1
|
Basinski BW, Huang Y, Li Q, Sivakumar CD, Carman TJ, Pan HM, Xu J, Hannum DF, Liu J, Rao RC. A zinc finger-dependent, PRDM13-driven mechanism regulates retinal progenitor cell fate from mouse embryonic stem cells via WNT signaling. Stem Cell Reports 2025:102508. [PMID: 40409260 DOI: 10.1016/j.stemcr.2025.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/25/2025] Open
Abstract
The transcriptional regulation underlying eye field (retinal primordium) development requires precise control, yet the mechanisms guiding lineage-specific differentiation within the central nervous system (CNS) remain incompletely understood. Using neuroectoderm (NE) organoids derived from mouse embryonic stem cells, we investigate the role of PRDM13 in eye field specification. We demonstrate that Prdm13 expression inhibits RX+ eye field fate but permits non-eye field NE differentiation, an effect that depends on its first and second zinc-finger domains. Prdm13 activates the WNT/β-catenin signaling pathway during differentiation, leading to downregulation of key transcription factors crucial for establishing the eye field. Pharmacological inhibition of WNT signaling abolishes PRDM13-mediated suppression, restoring RX+ eye field differentiation. Our work reveals a previously undescribed PRDM13-WNT signaling axis that regulates lineage-specific neural differentiation of embryonic stem cells.
Collapse
Affiliation(s)
- Brian W Basinski
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; Molecular and Cellular Pathology Graduate Program, Department of Pathology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yuanhao Huang
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48105, USA
| | - Qiang Li
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Charukesi D Sivakumar
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; Molecular and Cellular Pathology Graduate Program, Department of Pathology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Tyler J Carman
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Hana M Pan
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jing Xu
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - D Ford Hannum
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48105, USA
| | - Rajesh C Rao
- Department of Ophthalmology and Visual Science, W.K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105, USA; Molecular and Cellular Pathology Graduate Program, Department of Pathology, University of Michigan, Ann Arbor, MI 48105, USA; Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48105, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48105, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48105, USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48105, USA; Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48105, USA; A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI 48105, USA; Section of Ophthalmology, Surgical Service, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|
2
|
Bergamasco MI, Abeysekera W, Garnham AL, Hu Y, Li-Wai-Suen CS, Sheikh BN, Smyth GK, Thomas T, Voss AK. KAT6B is required for histone 3 lysine 9 acetylation and SOX gene expression in the developing brain. Life Sci Alliance 2025; 8:e202402969. [PMID: 39537341 PMCID: PMC11561263 DOI: 10.26508/lsa.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Heterozygous mutations in the histone lysine acetyltransferase gene KAT6B (MYST4/MORF/QKF) underlie neurodevelopmental disorders, but the mechanistic roles of KAT6B remain poorly understood. Here, we show that loss of KAT6B in embryonic neural stem and progenitor cells (NSPCs) impaired cell proliferation, neuronal differentiation, and neurite outgrowth. Mechanistically, loss of KAT6B resulted in reduced acetylation at histone H3 lysine 9 and reduced expression of key nervous system development genes in NSPCs and the developing cortex, including the SOX gene family, in particular Sox2, which is a key driver of neural progenitor proliferation, multipotency and brain development. In the fetal cortex, KAT6B occupied the Sox2 locus. Loss of KAT6B caused a reduction in Sox2 promoter activity in NSPCs. Sox2 overexpression partially rescued the proliferative defect of Kat6b -/- NSPCs. Collectively, these results elucidate molecular requirements for KAT6B in brain development and identify key KAT6B targets in neural precursor cells and the developing brain.
Collapse
Affiliation(s)
- Maria I Bergamasco
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Alexandra L Garnham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Connie Sn Li-Wai-Suen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Zheng H, Yu C, Yang L, Zhou F, Liu A. Research Progress of DNA Methylation Markers for Endometrial Carcinoma Diagnosis. J Cancer 2025; 16:812-820. [PMID: 39781343 PMCID: PMC11705058 DOI: 10.7150/jca.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
Endometrial carcinoma (EC) is the most common malignancies of the female reproductive system in developed countries and areas. Ultrasound-guided and hysteroscopic samplings are commonly used to diagnose EC. However, clinicians question their diagnostic efficacy and the associated patient discomfort. DNA methylation is the widely studied epigenetic alteration in human tumors, and tumor screening and diagnosis. This review summarized common methods for collecting clinical samples for methylation testing. Furthermore, we analyzed the diagnostic evaluation indices of different methylation marker assays in clinical diagnosis and discussed the challenges of methylation testing in the future application of EC diagnosis.
