburst amacrine cells, depolarize retinal ganglion cells, and drive the refinement of retinofugal projections to numerous visual centers in the brain. Building from several well-established models, we assemble a spatial computational model of starburst amacrine cell-mediated wave generation and wave propagation that includes three significant advancements. First, we model the intrinsic spontaneous bursting of the starburst amacrine cells, including the slow afterhyperpolarization, which shapes the stochastic process of wave generation. Second, we establish a mechanism of wave propagation using reciprocal acetylcholine release, synchronizing the bursting activity of neighboring starburst amacrine cells. Third, we model the additional starburst amacrine cell release of GABA, changing the spatial propagation of retinal waves and in certain instances, the directional bias of the retinal wave front. In total, these advancements comprise a now more comprehensive model of wave generation, propagation, and direction bias.
Collapse
Affiliation(s)
| | - Dustin A Clute
- Department of Biology, University of Akron, Akron, OH, 44325-3908, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, 44325-3908, USA.
| |
Collapse
|
14
|
Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, Tiriac A. Circuit mechanisms underlying embryonic retinal waves. eLife 2023; 12:e81983. [PMID: 36790167 PMCID: PMC9988258 DOI: 10.7554/elife.81983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Spontaneous activity is a hallmark of developing neural systems. In the retina, spontaneous activity comes in the form of retinal waves, comprised of three stages persisting from embryonic day 16 (E16) to eye opening at postnatal day 14 (P14). Though postnatal retinal waves have been well characterized, little is known about the spatiotemporal properties or the mechanisms mediating embryonic retinal waves, designated stage 1 waves. Using a custom-built macroscope to record spontaneous calcium transients from whole embryonic retinas, we show that stage 1 waves are initiated at several locations across the retina and propagate across a broad range of areas. Blocking gap junctions reduced the frequency and size of stage 1 waves, nearly abolishing them. Global blockade of nAChRs similarly nearly abolished stage 1 waves. Thus, stage 1 waves are mediated by a complex circuitry involving subtypes of nAChRs and gap junctions. Stage 1 waves in mice lacking the β2 subunit of the nAChRs (β2-nAChR-KO) persisted with altered propagation properties and were abolished by a gap junction blocker. To assay the impact of stage 1 waves on retinal development, we compared the spatial distribution of a subtype of retinal ganglion cells, intrinsically photosensitive retinal ganglion cells (ipRGCs), which undergo a significant amount of cell death, in WT and β2-nAChR-KO mice. We found that the developmental decrease in ipRGC density is preserved between WT and β2-nAChR-KO mice, indicating that processes regulating ipRGC numbers and distributions are not influenced by spontaneous activity.
Collapse
Affiliation(s)
- Christiane Voufo
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Andy Quaen Chen
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Benjamin E Smith
- School of Optometry, University of California, BerkeleyBerkeleyUnited States
| | - Rongshan Yan
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marla B Feller
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Alexandre Tiriac
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
15
|
Cline HT, Lau M, Hiramoto M. Activity-dependent Organization of Topographic Neural Circuits. Neuroscience 2023; 508:3-18. [PMID: 36470479 PMCID: PMC9839526 DOI: 10.1016/j.neuroscience.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Melissa Lau
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Masaki Hiramoto
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
16
|
Fitzpatrick MJ, Kerschensteiner D. Homeostatic plasticity in the retina. Prog Retin Eye Res 2022; 94:101131. [PMID: 36244950 DOI: 10.1016/j.preteyeres.2022.101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Vision begins in the retina, whose intricate neural circuits extract salient features of the environment from the light entering our eyes. Neurodegenerative diseases of the retina (e.g., inherited retinal degenerations, age-related macular degeneration, and glaucoma) impair vision and cause blindness in a growing number of people worldwide. Increasing evidence indicates that homeostatic plasticity (i.e., the drive of a neural system to stabilize its function) can, in principle, preserve retinal function in the face of major perturbations, including neurodegeneration. Here, we review the circumstances and events that trigger homeostatic plasticity in the retina during development, sensory experience, and disease. We discuss the diverse mechanisms that cooperate to compensate and the set points and outcomes that homeostatic retinal plasticity stabilizes. Finally, we summarize the opportunities and challenges for unlocking the therapeutic potential of homeostatic plasticity. Homeostatic plasticity is fundamental to understanding retinal development and function and could be an important tool in the fight to preserve and restore vision.
Collapse
|
17
|
Lloyd E, McDole B, Privat M, Jaggard JB, Duboué ER, Sumbre G, Keene AC. Blind cavefish retain functional connectivity in the tectum despite loss of retinal input. Curr Biol 2022; 32:3720-3730.e3. [PMID: 35926509 DOI: 10.1016/j.cub.2022.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Sensory systems display remarkable plasticity and are under strong evolutionary selection. The Mexican cavefish, Astyanax mexicanus, consists of eyed river-dwelling surface populations and multiple independent cave populations that have converged on eye loss, providing the opportunity to examine the evolution of sensory circuits in response to environmental perturbation. Functional analysis across multiple transgenic populations expressing GCaMP6s showed that functional connectivity of the optic tectum largely did not differ between populations, except for the selective loss of negatively correlated activity within the cavefish tectum, suggesting positively correlated neural activity is resistant to an evolved loss of input from the retina. Furthermore, analysis of surface-cave hybrid fish reveals that changes in the tectum are genetically distinct from those encoding eye loss. Together, these findings uncover the independent evolution of multiple components of the visual system and establish the use of functional imaging in A. mexicanus to study neural circuit evolution.
