1
|
Huber DE. A memory model of rodent spatial navigation in which place cells are memories arranged in a grid and grid cells are non-spatial. eLife 2025; 13:RP95733. [PMID: 40388324 PMCID: PMC12088679 DOI: 10.7554/elife.95733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
A theory and neurocomputational model are presented that explain grid cell responses as the byproduct of equally dissimilar hippocampal memories. On this account, place and grid cells are best understood as the natural consequence of memory encoding and retrieval; a precise hexagonal grid is the exception rather than the rule, emerging when the animal explores a large surface that is devoid of landmarks and objects. In the proposed memory model, place cells represent memories that are conjunctions of both spatial and non-spatial attributes, and grid cells primarily represent the non-spatial attributes (e.g. sounds, surface texture, etc.) found throughout the two-dimensional recording enclosure. Place cells support memories of the locations where non-spatial attributes can be found (e.g. positions with a particular sound), which are arranged in a hexagonal lattice owing to memory encoding and consolidation processes (pattern separation) as applied to situations in which the non-spatial attributes are found at all locations of a two-dimensional surface. Grid cells exhibit their spatial firing pattern owing to feedback from hippocampal place cells (i.e. a hexagonal pattern of remembered locations for the non-spatial attribute represented by a grid cell). Model simulations explain a wide variety of results in the rodent spatial navigation literature.
Collapse
Affiliation(s)
- David E Huber
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
2
|
Li J, Dhaliwal R, Stanley M, Junca P, Gordon MD. Functional imaging and connectome analyses reveal organizing principles of taste circuits in Drosophila. Curr Biol 2025; 35:2391-2405.e4. [PMID: 40334663 DOI: 10.1016/j.cub.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/26/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
Taste is crucial for many innate and learned behaviors. In the fruit fly, Drosophila melanogaster, taste impacts processes including feeding, oviposition, locomotion, mating, and memory formation. These diverse roles may necessitate the apparent distributed nature of taste responses across different circuits in the fly brain, leading to complexity that has hindered attempts to deduce unifying principles of taste processing and coding. Here, we combine information from the whole-brain connectome with functional calcium imaging to examine the neural representation of taste at early steps of processing. We find that the majority of taste-responsive cells in the subesophageal zone (SEZ), including local interneurons (SEZ-LNs) and projection neurons (SEZ-PNs) targeting the superior protocerebrum, are predicted to encode a single taste modality. This prediction is borne out by calcium imaging of cholinergic and GABAergic cells in the SEZ, as well as five representative SEZ-PNs. Although the connectome reveals some SEZ-PNs receiving direct inputs from sensory neurons, many receive primarily indirect taste inputs via cholinergic SEZ-LNs. These cholinergic SEZ-LNs appear to function as nodes to convey feedforward information to dedicated sets of morphologically similar SEZ-PNs. Together, these studies suggest a previously unappreciated logic and structure to fly taste circuits.
Collapse
Affiliation(s)
- Jinfang Li
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Rabiah Dhaliwal
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Molly Stanley
- Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405, USA
| | - Pierre Junca
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Lian Y, Burkitt AN. Relating sparse and predictive coding to divisive normalization. PLoS Comput Biol 2025; 21:e1013059. [PMID: 40424462 PMCID: PMC12112309 DOI: 10.1371/journal.pcbi.1013059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Sparse coding, predictive coding and divisive normalization have each been found to be principles that underlie the function of neural circuits in many parts of the brain, supported by substantial experimental evidence. However, the connections between these related principles are still poorly understood. Sparse coding and predictive coding can be reconciled into a learning framework with predictive structure and sparse responses, termed as sparse/predictive coding. However, how sparse/predictive coding (a learning model) is connected with divisive normalization (not a learning model) is still not well investigated. In this paper, we show how sparse coding, predictive coding, and divisive normalization can be described within a unified framework, and illustrate this explicitly within the context of a two-layer neural learning model of sparse/predictive coding. This two-layer model is constructed in a way that implements sparse coding with a network structure that is constructed by implementing predictive coding. We demonstrate how a homeostatic function that regulates neural responses in the model can shape the nonlinearity of neural responses in a way that replicates different forms of divisive normalization. Simulations show that the model can learn simple cells in the primary visual cortex with the property of contrast saturation, which has previously been explained by divisive normalization. In summary, the study demonstrates that the three principles of sparse coding, predictive coding, and divisive normalization can be connected to provide a learning framework based on biophysical properties, such as Hebbian learning and homeostasis, and this framework incorporates both learning and more diverse response nonlinearities observed experimentally. This framework has the potential to also be used to explain how the brain learns to integrate input from different sensory modalities.
Collapse
Affiliation(s)
- Yanbo Lian
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Manoim-Wolkovitz JE, Camchy T, Rozenfeld E, Chang HH, Lerner H, Chou YH, Darshan R, Parnas M. Nonlinear high-activity neuronal excitation enhances odor discrimination. Curr Biol 2025; 35:1521-1538.e5. [PMID: 40107267 PMCID: PMC11974548 DOI: 10.1016/j.cub.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Discrimination between different signals is crucial for animals' survival. Inhibition that suppresses weak neural activity is crucial for pattern decorrelation. Our understanding of alternative mechanics that allow efficient signal classification remains incomplete. We show that Drosophila olfactory receptor neurons (ORNs) have numerous intraglomerular axo-axonal connections mediated by the G protein-coupled receptor (GPCR), muscarinic type B receptor (mAChR-B). Contrary to its usual inhibitory role, mAChR-B participates in ORN excitation. The excitatory effect of mAChR-B only occurs at high ORN firing rates. A computational model demonstrates that nonlinear intraglomerular or global excitation decorrelates the activity patterns of ORNs of different types and improves odor classification and discrimination, while acting in concert with the previously known inhibition. Indeed, knocking down mAChR-B led to increased correlation in odor-induced ORN activity, which was associated with impaired odor discrimination, as shown in behavioral experiments. Furthermore, knockdown (KD) of mAChR-B and the GABAergic GPCR, GABAB-R, has an additive behavioral effect, causing reduced odor discrimination relative to single-KD flies. Together, this study unravels a novel mechanism for neuronal pattern decorrelation, which is based on nonlinear intraglomerular excitation.
Collapse
Affiliation(s)
- Julia E Manoim-Wolkovitz
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Camchy
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hao-Hsin Chang
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 114201, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hadas Lerner
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ya-Hui Chou
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 114201, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Ran Darshan
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
5
|
Thomas A, Roy M, Gupta N. Olfactory coding in the mosquito antennal lobe: labeled lines or combinatorial code? CURRENT OPINION IN INSECT SCIENCE 2025; 68:101299. [PMID: 39550060 DOI: 10.1016/j.cois.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Odors serve as important cues for many behaviors in mosquitoes, including host-seeking, foraging, and oviposition. They are detected by olfactory receptor neurons present in the sensory organs, whose axons take this signal to the antennal lobe, the first olfactory processing center in the insect brain. We review the organization and the functioning of the antennal lobe in mosquitoes, focusing on two populations of interneurons present there: the local neurons (LNs) and the projection neurons (PNs). LNs enable information processing in the antennal lobe by providing lateral inhibition and excitation. PNs carry the processed output to downstream neurons in the lateral horn and the mushroom body. We compare the ideas of labeled lines and combinatorial codes, and argue that the PN population encodes odors combinatorially. Throughout this review, we discuss the observations from Aedes, Anopheles, and Culex mosquitoes in the context of previous findings from Drosophila and other insects.
