1
|
Kongstorp M, Karnani MM, McCutcheon JE. Does the lateral hypothalamus govern the transition between appetitive and consummatory feeding? Neuropharmacology 2025; 275:110438. [PMID: 40194590 DOI: 10.1016/j.neuropharm.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Feeding is a cyclic behaviour that includes appetitive, consummatory and termination phases. Identifying the neural circuits controlling these phases and triggering specific transitions between phases would be a key advance in understanding feeding behaviour. The lateral hypothalamus (LH) has long been recognized for its central role in feeding. We review evidence suggesting that the LH acts as a regulator of the appetitive-consummatory transition using a switchboard-like circuit architecture. Within the LH, several neuronal subpopulations can be defined based on molecular markers, and - although these subpopulations are functionally diverse - they contribute to appetitive and consummatory behaviours to varying extents. We summarise the current evidence on whether these subpopulations have functional identities and speculate on the role of the LH as a controller of behavioural transitions.
Collapse
Affiliation(s)
- Mette Kongstorp
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway
| | - Mahesh M Karnani
- Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - James E McCutcheon
- Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037, Tromsø, Norway.
| |
Collapse
|
2
|
Burdakov D, Peleg-Raibstein D. How may the hypothalamus control distinct types and stages of memory? Neuropharmacology 2025; 277:110513. [PMID: 40381884 DOI: 10.1016/j.neuropharm.2025.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Memory is a complex and multifaceted cognitive function integral to all aspects of survival across species. It involves short-term and long-term components, which are supported by distinct yet interconnected brain systems, each specialized in processing distinct types of information. These systems interact in an integrated and dynamic manner, allowing for the encoding, consolidation, retrieval, and updating of memories. In this review, we explore the role of orexin and melanin-concentrating hormone (MCH) neurons, clustered primarily within lateral hypothalamus (LH), in orchestrating these memory processes. We consider its demonstrated and potential contributions across memory phases (e.g., short-term, long-term), transitional processes (e.g., consolidation, retrieval), and memory types (e.g., declarative, nondeclarative). Particular attention is given to its neuropeptides, orexin and. MCH, which have been implicated in modulating arousal, sleep, and neural plasticity - key factors in memory formation and maintenance. While orexin and MCH neurons have direct (arousal-independent) synaptic effects relevant to memory, their overall influence on memory processes is likely to include their established roles in regulating arousal, vigilance, and sleep. We further link these roles to the LH's traditional view as a nutritional sensor and regulator of arousal states, highlighting its unique position at the intersection of homeostatic and cognitive functions. By providing a unified perspective on the LH's involvement in memory, this work aims to bridge gaps in our understanding of its broader cognitive significance.
Collapse
Affiliation(s)
- Denis Burdakov
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| | - Daria Peleg-Raibstein
- Laboratory of Neurobehavioural Dynamics, Institute for Neuroscience, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, Federal Institute of Technology Zurich, ETH Zurich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland; Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Ortega-Robles E, Guerra-Crespo M, Ezzeldin S, Santana-Román E, Pałasz A, Salama M, Arias-Carrión O. Orexin Restoration in Narcolepsy: Breakthroughs in Cellular Therapy. J Sleep Res 2025:e70083. [PMID: 40325840 DOI: 10.1111/jsr.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Narcolepsy is a chronic neurodegenerative disorder defined by the selective loss of orexin-producing neurons in the lateral hypothalamus, leading to excessive daytime sleepiness and cataplexy. While pharmacological therapies have evolved to mitigate symptoms, they fail to address the core pathology-orexin deficiency. This narrative review examines the potential of orexin cell transplantation as an innovative therapeutic approach to restore orexin signalling and treat the root cause of narcolepsy. We begin by examining the clinical features, pathophysiology, and diagnostic criteria of narcolepsy, focusing on the essential role of orexins in regulating the sleep-wake cycle and the neurobiological mechanisms underlying cataplexy. The review then explores experimental therapeutic approaches, including hypothalamic tissue grafts, gene therapy, and immortalised orexin-expressing cell lines, highlighting their potential to address the orexin deficit in narcolepsy. While preclinical studies show that transplanted orexin cells can integrate into host neural networks, enhance sleep stability, and decrease the frequency of cataplexy in animal models, several challenges remain. Immortalised orexin cell lines offer a scalable and consistent option for transplantation therapies. However, immune rejection, long-term cell survival, and complete functional integration persist. These translational hurdles must be addressed to bring these therapies to clinical practice. This review underscores the need for continued research to overcome these barriers and optimise cell-based therapies for narcolepsy.
Collapse
Affiliation(s)
- Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
| | - Magdalena Guerra-Crespo
- Departamento de Fisiología, Facultad de Medicina, Laboratorio de Medicina Regenerativa y Canales Iónicos, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Shahd Ezzeldin
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Estefanía Santana-Román
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico
- Experimental Neurology, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
4
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
5
|
Luo P, Tong K, Gan Y, Tang M, Niu Y, Liu K, Ni S, Wu S, Jiang X, Jiang H, Xiao F, Chen S, Lv W, Li X, Yuan F, Guo F. Amino Acid-Sensing Neurons in the Anterior Piriform Cortex Control Brown Adipose Tissue Thermogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502421. [PMID: 40305738 DOI: 10.1002/advs.202502421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Amino acid sensing in the central nervous system plays a key role in regulating energy homeostasis. The anterior piriform cortex (APC) has been implicated in sensing amino acid deficiency and rapidly inducing an aversive response. However, the precise types of neurons involved and whether they possess additional metabolic regulatory functions remain to be elucidated. The study reveals that corticotropin-releasing hormone (CRH) neurons in the APC (APCCRH neurons) are activated by a leucine-deficient diet to modulate brown adipose tissue thermogenesis and that they regulate body temperature in response to leucine deprivation. The findings reveal that APCCRH neurons are sensitive to leucine-deprivation signaling, with general control nonderepressive-2 playing an essential role in enhancing their intrinsic excitability. Furthermore, APCCRH neurons project into the known hypothalamic thermoregulatory region of the lateral hypothalamus, and APCCRH-lateral hypothalamus circuits mediate leucine deprivation-induced thermogenesis. Additionally, it is observed that thermogenic regulation by APCCRH neurons contributes to the maintenance of body temperature under cold exposure. Collectively, the findings identify a population of leucine-sensing APCCRH neurons, and reveal the signals and circuits involved in their regulation of brown adipose tissue thermogenesis and their subsequent contribution to body temperature regulation and energy homeostasis.
