1
|
Wang HP, Singh S, Wong LC, Hsu CJ, Li SC, Lee SJ, Lee CH, Lee WT. Lacosamide Is a Novel Drug That Improves AGTPBP1 Knockout-Mediated Impairment of Neuronal and Dopaminergic Function. Mol Neurobiol 2025:10.1007/s12035-025-05016-y. [PMID: 40347376 DOI: 10.1007/s12035-025-05016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
AGTPBP1 regulates microtubule stabilization through post-translational modification of alpha-tubulin. Mutations in the AGTPBP1 gene are associated with clinical phenotypes such as early postnatal cerebellar atrophy, ataxia, spasticity, and dystonia, highlighting its critical roles in both neurodevelopment and neurodegeneration. However, how AGTPBP1 affects neurite development and its function in dopaminergic neurons remains unclear. To investigate the role of AGTPBP1, we utilized both in vitro AGTPBP1 knockout (KO) cell models and zebrafish models. Our findings reveal that AGTPBP1 KO in cells leads to excessive neurite outgrowth and significantly increases expression of collapsin response mediator protein 2 (CRMP2). Additionally, AGTPBP1 KO results in mitochondrial dysfunction and a hyperdopaminergic state in differentiated neurons. In zebrafish, knockdown of AGTPBP1 caused reduced brain volume and impaired swimming behavior, indicating disrupted neurodevelopment and motor function. Given CRMP2's involvement in both cytoskeletal dynamics and mitochondrial activity, we tested lacosamide, a drug known to modulate CRMP2 expression and phosphorylation. Lacosamide treatment in vitro improved cell morphology and restored mitochondrial function, while in vivo, it rescued brain volume deficits and enhanced swimming performance in AGTPBP1-deficient zebrafish. In conclusion, AGTPBP1 knockout impairs neuronal differentiation, induces mitochondrial dysfunction, increases oxidative stress, and promotes a hyperdopaminergic state. Our study suggests that elevated CRMP2 expression may underlie the pathophysiology of cerebellar degeneration in AGTPBP1-related disorders. Targeting CRMP2 with lacosamide represents a promising therapeutic strategy for mitigating AGTPBP1-mediated neurodegeneration.
Collapse
Affiliation(s)
- Hsin-Pei Wang
- Department of Pediatrics, National Taiwan University Hospital, Yunlin Branch, Yunlin, 970, Taiwan
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, Taipei, 100, Taiwan
| | - Shekhar Singh
- National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Lee-Chin Wong
- National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, Taipei, 100, Taiwan
- National Taiwan University College of Medicine, Taipei, 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, 8, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hospital, Hsinchu Branch, Hsinchu City, 300, Taiwan
| | - Shih-Chi Li
- Department of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 23564, Taiwan
| | - Wang-Tso Lee
- National Taiwan University College of Medicine, Taipei, 100, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, 8, Chung-Shan South Road, Taipei, 100, Taiwan.
| |
Collapse
|
2
|
Pérez-Revuelta L, Pérez-Boyero D, Pérez-Martín E, Cabedo VL, Téllez de Meneses PG, Weruaga E, Díaz D, Alonso JR. Neuroprotective Effects of VEGF-B in a Murine Model of Aggressive Neuronal Loss with Childhood Onset. Int J Mol Sci 2025; 26:538. [PMID: 39859255 PMCID: PMC11765331 DOI: 10.3390/ijms26020538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In recent decades, the scientific community has faced a major challenge in the search for new therapies that can slow down or alleviate the process of neuronal death that accompanies neurodegenerative diseases. This study aimed to identify an effective therapy using neurotrophic factors to delay the rapid and aggressive cerebellar degeneration experienced by the Purkinje Cell Degeneration (PCD) mouse, a model of childhood-onset neurodegeneration with cerebellar atrophy (CONDCA). Initially, we analyzed the changes in the expression of several neurotrophic factors related to the degenerative process itself, identifying changes in insulin-like growth factor 1 (IGF-1) and Vascular Endothelial Growth Factor B (VEGF-B) in the affected animals. Then, we administered pharmacological treatments using human recombinant IGF-1 (rhIGF-1) or VEGF-B (rhVEGF-B) proteins, considering their temporal variations during the degenerative process. The effects of these treatments on motor, cognitive, and social behavior, as well as on cerebellar destructuration were analyzed. Whereas treatment with rhIGF-1 did not demonstrate any neuroprotective effect, rhVEGF-B administration at moderate dosages stopped the process of neuronal death and restored motor, cognitive, and social functions altered in PCD mice (and CONDCA patients). However, increasing the frequency of rhVEGF-B administration had a detrimental effect on Purkinje cell survival, suggesting an inverted U-shaped dose-response curve of this substance. Additionally, we demonstrate that this neuroprotective effect was achieved through a partial inhibition or delay of apoptosis. These findings provide strong evidence supporting the use of rhVEGF-B as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Ester Pérez-Martín
- Neuroscience Innovative Technologies, Neurostech, 33428 Llanera, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Intervenciones Traslacionales para la Salud, 33011 Oviedo, Spain
| | - Valeria Lorena Cabedo
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pablo González Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José Ramón Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain; (L.P.-R.)
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
3
|
He D, Chang Y, Jiang B, Yang M, Deng C, Zhu X. Downregulation of LOX Overexpression Promotes Retinal Ganglion Cells Survival in an Acute Ocular Hypertension Model. Curr Eye Res 2024; 49:1171-1179. [PMID: 38979820 DOI: 10.1080/02713683.2024.2371140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/26/2024] [Accepted: 06/08/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE To investigate the effect of reducing Lysyl oxidase (LOX) overexpression on retinal ganglion cells (RGCs) apoptosis in an acute ocular hypertension (AOH) rat model. METHODS AOH rat model was performed by anterior chamber perfusion and either received an intravitreal injection with β-aminopropionitrile (BAPN) or normal saline. After 2wk, Quantification of survival RGCs in the retina was performed using Retrograde FluoroGold labeling. The mRNA expression levels of LOX, LOXL1-4, collagen 1a1 (Col1a1), collagen 3a1 (Col3a1), collagen4a1 (Col4a1), elastin (Eln), fibronectin1 (Fbn1), fibronectin4 (Fbn4) were determined by RT-qPCR. LOX expression was determined by Western blot (WB) analysis and immunohistochemistry. The RNA expression of LOX, Eln and Col1a1 in RGCs retrograde-labeled with 1,1'-dioctadecyl-3,3,3',3' tetra-methylindocarbocyanine perchlorate(DiI)that selected through FACS sorting were determined by RT-qPCR analysis. Changes of the retinal function were detected by Electroretinogram (ERG) analysis. RESULTS Results showed that significant LOX overexpression and loss of RGCs related to IOP exposure in AOH retinas. PCR analysis indicated significant increased mRNA level of Col1a1, Col3al and Eln in AOH retinas. Significant increase mRNA expression of LOX, Col1a1 and Eln in the RGCs were observed in AOH group compared with CON group. AOH rats injected with BAPN showed a significant decrease in LOX expression, reduced the loss of RGCs and retinal function damage. CONCLUSIONS The results demonstrated that changes of LOX and specific ECM components in retina were correlated with AOH. Findings from this study indicated that preventing LOX over-expression may be protective against RGCs loss and retinal function damage in AOH animal model.
Collapse
Affiliation(s)
- Dengling He
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Yun Chang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Bingcai Jiang
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Man Yang
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Chengmin Deng
- Zunyi Medical University, Zunyi City, Guizhou Province, China
| | - Xiaoyan Zhu
- Zunyi Medical University, Zunyi City, Guizhou Province, China
- Department of Ophthalmology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Chen KN, Peng QL, Cao DF, Wang ZJ, Zhang K, Zhou XY, Min DY, Zhou BT, Mao XY. Inhibition of lysyl oxidase by pharmacological intervention and genetic manipulation alleviates epilepsy-associated cognitive disorder. Brain Res Bull 2024; 210:110928. [PMID: 38493836 DOI: 10.1016/j.brainresbull.2024.110928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.
Collapse
Affiliation(s)
- Kang-Ni Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China; Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Qi-Lin Peng
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha 410008, China
| | - Dan-Feng Cao
- Academician Workstation and Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Zhao-Jun Wang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Kai Zhang
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang 222000, China; Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, China.
| | - Dong-Yu Min
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 116600, China; Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Bo-Ting Zhou
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha 410008, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Katsuyama M. [Toward the complete understanding of the pathogenic mechanism of clioquinol-induced subacute myelo-optic neuropathy (SMON)]. Nihon Yakurigaku Zasshi 2024; 159:78-82. [PMID: 38432923 DOI: 10.1254/fpj.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Clioquinol was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. We previously performed a global analysis of human neuroblastoma cells using DNA chips and demonstrated that clioquinol induced 1) DNA double-strand breaks and subsequent activation of ATM/p53 signaling; 2) the expression of VGF, the precursor of neuropeptides involved in pain reactions, by inducing c-Fos; 3) the expression of interleukin-8, which is reported to be involved in intestinal inflammation, optic neuropathy, and neuropathic pain, by down-regulating GATA-2 and GATA-3. We also demonstrated that clioquinol induced zinc influx and oxidation of the copper chaperone ATOX1, leading to the impairment of the functional maturation of a copper-dependent enzyme dopamine-β-hydroxylase and the inhibition of noradrenaline biosynthesis. Thus, clioquinol-induced neurotoxicity in SMON seems to be mediated by multiple pathways.