Collapse
Affiliation(s)
- Evan Lloyd
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology, Texas A&M University, College Station, TX 77843, USA; Harriet Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Brittnee McDole
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - James B Jaggard
- Department of Biological Science, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik R Duboué
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - German Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Tiriac A, Feller MB. Roles of visually evoked and spontaneous activity in the development of retinal direction selectivity maps. Trends Neurosci 2022; 45:529-538. [PMID: 35491255 DOI: 10.1016/j.tins.2022.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Detecting the direction of motion underlies many visually guided behaviors, from reflexive eye movements to identifying and catching moving objects. A subset of motion sensitive cells are direction selective - responding strongly to motion in one direction and weakly to motion in other directions. In mammals, direction-selective cells are found throughout the visual system, including the retina, superior colliculus, and primary visual cortex. Direction selectivity maps are well characterized in the mouse retina, where the preferred directions of retinal direction-selective cells follow the projections of optic flow, generated by the movements animals make as they navigate their environment. Here, we synthesize recent findings implicating activity-dependent mechanisms in the development of retinal direction selectivity maps, with primary focus on studies in mice, and discuss the implications for the development of direction-selective responses in downstream visual areas.
Collapse
Affiliation(s)
- Alexandre Tiriac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
19
|
Vėbraitė I, Hanein Y. In the Eye of the Storm: Bi-Directional Electrophysiological Investigation of the Intact Retina. Front Neurosci 2022; 16:829323. [PMID: 35281487 PMCID: PMC8914158 DOI: 10.3389/fnins.2022.829323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Electrophysiological investigations reveal a great deal about the organization and function of the retina. In particular, investigations of explanted retinas with multi electrode arrays are widely used for basic and applied research purposes, offering high-resolution and detailed information about connectivity and structure. Low-resolution, non-invasive approaches are also widely used. Owing to its delicate nature, high-resolution electrophysiological investigations of the intact retina until now are sparse. In this Mini Review, we discuss progress, challenges and opportunities for electrode arrays suitable for high-resolution, multisite electrophysiological interfacing with the intact retina. In particular, existing gaps in achieving bi-directional electrophysiological investigation of the intact retina are discussed.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Yael Hanein,
| |
Collapse
|
20
|
The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Rep 2022; 38:110225. [PMID: 35021080 PMCID: PMC8805704 DOI: 10.1016/j.celrep.2021.110225] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 01/23/2023] Open
Abstract
In mice, retinal direction selectivity is organized in a map that aligns to the body and gravitational axes of optic flow, and little is known about how this map develops. We find direction selectivity maps are largely present at eye opening and develop normally in the absence of visual experience. Remarkably, in mice lacking the beta2 subunit of neuronal nicotinic acetylcholine receptors (β2-nAChR-KO), which exhibit drastically reduced cholinergic retinal waves in the first postnatal week, selectivity to horizontal motion is absent while selectivity to vertical motion remains. We tested several possible mechanisms that could explain the loss of horizontal direction selectivity in β2-nAChR-KO mice (wave propagation bias, FRMD7 expression, starburst amacrine cell morphology), but all were found to be intact when compared with WT mice. This work establishes a role for retinal waves in the development of asymmetric circuitry that mediates retinal direction selectivity via an unknown mechanism.
Collapse
|
21
|
Ge X, Zhang K, Gribizis A, Hamodi AS, Sabino AM, Crair MC. Retinal waves prime visual motion detection by simulating future optic flow. Science 2021; 373:373/6553/eabd0830. [PMID: 34437090 DOI: 10.1126/science.abd0830] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/26/2021] [Indexed: 01/01/2023]
Abstract
The ability to perceive and respond to environmental stimuli emerges in the absence of sensory experience. Spontaneous retinal activity prior to eye opening guides the refinement of retinotopy and eye-specific segregation in mammals, but its role in the development of higher-order visual response properties remains unclear. Here, we describe a transient window in neonatal mouse development during which the spatial propagation of spontaneous retinal waves resembles the optic flow pattern generated by forward self-motion. We show that wave directionality requires the same circuit components that form the adult direction-selective retinal circuit and that chronic disruption of wave directionality alters the development of direction-selective responses of superior colliculus neurons. These data demonstrate how the developing visual system patterns spontaneous activity to simulate ethologically relevant features of the external world and thereby instruct self-organization.
Collapse
Affiliation(s)
- Xinxin Ge
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kathy Zhang
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ali S Hamodi
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Aude Martinez Sabino
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
22
|
Development of the vertebrate retinal direction-selective circuit. Dev Biol 2021; 477:273-283. [PMID: 34118273 DOI: 10.1016/j.ydbio.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.