Collapse
Affiliation(s)
- Peixiang Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Tong
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yeting Gan
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Min Tang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kan Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shihong Ni
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shangming Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Fei Xiao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Lv
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Yuan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Feifan Guo
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Berry EA, Huhulea EN, Ishibashi M, McGregor R, Siegel JM, Leonard CS. Chronic but not acute morphine exposure reversibly impairs spike generation and repetitive firing in a functionally distinct subpopulation of orexin neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644444. [PMID: 40196653 PMCID: PMC11974729 DOI: 10.1101/2025.03.20.644444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Orexin (hypocretin) neuropeptides regulate numerous essential functions including sleep/wake state stability and reward processing. Orexin synthesizing neurons respond to drug cues and undergo structural changes following persistent drug exposure. Post-mortem brains from opioid users, and opioid-treated rodents have orexin somata that become ~20 % smaller and ~50% more numerous and are postulated to promote hyper-motivation for drug-seeking though increased orexin release. Biophysical considerations suggest that decreased soma size should increase cellular excitability, however the impact of chronic opioids on firing ability, which drives peptide release, has not been explored. To test this, we assessed the intrinsic electrophysiological properties of orexin neurons by whole-cell recordings in slices from male orexin-EGFP mice treated by daily morphine or saline injections for two weeks. Paradoxically, we found that while daily morphine decreased average soma size, it impaired excitability in a subpopulation of orexin neurons identified by electrophysiological criteria as "H-type", while entirely sparing "D-type" neurons. This impairment was manifest by smaller, broader action potentials, variable firing and a downscaling of firing gain. These adaptations required more than a single morphine dose and recovered, along with soma size, after four weeks of passive withdrawal. Taken together, these observations indicate that daily opioid exposure differentially impacts H-type orexin neurons and predicts that the ability of these neurons to encode synaptic inputs into spike trains and to release neuropeptides becomes impaired in conjunction with opioid dependence.
Collapse
Affiliation(s)
| | - Ellen N. Huhulea
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ronald McGregor
- Neuropsychiatric Institute, University of California, Los Angeles, CA and Veterans Administration, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute, University of California, Los Angeles, CA and Veterans Administration, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | | |
Collapse
|
7
|
Mohammadkhani A, Mitchell C, James MH, Borgland SL, Dayas CV. Contribution of hypothalamic orexin (hypocretin) circuits to pathologies of motivation. Br J Pharmacol 2024; 181:4430-4449. [PMID: 39317446 PMCID: PMC11458361 DOI: 10.1111/bph.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/26/2024] Open
Abstract
The orexin (also known as hypocretin) system, consisting of neuropeptides orexin-A and orexin-B, was discovered over 25 years ago and was immediately identified as a central regulator of sleep and wakefulness. These peptides interact with two G-protein coupled receptors, orexin 1 (OX1) and orexin 2 (OX2) receptors which are capable of coupling to all heterotrimeric G-protein subfamilies, but primarily transduce increases in calcium signalling. Orexin neurons are regulated by a variety of transmitter systems and environmental stimuli that signal reward availability, including food and drug related cues. Orexin neurons are also activated by anticipation, stress, cues predicting motivationally relevant information, including those predicting drugs of abuse, and engage neuromodulatory systems, including dopamine neurons of the ventral tegmental area (VTA) to respond to these signals. As such, orexin neurons have been characterized as motivational activators that coordinate a range of functions, including feeding and arousal, that allow the individual to respond to motivationally relevant information, critical for survival. This review focuses on the role of orexins in appetitive motivation and highlights a role for these neuropeptides in pathologies characterized by inappropriately high levels of motivated arousal (overeating, anxiety and substance use disorders) versus those in which motivation is impaired (depression).
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Caitlin Mitchell
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| | - Morgan H James
- Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
- The Hunter Medical Research, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
8
|
Grujic N, Polania R, Burdakov D. Neurobehavioral meaning of pupil size. Neuron 2024; 112:3381-3395. [PMID: 38925124 DOI: 10.1016/j.neuron.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Pupil size is a widely used metric of brain state. It is one of the few signals originating from the brain that can be readily monitored with low-cost devices in basic science, clinical, and home settings. It is, therefore, important to investigate and generate well-defined theories related to specific interpretations of this metric. What exactly does it tell us about the brain? Pupils constrict in response to light and dilate during darkness, but the brain also controls pupil size irrespective of luminosity. Pupil size fluctuations resulting from ongoing "brain states" are used as a metric of arousal, but what is pupil-linked arousal and how should it be interpreted in neural, cognitive, and computational terms? Here, we discuss some recent findings related to these issues. We identify open questions and propose how to answer them through a combination of well-defined tasks, neurocomputational models, and neurophysiological probing of the interconnected loops of causes and consequences of pupil size.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| | - Rafael Polania
- Decision Neuroscience Lab, ETH Zürich, Department of Health Sciences and Technology, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Lab, ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland.
| |
Collapse
|
9
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
10
|
Kosakamoto H, Sakuma C, Okada R, Miura M, Obata F. Context-dependent impact of the dietary non-essential amino acid tyrosine on Drosophila physiology and longevity. SCIENCE ADVANCES 2024; 10:eadn7167. [PMID: 39213345 PMCID: PMC11364096 DOI: 10.1126/sciadv.adn7167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Dietary protein intake modulates growth, reproduction, and longevity by stimulating amino acid (AA)-sensing pathways. Essential AAs are often considered as limiting nutrients during protein scarcity, and the role of dietary non-essential AAs (NEAAs) is less explored. Although tyrosine has been reported to be crucial for sensing protein restriction in Drosophila larvae, its effect on adult physiology and longevity remains unclear. Here, using a synthetic diet, we perform a systematic investigation of the effect of single NEAA deprivation on nutrient-sensing pathways, reproductive ability, starvation resistance, feeding behavior, and life span in adult female flies. Specifically, dietary tyrosine deprivation decreases internal tyrosine levels and fecundity, influences AA-sensing machineries, and extends life span. These nutritional responses are not observed under higher total AA intake or in infertile female flies, suggesting a context-dependent influence of dietary tyrosine. Our findings highlight the unique role of tyrosine as a potentially limiting nutrient, underscoring its value for dietary interventions aimed at enhancing health span.
Collapse
Affiliation(s)
- Hina Kosakamoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Chisako Sakuma
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Rina Okada
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
12
|
Polanía R, Burdakov D, Hare TA. Rationality, preferences, and emotions with biological constraints: it all starts from our senses. Trends Cogn Sci 2024; 28:264-277. [PMID: 38341322 DOI: 10.1016/j.tics.2024.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Is the role of our sensory systems to represent the physical world as accurately as possible? If so, are our preferences and emotions, often deemed irrational, decoupled from these 'ground-truth' sensory experiences? We show why the answer to both questions is 'no'. Brain function is metabolically costly, and the brain loses some fraction of the information that it encodes and transmits. Therefore, if brains maximize objective functions that increase the fitness of their species, they should adapt to the objective-maximizing rules of the environment at the earliest stages of sensory processing. Consequently, observed 'irrationalities', preferences, and emotions stem from the necessity for our early sensory systems to adapt and process information while considering the metabolic costs and internal states of the organism.
Collapse
Affiliation(s)
- Rafael Polanía
- Decision Neuroscience Laboratory, Department of Health Sciences and Technology, ETH, Zurich, Zurich, Switzerland.
| | - Denis Burdakov
- Neurobehavioral Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Zhang X, Perry RJ. Metabolic underpinnings of cancer-related fatigue. Am J Physiol Endocrinol Metab 2024; 326:E290-E307. [PMID: 38294698 PMCID: PMC11901342 DOI: 10.1152/ajpendo.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Cancer-related fatigue (CRF) is one of the most prevalent and detrimental complications of cancer. Emerging evidence suggests that obesity and insulin resistance are associated with CRF occurrence and severity in cancer patients and survivors. In this narrative review, we analyzed recent studies including both preclinical and clinical research on the relationship between obesity and/or insulin resistance and CRF. We also describe potential mechanisms for these relationships, though with the caveat that because the mechanisms underlying CRF are incompletely understood, the mechanisms mediating the association between obesity/insulin resistance and CRF are similarly incompletely delineated. The data suggest that, in addition to their effects to worsen CRF by directly promoting tumor growth and metastasis, obesity and insulin resistance may also contribute to CRF by inducing chronic inflammation, neuroendocrinological disturbance, and metabolic alterations. Furthermore, studies suggest that patients with obesity and insulin resistance experience more cancer-induced pain and are at more risk of emotional and behavioral disruptions correlated with CRF. However, other studies implied a potentially paradoxical impact of obesity and insulin resistance to reduce CRF symptoms. Despite the need for further investigation utilizing interventions to directly elucidate the mechanisms of cancer-related fatigue, current evidence demonstrates a correlation between obesity and/or insulin resistance and CRF, and suggests potential therapeutics for CRF by targeting obesity and/or obesity-related mediators.