Collapse
Affiliation(s)
- Abin Thomas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Madhurima Roy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
6
|
Koh M, Anselmi F, Kaushalya SK, Hernandez DE, Bast WG, Villar PS, Chae H, Davis MB, Teja SS, Qu Z, Gradinaru V, Gupta P, Banerjee A, Albeanu DF. Axially decoupled photo-stimulation and two photon readout ( ADePT) for mapping functional connectivity of neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639992. [PMID: 40161637 PMCID: PMC11952351 DOI: 10.1101/2025.02.24.639992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
All optical physiology in vivo provides a conduit for investigating the function of neural circuits in 3-D. Here, we report a new strategy for flexible, axially-decoupled photo-stimulation and two photon readout (ADePT) of neuronal activity. To achieve axially-contained widefield optogenetic patterned stimulation, we couple a digital micro-mirror device illuminated by a solid-state laser with a motorized holographic diffuser. In parallel, we use multiphoton imaging of neural activity across different z-planes. We use ADePT to analyze the excitatory and inhibitory functional connectivity of the mouse early olfactory system. Specifically, we control the activity of individual input glomeruli on the olfactory bulb surface, and map the ensuing responses of output mitral and tufted cell bodies in deeper layers. This approach identifies cohorts of sister mitral and tufted cells, whose firing is driven by the same parent glomerulus, and also reveals their differential inhibition by other glomeruli. In addition, selective optogenetic activation of glomerular GABAergic/dopaminergic (DAT+) interneurons triggers dense, but spatially heterogeneous suppression of mitral and tufted cell baseline activity and odor responses, further demonstrating specificity in the inhibitory olfactory bulb connectivity. In summary, ADePT enables high-throughput functional connectivity mapping in optically accessible brain regions.
Collapse
Affiliation(s)
- Matthew Koh
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | | | | | | | - Pablo S. Villar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Honggoo Chae
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Martin B. Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sadhu Sai Teja
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhe Qu
- California Institute of Technology, Pasadena, CA, 91125
| | | | - Priyanka Gupta
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Arkarup Banerjee
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Dinu F. Albeanu
- CSHL School for Biological Sciences
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
7
|
Subramanian N, Wharton D, Karamched B, Bertram R, Storace DA. Heterogeneous monotonic and non-monotonic responses to odor in mitral/tufted glomeruli of the mouse olfactory bulb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640652. [PMID: 40093143 PMCID: PMC11908152 DOI: 10.1101/2025.02.28.640652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Current models of olfactory sensory processing in the olfactory bulb (OB) posit that both intra- and interglomerular inhibitory circuits are involved in transforming sensory input. However, the impact of these circuits on different olfactory receptor neuron (ORNs) inputs remains poorly understood. We generated a model of the OB input-output transformation in which the output of each glomerulus is a function of its ORN input, local feed-forward intraglomerular inhibition and interglomerular normalization in which activity of each glomerulus is divided by the population response. The output of the model included linear and non-linear concentration-response relationships that depended on the input ORN Hill coefficient and half-activation value. The concentration-response relationships could be broadly categorized into four groups based on how the output response was influenced by increasing the concentration. Increasing concentration evoked monotonic increases (I) or decreases (D) in some glomeruli. Other glomeruli responded with non-monotonic decreases then increases (DI) or increased then decreased (ID). The non-monotonic ID glomeruli required interglomerular inhibition in our model, were most common in glomeruli with higher affinity ORN input and were heterogeneous in the magnitude of their drop. In vivo 2-photon Ca2+ imaging from MTC glomeruli in awake mice revealed qualitatively similar response types. Increasing levels of excitation drove higher levels of suppression in subsets of glomeruli, and nearly half of the recorded MTC glomeruli could be classified as ID. Additionally, the sensitivity of individual glomeruli was significantly correlated with the degree to which it was non-monotonic. Our results demonstrate that nonlinear responses of MTC to changes in odor concentration are not unusual, but indeed are typical, and that they can be explained by intra- and interglomerular inhibition.
Collapse
Affiliation(s)
| | - David Wharton
- Department of Mathematics, Florida State University, Tallahassee, FL
| | - Bhargav Karamched
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
- Department of Mathematics, Florida State University, Tallahassee, FL
| | - Richard Bertram
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
- Department of Mathematics, Florida State University, Tallahassee, FL
| | - Douglas A. Storace
- Department of Biological Science, Florida State University, Tallahassee, FL
- Program in Neuroscience, Florida State University, Tallahassee, FL
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL
| |
Collapse
|
8
|
Wachowiak M, Dewan A, Bozza T, O'Connell TF, Hong EJ. Recalibrating Olfactory Neuroscience to the Range of Naturally Occurring Odor Concentrations. J Neurosci 2025; 45:e1872242024. [PMID: 40044450 PMCID: PMC11884396 DOI: 10.1523/jneurosci.1872-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 03/09/2025] Open
Abstract
Sensory systems enable organisms to detect and respond to environmental signals relevant for their survival and reproduction. A crucial aspect of any sensory signal is its intensity; understanding how sensory signals guide behavior requires probing sensory system function across the range of stimulus intensities naturally experienced by an organism. In olfaction, defining the range of natural odorant concentrations is difficult. Odors are complex mixtures of airborne chemicals emitting from a source in an irregular pattern that varies across time and space, necessitating specialized methods to obtain an accurate measurement of concentration. Perhaps as a result, experimentalists often choose stimulus concentrations based on empirical considerations rather than with respect to ecological or behavioral context. Here, we attempt to determine naturally relevant concentration ranges for olfactory stimuli by reviewing and integrating data from diverse disciplines. We compare odorant concentrations used in experimental studies in rodents and insects with those reported in different settings including ambient natural environments, the headspace of natural sources, and within the sources themselves. We also compare these values to psychophysical measurements of odorant detection threshold in rodents, where thresholds have been extensively measured. Odorant concentrations in natural regimes rarely exceed a few parts per billion, while most experimental studies investigating olfactory coding and behavior exceed these concentrations by several orders of magnitude. We discuss the implications of this mismatch and the importance of testing odorants in their natural concentration range for understanding neural mechanisms underlying olfactory sensation and odor-guided behaviors.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Adam Dewan
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Thomas Bozza
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Tom F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
9
|
Song D, Ruff D, Cohen M, Huang C. Neuronal heterogeneity of normalization strength in a circuit model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624903. [PMID: 39605397 PMCID: PMC11601594 DOI: 10.1101/2024.11.22.624903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The size of a neuron's receptive field increases along the visual hierarchy. Neurons in higher-order visual areas integrate information through a canonical computation called normalization, where neurons respond sublinearly to multiple stimuli in the receptive field. Neurons in the visual cortex exhibit highly heterogeneous degrees of normalization. Recent population recordings from visual cortex find that the interactions between neurons, measured by spike count correlations, depend on their normalization strengths. However, the circuit mechanism underlying the heterogeneity of normalization is unclear. In this work, we study normalization in a spiking neuron network model of visual cortex. The model produces a range of neuronal heterogeneity of normalization strength and the heterogeneity is highly correlated with the inhibitory current each neuron receives. Our model reproduces the dependence of spike count correlations on normalization as observed in experimental data, which is explained by the covariance with the inhibitory current. We find that neurons with stronger normalization are more sensitive to contrast differences in images and encode information more efficiently. In addition, networks with more heterogeneity in normalization encode more information about visual stimuli. Together, our model provides a mechanistic explanation of heterogeneous normalization strengths in the visual cortex, and sheds new light on the computational benefits of neuronal heterogeneity.