Collapse
|
6
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
7
|
Hasegawa K, Matsui TK, Kondo J, Kuwako KI. N-WASP-Arp2/3 signaling controls multiple steps of dendrite maturation in Purkinje cells in vivo. Development 2022; 149:285127. [PMID: 36469048 DOI: 10.1242/dev.201214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.
Collapse
Affiliation(s)
- Koichi Hasegawa
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Junpei Kondo
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, School of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane 693-8501, Japan
| |
Collapse
|
8
|
Mao X, Wang X, Jin M, Li Q, Jia J, Li M, Zhou H, Liu Z, Jin W, Zhao Y, Luo Z. Critical involvement of lysyl oxidase in seizure-induced neuronal damage through ERK-Alox5-dependent ferroptosis and its therapeutic implications. Acta Pharm Sin B 2022; 12:3513-3528. [PMID: 36176900 PMCID: PMC9513491 DOI: 10.1016/j.apsb.2022.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023] Open
Abstract
Recent insights collectively suggest the important roles of lysyl oxidase (LysOX) in the pathological processes of several acute and chronic neurological diseases, but the molecular regulatory mechanisms remain elusive. Herein, we explore the regulatory role of LysOX in the seizure-induced ferroptotic cell death of neurons. Mechanistically, LysOX promotes ferroptosis-associated lipid peroxidation in neurons via activating extracellular regulated protein kinase (ERK)-dependent 5-lipoxygenase (Alox5) signaling. In addition, overexpression of LysOX via adeno-associated viral vector (AAV)-based gene transfer enhances ferroptosis sensitivity and aggravates seizure-induced hippocampal damage. Our studies show that pharmacological inhibition of LysOX with β-aminopropionitrile (BAPN) significantly blocks seizure-induced ferroptosis and thereby alleviates neuronal damage, while the BAPN-associated cardiotoxicity and neurotoxicity could further be reduced through encapsulation with bioresponsive amorphous calcium carbonate-based nanocarriers. These findings unveil a previously unrecognized LysOX-ERK-Alox5 pathway for ferroptosis regulation during seizure-induced neuronal damage. Suppressing this pathway may yield therapeutic implications for restoring seizure-induced neuronal injury.
Collapse
|
9
|
Mechanistic insight into lysyl oxidase in vascular remodeling and angiogenesis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Lalonde R, Strazielle C. The AGTPBP1 gene in neurobiology. Gene 2022; 809:146001. [PMID: 34637898 DOI: 10.1016/j.gene.2021.146001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/04/2022]
Abstract
The function of the Agtpbp1 gene has mainly been delineated by studying Agtpbp1pcd (pcd) mutant mice, characterized by losses in cerebellar Purkinje and granule cells along with degeneration of retinal photoreceptors, mitral cells of the olfactory bulb, thalamic neurons, and alpha-motoneurons. As a result of cerebellar degeneration, cerebellar GABA and glutamate concentrations in Agtpbp1pcd mutants decreased while monoamine concentrations increased. The salient behavioral phenotypes include cerebellar ataxia, a loss in motor coordination, and cognitive deficits. Similar neuropathogical and behavioral profiles have been described in childhood-onset human subjects with biallelic variants of AGTPBP1, including cerebellar ataxia and hypotonia.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Rouen, Dept Psychology, 76821 Mont-Saint-Aignan, France; Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), University of Lorraine Medical School, Vandœuvre-les-Nancy, France; CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
11
|
Baltanás FC, Berciano MT, Santos E, Lafarga M. The Childhood-Onset Neurodegeneration with Cerebellar Atrophy (CONDCA) Disease Caused by AGTPBP1 Gene Mutations: The Purkinje Cell Degeneration Mouse as an Animal Model for the Study of this Human Disease. Biomedicines 2021; 9:biomedicines9091157. [PMID: 34572343 PMCID: PMC8464709 DOI: 10.3390/biomedicines9091157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.
Collapse
Affiliation(s)
- Fernando C. Baltanás
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-923294801
| | - María T. Berciano
- Department of Molecular Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Eugenio Santos
- Lab.1, CIC-IBMCC, University of Salamanca-CSIC and CIBERONC, 37007 Salamanca, Spain;
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IDIVAL, 39011 Santander, Spain;
| |
Collapse
|
12
|
Luck R, Karakatsani A, Shah B, Schermann G, Adler H, Kupke J, Tisch N, Jeong HW, Back MK, Hetsch F, D'Errico A, De Palma M, Wiedtke E, Grimm D, Acker-Palmer A, von Engelhardt J, Adams RH, Augustin HG, Ruiz de Almodóvar C. The angiopoietin-Tie2 pathway regulates Purkinje cell dendritic morphogenesis in a cell-autonomous manner. Cell Rep 2021; 36:109522. [PMID: 34407407 PMCID: PMC9110807 DOI: 10.1016/j.celrep.2021.109522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/06/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Neuro-vascular communication is essential to synchronize central nervous system development. Here, we identify angiopoietin/Tie2 as a neuro-vascular signaling axis involved in regulating dendritic morphogenesis of Purkinje cells (PCs). We show that in the developing cerebellum Tie2 expression is not restricted to blood vessels, but it is also present in PCs. Its ligands angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) are expressed in neural cells and endothelial cells (ECs), respectively. PC-specific deletion of Tie2 results in reduced dendritic arborization, which is recapitulated in neural-specific Ang1-knockout and Ang2 full-knockout mice. Mechanistically, RNA sequencing reveals that Tie2-deficient PCs present alterations in gene expression of multiple genes involved in cytoskeleton organization, dendritic formation, growth, and branching. Functionally, mice with deletion of Tie2 in PCs present alterations in PC network functionality. Altogether, our data propose Ang/Tie2 signaling as a mediator of intercellular communication between neural cells, ECs, and PCs, required for proper PC dendritic morphogenesis and function.
Collapse
Affiliation(s)
- Robert Luck
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Andromachi Karakatsani
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Bhavin Shah
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Geza Schermann
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Heike Adler
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, 69120 Heidelberg, Germany
| | - Nathalie Tisch
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine, 48149 Münster, Germany
| | - Michaela Kerstin Back
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Florian Hetsch
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Anna D'Errico
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Bioquant Center, 69120 Heidelberg, Germany; German Center for Infection Research (DZIF), and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60323 Frankfurt, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and University of Münster, Faculty of Medicine, 48149 Münster, Germany
| | - Hellmut G Augustin
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| |
Collapse
|
13
|
Clioquinol inhibits dopamine-β-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2020; 95:135-148. [PMID: 33034664 DOI: 10.1007/s00204-020-02894-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Clioquinol (5-chloro-7-indo-8-quinolinol), a chelator and ionophore of copper/zinc, was extensively used as an amebicide to treat indigestion and diarrhea in the mid-1900s. However, it was withdrawn from the market in Japan because its use was epidemiologically linked to an increase in the incidence of subacute myelo-optic neuropathy (SMON). SMON is characterized by the subacute onset of sensory and motor disturbances in the lower extremities with occasional visual impairments, which are preceded by abdominal symptoms. Although pathological studies demonstrated axonopathy of the spinal cord and optic nerves, the underlying mechanisms of clioquinol toxicity have not been elucidated in detail. In the present study, a reporter assay revealed that clioquinol (20-50 µM) activated metal response element-dependent transcription in human neuroblastoma SH-SY5Y cells. Clioquinol significantly increased the cellular level of zinc within 1 h, suggesting zinc influx due to its ionophore effects. On the other hand, clioquinol (20-50 µM) significantly increased the cellular level of copper within 24 h. Clioquinol (50 µM) induced the oxidation of the copper chaperone antioxidant 1 (ATOX1), suggesting its inactivation and inhibition of copper transport. The secretion of dopamine-β-hydroxylase (DBH) and lysyl oxidase, both of which are copper-dependent enzymes, was altered by clioquinol (20-50 µM). Noradrenaline levels were reduced by clioquinol (20-50 µM). Disruption of the ATOX1 gene suppressed the secretion of DBH. This study suggested that the disturbance of cellular copper transport by the inactivation of ATOX1 is one of the mechanisms involved in clioquinol-induced neurotoxicity in SMON.
Collapse
|
14
|
Li J, Snyder EY, Tang FHF, Pasqualini R, Arap W, Sidman RL. Nna1 gene deficiency triggers Purkinje neuron death by tubulin hyperglutamylation and ER dysfunction. JCI Insight 2020; 5:136078. [PMID: 33004692 PMCID: PMC7566705 DOI: 10.1172/jci.insight.136078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Posttranslational glutamylation/deglutamylation balance in tubulins influences dendritic maturation and neuronal survival of cerebellar Purkinje neurons (PNs). PNs and some additional neuronal types degenerate in several spontaneous, independently occurring Purkinje cell degeneration (pcd) mice featuring mutant neuronal nuclear protein induced by axotomy (Nna1), a deglutamylase gene. This defective deglutamylase allows glutamylases to form hyperglutamylated tubulins. In pcd, all PNs die during postnatal “adolescence.” Neurons in some additional brain regions also die, mostly later than PNs. We show in laser capture microdissected single PNs, in cerebellar granule cell neuronal clusters, and in dissected hippocampus and substantia nigra that deglutamase mRNA and protein were virtually absent before pcd PNs degenerated, whereas glutaminase mRNA and protein remained normal. Hyperglutamylated microtubules and dimeric tubulins accumulated in pcd PNs and were involved in pcd PN death by glutamylase/deglutamylase imbalance. Importantly, treatment with a microtubule depolymerizer corrected the glutamylation/deglutamylation ratio, increasing PN survival. Further, before onset of neuronal death, pcd PNs displayed prominent basal polylisosomal masses rich in ER. We propose a “seesaw” metamorphic model summarizing mutant Nna1-induced tubulin hyperglutamylation, the pcd’s PN phenotype, and report that the neuronal disorder involved ER stress, unfolded protein response, and protein synthesis inhibition preceding PN death by apoptosis/necroptosis. Purkinje cell degeneration is due to ER stress, unfolded protein response, and protein synthesis inhibition preceding Purkinje neuron death by apoptosis/necroptosis.