Collapse
Affiliation(s)
- Xinyi Zhang
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| | - Rachel J Perry
- Departments of Cellular & Molecular Physiology and Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
14
|
Peleg-Raibstein D, Viskaitis P, Burdakov D. Eat, seek, rest? An orexin/hypocretin perspective. J Neuroendocrinol 2023; 35:e13259. [PMID: 36994677 DOI: 10.1111/jne.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023]
Abstract
Seeking and ingesting nutrients is an essential cycle of life in all species. In classical neuropsychology these two behaviours are viewed as fundamentally distinct from each other, and known as appetitive and consummatory, respectively. Appetitive behaviour is highly flexible and diverse, but typically involves increased locomotion and spatial exploration. Consummatory behaviour, in contrast, typically requires reduced locomotion. Another long-standing concept is "rest and digest", a hypolocomotive response to calorie intake, thought to facilitate digestion and storage of energy after eating. Here, we note that the classical seek➔ingest➔rest behavioural sequence is not evolutionarily advantageous for all ingested nutrients. Our limited stomach capacity should be invested wisely, rather than spent on the first available nutrient. This is because nutrients are not simply calories: some nutrients are more essential for survival than others. Thus, a key choice that needs to be made soon after ingestion: to eat more and rest, or to terminate eating and search for better food. We offer a perspective on recent work suggesting how nutrient-specific neural responses shape this choice. Specifically, the hypothalamic hypocretin/orexin neurons (HONs) - cells that promote hyperlocomotive explorative behaviours - are rapidly and differentially modulated by different ingested macronutrients. Dietary non-essential (but not essential) amino acids activate HONs, while glucose depresses HONs. This nutrient-specific HON modulation engages distinct reflex arcs, seek➔ingest➔seek and seek➔ingest➔rest, respectively. We propose that these nutri-neural reflexes evolved to facilitate optimal nutrition despite the limitations of our body.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
15
|
Xia L, Liu HY, Wang BY, Lin HN, Wang MC, Ren JX. A review of physiological functions of orexin: From instinctive responses to subjective cognition. Medicine (Baltimore) 2023; 102:e34206. [PMID: 37390267 PMCID: PMC10313292 DOI: 10.1097/md.0000000000034206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Orexin, also known as hypocretin, is an excitatory neuropeptide secreted by the hypothalamus. Orexin is divided into orexin-A (OXA) and orexin-B (OXB), which are derived from a common precursor secreted by hypothalamic neurons. Orexin acts on orexin receptor-1 (OX1R) and orexin receptor-2 (OX2R). Orexin neurons, as well as receptors, are widely distributed in various regions of the brain as well as in the peripheral system and have a wider range of functions. This paper reviews the latest research results of orexin in the aspects of food intake, sleep, addiction, depression and anxiety. Because orexin has certain physiological functions in many systems, we further explored the possibility of orexin as a new target for the treatment of bulimia, anorexia nervosa, insomnia, lethargy, anxiety and depression. It is precisely because orexin has physiological functions in multiple systems that orexin, as a new target for the treatment of the above diseases, has potential contradictions. For example, it promotes the function of 1 system and may inhibit the function of another system. How to study a new drug, which can not only treat the diseases of this system, but also do not affect other system functions, is what we need to focus on.
Collapse
Affiliation(s)
- LiBo Xia
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Yan Liu
- Department of Medical Section, Changchun Second Hospital, Changchun, China
| | - Bi Yan Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Hai Ning Lin
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Meng Chen Wang
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| | - Ji-Xiang Ren
- Department of Encephalopathy, Jilin Provincial Hospital of Chinese Medicine, Changchun, China
| |
Collapse
|
16
|
Grujic N, Tesmer A, Bracey E, Peleg-Raibstein D, Burdakov D. Control and coding of pupil size by hypothalamic orexin neurons. Nat Neurosci 2023:10.1038/s41593-023-01365-w. [PMID: 37336973 DOI: 10.1038/s41593-023-01365-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Brain orexin (hypocretin) neurons are implicated in sleep-wake switching and reward-seeking but their roles in rapid arousal dynamics and reward perception are unclear. Here, cell-specific stimulation, deletion and in vivo recordings revealed strong correlative and causal links between pupil dilation-a quantitative arousal marker-and orexin cell activity. Coding of arousal and reward was distributed across orexin cells, indicating that they specialize in rapid, multiplexed communication of momentary arousal and reward states.
Collapse
Affiliation(s)
- Nikola Grujic
- Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Alexander Tesmer
- Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Ed Bracey
- Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
17
|
Maynard CW, Gilbert E, Yan F, Cline MA, Dridi S. Peripheral and Central Impact of Methionine Source and Level on Growth Performance, Circulating Methionine Levels and Metabolism in Broiler Chickens. Animals (Basel) 2023; 13:1961. [PMID: 37370471 DOI: 10.3390/ani13121961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The present study was designed to evaluate the effects of DL-methionine (DL-Met) 2-hydroxy-4-(methylthio) butanoic acid (HMTBa), or S-(5'-Adenosyl)-L-methionine chloride (SAM), using feeding trial and central administration, on live performance, plasma metabolites, and the expression of feeding-related hypothalamic neuropeptides in broilers raised to a market age (35 d). Final average body weight (BW) and feed conversion ratio (FCR) from the feeding trial exceeded the performance measurements published by the primary breeder. At d35, the MTBHa group had better BW and lower feed intake, which resulted in a better FCR than the DL-Met group at 87 TSAA to lysine. At the molecular levels, the expression of hypothalamic neuropeptide (NPY) and monocarboxylate transporter (MCT) 2 did not differ between all treated groups; however, the mRNA abundances of hypothalamic MCT1 and orexin (ORX) were significantly upregulated in DL-Met- treated groups compared to the control. The ICV administration of SAM significantly reduced feed intake at all tested periods (from 30 to 180 min post injection) compared to the aCSF-treated group (control). The central administration of HMTBa increased feed intake, which reached a significant level only 60 min post administration, compared to the control group. ICV administration of DL-Met slightly increased feed intake compared to the control group, but the difference was not statistically discernable. Quantitative real-time PCR analysis showed that the hypothalamic expression of NPY, cocaine- and amphetamine-regulated transcript, MCT1, and MCT2 was significantly upregulated in the ICV-HMTBa group compared to the aCSF birds. The hypothalamic expression of the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPKα1), D-amino acid oxidase, and hydroxyacid oxidase was significantly upregulated in DL-Met compared to the control group. The mRNA abundances of ORX were significantly increased in the hypothalamus of both DL-Met and HMTBa groups compared to the aCSF birds; however, mTOR gene expression was significantly downregulated in the SAM compared to the control group. Taken together, these data show, for the first time, that DL-Met and HMTBa have a common downstream (ORX) pathway, but also a differential central pathway, typically NPY-MCT for HMTBa and mTOR-AMPK for methionine.