Collapse
Affiliation(s)
- Deying Song
- Joint Program in Neural Computation and Machine Learning, Neuroscience Institute, and Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
- Center for the Neural Basis of Cognition, Pittsburgh, PA
| | - Douglas Ruff
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Marlene Cohen
- Department of Neurobiology and Neuroscience Institute, University of Chicago, Chicago, IL
| | - Chengcheng Huang
- Center for the Neural Basis of Cognition, Pittsburgh, PA
- Department of Neuroscience and Department of Mathematics, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Lazar AA, Liu T, Yeh CH, Zhou Y. Modeling and characterization of pure and odorant mixture processing in the Drosophila mushroom body calyx. Front Physiol 2024; 15:1410946. [PMID: 39479309 PMCID: PMC11521939 DOI: 10.3389/fphys.2024.1410946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience. To address this challenge we start by explicitly modeling the space of odorants using constructs of both semantic and syntactic information. Odorant semantics concerns the identity of odorants while odorant syntactics pertains to their concentration amplitude. These odorant attributes are multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory systems must address is how to disentangle the odorant semantic information from the odorant syntactic information. To address the untanglement we devised an Odorant Encoding Machine (OEM) modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded DNPs. By extensively modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we seek to answer the question of its functional significance. We demonstrate that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant concentration, thereby separating odorant semantic information from syntactic information. We then advance a code, called first spike sequence code, that the KCs make available at the output of the Calyx. We show that the semantics of odorants can be represented by this code in the spike domain and is ready for easy memory access in the Mushroom Body compartments.
Collapse
Affiliation(s)
- Aurel A. Lazar
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Tingkai Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Chung-Heng Yeh
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Yiyin Zhou
- Department of Computer and Information Science, Fordham University, New York, NY, United States
| |
Collapse
|
11
|
Gür B, Ramirez L, Cornean J, Thurn F, Molina-Obando S, Ramos-Traslosheros G, Silies M. Neural pathways and computations that achieve stable contrast processing tuned to natural scenes. Nat Commun 2024; 15:8580. [PMID: 39362859 PMCID: PMC11450186 DOI: 10.1038/s41467-024-52724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Natural scenes are highly dynamic, challenging the reliability of visual processing. Yet, humans and many animals perform accurate visual behaviors, whereas computer vision devices struggle with rapidly changing background luminance. How does animal vision achieve this? Here, we reveal the algorithms and mechanisms of rapid luminance gain control in Drosophila, resulting in stable visual processing. We identify specific transmedullary neurons as the site of luminance gain control, which pass this property to direction-selective cells. The circuitry further involves wide-field neurons, matching computational predictions that local spatial pooling drive optimal contrast processing in natural scenes when light conditions change rapidly. Experiments and theory argue that a spatially pooled luminance signal achieves luminance gain control via divisive normalization. This process relies on shunting inhibition using the glutamate-gated chloride channel GluClα. Our work describes how the fly robustly processes visual information in dynamically changing natural scenes, a common challenge of all visual systems.
Collapse
Affiliation(s)
- Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- The Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Luisa Ramirez
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Freya Thurn
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
12
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Fulton KA, Zimmerman D, Samuel A, Vogt K, Datta SR. Common principles for odour coding across vertebrates and invertebrates. Nat Rev Neurosci 2024; 25:453-472. [PMID: 38806946 DOI: 10.1038/s41583-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.
Collapse
Affiliation(s)
- Kara A Fulton
- Department of Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Zimmerman
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Aravi Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Katrin Vogt
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
14
|
Izakson L, Yoo M, Hakim A, Krajbich I, Webb R, Levy DJ. Valuations of target items are drawn towards unavailable decoy items due to prior expectations. PNAS NEXUS 2024; 3:pgae232. [PMID: 38948017 PMCID: PMC11214102 DOI: 10.1093/pnasnexus/pgae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
When people make choices, the items they consider are often embedded in a context (of other items). How this context affects the valuation of the specific item is an important question. High-value context might make items appear less attractive because of contrast-the tendency to normalize perception of an object relative to its background-or more attractive because of assimilation-the tendency to group objects together. Alternatively, a high-value context might increase prior expectations about the item's value. Here, we investigated these possibilities. We examined how unavailable context items affect choices between two target items, as well as the willingness-to-pay for single targets. Participants viewed sets of three items for several seconds before the target(s) were highlighted. In both tasks, we found a significant assimilation-like effect where participants were more likely to choose or place a higher value on a target when it was surrounded by higher-value context. However, these context effects were only significant for participants' fastest choices. Using variants of a drift-diffusion model, we established that the unavailable context shifted participants' prior expectations towards the average values of the sets but had an inconclusive effect on their evaluations of the targets during the decision (i.e. drift rates). In summary, we find that people use context to inform their initial valuations. This can improve efficiency by allowing people to get a head start on their decision. However, it also means that the valuation of an item can change depending on the context.
Collapse
Affiliation(s)
- Liz Izakson
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Minhee Yoo
- Department of Psychology, The Ohio State University, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Adam Hakim
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Ian Krajbich
- Department of Psychology, University of California Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095, USA
| | - Ryan Webb
- Rotman School of Management, University of Toronto, 105 St George St., Toronto, Ontario, M5S 3E6, Canada
| | - Dino J Levy
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Coller School of Management, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Peiso JR, Palmer SE, Shevell SK. Perceptual Resolution of Ambiguity: Can Tuned, Divisive Normalization Account for both Interocular Similarity Grouping and Difference Enhancement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587646. [PMID: 38617235 PMCID: PMC11014560 DOI: 10.1101/2024.04.01.587646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Our visual system usually provides a unique and functional representation of the external world. At times, however, the visual system has more than one compelling interpretation of the same retinal stimulus; in this case, neural populations compete for perceptual dominance to resolve ambiguity. Spatial and temporal context can guide perceptual experience. Recent evidence shows that ambiguous retinal stimuli are sometimes resolved by enhancing either similarity or differences among multiple percepts. Divisive normalization is a canonical neural computation that enables context-dependent sensory processing by attenuating a neuron's response by other neurons. Experiments here show that divisive normalization can account for perceptual representations of either similarity enhancement (so-called grouping) or difference enhancement, offering a unified framework for opposite perceptual outcomes.
Collapse
Affiliation(s)
- Jaelyn R Peiso
- University of Chicago, Department of Psychology, Physics Frontier Center for Living Systems, Chicago, IL
| | - Stephanie E Palmer
- University of Chicago, Department of Organismal Biology & Anatomy, Department of Physics, Physics Frontier Center for Living Systems Chicago, IL
| | | |
Collapse
|
16
|
Eckstein N, Bates AS, Champion A, Du M, Yin Y, Schlegel P, Lu AKY, Rymer T, Finley-May S, Paterson T, Parekh R, Dorkenwald S, Matsliah A, Yu SC, McKellar C, Sterling A, Eichler K, Costa M, Seung S, Murthy M, Hartenstein V, Jefferis GSXE, Funke J. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 2024; 187:2574-2594.e23. [PMID: 38729112 PMCID: PMC11106717 DOI: 10.1016/j.cell.2024.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Collapse
Affiliation(s)
- Nils Eckstein
- HHMI Janelia Research Campus, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Alexander Shakeel Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew Champion
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Michelle Du
- HHMI Janelia Research Campus, Ashburn, VA, USA
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Jan Funke
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
17
|
Cowley BR, Calhoun AJ, Rangarajan N, Ireland E, Turner MH, Pillow JW, Murthy M. Mapping model units to visual neurons reveals population code for social behaviour. Nature 2024; 629:1100-1108. [PMID: 38778103 PMCID: PMC11136655 DOI: 10.1038/s41586-024-07451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
The rich variety of behaviours observed in animals arises through the interplay between sensory processing and motor control. To understand these sensorimotor transformations, it is useful to build models that predict not only neural responses to sensory input1-5 but also how each neuron causally contributes to behaviour6,7. Here we demonstrate a novel modelling approach to identify a one-to-one mapping between internal units in a deep neural network and real neurons by predicting the behavioural changes that arise from systematic perturbations of more than a dozen neuronal cell types. A key ingredient that we introduce is 'knockout training', which involves perturbing the network during training to match the perturbations of the real neurons during behavioural experiments. We apply this approach to model the sensorimotor transformations of Drosophila melanogaster males during a complex, visually guided social behaviour8-11. The visual projection neurons at the interface between the optic lobe and central brain form a set of discrete channels12, and prior work indicates that each channel encodes a specific visual feature to drive a particular behaviour13,14. Our model reaches a different conclusion: combinations of visual projection neurons, including those involved in non-social behaviours, drive male interactions with the female, forming a rich population code for behaviour. Overall, our framework consolidates behavioural effects elicited from various neural perturbations into a single, unified model, providing a map from stimulus to neuronal cell type to behaviour, and enabling future incorporation of wiring diagrams of the brain15 into the model.