Collapse
Affiliation(s)
- Jianxue Li
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fenny HF Tang
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey and Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey and Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Richard L Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Wei S, Gao L, Wu C, Qin F, Yuan J. Role of the lysyl oxidase family in organ development (Review). Exp Ther Med 2020; 20:163-172. [PMID: 32536990 PMCID: PMC7282176 DOI: 10.3892/etm.2020.8731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023] Open
Abstract
Lysyl oxidase proteins (LOXs) are amine oxidases, which are mainly located in smooth muscle cells and fibroblasts and serve an important role in the formation of the extracellular matrix (ECM) in a copper-dependent manner. Owing to the ability of LOX proteins to modulate crosslinking between collagens and to promote the deposition of other fibers, they serve crucially in organogenesis and the subsequent organ development, as well as disease initiation and progression. In addition, ECM formation significantly influences organ morphological formation in both cancer- and non-tumor-related diseases, in addition to cellular epigenetic transformation and migration, under the influence of LOXs. A number of different signaling pathways regulate the LOXs expression and their enzymatic activation. The tissue remodeling and transformation process shares some resemblance between oncogenesis and embryogenesis. Additionally the roles that LOXs serve appeared to be stressed during oncogenesis and tumor metastasis. It has also been indicated LOXs have a noteworthy role in non-tumor diseases. Nonetheless, the role of LOXs in systemic or local organ development and disease control remains unknown. In the present study, the essential roles that LOXs play in embryogenesis were unveiled partially, whereas the role of LOXs in organ or systematic development requires further investigations. The present review aimed to discuss the roles of members of the LOX family in the context of the remodeling of organogenesis and organ development. In addition, the consequences of the malfunction of these proteins related to the development of abnormalities and resulting diseases is discussed.
Collapse
Affiliation(s)
- Shanzun Wei
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Gao
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Singh S, Singh TG. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr Neuropharmacol 2020; 18:918-935. [PMID: 32031074 PMCID: PMC7709146 DOI: 10.2174/1570159x18666200207120949] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 12/12/2022] Open
Abstract
A transcriptional regulatory nuclear factor kappa B (NF-κB) protein is a modulator of cellular biological activity via binding to a promoter region in the nucleus and transcribing various protein genes. The recent research implicated the intensive role of nuclear factor kappa B (NF-κB) in diseases like autoimmune disorder, inflammatory, cardiovascular and neurodegenerative diseases. Therefore, targeting the nuclear factor kappa B (NF-κB) protein offers a new opportunity as a therapeutic approach. Activation of IκB kinase/NF-κB signaling pathway leads to the development of various pathological conditions in human beings, such as neurodegenerative, inflammatory disorders, autoimmune diseases, and cancer. Therefore, the transcriptional activity of IκB kinase/NF- κB is strongly regulated at various cascade pathways. The nuclear factor NF-kB pathway plays a major role in the expression of pro-inflammatory genes, including cytokines, chemokines, and adhesion molecules. In response to the diverse stimuli, the cytosolic sequestered NF-κB in an inactivated form by binding with an inhibitor molecule protein (IkB) gets phosphorylated and translocated into the nucleus further transcribing various genes necessary for modifying various cellular functions. The various researches confirmed the role of different family member proteins of NF-κB implicated in expressing various genes products and mediating various cellular cascades. MicroRNAs, as regulators of NF- κB microRNAs play important roles in the regulation of the inflammatory process. Therefore, the inhibitor of NF-κB and its family members plays a novel therapeutic target in preventing various diseases. Regulation of NF- κB signaling pathway may be a safe and effective treatment strategy for various disorders.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
17
|
Wan ZH, Li GH, Guo YL, Li WZ, Chen L, Zhang YJ. Amelioration of Cavernosal Fibrosis and Erectile Function by Lysyl Oxidase Inhibition in a Rat Model of Cavernous Nerve Injury. J Sex Med 2019; 15:304-313. [PMID: 29502979 DOI: 10.1016/j.jsxm.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cavernous nerve injury (CNI) causes fibrosis and loss of smooth muscle cells (SMCs) in the corpus cavernosum and leads to erectile dysfunction, and lysyl oxidase (LOX) activation has been found to play an important role in fibrotic diseases. AIM To evaluate the role of LOX in penile fibrosis after bilateral CNI (BCNI). METHODS Rats underwent BCNI or a sham operation and were treated with vehicle or β-aminopropionitrile, a specific LOX activity inhibitor. 30 days after BCNI, rats were tested for erectile function before penile tissue harvest. LOX and extracellular matrix component expression levels in the corpus cavernosum, including matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), fibronectin (FN), collagen (COL) I, and COL IV, were evaluated by real-time quantitative polymerase chain reaction and western blot. Corporal fibrosis was evaluated by Masson trichrome staining. Localization of LOX and SMC content in the corpus cavernosum were assessed by immunohistochemistry. OUTCOMES Ratio of intracavernous pressure to mean arterial blood pressure; LOX, MMPs, TIMPs, COL I, COL IV, and FN expression; penile fibrosis; penile SMC content. RESULTS After BCNI, there was an increase in penile LOX expression and activity, increased penile fibrosis, decreased SMC content, and impaired erectile function. TIMP1, TIMP2, COL I, COL IV, and FN expression was markedly upregulated, whereas the enzyme activity of MMPs was decreased after BCNI. β-Aminopropionitrile treatment, at least in part, prevented a decrease in the ratio of intracavernous pressure to mean arterial blood pressure, decreased penile expression of TIMP1, TIMP2, COL I, COL IV, and FN, increased MMP activity, prevented corporal fibrosis, and preserved SMC content. CLINICAL TRANSLATION LOX over-activation contributes to penile fibrosis and LOX inhibition could be a promising strategy in preventing the progression of CNI-induced erectile dysfunction. STRENGTHS AND LIMITATIONS This is the 1st study to demonstrate the role of LOX activation in penile fibrosis. However, the exact mechanism of how LOX influences extracellular matrix protein synthesis and SMC content preservation awaits further investigation. CONCLUSION CNI induced LOX over-activation in cavernous tissue, and inhibition of LOX preserved penile morphology and improved erectile function in a rat model of BCNI. Wan Z-H, Li G-H, Guo Y-L, et al. Amelioration of Cavernosal Fibrosis and Erectile Function by Lysyl Oxidase Inhibition in a Rat Model of Cavernous Nerve Injury. J Sex Med 2018;15:304-313.
Collapse
Affiliation(s)
- Zhi-Hua Wan
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Hao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong-Lian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen-Zhou Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Jie Zhang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Rivera AD, Butt AM. Astrocytes are direct cellular targets of lithium treatment: novel roles for lysyl oxidase and peroxisome-proliferator activated receptor-γ as astroglial targets of lithium. Transl Psychiatry 2019; 9:211. [PMID: 31477687 PMCID: PMC6718419 DOI: 10.1038/s41398-019-0542-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are multifunctional glial cells that play essential roles in supporting synaptic signalling and white matter-associated connectivity. There is increasing evidence that astrocyte dysfunction is involved in several brain disorders, including bipolar disorder (BD), depression and schizophrenia. The mood stabiliser lithium is a frontline treatment for BD, but the mechanisms of action remain unclear. Here, we demonstrate that astrocytes are direct targets of lithium and identify unique astroglial transcriptional networks that regulate specific molecular changes in astrocytes associated with BD and schizophrenia, together with Alzheimer's disease (AD). Using pharmacogenomic analyses, we identified novel roles for the extracellular matrix (ECM) regulatory enzyme lysyl oxidase (LOX) and peroxisome proliferator-activated receptor gamma (PPAR-γ) as profound regulators of astrocyte morphogenesis. This study unravels new pathophysiological mechanisms in astrocytes that have potential as novel biomarkers and potential therapeutic targets for regulating astroglial responses in diverse neurological disorders.