Collapse
Affiliation(s)
- Craig W Maynard
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Frances Yan
- Novus International, Saint Charles, MO 63304, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
18
|
Kniazkina M, Dyachuk V. Does EGFR Signaling Mediate Orexin System Activity in Sleep Initiation? Int J Mol Sci 2023; 24:ijms24119505. [PMID: 37298454 DOI: 10.3390/ijms24119505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Sleep-wake cycle disorders are an important symptom of many neurological diseases, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Circadian rhythms and sleep-wake cycles play a key role in maintaining the health of organisms. To date, these processes are still poorly understood and, therefore, need more detailed elucidation. The sleep process has been extensively studied in vertebrates, such as mammals and, to a lesser extent, in invertebrates. A complex, multi-step interaction of homeostatic processes and neurotransmitters provides the sleep-wake cycle. Many other regulatory molecules are also involved in the cycle regulation, but their functions remain largely unclear. One of these signaling systems is epidermal growth factor receptor (EGFR), which regulates the activity of neurons in the modulation of the sleep-wake cycle in vertebrates. We have evaluated the possible role of the EGFR signaling pathway in the molecular regulation of sleep. Understanding the molecular mechanisms that underlie sleep-wake regulation will provide critical insight into the fundamental regulatory functions of the brain. New findings of sleep-regulatory pathways may provide new drug targets and approaches for the treatment of sleep-related diseases.
Collapse
Affiliation(s)
- Marina Kniazkina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
19
|
Maruyama T, Ueta Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023; 165:171009. [PMID: 37054895 DOI: 10.1016/j.peptides.2023.171009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health. Orexin neurons receive various signals related to environmental, physiological, and emotional stimuli. Previous studies have reported that several neurotransmitters and neuromodulators influence the activation or inhibition of orexin neuron activity. In this review, we summarize the modulating factors of orexin neurons in the sleep/wake rhythm and feeding behavior, particularly in the context of the modulation of appetite, body fluids, and circadian signaling. We also describe the effects of life activity, behavior, and diet on the orexin system. Some studies have observed phenomena that have been verified in animal experiments, revealing the detailed mechanism and neural pathway, while their applications to humans is expected in future research.
Collapse
Affiliation(s)
- Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan.
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
20
|
Gao XB, Horvath TL. From Molecule to Behavior: Hypocretin/orexin Revisited From a Sex-dependent Perspective. Endocr Rev 2022; 43:743-760. [PMID: 34792130 PMCID: PMC9277634 DOI: 10.1210/endrev/bnab042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/19/2022]
Abstract
The hypocretin/orexin (Hcrt/Orx) system in the perifornical lateral hypothalamus has been recognized as a critical node in a complex network of neuronal systems controlling both physiology and behavior in vertebrates. Our understanding of the Hcrt/Orx system and its array of functions and actions has grown exponentially in merely 2 decades. This review will examine the latest progress in discerning the roles played by the Hcrt/Orx system in regulating homeostatic functions and in executing instinctive and learned behaviors. Furthermore, the gaps that currently exist in our knowledge of sex-related differences in this field of study are discussed.
Collapse
Affiliation(s)
- Xiao-Bing Gao
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Villano I, La Marra M, Di Maio G, Monda V, Chieffi S, Guatteo E, Messina G, Moscatelli F, Monda M, Messina A. Physiological Role of Orexinergic System for Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8353. [PMID: 35886210 PMCID: PMC9323672 DOI: 10.3390/ijerph19148353] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
Orexins, or hypocretins, are excitatory neuropeptides involved in the regulation of feeding behavior and the sleep and wakefulness states. Since their discovery, several lines of evidence have highlighted that orexin neurons regulate a great range of physiological functions, giving it the definition of a multitasking system. In the present review, we firstly describe the mechanisms underlining the orexin system and their interactions with the central nervous system (CNS). Then, the system's involvement in goal-directed behaviors, sleep/wakefulness state regulation, feeding behavior and energy homeostasis, reward system, and aging and neurodegenerative diseases are described. Advanced evidence suggests that the orexin system is crucial for regulating many physiological functions and could represent a promising target for therapeutical approaches to obesity, drug addiction, and emotional stress.
Collapse
Affiliation(s)
- Ines Villano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Marco La Marra
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Girolamo Di Maio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Vincenzo Monda
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Sergio Chieffi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80138 Naples, Italy; (V.M.); (E.G.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Fiorenzo Moscatelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy; (G.M.); (F.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| | - Antonietta Messina
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.M.); (G.D.M.); (S.C.); (M.M.); (A.M.)
| |
Collapse
|
22
|
Nocturnal Lifestyle Behaviours and Risk of Poor Sleep during Pregnancy. Nutrients 2022; 14:nu14112348. [PMID: 35684148 PMCID: PMC9182878 DOI: 10.3390/nu14112348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The extent to which lifestyle practices at night influence sleep quality in pregnant women remains unknown. This study aimed to examine whether nocturnal behaviours were associated with poor sleep during pregnancy. We performed a cross-sectional analysis of a prospective cohort of pregnant women at 18–24 gestation weeks recruited from KK Women’s and Children’s Hospital, Singapore, between 2019 and 2021. Nocturnal behaviours were assessed with questionnaires, and sleep quality was measured using the Pittsburgh Sleep Quality Index (PSQI) with a global score ≥5 indicative of poor sleep quality. Modified Poisson regression and linear regression were used to examine the association between nocturnal behaviour and sleep quality. Of 299 women, 117 (39.1%) experienced poor sleep. In the covariate-adjusted analysis, poor sleep was observed in women with nocturnal eating (risk ratio 1.51; 95% confidence interval [CI] 1.12, 2.04) and nocturnal artificial light exposure (1.63; 1.24, 2.13). Similarly, nocturnal eating (β 0.68; 95% CI 0.03, 1.32) and light exposure (1.99; 1.04, 2.94) were associated with higher PSQI score. Nocturnal physical activity and screen viewing before bedtime were not associated with sleep quality. In conclusion, reducing nocturnal eating and light exposure at night could potentially improve sleep in pregnancy.
Collapse
|
23
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
24
|
Viskaitis P, Arnold M, Garau C, Jensen LT, Fugger L, Peleg-Raibstein D, Burdakov D. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 2022; 32:1812-1821.e4. [PMID: 35316652 DOI: 10.1016/j.cub.2022.02.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022]
Abstract
Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous in vitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.
Collapse
Affiliation(s)
- Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Myrtha Arnold
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Celia Garau
- University of Leicester, Department of Neuroscience, Psychology & Behaviour, University Road, Leicester LE1 9HN, UK
| | - Lise T Jensen
- Aarhus University, Department of Clinical Medicine - Department of Clinical Immunology, Palle Juul-Jensens Boulevard, Aarhus 8200, Denmark
| | - Lars Fugger
- Aarhus University, Department of Clinical Medicine - Department of Clinical Immunology, Palle Juul-Jensens Boulevard, Aarhus 8200, Denmark; University of Oxford, Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
25
|
Duffet L, Kosar S, Panniello M, Viberti B, Bracey E, Zych AD, Radoux-Mergault A, Zhou X, Dernic J, Ravotto L, Tsai YC, Figueiredo M, Tyagarajan SK, Weber B, Stoeber M, Gogolla N, Schmidt MH, Adamantidis AR, Fellin T, Burdakov D, Patriarchi T. A genetically encoded sensor for in vivo imaging of orexin neuropeptides. Nat Methods 2022; 19:231-241. [PMID: 35145320 PMCID: PMC8831244 DOI: 10.1038/s41592-021-01390-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.