Collapse
|
23
|
Wosniack ME, Kirchner JH, Chao LY, Zabouri N, Lohmann C, Gjorgjieva J. Adaptation of spontaneous activity in the developing visual cortex. eLife 2021; 10:61619. [PMID: 33722342 PMCID: PMC7963484 DOI: 10.7554/elife.61619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Spontaneous activity drives the establishment of appropriate connectivity in different circuits during brain development. In the mouse primary visual cortex, two distinct patterns of spontaneous activity occur before vision onset: local low-synchronicity events originating in the retina and global high-synchronicity events originating in the cortex. We sought to determine the contribution of these activity patterns to jointly organize network connectivity through different activity-dependent plasticity rules. We postulated that local events shape cortical input selectivity and topography, while global events homeostatically regulate connection strength. However, to generate robust selectivity, we found that global events should adapt their amplitude to the history of preceding cortical activation. We confirmed this prediction by analyzing in vivo spontaneous cortical activity. The predicted adaptation leads to the sparsification of spontaneous activity on a slower timescale during development, demonstrating the remarkable capacity of the developing sensory cortex to acquire sensitivity to visual inputs after eye-opening.
Collapse
Affiliation(s)
- Marina E Wosniack
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jan H Kirchner
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ling-Ya Chao
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Nawal Zabouri
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Christian Lohmann
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands.,Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Julijana Gjorgjieva
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, Frankfurt, Germany.,School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
24
|
Johnson KO, Triplett JW. Wiring subcortical image-forming centers: Topography, laminar targeting, and map alignment. Curr Top Dev Biol 2020; 142:283-317. [PMID: 33706920 DOI: 10.1016/bs.ctdb.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Efficient sensory processing is a complex and important function for species survival. As such, sensory circuits are highly organized to facilitate rapid detection of salient stimuli and initiate motor responses. For decades, the retina's projections to image-forming centers have served as useful models to elucidate the mechanisms by which such exquisite circuitry is wired. In this chapter, we review the roles of molecular cues, neuronal activity, and axon-axon competition in the development of topographically ordered retinal ganglion cell (RGC) projections to the superior colliculus (SC) and dorsal lateral geniculate nucleus (dLGN). Further, we discuss our current state of understanding regarding the laminar-specific targeting of subclasses of RGCs in the SC and its homolog, the optic tectum (OT). Finally, we cover recent studies examining the alignment of projections from primary visual cortex with RGCs that monitor the same region of space in the SC.
Collapse
Affiliation(s)
- Kristy O Johnson
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, United States
| | - Jason W Triplett
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States; Department of Pediatrics, The George Washington University School of Medicine, Washington, DC, United States.
| |
Collapse
|
25
|
Ahn J, Phan HL, Cha S, Koo KI, Yoo Y, Goo YS. Synchrony of Spontaneous Burst Firing between Retinal Ganglion Cells Across Species. Exp Neurobiol 2020; 29:285-299. [PMID: 32921641 PMCID: PMC7492847 DOI: 10.5607/en20025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
Neurons communicate with other neurons in response to environmental changes. Their goal is to transmit information to their targets reliably. A burst, which consists of multiple spikes within a short time interval, plays an essential role in enhancing the reliability of information transmission through synapses. In the visual system, retinal ganglion cells (RGCs), the output neurons of the retina, show bursting activity and transmit retinal information to the lateral geniculate neuron of the thalamus. In this study, to extend our interest to the population level, the burstings of multiple RGCs were simultaneously recorded using a multi-channel recording system. As the first step in network analysis, we focused on investigating the pairwise burst correlation between two RGCs. Furthermore, to assess if the population bursting is preserved across species, we compared the synchronized bursting of RGCs between marmoset monkey (callithrix jacchus), one species of the new world monkeys and mouse (C57BL/6J strain). First, monkey RGCs showed a larger number of spikes within a burst, while the inter-spike interval, burst duration, and inter-burst interval were smaller compared with mouse RGCs. Monkey RGCs showed a strong burst synchronization between RGCs, whereas mouse RGCs showed no correlated burst firing. Monkey RGC pairs showed significantly higher burst synchrony and mutual information than mouse RGC pairs did. Comprehensively, through this study, we emphasize that two species have a different bursting activity of RGCs and different burst synchronization suggesting two species have distinctive retinal processing.