Collapse
Affiliation(s)
- Andrea D. Rivera
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| | - Arthur M. Butt
- 0000 0001 0728 6636grid.4701.2Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Science, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth, PO1 2DT UK
| |
Collapse
|
19
|
Wang XT, Cai XY, Xu FX, Zhou L, Zheng R, Ma KY, Xu ZH, Shen Y. MEA6 Deficiency Impairs Cerebellar Development and Motor Performance by Tethering Protein Trafficking. Front Cell Neurosci 2019; 13:250. [PMID: 31244610 PMCID: PMC6580151 DOI: 10.3389/fncel.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Meningioma expressed antigen 6 (MEA6), also called cutaneous T cell lymphoma-associated antigen 5 (cTAGE5), was initially found in tumor tissues. MEA6 is located in endoplasmic reticulum (ER) exit sites and regulates the transport of collagen, very low density lipoprotein, and insulin. It is also reported that MEA6 might be related to Fahr's syndrome, which comprises neurological, movement, and neuropsychiatric disorders. Here, we show that MEA6 is critical to cerebellar development and motor performance. Mice with conditional knockout of MEA6 (Nestin-Cre;MEA6F/F) display smaller sizes of body and brain compared to control animals, and survive maximal 28 days after birth. Immunohistochemical and behavioral studies demonstrate that these mutant mice have defects in cerebellar development and motor performance. In contrast, PC deletion of MEA6 (pCP2-Cre;MEA6F/F) causes milder phenotypes in cerebellar morphology and motor behaviors. While pCP2-Cre;MEA6F/F mice have normal lobular formation and gait, they present the extensive self-crossing of PC dendrites and damaged motor learning. Interestingly, the expression of key molecules that participates in cerebellar development, including Slit2 and brain derived neurotrophic factor (BDNF), is significantly increased in ER, suggesting that MEA6 ablation impairs ER function and thus these proteins are arrested in ER. Our study provides insight into the roles of MEA6 in the brain and the pathogenesis of Fahr's syndrome.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Yu Cai
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang-Xiao Xu
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Zhou
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Zheng
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuang-Yi Ma
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Heng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, China
| | - Ying Shen
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Song B, Kim D, Nguyen NH, Roy S. Inhibition of Diabetes-Induced Lysyl Oxidase Overexpression Prevents Retinal Vascular Lesions Associated With Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:5965-5972. [PMID: 30550614 PMCID: PMC6295938 DOI: 10.1167/iovs.18-25543] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The purpose of this study was to investigate the effect of reducing diabetes-induced lysyl oxidase (LOX) overexpression on vascular cell apoptosis and blood-retinal barrier (BRB) characteristics in diabetic rats. Methods Nondiabetic rats, diabetic rats, and diabetic rats intravitreally (IV) injected with LOX siRNA or scrambled (scram) siRNA were used in the study. One month after the onset of diabetes, intravitreal injections were initiated at monthly intervals for up to three times. At the end of study, retinal capillary networks were isolated, stained with periodic acid-Schiff (PAS) and hematoxylin, and assessed for acellular capillaries (AC) and pericyte loss (PL). To assess vascular leakage, extravasation of FITC-dextran was evaluated in retinal capillaries after tail vein injection of FITC-dextran. Western blot analysis was performed to determine retinal LOX level and confirm LOX downregulation via LOX siRNA intravitreal injection. Results LOX expression was significantly upregulated in retinas of diabetic rats compared with that of nondiabetic rats. Diabetic rats injected with LOX siRNA showed a significant decrease in retinal LOX expression compared with those of diabetic rats or scram siRNA-injected rats. In diabetic retinas, AC and PL were significantly increased compared with those of nondiabetic retinas. Importantly, diabetic rats treated with LOX siRNA exhibited a significant decrease in AC and PL counts compared with those of untreated diabetic rats. Furthermore, diabetic rats treated with LOX siRNA showed significant decrease in retinal vascular permeability compared with that of untreated diabetic rats. Conclusions Findings suggest LOX siRNA intravitreal injection may be effective against diabetes-induced LOX overexpression in preventing apoptosis and vascular leakage associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Brian Song
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Ngan-Ha Nguyen
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States.,Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Chang Q, Yang H, Wang M, Wei H, Hu F. Role of Microtubule-Associated Protein in Autism Spectrum Disorder. Neurosci Bull 2018; 34:1119-1126. [PMID: 29936584 PMCID: PMC6246838 DOI: 10.1007/s12264-018-0246-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and communication, along with repetitive and restrictive patterns of behaviors or interests. Normal brain development is crucial to behavior and cognition in adulthood. Abnormal brain development, such as synaptic and myelin dysfunction, is involved in the pathogenesis of ASD. Microtubules and microtubule-associated proteins (MAPs) are important in regulating the processes of brain development, including neuron production and synaptic formation, as well as myelination. Increasing evidence suggests that the level of MAPs are changed in autistic patients and mouse models of ASD. Here, we discuss the roles of MAPs.
Collapse
Affiliation(s)
- Qiaoqiao Chang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Min Wang
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| | - Fengyun Hu
- Department of Neurology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|
22
|
Zhou L, Hossain MI, Yamazaki M, Abe M, Natsume R, Konno K, Kageyama S, Komatsu M, Watanabe M, Sakimura K, Takebayashi H. Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (pcd
) phenotype. J Neurochem 2018; 147:557-572. [DOI: 10.1111/jnc.14591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Li Zhou
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - M. Ibrahim Hossain
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Manabu Abe
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Rie Natsume
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Kohtaro Konno
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Shun Kageyama
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masaaki Komatsu
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masahiko Watanabe
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| |
Collapse
|
23
|
You M, Gu W, Li M, Qiu Z, Li S, Jiang Z, Yao D, Xu Y, Wang Y. Perinatal exposure to nonylphenol impairs dendritic outgrowth of cerebellar Purkinje cells in progeny. CHEMOSPHERE 2018; 211:758-766. [PMID: 30099160 DOI: 10.1016/j.chemosphere.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Nonylphenol (NP) is a commercially produced nonionic surfactant that has become a global environmental pollutant due to poor biodegradability. Many studies have confirmed that NP has detrimental effects on the central nervous system. However, the damaging roles of NP on the cerebellum and the underlying mechanisms remain unclear. Therefore, we investigated the effects of perinatal exposure to NP on cerebellar Purkinje cell (PC) dendrites and explored the potential mechanism involved. The animal model of perinatal exposure to NP was established by orally administering dams with either corn oil or NP (10, 50, or 100 mg/kg) during pregnancy and lactation. Offspring subjected to NP exposure during pregnancy and lactation had shorter and fewer cerebellar PC dendritic branches in childhood (postnatal day (PND)21) and adulthood (PND80). Contrary to expectations, perinatal NP treatment increased phosphorylation of protein kinase C gamma on PND21, but not on PND80. However, perinatal exposure to NP decreased phosphorylation of stathmin and tropomyosin-related kinase B (TrkB), as well as the expression of brain derived neurotrophic factor (BDNF) in cerebellar PCs on PND21 and PND80. These results indicate that perinatal exposure to NP irreversibly inhibited dendritic growth of PCs in the cerebella of offspring. Furthermore, the irreversible damage to PC dendrites in the cerebella of offspring subjected to perinatal NP exposure may be due to increased stathmin activity mediated by BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Weijia Gu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Mei Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Zhenmin Qiu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Zhixin Jiang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Dianqi Yao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
24
|
MARVELD1 depletion leads to dysfunction of motor and cognition via regulating glia-dependent neuronal migration during brain development. Cell Death Dis 2018; 9:999. [PMID: 30250269 PMCID: PMC6155261 DOI: 10.1038/s41419-018-1027-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
Abstract
The establishment of functional neuronal connectivity is dependent on the neuronal migration and the accurate positioning of neurons in the developing brain. Abnormal neuronal migration can trigger neuronal maturation defects and apoptosis. However, many genetic bases remain unclear in neuronal migration disorders during brain development. In this study, we reported that MARVELD1-defected mice displayed motor and cognitive dysfunction resulting from aberrant neuronal migration during brain development. The laminar organization of the cerebral cortex and cerebellum in MARVELD1 knockout (KO) mice is disrupted, indicating impaired radial neuronal migration. Furthermore, we used the cerebellum as a model to explore the radial neuronal migration processes, and the results demonstrated that the proper neuronal migration depended on MARVELD1 expression in glial cells of the developing brain. MARVELD1 suppressed the expression of ITGB1 and FAK Tyr397 phosphorylation in glia-dependent manner. The inhibition of the MARVELD1/ITGB1/FAK signalling pathway in MARVELD1 KO mice could reverse the defects in neuronal migration in vitro. Our findings revealed that MARVELD1 regulated neuronal migration by mediating the formation of glial fibres and ITGB1/FAK signalling pathway. The depletion of MARVELD1 during mouse brain development led to the abnormity of motor and cognition functions.
Collapse
|
25
|
Varona S, Orriols M, Galán M, Guadall A, Cañes L, Aguiló S, Sirvent M, Martínez-González J, Rodríguez C. Lysyl oxidase (LOX) limits VSMC proliferation and neointimal thickening through its extracellular enzymatic activity. Sci Rep 2018; 8:13258. [PMID: 30185869 PMCID: PMC6125287 DOI: 10.1038/s41598-018-31312-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lysyl oxidase (LOX) plays a critical role in extracellular matrix maturation and limits VSMC proliferation and vascular remodeling. We have investigated whether this anti-proliferative effect relies on the extracellular catalytically active LOX or on its biologically active propeptide (LOX-PP). High expression levels of both LOX and LOX-PP were detected in the vascular wall from transgenic mice over-expressing the full-length human LOX cDNA under the control of SM22α promoter (TgLOX), which targets the transgene to VSMC without affecting the expression of mouse LOX isoenzymes. TgLOX VSMC also secrete high amounts of both mature LOX and LOX-PP. Wild-type (WT) mouse VSMC exposed to VSMC supernatants from transgenic animals showed reduced proliferative rates (low [3H]-thymidine uptake and expression of PCNA) than those incubated with conditioned media from WT cells, effect that was abrogated by β-aminopropionitrile (BAPN), an inhibitor of LOX activity. Lentiviral over-expression of LOX, but not LOX-PP, decreased human VSMC proliferation, effect that was also prevented by BAPN. LOX transgenesis neither impacted local nor systemic inflammatory response induced by carotid artery ligation. Interestingly, in this model, BAPN normalized the reduced neointimal thickening observed in TgLOX mice. Therefore, extracellular enzymatically active LOX is required to limit both VSMC proliferation and vascular remodeling.