Collapse
Affiliation(s)
- Loïc Duffet
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Seher Kosar
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mariangela Panniello
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Bianca Viberti
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Edward Bracey
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Anna D Zych
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Xuehan Zhou
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Dernic
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Luca Ravotto
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Yuan-Chen Tsai
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Marta Figueiredo
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Shiva K Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miriam Stoeber
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nadine Gogolla
- Circuits for Emotion Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Markus H Schmidt
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021; 145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hypothalamic neurons that produce the peptide transmitters orexins/hypocretins (HONs) broadcast their predominantly neuroexcitatory outputs to the entire brain via their extremely wide axonal projections. HONs were originally reported to be activated by food deprivation, and to stimulate arousal, energy expenditure, and eating. This led to extensive studies of HONs in the context of nutrient-sensing and energy balance control. While activation of HONs by body energy depletion continues to be supported by experimental evidence, it has also become clear that HONs are robustly activated not only by nutrient depletion, but also by diverse sensory stimuli (both neutral and those associated with rewarding or aversive events), seemingly unrelated to each other or to energy balance. One theory that could unify these findings is that all these stimuli signal "stress" - defined either as a potentially harmful state, or an awareness of reward deficiency. If HON activity is conceptualized as a cumulative representation of stress, then many of the reported HONs outputs - including EEG arousal, sympathetic activation, place avoidance, and exploratory behaviours - could be viewed as logical stress-counteracting responses. We discuss evidence for and against this unifying theory of HON function, including the alterations in HON activity observed in anxiety and depression disorders. We propose that, in order to orchestrate stress-countering responses, HONs need to coactivate motivation and aversion brain systems, and the impact of HON stimulation on affective states may be perceived as rewarding or aversive depending on the baseline HON activity.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Switzerland.
| |
Collapse
|
27
|
Chiacchierini G, Naneix F, Peters KZ, Apergis-Schoute J, Snoeren EMS, McCutcheon JE. Protein Appetite Drives Macronutrient-Related Differences in Ventral Tegmental Area Neural Activity. J Neurosci 2021; 41:5080-5092. [PMID: 33926995 PMCID: PMC8197647 DOI: 10.1523/jneurosci.3082-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Control of protein intake is essential for numerous biological processes as several amino acids cannot be synthesized de novo, however, its neurobiological substrates are still poorly understood. In the present study, we combined in vivo fiber photometry with nutrient-conditioned flavor in a rat model of protein appetite to record neuronal activity in the VTA, a central brain region for the control of food-related processes. In adult male rats, protein restriction increased preference for casein (protein) over maltodextrin (carbohydrate). Moreover, protein consumption was associated with a greater VTA response, relative to carbohydrate. After initial nutrient preference, a switch from a normal balanced diet to protein restriction induced rapid development of protein preference but required extensive exposure to macronutrient solutions to induce elevated VTA responses to casein. Furthermore, prior protein restriction induced long-lasting food preference and VTA responses. This study reveals that VTA circuits are involved in protein appetite in times of need, a crucial process for animals to acquire an adequate amount of protein in their diet.SIGNIFICANCE STATEMENT Acquiring insufficient protein in one's diet has severe consequences for health and ultimately will lead to death. In addition, a low level of dietary protein has been proposed as a driver of obesity as it can leverage up intake of fat and carbohydrate. However, much remains unknown about the role of the brain in ensuring adequate intake of protein. Here, we show that in a state of protein restriction a key node in brain reward circuitry, the VTA, is activated more strongly during consumption of protein than carbohydrate. Moreover, although rats' behavior changed to reflect new protein status, patterns of neural activity were more persistent and only loosely linked to protein status.
Collapse
Affiliation(s)
- Giulia Chiacchierini
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | - Fabien Naneix
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, United Kingdom
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Kate Zara Peters
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | | | - James Edgar McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, LE1 9HN, United Kingdom
- Department of Psychology, Arctic University of Norway, Tromsø, 9037, Norway
| |
Collapse
|
28
|
Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021; 87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/09/2021] [Accepted: 02/11/2021] [Indexed: 12/26/2022]
Abstract
Central orexinergic system contributes to the regulation of cardiovascular function. Orexinergic neurons receiving projections of nerve fibers from multiple structures of brain which involved in control and regulation of cardiovascular function locate in hypothalamus, and their axon terminals widely project to various central structures where orexins receptors are expressed. Here, we summarize the present knowledge that describes the influence of central orexinergic system on cardiovascular activity, the relevance of dysfunction in central orexinergic system with hypertension and psychological stress induced cardiovascular reactivity which are serious risk factors for cardiovascular disease and cardiovascular death. We propose that central orexinergic system may be potentially important targets for the prevention of cardiovascular disease and cardiovascular death, and different orexinergic system involved neuronal circuits may be involved in distinct cardiovascular functions. Acupuncture having bidirectional regulatory ability and a much lower incidence of side effects can prevent disease. We review the improvement of acupuncture on hypertension and psychological stress induced cardiovascular reactivity. We think that acupuncture intervenes hypertension and psychological stress induced cardiovascular reactivity to prevent cardiovascular disease and cardiovascular death. We also summarize relation between acupuncture and central orexinergic system. We propose a hypothesis that acupuncture improve hypertension and psychological stress induced cardiovascular reactivity through regulating central orexinergic system. The knowledge is beneficial for the development of potential therapeutic targets and methods to prevent cardiovascular disease and cardiovascular death.
Collapse
Affiliation(s)
- He-Ren Gao
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Zi-Jian Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Sheng-Bing Wu
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - He-Yuan Gao
- Department of Pediatrics, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Jie Wang
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jin-Li Zhang
- Anhui Vocational College of Grain Engineering, Hefei, China
| | - Mei-Qi Zhou
- Key Laboratory of Acupuncture and Moxibustion Foundation and Technology of Anhui Province, Research Institute of Acupuncture and Meridian, College of Acupuncture and Tuina, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China; Bozhou Institute of Traditional Chinese Medicine, Anhui Academy of Chinese Medicine, Bozhou, China.