Collapse
Affiliation(s)
- Jungryul Ahn
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Huu Lam Phan
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Seongkwang Cha
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| | - Kyo-In Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan 44610, Korea
| | - Yongseok Yoo
- Department of Electronics Engineering, Incheon National University, Incheon 22012, Korea
| | - Yong Sook Goo
- Department of Physiology, Chungbuk National University School of Medicine, Cheongju 28644, Korea
| |
Collapse
|
26
|
Hiramoto M, Cline HT. NMDARs Translate Sequential Temporal Information into Spatial Maps. iScience 2020; 23:101130. [PMID: 32480133 PMCID: PMC7262552 DOI: 10.1016/j.isci.2020.101130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 11/29/2022] Open
Abstract
Spatial representations of the sensory world are important for brain function. Timing is an essential component of sensory information. Many brain circuits transform the temporal sequence of input activity into spatial maps; however, the mechanisms underlying this transformation are unclear. Different N-methyl-D-aspartate receptor (NMDAR) response magnitudes result in synaptic potentiation or depression. We asked whether NMDAR response magnitude also affects the transformation of temporal information into directional spatial maps. We quantified retinotectal axon branch dynamics in Xenopus optic tectum in response to temporal sequences of visual stimulation. Reducing NMDAR responses by 50% inverts the spatial distribution of branch dynamics along the rostrocaudal axis in response to temporal patterns of input, suggesting that the magnitude of NMDAR signaling encodes the temporal sequence of inputs and translates the temporal code into a directional spatial map using structural plasticity-based branch dynamics. We discuss how this NMDAR-dependent decoding mechanism retrieves spatial information from sequential afferent activity. NMDAR response magnitude encodes the temporal sequence of inputs NMDAR mechanism decodes spatial information from sequential input activity NMDAR attenuation inverts the temporal to spatial transformation NMDAR activity alters the spatial distribution of dynamic and stable branches
Collapse
Affiliation(s)
- Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
27
|
Zou X, Wang Y, Yu Y, He J, Zhao F, Xi C, Zhang C, Cao Z. BmK NSP, a new sodium channel activator from Buthus martensii Karsch, promotes neurite outgrowth in primary cultured spinal cord neurons. Toxicon 2020; 182:13-20. [PMID: 32353571 DOI: 10.1016/j.toxicon.2020.04.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Scorpion venom is a rich source of bioactive compounds that affect neuronal excitability by modulating the activities of various channels/receptors. In the current study, guided by a Ca2+ mobilization assay, we purified a new neuroactive peptide designated as BmK NSP (Buthus martensii Karsch neurite-stimulating peptide, MW: 7064.30 Da). The primary structure of BmK NSP was determined by Edman degradation. BmK NSP concentration-dependently elevated intracellular Ca2+ concentration ([Ca2+]i) with an EC50 value of 4.18 μM in primary cultured spinal cord neurons (SCNs). Depletion of extracellular Ca2+ abolished BmK NSP-triggered Ca2+ response. Moreover, we demonstrated that BmK NSP-induced Ca2+ response was partially suppressed by the inhibitors of L-type Ca2+ channels, Na+-Ca2+ exchangers and NMDA receptors and was abolished by voltage-gated sodium channel (VGSC) blocker, tetrodotoxin. Whole-cell patch clamp recording demonstrated that BmK NSP delayed VGSC inactivation (EC50 = 1.10 μM) in SCNs. BmK NSP enhanced neurite outgrowth in a non-monotonic manner that peaked at ~30 nM in SCNs. BmK NSP-promoted neurite outgrowth was suppressed by the inhibitors of L-type Ca2+ channels, NMDA receptors, and VGSCs. Considered together, these data demonstrate that BmK NSP is a new α-scorpion toxin that enhances neurite outgrowth through main routes of Ca2+ influx. Modulation of VGSC activity by α-scorpion toxin might represent a novel strategy to regulate the neurogenesis in SCNs.
Collapse
Affiliation(s)
- Xiaohan Zou
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yujing Wang
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiyi Yu
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jing He
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Chuchu Xi
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chi Zhang
- Jiangsu Provincial Supervision & Inspection Center of Green & Degradable Materials, Nanjing Institute of Product Quality Inspection, No. 3 E. Jialingjiang Street, Nanjing, Jiangsu, 210019, China
| | - Zhengyu Cao
- Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
28
|
Gribizis A, Ge X, Daigle TL, Ackman JB, Zeng H, Lee D, Crair MC. Visual Cortex Gains Independence from Peripheral Drive before Eye Opening. Neuron 2019; 104:711-723.e3. [PMID: 31561919 DOI: 10.1016/j.neuron.2019.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
Visual spatial perception in the mammalian brain occurs through two parallel pathways: one reaches the primary visual cortex (V1) through the thalamus and another the superior colliculus (SC) via direct projections from the retina. The origin, development, and relative function of these two evolutionarily distinct pathways remain obscure. We examined the early functional development of both pathways by simultaneously imaging pre- and post-synaptic spontaneous neuronal activity. We observed that the quality of retinal activity transfer to the thalamus and superior colliculus does not change across the first two postnatal weeks. However, beginning in the second postnatal week, retinal activity does not drive V1 as strongly as earlier wave activity, suggesting that intrinsic cortical activity competes with signals from the sensory periphery as the cortex matures. Together, these findings bring new insight into the function of the SC and V1 and the role of peripheral activity in driving both circuits across development.