Collapse
Affiliation(s)
- Haoning Zheng
- Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong 261042, P.R. China
- Department of Pathology, The seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, P.R. China
| | - Cuisong Yu
- Department of Gynecology and Obstetrics of Qingdao West Coast New Area People's Hospital, Shandong Province, Qingdao, Shandong 266000, P.R. China
| | - Lu Yang
- Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong 261042, P.R. China
| | - Fenghua Zhou
- Clinical Pathology Department, Shandong Second Medical University, Shandong Province, Weifang, Shandong 261042, P.R. China
| | - Aijun Liu
- Department of Pathology, The seventh Medical Center, Chinese PLA General Hospital, Beijing, 100700, P.R. China
| |
Collapse
|
4
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Liao CP, Ji H, Valperga G, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. PLoS Biol 2025; 23:e3002979. [PMID: 39761329 PMCID: PMC11703107 DOI: 10.1371/journal.pbio.3002979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of 5 Caenorhabditis elegans bHLH genes, falling into 3 phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that 2 orthologs of the vertebrate bHLHe22/e23 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron class (AUA), as well as an individual motor neuron (VB2); (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC; and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion from these neurons causes a substantially extended lifespan of the animal, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
- Technische Universität, Braunschweig, Germany
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Christopher Fang-Yen
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
5
|
Le C, Argilli E, George E, Kalaycı T, Uyguner ZO, Karaman B, Demirören T, DiTroia S, Heron D, Sabatier I, Rodan LH, Girisha KM, Radhakrishnan P, Saunders C, Sullivan B, Fleming E, Alvi JR, Sultan T, Houlden H, Efthymiou S, Sacoto MJG, Goodman M, Pierron L, De Sainte-Agathe JM, Durr A, Sherr EH. Basic helix-loop-helix transcription factor BHLHE22 monoallelic and biallelic variants cause a neurodevelopmental disorder with agenesis of the corpus callosum, intellectual disability, tone and movement abnormalities. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24312856. [PMID: 39502664 PMCID: PMC11537320 DOI: 10.1101/2024.10.11.24312856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
BHLHE22 encodes a Class II basic helix-loop-helix transcription factor (bHLH). It is expressed exclusively in the retina and central nervous system (CNS), and functions as an important regulator of retinogenesis and neuronal differentiation. Mice lacking bhlhe22 show nearly complete loss of three brain comminsure, including the corpus callosum. Here we report eleven individuals from nine unrelated families with BHLHE22 variants, with a neurodevelopmental disorder presenting with absent or limited speech, severely impaired motor abilities, intellectual disability (ID), involuntary movements, autistic traits with stereotypies, abnormal muscle tone. The majority of individuals have partial or complete agenesis of the corpus callosum (ACC). Additional symptoms comprised of epilepsy, variable dysmorphic features, and eye anomalies. One additional individual had spastic paraplegia without delayed development and ACC, expanding the phenotype to milder and later onset forms. Four individuals carry de novo missense variants within the highly conserved helix-loop-helix domain while seven individuals from five unrelated families carry a recurrent homozygous frameshift variant, p.(Gly74Alafs*18). Our findings implicate BHLHE22 variants in causing a previously unidentified autosomal dominant and recessive neurodevelopmental disorder associated with ACC, severe motor, language, and cognitive delays, abnormal tone, and involuntary movements. To our knowledge, this is the first report of Class II bHLH variants in humans shown to significantly disrupt brain development, cognition, and movement.