| |
Collapse
|
29
|
Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021; 15:639313. [PMID: 33828450 PMCID: PMC8019792 DOI: 10.3389/fnins.2021.639313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/01/2023] Open
Abstract
The lateral hypothalamus (LH) is classically implicated in sleep-wake control. It is the main source of orexin/hypocretin and melanin-concentrating hormone (MCH) neuropeptides in the brain, which have been both implicated in arousal state switching. These neuropeptides are produced by non-overlapping LH neurons, which both project widely throughout the brain, where release of orexin and MCH activates specific postsynaptic G-protein-coupled receptors. Optogenetic manipulations of orexin and MCH neurons during sleep indicate that they promote awakening and REM sleep, respectively. However, recordings from orexin and MCH neurons in awake, moving animals suggest that they also act outside sleep/wake switching. Here, we review recent studies showing that both orexin and MCH neurons can rapidly (sub-second-timescale) change their firing when awake animals experience external stimuli, or during self-paced exploration of objects and places. However, the sensory-behavioral correlates of orexin and MCH neural activation can be quite different. Orexin neurons are generally more dynamic, with about 2/3rds of them activated before and during self-initiated running, and most activated by sensory stimulation across sensory modalities. MCH neurons are activated in a more select manner, for example upon self-paced investigation of novel objects and by certain other novel stimuli. We discuss optogenetic and chemogenetic manipulations of orexin and MCH neurons, which combined with pharmacological blockade of orexin and MCH receptors, imply that these rapid LH dynamics shape fundamental cognitive and motor processes due to orexin and MCH neuropeptide actions in the awake brain. Finally, we contemplate whether the awake control of psychomotor brain functions by orexin and MCH are distinct from their “arousal” effects.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
30
|
Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021; 15:644313. [PMID: 33776641 PMCID: PMC7991401 DOI: 10.3389/fnins.2021.644313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Across sleep and wakefulness, brain function requires inter-neuronal interactions lasting beyond seconds. Yet, most studies of neural circuit connectivity focus on millisecond-scale interactions mediated by the classic fast transmitters, GABA and glutamate. In contrast, neural circuit roles of the largest transmitter family in the brain–the slow-acting peptide transmitters–remain relatively overlooked, or described as “modulatory.” Neuropeptides may efficiently implement sustained neural circuit connectivity, since they are not rapidly removed from the extracellular space, and their prolonged action does not require continuous presynaptic firing. From this perspective, we review actions of evolutionarily-conserved neuropeptides made by brain-wide-projecting hypothalamic neurons, focusing on lateral hypothalamus (LH) neuropeptides essential for stable consciousness: the orexins/hypocretins. Action potential-dependent orexin release inside and outside the hypothalamus evokes slow postsynaptic excitation. This excitation does not arise from modulation of classic neurotransmission, but involves direct action of orexins on their specific G-protein coupled receptors (GPCRs) coupled to ion channels. While millisecond-scale, GABA/glutamate connectivity within the LH may not be strong, re-assessing LH microcircuits from the peptidergic viewpoint is consistent with slow local microcircuits. The sustained actions of neuropeptides on neuronal membrane potential may enable core brain functions, such as temporal integration and the creation of lasting permissive signals that act as “eligibility traces” for context-dependent information routing and plasticity. The slowness of neuropeptides has unique advantages for efficient neuronal processing and feedback control of consciousness.
Collapse
Affiliation(s)
| | - Denis Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
31
|
Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1429-1446. [PMID: 32985801 PMCID: PMC7749623 DOI: 10.1002/jcsm.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly different physiologic and behavioural responses, which challenge the primacy of energy homeostasis. METHODS We conducted a literature review of scientific studies in humans, laboratory animals, and non-laboratory animals that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein-deficient or essential amino acid-deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity, resting metabolic rate, and tissue catabolism were selected as the focus of discussion. RESULTS Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive state-dependent alterations in energy seeking and partitioning. CONCLUSIONS The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
32
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
33
|
Zegarra‐Valdivia JA, Pignatelli J, Fernandez de Sevilla ME, Fernandez AM, Munive V, Martinez‐Rachadell L, Nuñez A, Torres Aleman I. Insulin‐like growth factor I modulates sleep through hypothalamic orexin neurons. FASEB J 2020; 34:15975-15990. [DOI: 10.1096/fj.202001281rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jonathan A. Zegarra‐Valdivia
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
- Universidad Nacional de San Agustín de Arequipa Perú
| | - Jaime Pignatelli
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | | | - Ana M. Fernandez
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Victor Munive
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Laura Martinez‐Rachadell
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neuroscience School of Medicine UAM Madrid Spain
| | - Ignacio Torres Aleman
- Functional and Systems Neurobiology Department Cajal Institute (CSIC) Madrid Spain
- CIBERNED Madrid Spain
| |
Collapse
|
34
|
Muehlan C, Vaillant C, Zenklusen I, Kraehenbuehl S, Dingemanse J. Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders. Expert Opin Drug Metab Toxicol 2020; 16:1063-1078. [DOI: 10.1080/17425255.2020.1817380] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Clemens Muehlan
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Cedric Vaillant
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Isabelle Zenklusen
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Stephan Kraehenbuehl
- Department of Clinical Pharmacology and Toxicology, University Hospital Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
35
|
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int J Mol Sci 2020; 21:ijms21197244. [PMID: 33008070 PMCID: PMC7583860 DOI: 10.3390/ijms21197244] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep-wake disorders are highly prevalent disorders, which can lead to negative effects on cognitive, emotional and interpersonal functioning, and can cause maladaptive metabolic changes. Recent studies support the notion that metabolic processes correlate with sleep. The study of metabolite biomarkers (metabolomics) in a large-scale manner offers unique opportunities to provide insights into the pathology of diseases by revealing alterations in metabolic pathways. This review aims to summarize the status of metabolomic analyses-based knowledge on sleep disorders and to present knowledge in understanding the metabolic role of sleep in psychiatric disorders. Overall, findings suggest that sleep-wake disorders lead to pronounced alterations in specific metabolic pathways, which might contribute to the association of sleep disorders with other psychiatric disorders and medical conditions. These alterations are mainly related to changes in the metabolism of branched-chain amino acids, as well as glucose and lipid metabolism. In insomnia, alterations in branched-chain amino acid and glucose metabolism were shown among studies. In obstructive sleep apnea, biomarkers related to lipid metabolism seem to be of special importance. Future studies are needed to examine severity, subtypes and treatment of sleep-wake disorders in the context of metabolite levels.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
- Correspondence: ; Tel.: +43-273-2893-2676
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
| | - Georg Brandmayr
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
36
|
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods - the role of diet in brain performance and health. Nutr Rev 2020; 79:693-708. [PMID: 32989449 DOI: 10.1093/nutrit/nuaa091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The performance of the human brain is based on an interplay between the inherited genotype and external environmental factors, including diet. Food and nutrition, essential in maintenance of brain performance, also aid in prevention and treatment of mental disorders. Both the overall composition of the human diet and specific dietary components have been shown to have an impact on brain function in various experimental models and epidemiological studies. This narrative review provides an overview of the role of diet in 5 key areas of brain function related to mental health and performance, including: (1) brain development, (2) signaling networks and neurotransmitters in the brain, (3) cognition and memory, (4) the balance between protein formation and degradation, and (5) deteriorative effects due to chronic inflammatory processes. Finally, the role of diet in epigenetic regulation of brain physiology is discussed.