Collapse
Affiliation(s)
- Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xinxin Ge
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James B Ackman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daeyeol Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Michael C Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
29
|
Zheng J, Yu Y, Feng W, Li J, Liu J, Zhang C, Dong Y, Pessah IN, Cao Z. Influence of Nanomolar Deltamethrin on the Hallmarks of Primary Cultured Cortical Neuronal Network and the Role of Ryanodine Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67003. [PMID: 31166131 PMCID: PMC6792378 DOI: 10.1289/ehp4583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pyrethroid deltamethrin (DM) is broadly used for insect control. Although DM hyperexcites neuronal networks by delaying inactivation of axonal voltage-dependent [Formula: see text] channels, this mechanism is unlikely to mediate neurotoxicity at lower exposure levels during critical perinatal periods in mammals. OBJECTIVES We aimed to identify mechanisms by which acute and subchronic DM altered axonal and dendritic growth, patterns of synchronous [Formula: see text] oscillations (SCOs), and electrical spike activity (ESA) functions critical to neuronal network formation. METHODS Measurements of SCOs using [Formula: see text] imaging, ESA using microelectrode array (MEA) technology, and dendritic complexity using Sholl analysis were performed in primary murine cortical neurons from wild-type (WT) and/or ryanodine receptor 1 ([Formula: see text]) mice between 5 and 14 d in vitro (DIV). [Formula: see text] binding analysis and a single-channel voltage clamp were utilized to measure engagement of RyRs as a direct target of DM. RESULTS Neuronal networks responded to DM ([Formula: see text]) as early as 5 DIV, reducing SCO amplitude and depressing ESA and burst frequencies by 60-70%. DM ([Formula: see text]) enhanced axonal growth in a nonmonotonic manner. [Formula: see text] enhanced dendritic complexity. DM stabilized channel open states of RyR1, RyR2, and cortical preparations expressing all three isoforms. DM ([Formula: see text]) altered gating kinetics of RyR1 channels, increasing mean open time, decreasing mean closed time, and thereby enhancing overall open probability. SCO patterns from cortical networks expressing [Formula: see text] were more responsive to DM than WT. [Formula: see text] neurons showed inherently longer axonal lengths than WT neurons and maintained less length-promoting responses to nanomolar DM. CONCLUSIONS Our findings suggested that RyRs were sensitive molecular targets of DM with functional consequences likely relevant for mediating abnormal neuronal network connectivity in vitro. https://doi.org/10.1289/EHP4583.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jing Li
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ju Liu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Stasheff SF. Clinical Impact of Spontaneous Hyperactivity in Degenerating Retinas: Significance for Diagnosis, Symptoms, and Treatment. Front Cell Neurosci 2018; 12:298. [PMID: 30250425 PMCID: PMC6139326 DOI: 10.3389/fncel.2018.00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/17/2018] [Indexed: 11/23/2022] Open
Abstract
Hereditary retinal degenerations result from varied pathophysiologic mechanisms, all ultimately characterized by photoreceptor dysfunction and death. Hence, much research on these diseases has concentrated on the outer retina. Over the past decade or so increasing attention has focused on concomitant changes in complex inner retinal neural circuits that process visual signals for transmission to the brain. One striking abnormality develops before the ultimately profound anatomic disruption of the inner retina. Highly elevated spontaneous activity was first demonstrated in central nervous system visual centers in vivo by Dräger and Hubel (1978), and subsequently has been confirmed in vitro, now in multiple animal models and by multiple investigators (see other contributions to this Research Topic). What evidence exists that this phenomenon occurs in human patients with retinal degeneration, and what is the ultimate effect of spontaneous hyperactivity in the output neurons, the retinal ganglion cells? Here I summarize abnormalities of visual perception among patients with retinal degeneration that may arise from hyperactivity. Next, I consider the disruption of neural encoding and anatomic connectivity that may result within the retina and in downstream visual centers of the brain. I then consider how specific characteristics of hyperactivity may distinguish various forms or stages of retinal degeneration, potentially helping in the near future to refine diagnosis and/or treatment choices for different patients. Finally, I review how consideration of these features may help optimize pharmacologic, gene, stem cell, prosthetic or other therapies to forestall visual loss or restore sight.
Collapse
Affiliation(s)
- Steven F Stasheff
- Center for Neuroscience and Behavioral Medicine, Gilbert Family Neurofibromatosis Institute, Children's National Health System, Washington, DC, United States.,Visual Neurophysiology, Neuro-ophthalmology and Pediatric Neurology, Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD, United States
| |
Collapse
|
31
|
Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev 2018; 13:9. [PMID: 29855353 PMCID: PMC5984303 DOI: 10.1186/s13064-018-0105-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity, neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize activity in developing neural circuits.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, USA.
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Department of Neuroscience, Washington University School of Medicine, Saint Louis, USA. .,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
32
|
Failor SW, Ng A, Cheng HJ. Monocular enucleation alters retinal waves in the surviving eye. Neural Dev 2018; 13:4. [PMID: 29573745 PMCID: PMC5866508 DOI: 10.1186/s13064-018-0101-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/02/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Activity in neurons drives afferent competition that is critical for the refinement of nascent neural circuits. In ferrets, when an eye is lost in early development, surviving retinogeniculate afferents from the spared eye spread across the thalamus in a manner that is dependent on spontaneous retinal activity. However, how this spontaneous activity, also known as retinal waves, might dynamically regulate afferent terminal targeting remains unknown. METHODS We recorded retinal waves from retinae ex vivo using multi-electrode arrays. Retinae came from ferrets who were binocular or who had one eye surgically removed at birth. Linear mixed effects models were used to investigate the effects of early monocular enucleation on retinal wave activity. RESULTS When an eye is removed at birth, spontaneous bursts of action potentials by retinal ganglion cells (RGCs) in the surviving eye are shorter in duration. The shortening of RGC burst duration results in decreased pairwise RGC correlations across the retina and is associated with the retinal wave-dependent spread of retinogeniculate afferents previously reported in enucleates. CONCLUSION Our findings show that removal of the competing eye modulates retinal waves and could underlie the dynamic regulation of competition-based refinement during retinogeniculate development.