Collapse
Affiliation(s)
- Carolyn Le
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| | - Emanuela Argilli
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| | - Elizabeth George
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, 94122, USA
| | - Tuğba Kalaycı
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Zehra Oya Uyguner
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
| | - Birsen Karaman
- Istanbul University, Istanbul Faculty of Medicine, Medical Genetics Department, Istanbul, Turkey
- Istanbul University, Child Health Institute, Basic Pediatric Science, Istanbul, Turkey
| | - Tanju Demirören
- Yeditepe University, Faculty of Medicine Department, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Stephanie DiTroia
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Delphine Heron
- Assistance Publique-Hôpitaux de Paris Sorbonne Université (Pitié Salpêtrière et Trousseau), Paris, France
| | - Isabelle Sabatier
- Department of Pediatric Neurology, Hôpital Femme Mère Enfant, Lyon, France
| | - Lance H. Rodan
- Division of Genetics and Genomics and Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katta Mohan Girisha
- Suma Genomics Private Limited, Manipal, India
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Bonnie Sullivan
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Emily Fleming
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, 64108, USA
- Genomic Medicine Center, Children’s Mercy Research Institute, Kansas City, Missouri, 64108, USA
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, 64108, USA
| | - Javeria Raza Alvi
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Tipu Sultan
- Department of Paediatrics, The Children’s Hospital and the University of Child Health Sciences, Lahore, Punjab, Pakistan
| | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | | | | | - Lucie Pierron
- Sorbonne Université, University Hospital Pitié-Salpêtrière, Assistance Publique-Ho pitaux de Paris, Department of Medical Genetics, Paris, France
| | - Jean-Madeleine De Sainte-Agathe
- Sorbonne Université, University Hospital Pitié-Salpêtrière, Assistance Publique-Ho pitaux de Paris, Department of Medical Genetics, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Assistance Publique-Ho pitaux de Paris, Paris, France
| | - Elliott H. Sherr
- Department of Neurology, 675 Nelson Rising Lane, University of California, San Francisco, California, 94158, USA
- Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, California, 94158, USA
| |
Collapse
|
6
|
He X, Liu Y, Gao X, Tang F, Tian Y, Gong S, Shen J, Wang A, Sun L, Wei W, Weng L. N-terminal acetylation of transcription factor LIP induces immune therapy resistance via suppression of PD-L1 expression in non-small cell lung cancer. J Immunother Cancer 2024; 12:e009905. [PMID: 39615895 PMCID: PMC11624798 DOI: 10.1136/jitc-2024-009905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/05/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Programmed death-1 (PD-1) checkpoint blockade has revolutionized cancer therapy, yet its clinical success is confined to a subset of patients, underscoring the urgent need to understand the molecular underpinnings of programmed cell death ligand 1 (PD-L1) expression to combat immunotherapy resistance. METHODS Employing CRISPR/Cas9 screening, we identified key regulators of PD-L1 in non-small cell lung cancer (NSCLC) cells, focusing on the transcription factor CEBPB and its isoform liver-enriched inhibitory protein (LIP). Through chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we explored the interaction between LIP and basic-helix-loop-helix E22 (BHLHE22) in controlling PD-L1 transcription. We also used immunofluorescence and NBD-CI assays to examine how N-terminal acetylation affects LIP's subcellular localization. The impact of LIP on tumor growth was assessed via subcutaneous tumorigenicity assays, while immunohistochemistry and immunofluorescence were used to analyze LIP-induced alterations in the tumor immune microenvironment. RESULTS Our research indicates that CEBPB, particularly its LIP isoform, significantly suppresses PD-L1 expression in NSCLC cells. This suppression is contingent on LIP's N-terminal acetylation by the N-terminal acetyltransferase A complex, which facilitates LIP's nuclear entry and interaction with BHLHE22. This interaction leads to the formation of a co-repressor complex at the PD-L1 promoter, effectively reducing PD-L1 expression and enhancing the tumor immune response. CONCLUSIONS Identifying CEBPB, especially the LIP isoform, as a pivotal regulator of PD-L1 expression sheds light on the mechanisms behind PD-1 blockade resistance in NSCLC. Our findings suggest that modulating LIP's function or its molecular interactions might offer a novel approach to boosting the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yongshuo Liu
- Department of Pathology and Lab Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xing Gao
- Department of Stomatology, Xiangya Hospital Central South University, Changsha, Hunan, China
- Center of Oral and Maxillofacial Cancer (COMAC), Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Feiyu Tang
- Center for Biotherapy, Sun Yat-Sen University, Guangzhou, China
| | - Yuxi Tian
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Siyuan Gong
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Jia Shen
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Aimin Wang
- Department of Emergency, Xiangya Hospital Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Cancer Center, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, Peking University School of Life Sciences, Beijing, China
- Changping Laboratory, Beijing, China
| | - Liang Weng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
de Martin X, Oliva B, Santpere G. Recruitment of homodimeric proneural factors by conserved CAT-CAT E-boxes drives major epigenetic reconfiguration in cortical neurogenesis. Nucleic Acids Res 2024; 52:12895-12917. [PMID: 39494521 PMCID: PMC11602148 DOI: 10.1093/nar/gkae950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Proneural factors of the basic helix-loop-helix family coordinate neurogenesis and neurodifferentiation. Among them, NEUROG2 and NEUROD2 subsequently act to specify neurons of the glutamatergic lineage. Disruption of these factors, their target genes and binding DNA motifs has been linked to various neuropsychiatric disorders. Proneural factors bind to specific DNA motifs called E-boxes (hexanucleotides of the form CANNTG, composed of two CAN half sites on opposed strands). While corticogenesis heavily relies on E-box activity, the collaboration of proneural factors on different E-box types and their chromatin remodeling mechanisms remain largely unknown. Here, we conducted a comprehensive analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for NEUROG2 and NEUROD2, along with time-matched single-cell RNA-seq, ATAC-seq and DNA methylation data from the developing mouse cortex. Our findings show that these factors are highly enriched in transiently active genomic regions during intermediate stages of neuronal differentiation. Although they primarily bind CAG-containing E-boxes, their binding in dynamic regions is notably enriched in CAT-CAT E-boxes (i.e. CATATG, denoted as 5'3' half sites for dimers), which undergo significant DNA demethylation and exhibit the highest levels of evolutionary constraint. Aided by HT-SELEX data reanalysis, structural modeling and DNA footprinting, we propose that these proneural factors exert maximal chromatin remodeling influence during intermediate stages of neurogenesis by binding as homodimers to CAT-CAT motifs. This study provides an in-depth integrative analysis of the dynamic regulation of E-boxes during neuronal development, enhancing our understanding of the mechanisms underlying the binding specificity of critical proneural factors.