Collapse
Affiliation(s)
- Benjamin R Cowley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Elise Ireland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Maxwell H Turner
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
18
|
Goris RLT, Coen-Cagli R, Miller KD, Priebe NJ, Lengyel M. Response sub-additivity and variability quenching in visual cortex. Nat Rev Neurosci 2024; 25:237-252. [PMID: 38374462 PMCID: PMC11444047 DOI: 10.1038/s41583-024-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.
Collapse
Affiliation(s)
- Robbe L T Goris
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA.
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Swartz Program in Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas J Priebe
- Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
19
|
Cody P, Kumar M, Tzounopoulos T. Cortical Zinc Signaling Is Necessary for Changes in Mouse Pupil Diameter That Are Evoked by Background Sounds with Different Contrasts. J Neurosci 2024; 44:e0939232024. [PMID: 38242698 PMCID: PMC10941062 DOI: 10.1523/jneurosci.0939-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Luminance-independent changes in pupil diameter (PD) during wakefulness influence and are influenced by neuromodulatory, neuronal, and behavioral responses. However, it is unclear whether changes in neuromodulatory activity in a specific brain area are necessary for the associated changes in PD or whether some different mechanisms cause parallel fluctuations in both PD and neuromodulation. To answer this question, we simultaneously recorded PD and cortical neuronal activity in male and female mice. Namely, we measured PD and neuronal activity during adaptation to sound contrast, which is a well-described adaptation conserved in many species and brain areas. In the primary auditory cortex (A1), increases in the variability of sound level (contrast) induce a decrease in the slope of the neuronal input-output relationship, neuronal gain, which depends on cortical neuromodulatory zinc signaling. We found a previously unknown modulation of PD by changes in background sensory context: high stimulus contrast sounds evoke larger increases in evoked PD compared with low-contrast sounds. To explore whether these changes in evoked PD are controlled by cortical neuromodulatory zinc signaling, we imaged single-cell neural activity in A1, manipulated zinc signaling in the cortex, and assessed PD in the same awake mouse. We found that cortical synaptic zinc signaling is necessary for increases in PD during high-contrast background sounds compared with low-contrast sounds. This finding advances our knowledge about how cortical neuromodulatory activity affects PD changes and thus advances our understanding of the brain states, circuits, and neuromodulatory mechanisms that can be inferred from pupil size fluctuations.
Collapse
Affiliation(s)
- Patrick Cody
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Manoj Kumar
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Department of Otolaryngology, Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
20
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
21
|
Pang R, Baker C, Murthy M, Pillow J. Inferring neural dynamics of memory during naturalistic social communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577404. [PMID: 38328156 PMCID: PMC10849655 DOI: 10.1101/2024.01.26.577404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Memory processes in complex behaviors like social communication require forming representations of the past that grow with time. The neural mechanisms that support such continually growing memory remain unknown. We address this gap in the context of fly courtship, a natural social behavior involving the production and perception of long, complex song sequences. To study female memory for male song history in unrestrained courtship, we present 'Natural Continuation' (NC)-a general, simulation-based model comparison procedure to evaluate candidate neural codes for complex stimuli using naturalistic behavioral data. Applying NC to fly courtship revealed strong evidence for an adaptive population mechanism for how female auditory neural dynamics could convert long song histories into a rich mnemonic format. Song temporal patterning is continually transformed by heterogeneous nonlinear adaptation dynamics, then integrated into persistent activity, enabling common neural mechanisms to retain continuously unfolding information over long periods and yielding state-of-the-art predictions of female courtship behavior. At a population level this coding model produces multi-dimensional advection-diffusion-like responses that separate songs over a continuum of timescales and can be linearly transformed into flexible output signals, illustrating its potential to create a generic, scalable mnemonic format for extended input signals poised to drive complex behavioral responses. This work thus shows how naturalistic behavior can directly inform neural population coding models, revealing here a novel process for memory formation.
Collapse
Affiliation(s)
- Rich Pang
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton, NJ and New York, NY, USA
| | - Christa Baker
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Present address: Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | |
Collapse
|
22
|
Makino Y, Hayashi T, Nozaki D. Divisively normalized neuronal processing of uncertain visual feedback for visuomotor learning. Commun Biol 2023; 6:1286. [PMID: 38123812 PMCID: PMC10733368 DOI: 10.1038/s42003-023-05578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
When encountering a visual error during a reaching movement, the motor system improves the motor command for the subsequent trial. This improvement is impaired by visual error uncertainty, which is considered evidence that the motor system optimally estimates the error. However, how such statistical computation is accomplished remains unclear. Here, we propose an alternative scheme implemented with a divisive normalization (DN): the responses of neuronal elements are normalized by the summed activity of the population. This scheme assumes that when an uncertain visual error is provided by multiple cursors, the motor system processes the error conveyed by each cursor and integrates the information using DN. The DN model reproduced the patterns of learning response to 1-3 cursor errors and the impairment of learning response with visual error uncertainty. This study provides a new perspective on how the motor system updates motor commands according to uncertain visual error information.
Collapse
Affiliation(s)
- Yuto Makino
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takuji Hayashi
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Daichi Nozaki
- Division of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
23
|
Barth-Maron A, D'Alessandro I, Wilson RI. Interactions between specialized gain control mechanisms in olfactory processing. Curr Biol 2023; 33:5109-5120.e7. [PMID: 37967554 DOI: 10.1016/j.cub.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/16/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Gain control is a process that adjusts a system's sensitivity when input levels change. Neural systems contain multiple mechanisms of gain control, but we do not understand why so many mechanisms are needed or how they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control. Conversely, we find that other interneurons are recruited by strong and widespread network input; they specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations, we show how these mechanisms can work together to improve stimulus discrimination while also minimizing temporal distortions in network activity. Our results demonstrate how the robustness of neural network function can be increased by interactions among diverse and specialized mechanisms of gain control.
Collapse
Affiliation(s)
- Asa Barth-Maron
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel D'Alessandro
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Lazar AA, Zhou Y. Divisive normalization processors in the early visual system of the Drosophila brain. BIOLOGICAL CYBERNETICS 2023; 117:411-431. [PMID: 37702831 PMCID: PMC10752861 DOI: 10.1007/s00422-023-00972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/06/2023] [Indexed: 09/14/2023]
Abstract
Divisive normalization is a model of canonical computation of brain circuits. We demonstrate that two cascaded divisive normalization processors (DNPs), carrying out intensity/contrast gain control and elementary motion detection, respectively, can model the robust motion detection realized by the early visual system of the fruit fly. We first introduce a model of elementary motion detection and rewrite its underlying phase-based motion detection algorithm as a feedforward divisive normalization processor. We then cascade the DNP modeling the photoreceptor/amacrine cell layer with the motion detection DNP. We extensively evaluate the DNP for motion detection in dynamic environments where light intensity varies by orders of magnitude. The results are compared to other bio-inspired motion detectors as well as state-of-the-art optic flow algorithms under natural conditions. Our results demonstrate the potential of DNPs as canonical building blocks modeling the analog processing of early visual systems. The model highlights analog processing for accurately detecting visual motion, in both vertebrates and invertebrates. The results presented here shed new light on employing DNP-based algorithms in computer vision.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Yiyin Zhou
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Computer and Information Science, Fordham University, New York, NY, 10023, USA
| |
Collapse
|
25
|
Weiss O, Bounds HA, Adesnik H, Coen-Cagli R. Modeling the diverse effects of divisive normalization on noise correlations. PLoS Comput Biol 2023; 19:e1011667. [PMID: 38033166 PMCID: PMC10715670 DOI: 10.1371/journal.pcbi.1011667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 12/12/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Divisive normalization, a prominent descriptive model of neural activity, is employed by theories of neural coding across many different brain areas. Yet, the relationship between normalization and the statistics of neural responses beyond single neurons remains largely unexplored. Here we focus on noise correlations, a widely studied pairwise statistic, because its stimulus and state dependence plays a central role in neural coding. Existing models of covariability typically ignore normalization despite empirical evidence suggesting it affects correlation structure in neural populations. We therefore propose a pairwise stochastic divisive normalization model that accounts for the effects of normalization and other factors on covariability. We first show that normalization modulates noise correlations in qualitatively different ways depending on whether normalization is shared between neurons, and we discuss how to infer when normalization signals are shared. We then apply our model to calcium imaging data from mouse primary visual cortex (V1), and find that it accurately fits the data, often outperforming a popular alternative model of correlations. Our analysis indicates that normalization signals are often shared between V1 neurons in this dataset. Our model will enable quantifying the relation between normalization and covariability in a broad range of neural systems, which could provide new constraints on circuit mechanisms of normalization and their role in information transmission and representation.