Collapse
Affiliation(s)
- Samuel Wilson Failor
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Wolfson Institute for Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Arash Ng
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA
| | - Hwai-Jong Cheng
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA, 95618, USA. .,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA. .,Department of Pathology and Laboratory Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
33
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
34
|
Chen YCD. Commentary: Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. Front Neural Circuits 2018; 11:113. [PMID: 29358906 PMCID: PMC5766681 DOI: 10.3389/fncir.2017.00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yu-Chieh D Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
35
|
A Sparse Multiwavelet-Based Generalized Laguerre–Volterra Model for Identifying Time-Varying Neural Dynamics from Spiking Activities. ENTROPY 2017. [DOI: 10.3390/e19080425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Lee JS, Kim HG, Jeon CJ. Identification of synaptic pattern of NMDA receptor subunits upon direction-selective retinal ganglion cells in developing and adult mouse retina. Acta Histochem 2017; 119:495-507. [PMID: 28545760 DOI: 10.1016/j.acthis.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 04/30/2017] [Accepted: 05/05/2017] [Indexed: 11/25/2022]
Abstract
Direction selectivity of the retina is a unique mechanism and critical function of eyes for surviving. Direction-selective retinal ganglion cells (DS RGCs) strongly respond to preferred directional stimuli, but rarely respond to the opposite or null directional stimuli. These DS RGCs are sensitive to glutamate, which is secreted from bipolar cells. Using immunocytochemistry, we studied with the distributions of N-methyl-d-aspartate (NMDA) receptor subunits on the dendrites of DS RGCs in the developing and adult mouse retina. DS RGCs were injected with Lucifer yellow for identification of dendritic morphology. The triple-labeled images of dendrites, kinesin II, and NMDA receptor subunits were visualized using confocal microscopy and were reconstructed from high-resolution confocal images. Although our results revealed that the synaptic pattern of NMDA receptor subunits on dendrites of DS RGCs was not asymmetric in developing and adult mouse retina, they showed the anatomical connectivity of NMDA glutamatergic synapses onto DS RGCs and the developmental formation of the direction selectivity in the mouse retina. Through the comprehensive interpretation of the direction-selective neural circuit, this study, therefore, implies that the direction selectivity may be generated by the asymmetry of the excitatory glutamatergic inputs and the inhibitory inputs onto DS RGCs.
Collapse
|
37
|
Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions. J Neurosci Methods 2017; 278:46-56. [PMID: 28062244 DOI: 10.1016/j.jneumeth.2016.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/26/2016] [Accepted: 12/30/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Tracking the changes of neural dynamics based on neuronal spiking activities is a critical step to understand the neurobiological basis of learning from behaving animals. These dynamical neurobiological processes associated with learning are also time-varying, which makes the modeling problem challenging. NEW METHOD We developed a novel multiwavelet-based time-varying generalized Laguerre-Volterra (TVGLV) modeling framework to study the time-varying neural dynamical systems using natural spike train data. By projecting the time-varying parameters in the TVGLV model onto a finite sequence of multiwavelet basis functions, the time-varying identification problem is converted into a time invariant linear-in-the-parameters one. An effective forward orthogonal regression (FOR) algorithm aided by mutual information (MI) criterion is then applied for the selection of significant model regressors or terms and the refinement of model structure. A generalized linear model fit approach is finally employed for parameter estimation from spike train data. RESULTS The proposed multiwavelet-based TVGLV approach is used to identify both synthetic input-output spike trains and spontaneous retinal spike train recordings. The proposed method gives excellent the performance of tracking either sharply or slowly changing parameters with high sensitivity and accuracy regardless of the a priori knowledge of spike trains, which these results indicate that the proposed method is shown to deal well with spike train data. COMPARISON WITH EXISTING METHODS The proposed multiwavelet-based TVGLV approach was compared with several state-of-art parametric estimation methods like the steepest descent point process filter (SDPPF) or Chebyshev polynomial expansion method. The conventional SDPPF algorithm, or SDPPF with B-splines wavelet expansion method was shown to have the poor performance of tracking the time-varying system changes with the synthetic spike train data due to the slow convergence of the adaptive filter methods. Although the Chebyshev polynomial basis function method gave the good parametric estimation results, it requires prior parameter estimation. It was shown that the proposed multiwavelet-based TVGLV method can track the time-varying parameter changes rapidly and accurately. CONCLUSIONS The multiwavelet-based TVGLV modeling framework developed in this paper can not only provide a computational modeling scheme for investigating such nonstationary properties, track more general forms of changes in time-varying neural dynamics, and but also may potentially be applied to investigate the spatial-temporal information underlying biomedical spiking signals.
Collapse
|
38
|
Novel Models of Visual Topographic Map Alignment in the Superior Colliculus. PLoS Comput Biol 2016; 12:e1005315. [PMID: 28027309 PMCID: PMC5226834 DOI: 10.1371/journal.pcbi.1005315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/11/2017] [Accepted: 12/16/2016] [Indexed: 01/22/2023] Open
Abstract
The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them.
Collapse
|
39
|
Pratt KG, Hiramoto M, Cline HT. An Evolutionarily Conserved Mechanism for Activity-Dependent Visual Circuit Development. Front Neural Circuits 2016; 10:79. [PMID: 27818623 PMCID: PMC5073143 DOI: 10.3389/fncir.2016.00079] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022] Open
Abstract
Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don’t need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Kara G Pratt
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming Laramie, WY, USA
| | - Masaki Hiramoto
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| | - Hollis T Cline
- Department of Molecular and Cellular Neuroscience and The Dorris Neuroscience Center, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
40
|
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors. Nat Commun 2016; 7:12650. [PMID: 27586999 PMCID: PMC5025778 DOI: 10.1038/ncomms12650] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. Retinal waves are important for visual system development. However, the mechanism involved in their generation remains largely unknown. Here using in vivo two-photon imaging the authors identify the presence of retinal waves in zebrafish larvae and find that they are initiated at bipolar cells via presynaptic NMDARs.