Collapse
Affiliation(s)
- Saray Varona
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Mar Orriols
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - María Galán
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Anna Guadall
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Laia Cañes
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain.,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Silvia Aguiló
- Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain
| | - Marc Sirvent
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain. .,CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain.
| | - Cristina Rodríguez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain. .,Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain. .,Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, Barcelona, Spain.
| |
Collapse
|
26
|
Nakazono A, Adachi N, Takahashi H, Seki T, Hamada D, Ueyama T, Sakai N, Saito N. Pharmacological induction of heat shock proteins ameliorates toxicity of mutant PKCγ in spinocerebellar ataxia type 14. J Biol Chem 2018; 293:14758-14774. [PMID: 30093405 DOI: 10.1074/jbc.ra118.002913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/26/2018] [Indexed: 11/06/2022] Open
Abstract
Amyloid and amyloid-like protein aggregations are hallmarks of multiple, varied neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. We previously reported that spinocerebellar ataxia type 14 (SCA14), a dominant-inherited neurodegenerative disease that affects cerebellar Purkinje cells, is characterized by the intracellular formation of neurotoxic amyloid-like aggregates of genetic variants of protein kinase Cγ (PKCγ). A number of protein chaperones, including heat shock protein 70 (Hsp70), promote the degradation and/or refolding of misfolded proteins and thereby prevent their aggregation. Here, we report that, in various SCA14-associated, aggregating PKCγ variants, endogenous Hsp70 is incorporated into aggregates and that expression of these PKCγ mutants up-regulates Hsp70 expression. We observed that PKCγ binds Hsp70 and that this interaction is enhanced in the SCA14-associated variants, mediated by the kinase domain that is involved in amyloid-like fibril formation as well as the C2 domain of PKCγ. Pharmacological up-regulation of Hsp70 by the Hsp90 inhibitors celastrol and herbimycin A attenuated the aggregation of mutant PKCγ in primary cultured Purkinje cells. Up-regulation of Hsp70 diminished net PKCγ aggregation by preventing aggregate formation, resulting in decreased levels of apoptotic cell death among primary cultured Purkinje cells expressing the PKCγ variant. Of note, herbimycin A also ameliorated abnormal dendritic development. Extending our in vitro observations, administration of celastrol to mice up-regulated cerebellar Hsp70. Our findings identify heat shock proteins as important endogenous regulators of pathophysiological PKCγ aggregation and point to Hsp90 inhibition as a potential therapeutic strategy in the treatment of SCA14.
Collapse
Affiliation(s)
- Aoi Nakazono
- From the Biosignal Research Center, Kobe University, Kobe 657-8501
| | - Naoko Adachi
- From the Biosignal Research Center, Kobe University, Kobe 657-8501,
| | | | - Takahiro Seki
- the Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973
| | - Daizo Hamada
- the Graduate School of Engineering and.,Center for Applied Structural Science (CASS), Kobe University, 7-1-48 Minatojima Minami Machi, Chuo-ku, Kobe 650-0047, and
| | - Takehiko Ueyama
- From the Biosignal Research Center, Kobe University, Kobe 657-8501
| | - Norio Sakai
- the Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Science, Hiroshima University, Hiroshima 734-8551, Japan
| | - Naoaki Saito
- From the Biosignal Research Center, Kobe University, Kobe 657-8501,
| |
Collapse
|
27
|
Vallet SD, Miele AE, Uciechowska-Kaczmarzyk U, Liwo A, Duclos B, Samsonov SA, Ricard-Blum S. Insights into the structure and dynamics of lysyl oxidase propeptide, a flexible protein with numerous partners. Sci Rep 2018; 8:11768. [PMID: 30082873 PMCID: PMC6078952 DOI: 10.1038/s41598-018-30190-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/20/2018] [Indexed: 01/29/2023] Open
Abstract
Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine and hydroxylysine residues in collagens and elastin, which is the first step of the cross-linking of these extracellular matrix proteins. It is secreted as a proenzyme activated by bone morphogenetic protein-1, which releases the LOX catalytic domain and its bioactive N-terminal propeptide. We characterized the recombinant human propeptide by circular dichroism, dynamic light scattering, and small-angle X-ray scattering (SAXS), and showed that it is elongated, monomeric, disordered and flexible (Dmax: 11.7 nm, Rg: 3.7 nm). We generated 3D models of the propeptide by coarse-grained molecular dynamics simulations restrained by SAXS data, which were used for docking experiments. Furthermore, we have identified 17 new binding partners of the propeptide by label-free assays. They include four glycosaminoglycans (hyaluronan, chondroitin, dermatan and heparan sulfate), collagen I, cross-linking and proteolytic enzymes (lysyl oxidase-like 2, transglutaminase-2, matrix metalloproteinase-2), a proteoglycan (fibromodulin), one growth factor (Epidermal Growth Factor, EGF), and one membrane protein (tumor endothelial marker-8). This suggests new roles for the propeptide in EGF signaling pathway.
Collapse
Affiliation(s)
- Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622, Villeurbanne cedex, France
| | - Adriana E Miele
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622, Villeurbanne cedex, France
| | - Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Adam Liwo
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Bertrand Duclos
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622, Villeurbanne cedex, France
| | - Sergey A Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622, Villeurbanne cedex, France.
| |
Collapse
|
28
|
Cerebellar Pathways in Mouse Model of Purkinje Cell Degeneration Detected by High-Angular Resolution Diffusion Imaging Tractography. THE CEREBELLUM 2018; 16:648-655. [PMID: 28102462 DOI: 10.1007/s12311-016-0842-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cerebellar MR imaging has several challenging aspects, due to the fine, repetitive layered structure of cortical folia with underlying axonal pathways. In this MR study, we imaged with high-angular resolution diffusion imaging (HARDI) abnormal cerebellar cortical structure (gray matter) and myelinated axonal pathways (white matter) of a mouse spontaneous mutation, Purkinje cell degeneration (pcd), in which almost all Purkinje neurons degenerate, mainly between postnatal days 20 and 35. Mouse brains at postnatal day 20 (P20) and at 8 months were scanned, and known or expected abnormalities, such as reduction of the white matter volume, disorganized pathways likely linked to parallel fibers, mossy fibers, and other fibers running from/to the cerebellar cortex were observed in mutant mice. Such abnormalities were detected at both an early and a fully advanced degeneration stage. These results suggest that our diffusion MR tractography is useful for early detection and tracking of neuropathology in the cerebellum.
Collapse
|
29
|
Tu S, Akhtar MW, Escorihuela RM, Amador-Arjona A, Swarup V, Parker J, Zaremba JD, Holland T, Bansal N, Holohan DR, Lopez K, Ryan SD, Chan SF, Yan L, Zhang X, Huang X, Sultan A, McKercher SR, Ambasudhan R, Xu H, Wang Y, Geschwind DH, Roberts AJ, Terskikh AV, Rissman RA, Masliah E, Lipton SA, Nakanishi N. NitroSynapsin therapy for a mouse MEF2C haploinsufficiency model of human autism. Nat Commun 2017; 8:1488. [PMID: 29133852 PMCID: PMC5684358 DOI: 10.1038/s41467-017-01563-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 09/27/2017] [Indexed: 01/07/2023] Open
Abstract
Transcription factor MEF2C regulates multiple genes linked to autism spectrum disorder (ASD), and human MEF2C haploinsufficiency results in ASD, intellectual disability, and epilepsy. However, molecular mechanisms underlying MEF2C haploinsufficiency syndrome remain poorly understood. Here we report that Mef2c +/-(Mef2c-het) mice exhibit behavioral deficits resembling those of human patients. Gene expression analyses on brains from these mice show changes in genes associated with neurogenesis, synapse formation, and neuronal cell death. Accordingly, Mef2c-het mice exhibit decreased neurogenesis, enhanced neuronal apoptosis, and an increased ratio of excitatory to inhibitory (E/I) neurotransmission. Importantly, neurobehavioral deficits, E/I imbalance, and histological damage are all ameliorated by treatment with NitroSynapsin, a new dual-action compound related to the FDA-approved drug memantine, representing an uncompetitive/fast off-rate antagonist of NMDA-type glutamate receptors. These results suggest that MEF2C haploinsufficiency leads to abnormal brain development, E/I imbalance, and neurobehavioral dysfunction, which may be mitigated by pharmacological intervention.
Collapse
Affiliation(s)
- Shichun Tu
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA.
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Mohd Waseem Akhtar
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Rosa Maria Escorihuela
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Departament de PsiquiatriaiMedicina Legal, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alejandro Amador-Arjona
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Vivek Swarup
- Center for Autism Research and Treatment (CART), University of California, Los Angeles, CA, 90095, USA
| | - James Parker
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Jeffrey D Zaremba
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Timothy Holland
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Neha Bansal
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Daniel R Holohan
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Kevin Lopez
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Scott D Ryan
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Shing Fai Chan
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Li Yan
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Xiaofei Zhang
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Xiayu Huang
- Bioinformatics Core Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Scott R McKercher
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Rajesh Ambasudhan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Huaxi Xu
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Daniel H Geschwind
- Center for Autism Research and Treatment (CART), University of California, Los Angeles, CA, 90095, USA
| | - Amanda J Roberts
- Department of Neuroscience and Mouse Behavioral Assessment Core, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Alexey V Terskikh
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
- National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Stuart A Lipton
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA.