Collapse
Affiliation(s)
- Oren Weiss
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hayley A. Bounds
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
26
|
Kato A, Ohta K, Okanoya K, Kazama H. Dopaminergic neurons dynamically update sensory values during olfactory maneuver. Cell Rep 2023; 42:113122. [PMID: 37757823 DOI: 10.1016/j.celrep.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic neurons (DANs) drive associative learning to update the value of sensory cues, but their contribution to the assessment of sensory values outside the context of association remains largely unexplored. Here, we show in Drosophila that DANs in the mushroom body encode the innate value of odors and constantly update the current value by inducing plasticity during olfactory maneuver. Our connectome-based network model linking all the way from the olfactory neurons to DANs reproduces the characteristics of DAN responses, proposing a concrete circuit mechanism for computation. Downstream of DANs, odors alone induce value- and dopamine-dependent changes in the activity of mushroom body output neurons, which store the current value of odors. Consistent with this neural plasticity, specific sets of DANs bidirectionally modulate flies' steering in a virtual olfactory environment. Thus, the DAN circuit known for discrete, associative learning also continuously updates odor values in a nonassociative manner.
Collapse
Affiliation(s)
- Ayaka Kato
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
27
|
Shen Y, Dasgupta S, Navlakha S. Reducing Catastrophic Forgetting With Associative Learning: A Lesson From Fruit Flies. Neural Comput 2023; 35:1797-1819. [PMID: 37725710 DOI: 10.1162/neco_a_01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/14/2023] [Indexed: 09/21/2023]
Abstract
Catastrophic forgetting remains an outstanding challenge in continual learning. Recently, methods inspired by the brain, such as continual representation learning and memory replay, have been used to combat catastrophic forgetting. Associative learning (retaining associations between inputs and outputs, even after good representations are learned) plays an important function in the brain; however, its role in continual learning has not been carefully studied. Here, we identified a two-layer neural circuit in the fruit fly olfactory system that performs continual associative learning between odors and their associated valences. In the first layer, inputs (odors) are encoded using sparse, high-dimensional representations, which reduces memory interference by activating nonoverlapping populations of neurons for different odors. In the second layer, only the synapses between odor-activated neurons and the odor's associated output neuron are modified during learning; the rest of the weights are frozen to prevent unrelated memories from being overwritten. We prove theoretically that these two perceptron-like layers help reduce catastrophic forgetting compared to the original perceptron algorithm, under continual learning. We then show empirically on benchmark data sets that this simple and lightweight architecture outperforms other popular neural-inspired algorithms when also using a two-layer feedforward architecture. Overall, fruit flies evolved an efficient continual associative learning algorithm, and circuit mechanisms from neuroscience can be translated to improve machine computation.
Collapse
Affiliation(s)
- Yang Shen
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY 11724, U.S.A.
| | - Sanjoy Dasgupta
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, U.S.A.
| | - Saket Navlakha
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, Cold Spring Harbor, NY 11724, U.S.A.
| |
Collapse
|
28
|
Bandyopadhyay P, Sachse S. Mixing things up! - how odor blends are processed in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101099. [PMID: 37562651 DOI: 10.1016/j.cois.2023.101099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
Insects have to navigate a complex and rich olfactory environment consisting of mixtures of odors at varying ratios. However, we understand little of how the olfactory system represents these complex blends. This review aims to highlight some of the recent results of studying this mixture code, in the Drosophila melanogaster olfactory system, as well as gives a short background to one of the most challenging questions in olfaction - how are mixtures encoded in the brain?
Collapse
Affiliation(s)
- Pramit Bandyopadhyay
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
29
|
Bulatov A, Marma V, Bulatova N, Loginovič J, Vaitiekaitis G. Effects of normalized summation in the visual illusion of extent. Atten Percept Psychophys 2023; 85:2422-2436. [PMID: 37369970 DOI: 10.3758/s13414-023-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
In the present study, the features of summation of effects caused by contextual distracting dots in the length-matching task (a variant of the filled-space illusion) were investigated. In the first two series of psychophysical experiments, the illusion magnitude was measured as a function of the displacement of distractors (either single or double sets of dots) orthogonally to the main axis of the stimulus. It was demonstrated that with increasing displacement, the illusion smoothly decreases for a single set of distractors, while for two sets, the illusion first increases to a certain maximum value, and then gradually decreases. In the third and fourth series of experiments, magnitude of the illusion was measured as a function of the luminance of one set of distracting dots, while the luminance of the other set was fixed. It has been shown that increasing the luminance until the same value is reached for both sets leads to a monotonous growth in the illusion magnitude; after that, the illusion asymptotically decreases to an almost constant level. The theoretical interpretation of the established functional dependencies was performed using a quantitative model based on the assumption that the illusion may arise due to the weighted summation of the distractor-induced normalized neural activity, which leads to the perceptual mislocalization of terminators of stimulus spatial intervals.
Collapse
Affiliation(s)
- Aleksandr Bulatov
- Laboratory of Visual Neurophysiology, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania.
- Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Vilius Marma
- Laboratory of Visual Neurophysiology, Lithuanian University of Health Sciences, Mickevičiaus 9, LT-44307, Kaunas, Lithuania
- Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Natalija Bulatova
- Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jelena Loginovič
- Institute of Biological Systems and Genetics Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintautas Vaitiekaitis
- Physics, Mathematics, and Biophysics Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
30
|
Muscinelli SP, Wagner MJ, Litwin-Kumar A. Optimal routing to cerebellum-like structures. Nat Neurosci 2023; 26:1630-1641. [PMID: 37604889 PMCID: PMC10506727 DOI: 10.1038/s41593-023-01403-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/12/2023] [Indexed: 08/23/2023]
Abstract
The vast expansion from mossy fibers to cerebellar granule cells (GrC) produces a neural representation that supports functions including associative and internal model learning. This motif is shared by other cerebellum-like structures and has inspired numerous theoretical models. Less attention has been paid to structures immediately presynaptic to GrC layers, whose architecture can be described as a 'bottleneck' and whose function is not understood. We therefore develop a theory of cerebellum-like structures in conjunction with their afferent pathways that predicts the role of the pontine relay to cerebellum and the glomerular organization of the insect antennal lobe. We highlight a new computational distinction between clustered and distributed neuronal representations that is reflected in the anatomy of these two brain structures. Our theory also reconciles recent observations of correlated GrC activity with theories of nonlinear mixing. More generally, it shows that structured compression followed by random expansion is an efficient architecture for flexible computation.