Collapse
|
41
|
Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. J Neurosci 2016; 36:3871-86. [PMID: 27030771 DOI: 10.1523/jneurosci.3549-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits.
Collapse
|
42
|
Hiolski EM, Ito S, Beggs JM, Lefebvre KA, Litke AM, Smith DR. Domoic acid disrupts the activity and connectivity of neuronal networks in organotypic brain slice cultures. Neurotoxicology 2016; 56:215-224. [PMID: 27506300 DOI: 10.1016/j.neuro.2016.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022]
Abstract
Domoic acid is a neurotoxin produced by algae and is found in seafood during harmful algal blooms. As a glutamate agonist, domoic acid inappropriately stimulates excitatory activity in neurons. At high doses, this leads to seizures and brain lesions, but it is unclear how lower, asymptomatic exposures disrupt neuronal activity. Domoic acid has been detected in an increasing variety of species across a greater geographical range than ever before, making it critical to understand the potential health impacts of low-level exposure on vulnerable marine mammal and human populations. To determine whether prolonged domoic acid exposure altered neuronal activity in hippocampal networks, we used a custom-made 512 multi-electrode array with high spatial and temporal resolution to record extracellular potentials (spikes) in mouse organotypic brain slice cultures. We identified individual neurons based on spike waveform and location, and measured the activity and functional connectivity within the neuronal networks of brain slice cultures. Domoic acid exposure significantly altered neuronal spiking activity patterns, and increased functional connectivity within exposed cultures, in the absence of overt cellular or neuronal toxicity. While the overall spiking activity of neurons in domoic acid-exposed cultures was comparable to controls, exposed neurons spiked significantly more often in bursts. We also identified a subset of neurons that were electrophysiologically silenced in exposed cultures, and putatively identified those neurons as fast-spiking inhibitory neurons. These results provide evidence that domoic acid affects neuronal activity in the absence of cytotoxicity, and suggest that neurodevelopmental exposure to domoic acid may alter neurological function in the absence of clinical symptoms.
Collapse
Affiliation(s)
- E M Hiolski
- Department of Microbiology & Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - S Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
| | - J M Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - K A Lefebvre
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, USA
| | - A M Litke
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA
| | - D R Smith
- Department of Microbiology & Environmental Toxicology, University of California, Santa Cruz, CA, USA
| |
Collapse
|
43
|
Arroyo DA, Feller MB. Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits 2016; 10:54. [PMID: 27507937 PMCID: PMC4960261 DOI: 10.3389/fncir.2016.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental events has been well studied. Recent advancements in pharmacological, genetic, and optogenetic manipulations have provided further understanding of the contribution of specific spatiotemporal properties of retinal waves to eye-specific segregation and retinotopic refinement of retinofugal projections. Here we review some of the recent progress in understanding the role of retinal waves in the early stages of visual system development, prior to the maturation of vision.
Collapse
Affiliation(s)
- David A Arroyo
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley, CA, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California BerkeleyBerkeley, CA, USA; Helen Wills Neuroscience Institute, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
44
|
Morrie RD, Feller MB. Development of synaptic connectivity in the retinal direction selective circuit. Curr Opin Neurobiol 2016; 40:45-52. [PMID: 27380013 DOI: 10.1016/j.conb.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022]
Abstract
Direction selectivity is a classic neuronal computation that has been described in many different sensory systems. The circuit basis of this computation is perhaps best understood in the retina, where direction selectivity is the result of asymmetric connectivity patterns between excitatory and inhibitory circuit components. Retinal direction selective circuits emerge before eye-opening, though components of the circuit undergo refinement after vision begins. These features make the direction selective circuit a rich model in which to investigate neuronal circuit assembly. In this Opinion, we highlight recent experiments investigating the contribution of various molecular cues, as well as neuronal activity, to the development of the retinal direction selective circuit.
Collapse
Affiliation(s)
- Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, United States
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3200, United States.
| |
Collapse
|
45
|
Arroyo DA, Kirkby LA, Feller MB. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2016; 36:6892-905. [PMID: 27358448 PMCID: PMC4926237 DOI: 10.1523/jneurosci.0572-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.
Collapse
Affiliation(s)
| | | | - Marla B Feller
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
46
|
Abstract
Corticothalamic projection systems arise from 2 main cortical layers. Layer V neurons project exclusively to higher-order thalamic nuclei, while layer VIa fibers project to both first-order and higher-order thalamic nuclei. During early postnatal development, layer VIa and VIb fibers accumulate at the borders of the dorsal lateral geniculate nucleus (dLGN) before they innervate it. After neonatal monocular enucleation or silencing of the early retinal activity, there is premature entry of layer VIa and VIb fibers into the dLGN contralateral to the manipulation. Layer V fibers do not innervate the superficial gray layer of the superior colliculus during the first postnatal week, but also demonstrate premature entry to the contralateral superficial gray layer following neonatal enucleation. Normally, layer V driver projections to the thalamus only innervate higher-order nuclei. Our results demonstrate that removal of retinal input from the dLGN induces cortical layer V projections to aberrantly enter, arborize, and synapse within the first-order dLGN. These results suggest that there is cross-hierarchical corticothalamic plasticity after monocular enucleation. Cross-hierarchical rewiring has been previously demonstrated in the thalamocortical system (Pouchelon et al. 2014), and now we provide evidence for cross-hierarchical corticothalamic rewiring after loss of the peripheral sensory input.