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
- Department of Molecular Medicine and Neuroscience, Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| | - Nobuki Nakanishi
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, 92121, USA.
- Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Trackman PC. Functional importance of lysyl oxidase family propeptide regions. J Cell Commun Signal 2017; 12:45-53. [PMID: 29086201 DOI: 10.1007/s12079-017-0424-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022] Open
Abstract
The lysyl oxidase family of proteins is primarily known for its critical role in catalyzing extracellular oxidative deamination of hydroxylysine and lysine residues in collagens, and lysine residues in elastin required for connective tissue structure and function. Lysyl oxidases have additional important biological functions in health and disease. While the enzyme domains are highly conserved, the propeptide regions are less uniform, and have biological activity, some of which are independent of their respective enzymes. This review summarizes what has been published regarding the functions of the propeptide regions of this family of proteins in the context of extracellular matrix biosynthesis, fibrosis and cancer biology. Although much has been learned, there is a need for greater attention to structure/function relationships and mechanisms to more fully understand these multifunctional proteins.
Collapse
Affiliation(s)
- Philip C Trackman
- Henry M. Goldman School of Dental Medicine, Department of Molecular and Cell Biology, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA.
| |
Collapse
|
31
|
Age-related alterations in histone deacetylase expression in Purkinje neurons of ethanol-fed rats. Brain Res 2017; 1675:8-19. [PMID: 28855102 DOI: 10.1016/j.brainres.2017.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
Ethanol and age-induced pathologies of the Purkinje neuron (PN) may result from histone deacetylases (HDACs), enzymes which repress transcription through coiling of the DNA. The purposes of this study were to investigate expression patterns of Class 1 and IIa HDACs in PN and the effects of aging and alcohol on the density of HDACs and histone acetylation in PN. Ninety, eight month old rats (30/diet) were fed a liquid ethanol, liquid control, or rat chow diet for 10, 20, or 40weeks (30/treatment duration). Double immunocytochemical labeling on tissue sections from these rats used antibodies against HDAC isoforms or acetylated histones, and calbindin, a marker for PN. Fluorescent intensities were also measured. Results showed a significant age but not an alcohol-related decrease in the densities of HDACs 2, 3, and 7. In contrast, there were age related-increases in the densities of phosphorylated form of HDAC (4, 5, 7) PN and in PN nuclei expressing HDAC 7. There were also a trend towards ethanol-induced inhibition of acetylation as the density of AH2b PN nuclei and AH3 and AH2b fluorescent intensity was significantly lower in the EF compared to the PF rats. This study presents unique data concerning which HDACs are commonly expressed in PN and indicates that aging rather than lengthy alcohol expression alters expression of the HDACs studied here. These results also suggest that lengthy ethanol consumption may inhibit histone deacetylation in PN.
Collapse
|
32
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
33
|
Yu Y, Dong J, Wang Y, Wang Y, Min H, Shan Z, Teng W, Chen J. Maternal marginal iodine deficiency limits dendritic growth of cerebellar purkinje cells in rat offspring by NF-κB signaling and MAP1B. ENVIRONMENTAL TOXICOLOGY 2017; 32:1241-1251. [PMID: 27444543 DOI: 10.1002/tox.22320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Iodine deficiency (ID) during early pregnancy had an adverse effect on children's psychomotor and motor function. It is worth noting that maternal marginal ID tends to be a common public health problem. Whether marginal ID potentially had adverse effects on the development of cerebellum and the underlying mechanisms remain unclear. Therefore, our aim was to study the effects of marginal ID on the dendritic growth in filial cerebellar Purkinje cells (PCs) and the underlying mechanism. In the present study, we established Wistar rat models by feeding dam rats with a diet deficient in iodine and deionized water supplemented with potassium iodide. We examined the total dendritic length using immunofluorescence, and Western blot analysis was conducted to investigate the activity of nuclear factor-κB (NF-κB) signaling and microtubule-associated protein 1B (MAP1B). Our results showed that marginal ID reduced the total dendritic length of cerebellar PCs, slightly down-regulated the activity of NF-κB signaling and decreased MAP1B in cerebellar PCs on postnatal day (PN) 7, PN14, and PN21. Our study may support the hypothesis that decreased T4 induced by marginal ID limits PCs dendritic growth, which may involve in the disturbance of NF-κB signaling and MAP1B on the cerebellum. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1241-1251, 2017.
Collapse
Affiliation(s)
- Ye Yu
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Hui Min
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health School of Public Health, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
34
|
Time-lapse imaging of p65 and IκBα translocation kinetics following Ca 2+-induced neuronal injury reveals biphasic translocation kinetics in surviving neurons. Mol Cell Neurosci 2017; 80:148-158. [PMID: 28238890 DOI: 10.1016/j.mcn.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) regulates neuronal differentiation, plasticity and survival. It is well established that excitatory neurotransmitters such as glutamate control NF-κB activity. Glutamate receptor overactivation is also involved in ischemic- and seizure-induced neuronal injury and neurodegeneration. However, little is known at the single cell-level how NF-κB signaling relates to neuronal survival during excitotoxic injury. We found that silencing of p65/NF-κB delayed N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in hippocampal neurons, suggesting a functional role of p65 in excitotoxicity. Time-lapse imaging of p65 and its inhibitor IκBα using GFP and Cerulean fusion proteins revealed specific patterns of excitotoxic NF-κB activation. Nuclear translocation of p65 began on average 8±3min following 15min of NMDA treatment and was observed in up to two thirds of hippocampal neurons. Nuclear translocation of IκBα preceded that of p65 suggesting independent translocation processes. In surviving neurons, the onset of p65 nuclear export correlated with mitochondrial membrane potential recovery. Dying neurons exhibited persistent nuclear accumulation of p65-eGFP until plasma membrane permeabilization. Our data demonstrate an important role for p65 activation kinetics in neuronal cell death decisions following excitotoxic injury.
Collapse
|
35
|
Trackman PC. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin Ther Targets 2016; 20:935-45. [PMID: 26848785 DOI: 10.1517/14728222.2016.1151003] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
36
|
Alsofi L, Daley E, Hornstra I, Morgan EF, Mason ZD, Acevedo JF, Word RA, Gerstenfeld LC, Trackman PC. Sex-Linked Skeletal Phenotype of Lysyl Oxidase Like-1 Mutant Mice. Calcif Tissue Int 2016; 98:172-85. [PMID: 26538021 PMCID: PMC8627178 DOI: 10.1007/s00223-015-0076-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023]
Abstract
Lysyl oxidases are required for collagen and elastin cross-linking and extracellular matrix maturation including in bone. The lysyl oxidase family consists of lysyl oxidase (LOX) and 4 isoforms (LOXL1-4). Here we investigate whether deletion of LOXL1, which has been linked primarily to elastin maturation, leads to skeletal abnormalities. Left femurs (n = 8), L5 vertebrae (n = 8), and tibiae (n = 8) were analyzed by micro-computed tomography in 13-week-old wild-type (WT) and LOXL1-/- male and female mice. Right femurs (n = 8) were subjected to immunohistochemistry for LOXL1, and histochemical/histology analyses of osteoclasts and growth plates. Sera from all mice were analyzed for bone turnover markers. Results indicate strong expression of LOXL1 in wild-type growth plates in femurs. Significant deterioration of trabecular bone structure in long bones and vertebrae from female was observed but not from male, mutant mice compared with WT. Decreases in BV/TV, Conn.D, trabecular thickness, and number in the femoral distal metaphysis were observed in female, but not in male, mutant mice. Trabecular spacing was increased significantly in femurs of female mutant mice. Findings were similar in trabeculae of L5 vertebrae from female mutant mice. The number of TRAP positive osteoclasts at the trabecular bone surface was increased in female mutant mice compared with WT females, consistent with increased serum RANKL and decreased OPG levels. Analysis of bone turnover markers confirmed increased bone resorption as indicated by significantly elevated CTX-1 in the serum of female LOXL1-/- mice compared to their wild-type counterparts, as well as decreased bone formation as measured by decreased serum levels of PINP. Picrosirius red staining revealed a loss of heterogeneity in collagen organization in female LOXL1-/- mice only, with little to no yellow and orange birefringence. Organization was also impaired in chondrocyte columns in both female and male LOXL1-/- mice, but to a greater extent in females. Data indicate that LOXL1-/- mutant mice develop appendicular and axial skeletal phenotypes characterized by decreased bone volume fraction and compromised trabecular microstructure, predominantly in females.