Collapse
Affiliation(s)
- Samuel P Muscinelli
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Mark J Wagner
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Ashok Litwin-Kumar
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| |
Collapse
|
31
|
Chapochnikov NM, Pehlevan C, Chklovskii DB. Normative and mechanistic model of an adaptive circuit for efficient encoding and feature extraction. Proc Natl Acad Sci U S A 2023; 120:e2117484120. [PMID: 37428907 PMCID: PMC10629579 DOI: 10.1073/pnas.2117484120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
One major question in neuroscience is how to relate connectomes to neural activity, circuit function, and learning. We offer an answer in the peripheral olfactory circuit of the Drosophila larva, composed of olfactory receptor neurons (ORNs) connected through feedback loops with interconnected inhibitory local neurons (LNs). We combine structural and activity data and, using a holistic normative framework based on similarity-matching, we formulate biologically plausible mechanistic models of the circuit. In particular, we consider a linear circuit model, for which we derive an exact theoretical solution, and a nonnegative circuit model, which we examine through simulations. The latter largely predicts the ORN [Formula: see text] LN synaptic weights found in the connectome and demonstrates that they reflect correlations in ORN activity patterns. Furthermore, this model accounts for the relationship between ORN [Formula: see text] LN and LN-LN synaptic counts and the emergence of different LN types. Functionally, we propose that LNs encode soft cluster memberships of ORN activity, and partially whiten and normalize the stimulus representations in ORNs through inhibitory feedback. Such a synaptic organization could, in principle, autonomously arise through Hebbian plasticity and would allow the circuit to adapt to different environments in an unsupervised manner. We thus uncover a general and potent circuit motif that can learn and extract significant input features and render stimulus representations more efficient. Finally, our study provides a unified framework for relating structure, activity, function, and learning in neural circuits and supports the conjecture that similarity-matching shapes the transformation of neural representations.
Collapse
Affiliation(s)
- Nikolai M. Chapochnikov
- Center for Computation Neuroscience, Flatiron Institute, New York, NY10010
- Department of Neurology, New York University School of Medicine, New York, NY10016
| | - Cengiz Pehlevan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA02138
| | - Dmitri B. Chklovskii
- Center for Computation Neuroscience, Flatiron Institute, New York, NY10010
- Neuroscience Institute, New York University School of Medicine, New York, NY10016
| |
Collapse
|
32
|
Wilson RI. Neural Networks for Navigation: From Connections to Computations. Annu Rev Neurosci 2023; 46:403-423. [PMID: 37428603 DOI: 10.1146/annurev-neuro-110920-032645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Many animals can navigate toward a goal they cannot see based on an internal representation of that goal in the brain's spatial maps. These maps are organized around networks with stable fixed-point dynamics (attractors), anchored to landmarks, and reciprocally connected to motor control. This review summarizes recent progress in understanding these networks, focusing on studies in arthropods. One factor driving recent progress is the availability of the Drosophila connectome; however, it is increasingly clear that navigation depends on ongoing synaptic plasticity in these networks. Functional synapses appear to be continually reselected from the set of anatomical potential synapses based on the interaction of Hebbian learning rules, sensory feedback, attractor dynamics, and neuromodulation. This can explain how the brain's maps of space are rapidly updated; it may also explain how the brain can initialize goals as stable fixed points for navigation.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Cambridge, Massachusetts, USA;
| |
Collapse
|
33
|
Noel JP, Angelaki DE. A theory of autism bridging across levels of description. Trends Cogn Sci 2023; 27:631-641. [PMID: 37183143 PMCID: PMC10330321 DOI: 10.1016/j.tics.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Autism impacts a wide range of behaviors and neural functions. As such, theories of autism spectrum disorder (ASD) are numerous and span different levels of description, from neurocognitive to molecular. We propose how existent behavioral, computational, algorithmic, and neural accounts of ASD may relate to one another. Specifically, we argue that ASD may be cast as a disorder of causal inference (computational level). This computation relies on marginalization, which is thought to be subserved by divisive normalization (algorithmic level). In turn, divisive normalization may be impaired by excitatory-to-inhibitory imbalances (neural implementation level). We also discuss ASD within similar frameworks, those of predictive coding and circular inference. Together, we hope to motivate work unifying the different accounts of ASD.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York, NY, USA.
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, NY, USA; Tandon School of Engineering, New York University, New York, NY, USA
| |
Collapse
|
34
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
35
|
Marachlian E, Huerta R, Locatelli FF. Gain modulation and odor concentration invariance in early olfactory networks. PLoS Comput Biol 2023; 19:e1011176. [PMID: 37343029 DOI: 10.1371/journal.pcbi.1011176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The broad receptive field of the olfactory receptors constitutes the basis of a combinatorial code that allows animals to detect and discriminate many more odorants than the actual number of receptor types that they express. One drawback is that high odor concentrations recruit lower affinity receptors which can lead to the perception of qualitatively different odors. Here we addressed the contribution that signal-processing in the antennal lobe makes to reduce concentration dependence in odor representation. By means of calcium imaging and pharmacological approach we describe the contribution that GABA receptors play in terms of the amplitude and temporal profiles of the signals that convey odor information from the antennal lobes to higher brain centers. We found that GABA reduces the amplitude of odor elicited signals and the number of glomeruli that are recruited in an odor-concentration-dependent manner. Blocking GABA receptors decreases the correlation among glomerular activity patterns elicited by different concentrations of the same odor. In addition, we built a realistic mathematical model of the antennal lobe that was used to test the viability of the proposed mechanisms and to evaluate the processing properties of the AL network under conditions that cannot be achieved in physiology experiments. Interestingly, even though based on a rather simple topology and cell interactions solely mediated by GABAergic lateral inhibitions, the AL model reproduced key features of the AL response upon different odor concentrations and provides plausible solutions for concentration invariant recognition of odors by artificial sensors.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States of America
| | - Fernando F Locatelli
- Instituto de Fisiología Biología Molecular y Neurociencias (IFIByNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Gugel ZV, Maurais EG, Hong EJ. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of Drosophila olfactory processing. eLife 2023; 12:e85443. [PMID: 37195027 PMCID: PMC10229125 DOI: 10.7554/elife.85443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 05/18/2023] Open
Abstract
In insects and mammals, olfactory experience in early life alters olfactory behavior and function in later life. In the vinegar fly Drosophila, flies chronically exposed to a high concentration of a monomolecular odor exhibit reduced behavioral aversion to the familiar odor when it is reencountered. This change in olfactory behavior has been attributed to selective decreases in the sensitivity of second-order olfactory projection neurons (PNs) in the antennal lobe that respond to the overrepresented odor. However, since odorant compounds do not occur at similarly high concentrations in natural sources, the role of odor experience-dependent plasticity in natural environments is unclear. Here, we investigated olfactory plasticity in the antennal lobe of flies chronically exposed to odors at concentrations that are typically encountered in natural odor sources. These stimuli were chosen to each strongly and selectively excite a single class of primary olfactory receptor neuron (ORN), thus facilitating a rigorous assessment of the selectivity of olfactory plasticity for PNs directly excited by overrepresented stimuli. Unexpectedly, we found that chronic exposure to three such odors did not result in decreased PN sensitivity but rather mildly increased responses to weak stimuli in most PN types. Odor-evoked PN activity in response to stronger stimuli was mostly unaffected by odor experience. When present, plasticity was observed broadly in multiple PN types and thus was not selective for PNs receiving direct input from the chronically active ORNs. We further investigated the DL5 olfactory coding channel and found that chronic odor-mediated excitation of its input ORNs did not affect PN intrinsic properties, local inhibitory innervation, ORN responses or ORN-PN synaptic strength; however, broad-acting lateral excitation evoked by some odors was increased. These results show that PN odor coding is only mildly affected by strong persistent activation of a single olfactory input, highlighting the stability of early stages of insect olfactory processing to significant perturbations in the sensory environment.