Collapse
Affiliation(s)
- Eleanor Grant
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
47
|
Increasing Spontaneous Retinal Activity before Eye Opening Accelerates the Development of Geniculate Receptive Fields. J Neurosci 2016; 35:14612-23. [PMID: 26511250 DOI: 10.1523/jneurosci.1365-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus. To determine whether retinal waves also drive the maturation of functional responses, we increased the frequency of retinal waves pharmacologically in the ferret (Mustela putorius furo) during a period of retinogeniculate development before eye opening. The development of geniculate receptive fields after receiving these increased neural activities was measured using single-unit electrophysiology. We found that increased retinal waves accelerate the developmental reduction of geniculate receptive field sizes. This reduction is due to a decrease in receptive field center size rather than an increase in inhibitory surround strength. This work reveals an instructive role for patterned spontaneous activity in guiding the functional development of neural circuits.
Collapse
|
48
|
Owens MT, Feldheim DA, Stryker MP, Triplett JW. Stochastic Interaction between Neural Activity and Molecular Cues in the Formation of Topographic Maps. Neuron 2015; 87:1261-1273. [PMID: 26402608 DOI: 10.1016/j.neuron.2015.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/23/2015] [Accepted: 08/18/2015] [Indexed: 11/25/2022]
Abstract
Topographic maps in visual processing areas maintain the spatial order of the visual world. Molecular cues and neuronal activity both play critical roles in map formation, but their interaction remains unclear. Here, we demonstrate that when molecular- and activity-dependent cues are rendered nearly equal in force, they drive topographic mapping stochastically. The functional and anatomical representation of azimuth in the superior colliculus of heterozygous Islet2-EphA3 knockin (Isl2(EphA3/+)) mice is variable: maps may be single, duplicated, or a combination of the two. This heterogeneity is not due to genetic differences, since map organizations in individual mutant animals often differ between colliculi. Disruption of spontaneous waves of retinal activity resulted in uniform map organization in Isl2(EphA3/+) mice, demonstrating that correlated spontaneous activity is required for map heterogeneity. Computational modeling replicates this heterogeneity, revealing that molecular- and activity-dependent forces interact simultaneously and stochastically during topographic map formation.
Collapse
Affiliation(s)
- Melinda T Owens
- Center for Integrative Neuroscience and Departments of Physiology and Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David A Feldheim
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael P Stryker
- Center for Integrative Neuroscience and Departments of Physiology and Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason W Triplett
- Molecular, Cell & Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
49
|
Abstract
Early in development, before the onset of vision, the retina establishes direction-selective responses. During this time period, the retina spontaneously generates bursts of action potentials that propagate across its extent. The precise spatial and temporal properties of these "retinal waves" have been implicated in the formation of retinal projections to the brain. However, their role in the development of direction selective circuits within the retina has not yet been determined. We addressed this issue by combining multielectrode array and cell-attached recordings to examine mice that lack the CaV3.2 subunit of T-type Ca2+ channels (CaV3.2 KO) because these mice exhibit disrupted waves during the period that direction selective circuits are established. We found that the spontaneous activity of these mice displays wave-associated bursts of action potentials that are altered from that of control mice: the frequency of these bursts is significantly decreased and the firing rate within each burst is reduced. Moreover, the projection patterns of the retina demonstrate decreased eye-specific segregation in the dorsal lateral geniculate nucleus (dLGN). However, after eye-opening, the direction selective responses of CaV3.2 KO direction selective ganglion cells (DSGCs) are indistinguishable from those of wild-type DSGCs. Our data indicate that although the temporal properties of the action potential bursts associated with retinal waves are important for activity-dependent refining of retinal projections to central targets, they are not critical for establishing direction selectivity in the retina.
Collapse
|
50
|
Bennett JEM, Bair W. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity. PLoS Comput Biol 2015; 11:e1004422. [PMID: 26308406 PMCID: PMC4550436 DOI: 10.1371/journal.pcbi.1004422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. In several areas of the developing brain, waves of electrical activity trace out distinct patterns across the nervous tissue. These waves are intricately involved in developmental processes that set up the structural connections of the adult brain, but it is unclear what role the wave patterns play. Here, we examine how the strength of connections in these brain areas may change by a process called spike-timing dependent plasticity, which is sensitive to the precise times at which individual neurons become electrically active. We use mathematical models and simulations to show that interactions between waves and plasticity build highly structured patterns into the connections. The results of our model are analogous to many cases of biological pattern formation seen, for example, in zebra stripes, leopard spots and seashells. An important connectivity pattern we consider is the receptive field, which determines to a large extent the specific function of a neuron. We demonstrate how pattern formation can refine the shape of a receptive field and therefore the specificity of a neuron, and explore several ways in which pattern formation may be disrupted, providing clues regarding pathologies in receptive field development. Our theory makes several predictions that may be tested using existing experimental paradigms.
Collapse
Affiliation(s)
- James E. M. Bennett
- Dept. Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Wyeth Bair
- Dept. Biological Structure, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|