Collapse
Affiliation(s)
- Bo Ekstrand
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Nathalie Scheers
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | - Alastair B Ross
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden.,AgResearch, Lincoln, New Zealand
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
37
|
Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine' actions on energy balance: Friend or foe? Pharmacol Ther 2020; 219:107693. [PMID: 32987056 DOI: 10.1016/j.pharmthera.2020.107693] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Obesity has reached pandemic proportions and is associated with severe comorbidities, such as type 2 diabetes mellitus, hepatic and cardiovascular diseases, and certain cancer types. However, the therapeutic options to treat obesity are limited. Extensive epidemiological studies have shown a strong relationship between smoking and body weight, with non-smokers weighing more than smokers at any age. Increased body weight after smoking cessation is a major factor that interferes with their attempts to quit smoking. Numerous controlled studies in both humans and rodents have reported that nicotine, the main bioactive component of tobacco, exerts a marked anorectic action. Furthermore, nicotine is also known to modulate energy expenditure, by regulating the thermogenic activity of brown adipose tissue (BAT) and the browning of white adipose tissue (WAT), as well as glucose homeostasis. Many of these actions occur at central level, by controlling the activity of hypothalamic neuropeptide systems such as proopiomelanocortin (POMC), or energy sensors such as AMP-activated protein kinase (AMPK). However, direct impact of nicotine on metabolic tissues, such as BAT, WAT, liver and pancreas has also been described. Here, we review the actions of nicotine on energy balance. The relevance of this interaction is interesting, because considering the restricted efficiency of obesity treatments, a possible complementary approach may focus on compounds with known pharmacokinetic profile and pharmacological actions, such as nicotine or nicotinic acetylcholine receptors signaling.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine and Veterans Affairs Health Care System, Iowa City, IA 52242, USA
| | - José Manuel Fernández-Real
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Department of Diabetes, Endocrinology and Nutrition (UDEN), Hospital of Girona "Dr Josep Trueta" and Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
38
|
Burdakov D, Peleg-Raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiol Behav 2020; 223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
|
39
|
Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiol Behav 2020; 222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/12/2023]
|
40
|
Rozen TD. Can the effects of the mitochondrial DNA mutations found in Leber’s hereditary optic neuropathy be protective against the development of cluster headache in smokers? CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320939571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Is it possible that some mitochondrial DNA (mtDNA) mutations enhance the risk of developing a headache disorder while other mutations actually confer a protective effect? Mitochondrial disorders have been linked to migraine but very rarely to cluster headache (CH). The true pathogenesis of CH is unknown but a linkage to cigarette smoking is irrefutable. Leber’s hereditary optic neuropathy is a syndrome of bilateral vision loss that typically manifests in a patient’s 20s and 30s, is male predominant, and its sufferers are heavy smokers and heavy drinkers. Tobacco exposure is so linked to the condition that only smokers appear to develop vision loss while nonsmokers remain unaffected carriers of their mutations. In essence, the Leber’s hereditary optic neuropathy population is the CH population but at present there have been no reported cases of CH in this mitochondrial subgroup. Thus, could the effects of the mtDNA mutations found in Leber’s hereditary optic neuropathy, which involve complex I of the electron transport chain, actually confer a protective effect against the development of CH? This article will delve into this theory.
Collapse
Affiliation(s)
- Todd D Rozen
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
41
|
Garau C, Blomeley C, Burdakov D. Orexin neurons and inhibitory Agrp→orexin circuits guide spatial exploration in mice. J Physiol 2020; 598:4371-4383. [PMID: 32667686 DOI: 10.1113/jp280158] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Photoinhibition of endogenous activity of lateral hypothalamic orexin neurons causes place preference and reduces innate avoidance Endogenous activity of orexin neurons correlates with place preference Mediobasal hypothalamic Agrp neurons inhibit orexin neurons via GABA, and chemogenetic suppression of Agrp neurons increases avoidance in an orexin receptor-dependent manner. ABSTRACT Hypothalamic orexin/hypocretin neurons integrate multiple sensory cues and project brain-wide to orchestrate diverse innate behaviours. Their loss impairs many context-appropriate actions, but the motivational characteristics of orexin cell activity remain unclear. We and others previously approached this question by artificial orexin stimulation, which could induce either rewarding (positive valence) or aversive (negative valence) brain activity. It is unknown to what extent such approaches replicate natural/endogenous orexin signals, which rapidly fluctuate during wakefulness. Here we took an alternative approach, focusing on observing and silencing natural orexin cell signals associated with a fundamental innate behaviour, self-paced spatial exploration. We found that mice are more likely to stay in places paired with orexin cell optosilencing. The orexin cell optosilencing also reduced avoidance of places that mice find innately aversive. Correspondingly, calcium recordings revealed that orexin cell activity rapidly reduced upon exiting the innately aversive places. Furthermore, we provide optogenetic evidence for an inhibitory GABAergic Agrp→orexin hypothalamic neurocircuit, and find that Agrp cell suppression increases innate avoidance behaviour, consistent with orexin disinhibition. These results imply that exploration may be motivated and oriented by a need to reduce aversive orexin cell activity, and suggest a hypothalamic circuit for fine-tuning orexin signals to changing ethological priorities.
Collapse
Affiliation(s)
- Celia Garau
- The Francis Crick Institute, London, NW1 1AT, UK
| | | | | |
Collapse
|
42
|
Soya S, Sakurai T. Evolution of Orexin Neuropeptide System: Structure and Function. Front Neurosci 2020; 14:691. [PMID: 32754010 PMCID: PMC7365868 DOI: 10.3389/fnins.2020.00691] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Orexins are hypothalamic neuropeptides that were initially identified in the rat brain as endogenous ligands for an (previously) orphan G-protein-coupled receptor (GPCR). They are multitasking peptides involved in many physiological functions, including regulation of feeding behavior, wakefulness and autonomic/neuroendocrine functions, and sleep/wakefulness states in mammals. There are two isopeptides of orexin, orexin A and orexin B, which are produced from a common precursor peptide, prepro-orexin. Structures of orexins, as well as orexin genes, are highly conserved throughout mammalian species, suggesting strong evolutionary pressure that maintains the structures. Their lengths and structure suggested that orexin B is the ancestral form of the orexin neuropeptide. In mammals, orexins bind to two subtypes of GPCRs, i.e., orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). Phylogenetically, the orexin system is present exclusively in vertebrates. In genomes of species outside mammals, there is only one orexin receptor, which is similar to OX2R, suggesting that OX2R is the prototype receptor for orexins. OX1R is likely to have evolved during early mammalian evolution. Orexin-producing neurons (orexin neurons) are mainly located in the lateral hypothalamic area (LHA) in mammals and are also found in hypothalamic regions in many other vertebrates. Orexins are likely to be closely related to the regulation of active, motivated behavior in many species. The orexin system seems to have evolved as a system that supports active and purposeful behavior which is closely related with wakefulness.
Collapse
Affiliation(s)
- Shingo Soya
- Faculty of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sakurai
- Faculty of Medicine/International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
43
|
|
44
|
Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Curr Biol 2019; 29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
45
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Dopamine neuron-derived IGF-1 controls dopamine neuron firing, skill learning, and exploration. Proc Natl Acad Sci U S A 2019; 116:3817-3826. [PMID: 30808767 PMCID: PMC6397563 DOI: 10.1073/pnas.1806820116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Midbrain dopamine neurons play a role in motivational and cognitive control of behavior. In addition, they regulate motor functions. Dysregulation of dopamine neurons has been linked to depression, schizophrenia, and addiction and their degeneration is causal to Parkinson’s disease. Peripheral hormones have been shown to regulate dopamine neurons functions. Insulin-like growth factor 1 (IGF-1) is a hormone mainly produced in the liver. With this study we discovered that midbrain dopamine neurons synthesize and release IGF-1 in an activity dependent manner. In addition, dopamine neuron-derived IGF-1 modulates dopamine synthesis and dopamine neuron firing and ultimately it controls dopamine-dependent behaviors. This study highlights the neuromodulatory role of neuron-derived IGF-1 and its role in shaping dopamine transmission in the brain. Midbrain dopamine neurons, which can be regulated by neuropeptides and hormones, play a fundamental role in controlling cognitive processes, reward mechanisms, and motor functions. The hormonal actions of insulin-like growth factor 1 (IGF-1) produced by the liver have been well described, but the role of neuronally derived IGF-1 remains largely unexplored. We discovered that dopamine neurons secrete IGF-1 from the cell bodies following depolarization, and that IGF-1 controls release of dopamine in the ventral midbrain. In addition, conditional deletion of dopamine neuron-derived IGF-1 in adult mice leads to decrease of dopamine content in the striatum and deficits in dopamine neuron firing and causes reduced spontaneous locomotion and impairments in explorative and learning behaviors. These data identify that dopamine neuron-derived IGF-1 acts as a regulator of dopamine neurons and regulates dopamine-mediated behaviors.