Collapse
Affiliation(s)
- Zhannetta V Gugel
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth G Maurais
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
37
|
Rozenfeld E, Ehmann N, Manoim JE, Kittel RJ, Parnas M. Homeostatic synaptic plasticity rescues neural coding reliability. Nat Commun 2023; 14:2993. [PMID: 37225688 DOI: 10.1038/s41467-023-38575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
To survive, animals must recognize reoccurring stimuli. This necessitates a reliable stimulus representation by the neural code. While synaptic transmission underlies the propagation of neural codes, it is unclear how synaptic plasticity can maintain coding reliability. By studying the olfactory system of Drosophila melanogaster, we aimed to obtain a deeper mechanistic understanding of how synaptic function shapes neural coding in the live, behaving animal. We show that the properties of the active zone (AZ), the presynaptic site of neurotransmitter release, are critical for generating a reliable neural code. Reducing neurotransmitter release probability of olfactory sensory neurons disrupts both neural coding and behavioral reliability. Strikingly, a target-specific homeostatic increase of AZ numbers rescues these defects within a day. These findings demonstrate an important role for synaptic plasticity in maintaining neural coding reliability and are of pathophysiological interest by uncovering an elegant mechanism through which the neural circuitry can counterbalance perturbations.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Robert J Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103, Leipzig, Germany.
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
38
|
Tichy H, Martzok A, Linhart M, Zopf LM, Hellwig M. Multielectrode recordings of cockroach antennal lobe neurons in response to temporal dynamics of odor concentrations. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:411-436. [PMID: 36645471 PMCID: PMC10102049 DOI: 10.1007/s00359-022-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023]
Abstract
The initial representation of the instantaneous temporal information about food odor concentration in the primary olfactory center, the antennal lobe, was examined by simultaneously recording the activity of antagonistic ON and OFF neurons with 4-channel tetrodes. During presentation of pulse-like concentration changes, ON neurons encode the rapid concentration increase at pulse onset and the pulse duration, and OFF neurons the rapid concentration decrease at pulse offset and the duration of the pulse interval. A group of ON neurons establish a concentration-invariant representation of odor pulses. The responses of ON and OFF neurons to oscillating changes in odor concentration are determined by the rate of change in dependence on the duration of the oscillation period. By adjusting sensitivity for fluctuating concentrations, these neurons improve the representation of the rate of the changing concentration. In other ON and OFF neurons, the response to changing concentrations is invariant to large variations in the rate of change due to variations in the oscillation period, facilitating odor identification in the antennal-lobe. The independent processing of odor identity and the temporal dynamics of odor concentration may speed up processing time and improve behavioral performance associated with plume tracking, especially when the air is not moving.
Collapse
Affiliation(s)
- Harald Tichy
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Alexander Martzok
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Marlene Linhart
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Lydia M Zopf
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| | - Maria Hellwig
- Department of Neurosciences and Developmental Biology, University of Vienna, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria
| |
Collapse
|
39
|
Ling D, Moss EH, Smith CL, Kroeger R, Reimer J, Raman B, Arenkiel BR. Conserved neural dynamics and computations across species in olfaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538157. [PMID: 37162844 PMCID: PMC10168254 DOI: 10.1101/2023.04.24.538157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interpreting chemical information and translating it into ethologically relevant output is a common challenge of olfactory systems across species. Are computations performed by olfactory circuits conserved across species to overcome these common challenges? To understand this, we compared odor responses in the locust antennal lobe (AL) and mouse olfactory bulb (OB). We found that odors activated nearly mutually exclusive neural ensembles during stimulus presentation ('ON response') and after stimulus termination ('OFF response'). Strikingly, ON and OFF responses evoked by a single odor were anticorrelated with each other. 'Inverted' OFF responses enhanced contrast between odors experienced close together in time. Notably, OFF responses persisted long after odor termination in both AL and OB networks, indicating a form of short-term memory. Taken together, our results reveal key neurodynamic features underlying olfactory computations that are conserved across insect and mammalian olfactory systems.
Collapse
Affiliation(s)
- Doris Ling
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Elizabeth H Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cameron L Smith
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Ryan Kroeger
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
40
|
Lazar AA, Liu T, Yeh CH. The functional logic of odor information processing in the Drosophila antennal lobe. PLoS Comput Biol 2023; 19:e1011043. [PMID: 37083547 PMCID: PMC10156017 DOI: 10.1371/journal.pcbi.1011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/03/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Recent advances in molecular transduction of odorants in the Olfactory Sensory Neurons (OSNs) of the Drosophila Antenna have shown that the odorant object identity is multiplicatively coupled with the odorant concentration waveform. The resulting combinatorial neural code is a confounding representation of odorant semantic information (identity) and syntactic information (concentration). To distill the functional logic of odor information processing in the Antennal Lobe (AL) a number of challenges need to be addressed including 1) how is the odorant semantic information decoupled from the syntactic information at the level of the AL, 2) how are these two information streams processed by the diverse AL Local Neurons (LNs) and 3) what is the end-to-end functional logic of the AL? By analyzing single-channel physiology recordings at the output of the AL, we found that the Projection Neuron responses can be decomposed into a concentration-invariant component, and two transient components boosting the positive/negative concentration contrast that indicate onset/offset timing information of the odorant object. We hypothesized that the concentration-invariant component, in the multi-channel context, is the recovered odorant identity vector presented between onset/offset timing events. We developed a model of LN pathways in the Antennal Lobe termed the differential Divisive Normalization Processors (DNPs), which robustly extract the semantics (the identity of the odorant object) and the ON/OFF semantic timing events indicating the presence/absence of an odorant object. For real-time processing with spiking PN models, we showed that the phase-space of the biological spike generator of the PN offers an intuit perspective for the representation of recovered odorant semantics and examined the dynamics induced by the odorant semantic timing events. Finally, we provided theoretical and computational evidence for the functional logic of the AL as a robust ON-OFF odorant object identity recovery processor across odorant identities, concentration amplitudes and waveform profiles.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
| | - Tingkai Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
| | - Chung-Heng Yeh
- Department of Electrical Engineering, Columbia University, New York, NY, United States of America
| |
Collapse
|
41
|
Abstract
Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.
Collapse
Affiliation(s)
- Ben D. B. Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Burlando B, Mucci V, Browne CJ, Losacco S, Indovina I, Marinelli L, Blanchini F, Giordano G. Mal de Debarquement Syndrome explained by a vestibulo-cerebellar oscillator. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:96-110. [PMID: 36469499 DOI: 10.1093/imammb/dqac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/25/2022] [Indexed: 12/12/2022]
Abstract
Mal de Debarquement Syndrome (MdDS) is a puzzling central vestibular disorder characterized by a long-lasting perception of oscillatory postural instability that may occur after sea travels or flights. We have postulated that MdDS originates from the post-disembarking persistence of an adaptive internal oscillator consisting of a loop system, involving the right and left vestibular nuclei, and the Purkinje cells of the right and left flocculonodular cerebellar cortex, connected by GABAergic and glutamatergic fibers. We have formulated here a mathematical model of the vestibulo-cerebellar loop system and carried out a computational analysis based on a set of differential equations describing the interactions among the loop elements and containing Hill functions that model input-output firing rates relationships among neurons. The analysis indicates that the system acquires a spontaneous and permanent oscillatory behavior for a decrease of threshold and an increase of sensitivity in neuronal input-output responses. These results suggest a role for synaptic plasticity in MdDS pathophysiology, thus reinforcing our previous hypothesis that MdDS may be the result of excessive synaptic plasticity acting on the vestibulo-cerebellar network during its entraining to an oscillatory environment. Hence, our study points to neuroendocrine pathways that lead to increased synaptic response as possible new therapeutic targets for the clinical treatment of the disorder.