Collapse
Affiliation(s)
- Loai Alsofi
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA
- Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eileen Daley
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA
| | - Ian Hornstra
- Division of Dermatology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Zachary D Mason
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Jesus F Acevedo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - R Ann Word
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Philip C Trackman
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, W-201, Boston, MA, 02118, USA.
| |
Collapse
|
37
|
Song N, Kim N, Xiao R, Choi H, Chun HI, Kang MH, Kim JH, Seo K, Soundrarajan N, Do JT, Song H, Ge ZJ, Park C. Lack of Cytosolic Carboxypeptidase 1 Leads to Subfertility due to the Reduced Number of Antral Follicles in pcd3J-/- Females. PLoS One 2015; 10:e0139557. [PMID: 26452267 PMCID: PMC4599934 DOI: 10.1371/journal.pone.0139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Females homozygous for the Purkinje cell degeneration mutation (pcd) are fertile, although the success rate is much lower than in the wild type. We performed detailed analysis of reproductive abnormalities of pcd females. The number of oocytes produced following exogenous gonadotropin treatment was much lower in pcd3J-/- females than in pcd3J+/+ females. Furthermore, the estrous cyclicity of pcd3J-/- females according to the appearance of the vagina was almost undetectable comparing to that of the wild type. Histological analyses and follicle counting of 4- and 8-week-old pcd3J-/- ovaries showed an increase in the number of secondary follicles and a decrease in the number of antral follicles, indicating that AGTPBP1/ CCP1 plays an important role in the development of secondary follicles into antral follicles. Consistent with a previous analysis of the pcd cerebellum, pcd3J-/- ovaries also showed a clear increase in the level of polyglutamylation. Gene expression analysis showed that both oocytes and cumulus cells express CCP1. However, Ccp4 and CCP6, which can compensate the function of CCP1, were not expressed in mouse ovaries. Failure of microtubule deglutamylation did not affect the structure and function of the meiotic spindle in properly aligning chromosomes in the center of the nucleus during meiosis in pcd3J-/- females. We also showed that the pituitary-derived growth and reproduction-related endocrine system functions normally in pcd3J-/- mice. The results of this study provide insight into additional functions of CCP1, which cannot be fully explained by the side chain deglutamylation of microtubules alone.
Collapse
Affiliation(s)
- Ning Song
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Nameun Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Rui Xiao
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hojun Choi
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyo-Im Chun
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Kunho Seo
- Colleges of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | | | - Jeong-Tae Do
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyuk Song
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| | - Zhao-Jia Ge
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Chankyu Park
- Department of Animal Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
38
|
Martins-de-Souza D, Cassoli JS, Nascimento JM, Hensley K, Guest PC, Pinzon-Velasco AM, Turck CW. The protein interactome of collapsin response mediator protein-2 (CRMP2/DPYSL2) reveals novel partner proteins in brain tissue. Proteomics Clin Appl 2015; 9:817-31. [PMID: 25921334 DOI: 10.1002/prca.201500004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 04/27/2015] [Indexed: 01/18/2023]
Abstract
PURPOSE Collapsin response mediator protein-2 (CRMP2) is a CNS protein involved in neuronal development, axonal and neuronal growth, cell migration, and protein trafficking. Recent studies have linked perturbations in CRMP2 function to neurodegenerative disorders such as Alzheimer's disease, neuropathic pain, and Batten disease, and to psychiatric disorders such as schizophrenia. Like most proteins, CRMP2 functions though interactions with a molecular network of proteins and other molecules. EXPERIMENTAL DESIGN Here, we have attempted to identify additional proteins of the CRMP2 interactome to provide further leads about its roles in neurological functions. We used a combined co-immunoprecipitation and shotgun proteomic approach in order to identify CRMP2 protein partners. RESULTS We identified 78 CRMP2 protein partners not previously reported in public protein interaction databases. These were involved in seven biological processes, which included cell signaling, growth, metabolism, trafficking, and immune function, according to Gene Ontology classifications. Furthermore, 32 different molecular functions were found to be associated with these proteins, such as RNA binding, ribosomal functions, transporter activity, receptor activity, serine/threonine phosphatase activity, cell adhesion, cytoskeletal protein binding and catalytic activity. In silico pathway interactome construction revealed a highly connected network with the most overrepresented functions corresponding to semaphorin interactions, along with axon guidance and WNT5A signaling. CONCLUSIONS AND CLINICAL RELEVANCE Taken together, these findings suggest that the CRMP2 pathway is critical for regulating neuronal and synaptic architecture. Further studies along these lines might uncover novel biomarkers and drug targets for use in drug discovery.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,UNICAMP's Neurobiology Center, Campinas, Brazil
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Kenneth Hensley
- Department of Pathology, University of Toledo, Toledo, OH, USA.,Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andres M Pinzon-Velasco
- Bioinformatics and Computational Systems Biology Group, Institute for Genetics, National University of Colombia, Bogotá, Colombia
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
39
|
Abstract
Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Robert H Nichol
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Timothy M Gomez
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
40
|
Kitano S, Kino Y, Yamamoto Y, Takitani M, Miyoshi J, Ishida T, Saito Y, Arima K, Satoh JI. Bioinformatics Data Mining Approach Suggests Coexpression of AGTPBP1 with an ALS-linked Gene C9orf72. J Cent Nerv Syst Dis 2015; 7:15-26. [PMID: 26106267 PMCID: PMC4467204 DOI: 10.4137/jcnsd.s24317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expanded GGGGCC hexanucleotide repeats located in the noncoding region of the chromosome 9 open reading frame 72 (C9orf72) gene represent the most common genetic abnormality for familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Formation of nuclear RNA foci, accumulation of repeat-associated non-ATG-translated dipeptide-repeat proteins, and haploinsufficiency of C9orf72 are proposed for pathological mechanisms of C9ALS/FTD. However, at present, the physiological function of C9orf72 remains largely unknown. METHODS By searching on a bioinformatics database named COXPRESdb composed of the comprehensive gene coexpression data, we studied potential C9orf72 interactors. RESULTS We identified the ATP/GTP binding protein 1 (AGTPBP1) gene alternatively named NNA1 encoding a cytosolic carboxypeptidase whose mutation is causative of the degeneration of Purkinje cells and motor neurons as the most significant gene coexpressed with C9orf72. We verified coexpression and interaction of AGTPBP1 and C9orf72 in transfected cells by immunoprecipitation and in neurons of the human brain by double-labeling immunohistochemistry. Furthermore, we found a positive correlation between AGTPBP1 and C9orf72 mRNA expression levels in the set of 21 human brains examined. CONCLUSIONS These results suggest that AGTPBP1 serves as a C9orf72 interacting partner that plays a role in the regulation of neuronal function in a coordinated manner within the central nervous system.
Collapse
Affiliation(s)
- Shouta Kitano
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoji Yamamoto
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Mika Takitani
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Junko Miyoshi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Ishida
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Ichikawa, Chiba, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Kunimasa Arima
- Department of Psychiatry, Komoro Kogen Hospital, Komoro, Nagano, Japan
| | - Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
41
|
Zlatic S, Comstra HS, Gokhale A, Petris MJ, Faundez V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol Dis 2015; 81:154-61. [PMID: 25583185 DOI: 10.1016/j.nbd.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022] Open
Abstract
ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.
Collapse
Affiliation(s)
- Stephanie Zlatic
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J. C-terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 2014; 14:177-90. [PMID: 25381060 DOI: 10.1074/mcp.m114.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic carboxypeptidases (CCPs) constitute a new subfamily of M14 metallocarboxypeptidases associated to axonal regeneration and neuronal degeneration, among others. CCPs are deglutamylating enzymes, able to catalyze the shortening of polyglutamate side-chains and the gene-encoded C termini of tubulin, telokin, and myosin light chain kinase. The functions of these enzymes are not entirely understood, in part because of the lack of information about C-terminal protein processing in the cell and its functional implications. By means of C-terminal COFRADIC, a positional proteomics approach, we searched for cellular substrates targets of CCP1, the most relevant member of this family. We here identified seven new putative CCP1 protein substrates, including ribosomal proteins, translation factors, and high mobility group proteins. Furthermore, we showed for the first time that CCP1 processes both glutamates as well as C-terminal aspartates. The implication of these C termini in molecular interactions furthermore suggests that CCP1-mediated shortening of acidic protein tails might regulate protein-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Sebastian Tanco
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olivia Tort
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hans Demol
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Francesc Xavier Aviles
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Julia Lorenzo
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
43
|
Vallès A, Granic I, De Weerd P, Martens GJM. Molecular correlates of cortical network modulation by long-term sensory experience in the adult rat barrel cortex. Learn Mem 2014; 21:305-10. [PMID: 25171421 PMCID: PMC4024621 DOI: 10.1101/lm.034827.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment up-regulates cortical expression of neuropeptide mRNAs and down-regulates immediate-early gene (IEG) mRNAs specifically in the barrel cortex, and not in other brain regions. The present data suggest a central role of neuropeptides in the fine-tuning of sensory cortical circuits by long-term experience.
Collapse
Affiliation(s)
- Astrid Vallès
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Ivica Granic
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Peter De Weerd
- Department of Neurocognition, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, The Netherlands Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Radboud University, Donders Institute for Brain, Cognition and Behaviour (Centre for Neuroscience), Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
44
|
Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, Chédotal A, Ma L. Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 2014; 81:1040-1056. [PMID: 24607227 DOI: 10.1016/j.neuron.2014.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Dendrites from the same neuron usually develop nonoverlapping patterns by self-avoidance, a process requiring contact-dependent recognition and repulsion. Recent studies have implicated homophilic interactions of cell surface molecules, including Dscams and Pcdhgs, in self-recognition, but repulsive molecular mechanisms remain obscure. Here, we report a role for the secreted molecule Slit2 and its receptor Robo2 in self-avoidance of cerebellar Purkinje cells (PCs). Both molecules are highly expressed by PCs, and their deletion leads to excessive dendrite self-crossing without affecting arbor size and shape. This cell-autonomous function is supported by the boundary-establishing activity of Slit in culture and the phenotype rescue by membrane-associated Slit2 activities. Furthermore, genetic studies show that they act independently from Pcdhg-mediated recognition. Finally, PC-specific deletion of Robo2 is associated with motor behavior alterations. Thus, our study uncovers a local repulsive mechanism required for self-avoidance and demonstrates the molecular complexity at the cell surface in dendritic patterning.