Collapse
|
47
|
Milbank E, López M. Orexins/Hypocretins: Key Regulators of Energy Homeostasis. Front Endocrinol (Lausanne) 2019; 10:830. [PMID: 31920958 PMCID: PMC6918865 DOI: 10.3389/fendo.2019.00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Originally described to be involved in feeding regulation, orexins/hypocretins are now also considered as major regulatory actors of numerous biological processes, such as pain, sleep, cardiovascular function, neuroendocrine regulation, and energy expenditure. Therefore, they constitute one of the most pleiotropic families of hypothalamic neuropeptides. Although their orexigenic effect is well documented, orexins/hypocretins also exert central effects on energy expenditure, notably on the brown adipose tissue (BAT) thermogenesis. A better comprehension of the underlying mechanisms and potential interactions with other hypothalamic molecular pathways involved in the modulation of food intake and thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, is essential to determine the exact implication and pathophysiological relevance of orexins/hypocretins on the control of energy balance. Here, we will review the actions of orexins on energy balance, with special focus on feeding and brown fat function.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- *Correspondence: Edward Milbank
| | - Miguel López
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Miguel López
| |
Collapse
|
48
|
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient Sensing by Hypothalamic Tanycytes. Front Endocrinol (Lausanne) 2019; 10:244. [PMID: 31040827 PMCID: PMC6476911 DOI: 10.3389/fendo.2019.00244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nutritional signals have long been implicated in the control of cellular processes that take place in the hypothalamus. This includes food intake regulation and energy balance, inflammation, and most recently, neurogenesis. One of the main glial cells residing in the hypothalamus are tanycytes, radial glial-like cells, whose bodies are located in the lining of the third ventricle, with processes extending to the parenchyma and reaching neuronal nuclei. Their unique anatomical location makes them directly exposed to nutrients in the cerebrospinal fluid. Several research groups have shown that tanycytes can respond to nutritional signals by different mechanisms, such as calcium signaling, metabolic shift, and changes in proliferation/differentiation potential. Despite cumulative evidence showing tanycytes have the molecular components to participate in nutrient detection and response, there are no enough functional studies connecting tanycyte nutrient sensing with hypothalamic functions, nor that highlight the relevance of this process in physiological and pathological context. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes in the hypothalamus, highlighting the need for more detailed analysis on the actual implications of tanycyte-nutrient sensing and how this process can be modulated, which might allow the discovery of new metabolic and signaling pathways as therapeutic targets, for the treatment of hypothalamic related diseases.
Collapse
Affiliation(s)
- Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Karina Oyarce
| |
Collapse
|
49
|
Burdakov D. Reactive and predictive homeostasis: Roles of orexin/hypocretin neurons. Neuropharmacology 2018; 154:61-67. [PMID: 30347195 DOI: 10.1016/j.neuropharm.2018.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 11/30/2022]
Abstract
Homeostasis is the maintenance of a healthy physiological equilibrium in a changing world. Reactive (feedback, counter-regulatory) and predictive (feedforward, anticipatory) homeostatic control strategies are both important for survival. For example, in energy homeostasis, the pancreas reacts to ingested glucose by releasing insulin, whereas the brain prepares the body for ingestion through anticipatory salivation based on food-associated cues. Reactive control is largely innate, whereas predictive control is often acquired or modified through associative learning, though some important predictive control strategies are innate, e.g. avoidance of fox scent in mice that never met a fox. Traditionally, the hypothalamus has been viewed as a reactive controller, sensing deviations from homeostasis to elicit counter-regulatory responses, while "higher" areas such as the cortex have been viewed as predictive controllers. However, experimental evidence argues against such neuroanatomical segregation: for example, receptors for internal homeostatic indicators are found throughout the brain, while key interoceptive hypothalamic cells also rapidly sense external cues. Here a model is proposed where the brain-wide-projecting, non-neuroendocrine, neurons of the hypothalamus, exemplified by orexin/hypocretin neurons, function as "brain government" systems that convert integrated internal and external information into reactive and predictive autonomic, cognitive, and behavioural adaptations that ensure homeostasis. Like regions of a country without a government, individual brain regions can function normally without hypothalamic guidance, but these functions are uncoordinated, producing mismatch between supply and demand of arousal, and derailing decision-making as seen in orexin-deficient narcolepsy. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Denis Burdakov
- Swiss Federal Institute of Technology / ETH Zürich, D-HEST, Institute for Neuroscience, Schorenstrasse 16, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
50
|
Burdakov D. How orexin signals bias action: Hypothalamic and accumbal circuits. Brain Res 2018; 1731:145943. [PMID: 30205111 DOI: 10.1016/j.brainres.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023]
Abstract
Survival-maximizing, well-timed actions are a key responsibility of the brain. Hypothalamic neurons containing neurotransmitters orexins/hypocretins are important players in this process. Individuals without orexin neurons display inappropriately-timed transitions between arousal states, and other behavioural abnormalities including increased risk-taking. Deciphering neural circuits through which orexin neurons control brain states and behavior thus illuminates brain mechanisms of context-appropriate actions. This review outlines and puts into broader context recent examples of orexin circuit analyses in the lateral hypothalamus (LH) and the nucleus accumbens (NAc), two brain regions clasically implicated in context-appropriate actions. In the LH, orexin neurons excite GAD65-expressing neurons. The LH(GAD65) neuron excitation induces elevated locomotor activity, while inhibition of LH(GAD65) neuron natural activity depresses voluntary locomotion. The orexin → LH(GAD65) circuit may therefore assist in creating the drive to run. In the NAc shell region, orexin axons excite D2 neurons (dopamine-inhibited neurons expressing dopamine type-2 receptor). NAc(D2) cell activation increases risk-avoidance behaviors, while NAc(D2) cell inhibition reduces risk-avoidance. The excitatory orexin → NAc(D2) circuit may thus assist in reducing risk-taking, and oppose the inhibitory VTA(dopamine) → NAc(D2) circuit during computation of risk appetite. Neural computation in these local and long-range orexin circuits may thus assist in generating risk-avoiding locomotor responses to stressors known to activate orexin neurons, such as body energy depletion or potential external threats. A model is proposed where orexin-opposing, inhibitory inputs acting on the orexin target neurons may context-specifically channel orexin-induced brain excitation towards particular sets of actions.
Collapse
Affiliation(s)
- Denis Burdakov
- Swiss Federal Institute of Technology/ETH Zürich, Switzerland.
| |
Collapse
|