Collapse
Affiliation(s)
- Bruno Burlando
- Department of Pharmacy, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Viviana Mucci
- School of Science, Western Sydney University, Penrith NSW 2560, Australia
| | - Cherylea J Browne
- School of Science, Western Sydney University, Penrith NSW 2560, Australia
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, NSW 2052, Australia
| | - Serena Losacco
- Department of Pharmacy, University of Genova, Viale Benedetto XV 3, 16132 Genova, Italy
| | - Iole Indovina
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
- Neuromotor Physiology Lab, IRCCS Foundation Santa Lucia, via Ardeatina 354, 00179 Rome, Italy
| | - Lucio Marinelli
- DINOGMI University of Genova, Largo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Division of Clinical Neurophysiology, Department of Neuroscience, Largo R. Benzi 10, 16132 Genova, Italy
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Povo (TN), Italy
| |
Collapse
|
43
|
Fu Q, Li Z, Peng J. Harmonizing motion and contrast vision for robust looming detection. ARRAY 2023. [DOI: 10.1016/j.array.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
44
|
Trebels B, Dippel S, Anders J, Ernst C, Goetz B, Keyser T, Rexer KH, Wimmer EA, Schachtner J. Anatomic and neurochemical analysis of the palpal olfactory system in the red flour beetle Tribolium castaneum, HERBST. Front Cell Neurosci 2023; 17:1097462. [PMID: 36998268 PMCID: PMC10043995 DOI: 10.3389/fncel.2023.1097462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
The paired antennal lobes were long considered the sole primary processing centers of the olfactory pathway in holometabolous insects receiving input from the olfactory sensory neurons of the antennae and mouthparts. In hemimetabolous insects, however, olfactory cues of the antennae and palps are processed separately. For the holometabolous red flour beetle Tribolium castaneum, we could show that primary processing of the palpal and antennal olfactory input also occurs separately and at distinct neuronal centers. While the antennal olfactory sensory neurons project into the antennal lobes, those of the palps project into the paired glomerular lobes and the unpaired gnathal olfactory center. Here we provide an extended analysis of the palpal olfactory pathway by combining scanning electron micrographs with confocal imaging of immunohistochemical staining and reporter expression identifying chemosensory and odorant receptor-expressing neurons in the palpal sensilla. In addition, we extended the anatomical characterization of the gnathal olfactory center by 3D reconstructions and investigated the distribution of several neuromediators. The similarities in the neuromediator repertoire between antennal lobes, glomerular lobes, and gnathal olfactory center underline the role of the latter two as additional primary olfactory processing centers.
Collapse
Affiliation(s)
- Björn Trebels
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Stefan Dippel
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Janet Anders
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Clara Ernst
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Brigitte Goetz
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Tim Keyser
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Karl Heinz Rexer
- Biodiversity of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Ernst A. Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| | - Joachim Schachtner
- Animal Physiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Clausthal University of Technology, Clausthal-Zellerfeld, Germany
- *Correspondence: Joachim Schachtner Björn Trebels Ernst A. Wimmer
| |
Collapse
|
45
|
Manneschi L, Lin AC, Vasilaki E. SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:824-838. [PMID: 34398765 DOI: 10.1109/tnnls.2021.3102378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
"Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.
Collapse
|
46
|
Idris A, Christensen BA, Walker EM, Maier JX. Multisensory integration of orally-sourced gustatory and olfactory inputs to the posterior piriform cortex in awake rats. J Physiol 2023; 601:151-169. [PMID: 36385245 PMCID: PMC9869978 DOI: 10.1113/jp283873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Flavour refers to the sensory experience of food, which is a combination of sensory inputs sourced from multiple modalities during consumption, including taste and odour. Previous work has demonstrated that orally-sourced taste and odour cues interact to determine perceptual judgements of flavour stimuli, although the underlying cellular- and circuit-level neural mechanisms remain unknown. We recently identified a region of the piriform olfactory cortex in rats that responds to both taste and odour stimuli. Here, we investigated how converging taste and odour inputs to this area interact to affect single neuron responsiveness ensemble coding of flavour identity. To accomplish this, we recorded spiking activity from ensembles of single neurons in the posterior piriform cortex (pPC) in awake, tasting rats while delivering taste solutions, odour solutions and taste + odour mixtures directly into the oral cavity. Our results show that taste and odour inputs evoke highly selective, temporally-overlapping responses in multisensory pPC neurons. Comparing responses to mixtures and their unisensory components revealed that taste and odour inputs interact in a non-linear manner to produce unique response patterns. Taste input enhances trial-by-trial decoding of odour identity from small ensembles of simultaneously recorded neurons. Together, these results demonstrate that taste and odour inputs to pPC interact in complex, non-linear ways to form amodal flavour representations that enhance identity coding. KEY POINTS: Experience of food involves taste and smell, although how information from these different senses is combined by the brain to create our sense of flavour remains unknown. We recorded from small groups of neurons in the olfactory cortex of awake rats while they consumed taste solutions, odour solutions and taste + odour mixtures. Taste and smell solutions evoke highly selective responses. When presented in a mixture, taste and smell inputs interacted to alter responses, resulting in activation of unique sets of neurons that could not be predicted by the component responses. Synergistic interactions increase discriminability of odour representations. The olfactory cortex uses taste and smell to create new information representing multisensory flavour identity.
Collapse
Affiliation(s)
- Ammar Idris
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Brooke A. Christensen
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Ellen M. Walker
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Joost X. Maier
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
47
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Changes in length judgments caused by rotation of the contextual distractor. Atten Percept Psychophys 2023; 85:196-208. [PMID: 36307748 DOI: 10.3758/s13414-022-02596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 01/10/2023]
Abstract
In the present study, we tested the applicability of the computational model of the illusion of interrupted spatial extent (Bulatov, Marma, & Bulatova, Attention, Perception, & Psychophysics, 82, 2714-2727, 2020) to account for the psychophysical data collected with three-dot stimuli containing a cross-shaped contextual distractor. In different series of experiments, the illusion magnitude changes caused by the rotation of distractors with different values of the internal angle (45°, 75°, and 90°) were quantitatively determined. It was shown that the data obtained for all modifications of stimuli can be rather well approximated by model functions proportional to the sum of the absolute values of cosines. A good agreement between theoretical calculations and experimental results supports the suggestion that the perceptual displacement of the stimulus terminators, which occurs due to the processes of local integration of neural activity, may be one of the main causes of the illusion investigated.
Collapse
|
49
|
Nonspiking Interneurons in the Drosophila Antennal Lobe Exhibit Spatially Restricted Activity. eNeuro 2023; 10:ENEURO.0109-22.2022. [PMID: 36650069 PMCID: PMC9884108 DOI: 10.1523/eneuro.0109-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory interneurons are important for neuronal circuit function. They regulate sensory inputs and enhance output discriminability (Olsen and Wilson, 2008; Root et al., 2008; Olsen et al., 2010). Often, the identities of interneurons can be determined by location and morphology, which can have implications for their functions (Wachowiak and Shipley, 2006). While most interneurons fire traditional action potentials, many are nonspiking. These can be seen in insect olfaction (Laurent and Davidowitz, 1994; Husch et al., 2009; Tabuchi et al., 2015) and the vertebrate retina (Gleason et al., 1993). Here, we present the novel observation of nonspiking inhibitory interneurons in the antennal lobe (AL) of the adult fruit fly, Drosophila melanogaster These neurons have a morphology where they innervate a patchwork of glomeruli. We used electrophysiology to determine whether their nonspiking characteristic is because of a lack of sodium current. We then used immunohistochemsitry and in situ hybridization to show this is likely achieved through translational regulation of the voltage-gated sodium channel gene, para Using in vivo calcium imaging, we explored how these cells respond to odors, finding regional isolation in their responses' spatial patterns. Further, their response patterns were dependent on both odor identity and concentration. Thus, we surmise these neurons are electrotonically compartmentalized such that activation of the neurites in one region does not propagate across the whole antennal lobe. We propose these neurons may be the source of intraglomerular inhibition in the AL and may contribute to regulation of spontaneous activity within glomeruli.
Collapse
|
50
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|