Collapse
Affiliation(s)
- Daniel A Gibson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen Tymanskyj
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Rachel C Yuan
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Haiwen C Leung
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Julie L Lefebvre
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S968, CNRS_UMR7210, Institut de la Vision, 750012, Paris, France
| | - Le Ma
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
45
|
Abstract
The proper formation and morphogenesis of dendrites is fundamental to the establishment of neural circuits in the brain. Following cell cycle exit and migration, neurons undergo organized stages of dendrite morphogenesis, which include dendritic arbor growth and elaboration followed by retraction and pruning. Although these developmental stages were characterized over a century ago, molecular regulators of dendrite morphogenesis have only recently been defined. In particular, studies in Drosophila and mammalian neurons have identified numerous cell-intrinsic drivers of dendrite morphogenesis that include transcriptional regulators, cytoskeletal and motor proteins, secretory and endocytic pathways, cell cycle-regulated ubiquitin ligases, and components of other signaling cascades. Here, we review cell-intrinsic drivers of dendrite patterning and discuss how the characterization of such crucial regulators advances our understanding of normal brain development and pathogenesis of diverse cognitive disorders.
Collapse
Affiliation(s)
- Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, Snyder EY, Sidman RL. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 2013; 110:E2410-9. [PMID: 23674688 PMCID: PMC3696779 DOI: 10.1073/pnas.1305010110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebellar cortex is centrally involved in motor coordination and learning, and its sole output is provided by Purkinje neurons (PNs). Growth of PN dendrites and their major synaptic input from granule cell parallel fiber axons takes place almost entirely in the first several postnatal weeks. PNs are more vulnerable to cell death than most other neurons, but the mechanisms remain unclear. We find that the homozygous nervous (nr) mutant mouse's 10-fold-increased cerebellar tissue plasminogen activator (tPA), a part of the tPA/plasmin proteolytic system, influences several different molecular mechanisms, each regulating a key aspect of postnatal PN development, followed by selective PN necrosis, as follows. (i) Excess endogenous or exogenous tPA inhibits dendritic growth in vivo and in vitro by activating protein kinase Cγ and phosphorylation of microtubule-associated protein 2. (ii) tPA/plasmin proteolysis impairs parallel fiber-PN synaptogenesis by blocking brain-derived neurotrophic factor/tyrosine kinase receptor B signaling. (iii) Voltage-dependent anion channel 1 (a mitochondrial and plasma membrane protein) bound with kringle 5 (a peptide derived from the excess plasminogen) promotes pathological enlargement and rounding of PN mitochondria, reduces mitochondrial membrane potential, and damages plasma membranes. These abnormalities culminate in young nr PN necrosis that can be mimicked in wild-type PNs by exogenous tPA injection into cerebellum or prevented by endogenous tPA deletion in nr:tPA-knockout double mutants. In sum, excess tPA/plasmin, through separate downstream molecular mechanisms, regulates postnatal PN dendritogenesis, synaptogenesis, mitochondrial structure and function, and selective PN viability.
Collapse
Affiliation(s)
| | - Lili Yu
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, MA 02118
| | - Xuesong Gu
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Yinghua Ma
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065
| | - Renata Pasqualini
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Wadih Arap
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Evan Y. Snyder
- Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
47
|
Interaction and antagonistic roles of NF-κB and Hes6 in the regulation of cortical neurogenesis. Mol Cell Biol 2013; 33:2797-808. [PMID: 23689134 DOI: 10.1128/mcb.01610-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The involvement of nuclear factor kappa B (NF-κB) in several processes in the postnatal and adult brain, ranging from neuronal survival to synaptogenesis and plasticity, has been documented. In contrast, little is known about the functions of NF-κB during embryonic brain development. It is shown here that NF-κB is selectively activated in neocortical neural progenitor cells in the developing mouse telencephalon. Blockade of NF-κB activity leads to premature cortical neuronal differentiation and depletion of the progenitor cell pool. Conversely, NF-κB activation causes decreased cortical neurogenesis and expansion of the progenitor cell compartment. These effects are antagonized by the proneuronal transcription factor Hes6, which physically and functionally interacts with RelA-containing NF-κB complexes in cortical progenitor cells. In turn, NF-κB exerts an inhibitory effect on the ability of Hes6 to promote cortical neuronal differentiation. These results reveal previously uncharacterized functions and modes of regulation for NF-κB and Hes6 during cortical neurogenesis.
Collapse
|
48
|
Berezniuk I, Sironi JJ, Wardman J, Pasek RC, Berbari NF, Yoder BK, Fricker LD. Quantitative peptidomics of Purkinje cell degeneration mice. PLoS One 2013; 8:e60981. [PMID: 23593366 PMCID: PMC3620535 DOI: 10.1371/journal.pone.0060981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
Cytosolic carboxypeptidase 1 (CCP1) is a metallopeptidase that removes C-terminal and side-chain glutamates from tubulin. The Purkinje cell degeneration (pcd) mouse lacks CCP1 due to a mutation. Previously, elevated levels of peptides derived from cytosolic and mitochondrial proteins were found in adult pcd mouse brain, raising the possibility that CCP1 functions in the degradation of intracellular peptides. To test this hypothesis, we used a quantitative peptidomics technique to compare peptide levels in wild-type and pcd mice, examining adult heart, spleen, and brain, and presymptomatic 3 week-old amygdala and cerebellum. Contrary to adult mouse brain, young pcd brain and adult heart and spleen did not show a large increase in levels of intracellular peptides. Unexpectedly, levels of peptides derived from secretory pathway proteins were altered in adult pcd mouse brain. The pattern of changes for the intracellular and secretory pathway peptides in pcd mice was generally similar to the pattern observed in mice lacking primary cilia. Collectively, these results suggest that intracellular peptide accumulation in adult pcd mouse brain is a secondary effect and is not due to a role of CCP1 in peptide turnover.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Juan J. Sironi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jonathan Wardman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Raymond C. Pasek
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Nicolas F. Berbari
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Bradley K. Yoder
- Department of Cell, Development, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, Alabama, United States of America
| | - Lloyd D. Fricker
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Roussos P, Katsel P, Davis KL, Giakoumaki SG, Siever LJ, Bitsios P, Haroutunian V. Convergent findings for abnormalities of the NF-κB signaling pathway in schizophrenia. Neuropsychopharmacology 2013; 38:533-9. [PMID: 23132271 PMCID: PMC3547205 DOI: 10.1038/npp.2012.215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 12/24/2022]
Abstract
Neurons exhibit a constitutive level of nuclear factor-κB (NF-κB) signaling and this pathway plays a significant role in neurite outgrowth, activity-dependent plasticity, and cognitive function. Transcription factor analysis was performed in a microarray data set profiled in four different brain regions (n=54 comparison group; n=53 schizophrenia (SZ)). An independent postmortem cohort was used for gene expression (n=24 comparison group; n=22 SZ), protein abundance (n=8 comparison group; n=8 SZ), and NF-κB nuclear activity (n=10 comparison group; n=10 SZ) quantification. Expression quantitative trait locus analysis was performed using publicly available data. Prepulse inhibition (PPI) of the acoustic startle reflex was tested in healthy individuals (n=690). Comparison of microarray data showed that NF-κB was among the transcription factors associated with the differential expression of genes in cases vs controls. NF-κB gene and protein levels and nuclear activation were significantly decreased in the superior temporal gyrus of patients with SZ. Upstream NF-κB genes related to translocation were significantly dysregulated in SZ. The gene expression levels of an NF-κB-associated importin (KPNA4: one of the proteins responsible for the translocation of NF-κB to the nucleus) was decreased in SZ and an SNP within the KPNA4 locus was associated with susceptibility to SZ, reduced KPNA4 expression levels and attenuated PPI of the startle reflex in healthy control subjects. These findings implicate abnormalities of the NF-κB signaling pathway in SZ and provide evidence for an additional possible mechanism affecting the translocation of NF-κB signaling to the nucleus.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - Kenneth L Davis
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
| | - Stella G Giakoumaki
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
- Department of Psychology, University of Crete, Rethymno, Greece
| | - Larry J Siever
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| | - Panos Bitsios
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Vahram Haroutunian
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA
- JJ Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
50
|
Fujishima K, Horie R, Mochizuki A, Kengaku M. Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites. Development 2012; 139:3442-55. [PMID: 22912417 PMCID: PMC3491647 DOI: 10.1242/dev.081315] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurons develop dendritic arbors in cell type-specific patterns. Using growing Purkinje cells in culture as a model, we performed a long-term time-lapse observation of dendrite branch dynamics to understand the rules that govern the characteristic space-filling dendrites. We found that dendrite architecture was sculpted by a combination of reproducible dynamic processes, including constant tip elongation, stochastic terminal branching, and retraction triggered by contacts between growing dendrites. Inhibition of protein kinase C/protein kinase D signaling prevented branch retraction and significantly altered the characteristic morphology of long proximal segments. A computer simulation of dendrite branch dynamics using simple parameters from experimental measurements reproduced the time-dependent changes in the dendrite configuration in live Purkinje cells. Furthermore, perturbation analysis to parameters in silico validated the important contribution of dendritic retraction in the formation of the characteristic morphology. We present an approach using live imaging and computer simulations to clarify the fundamental mechanisms of dendrite patterning in the developing brain.
Collapse
Affiliation(s)
- Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Honmachi, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|