Collapse
Affiliation(s)
- Xabier de Martin
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona 08003 Catalonia, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
- Department of Neuroscience, Yale School of Medicine, 333 Cedar st., New Haven, CT 06510, USA
| |
Collapse
|
8
|
Warren S, Xiong S, Robles-Magallanes D, Baizabal JM. A vector system encoding histone H3 mutants facilitates manipulations of the neuronal epigenome. Sci Rep 2024; 14:24415. [PMID: 39420029 PMCID: PMC11487264 DOI: 10.1038/s41598-024-74270-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The differentiation of developmental cell lineages is associated with genome-wide modifications in histone H3 methylation. However, the causal role of histone H3 methylation in transcriptional regulation and cell differentiation has been difficult to test in mammals. The experimental overexpression of histone H3 mutants carrying lysine-to-methionine (K-to-M) substitutions has emerged as an alternative tool for inhibiting the endogenous levels of histone H3 methylation at specific lysine residues. Here, we leverage the use of histone K-to-M mutants by creating Enhanced Episomal Vectors that enable the simultaneous depletion of multiple levels of histone H3 lysine 4 (H3K4) or lysine 9 (H3K9) methylation in projection neurons of the mouse cerebral cortex. Our approach also facilitates the simultaneous depletion of H3K9 and H3K27 trimethylation (H3K9me3 and H3K27me3, respectively) in cortical neurons. In addition, we report a tamoxifen-inducible Cre-FLEX system that allows the activation of mutant histones at specific developmental time points or in the adult cortex, leading to the depletion of specific histone marks. The tools presented here can be implemented in other experimental systems, such as human in vitro models, to test the combinatorial role of histone methylations in developmental fate decisions and the maintenance of cell identity.
Collapse
Affiliation(s)
- Sophie Warren
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Sen Xiong
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
9
|
Aguilar GR, Vidal B, Ji H, Evenblij J, Ji H, Valperga G, Liao CP, Fang-Yen C, Hobert O. Functional analysis of conserved C. elegans bHLH family members uncovers lifespan control by a peptidergic hub neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603289. [PMID: 39071424 PMCID: PMC11275782 DOI: 10.1101/2024.07.12.603289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Throughout the animal kingdom, several members of the basic helix-loop-helix (bHLH) family act as proneural genes during early steps of nervous system development. Roles of bHLH genes in specifying terminal differentiation of postmitotic neurons have been less extensively studied. We analyze here the function of five C. elegans bHLH genes, falling into three phylogenetically conserved subfamilies, which are continuously expressed in a very small number of postmitotic neurons in the central nervous system. We show (a) that two orthologs of the vertebrate bHLHb4/b5 genes, called hlh-17 and hlh-32, function redundantly to specify the identity of a single head interneuron (AUA), as well as an individual motor neuron (VB2), (b) that the PTF1a ortholog hlh-13 acts as a terminal selector to control terminal differentiation and function of the sole octopaminergic neuron class in C. elegans, RIC, and (c) that the NHLH1/2 ortholog hlh-15 controls terminal differentiation and function of the peptidergic AVK head interneuron class, a known neuropeptidergic signaling hub in the animal. Strikingly, through null mutant analysis and cell-specific rescue experiments, we find that loss of hlh-15/NHLH in the peptidergic AVK neurons and the resulting abrogation of neuropeptide secretion causes a substantially expanded lifespan of the animal, revealing an unanticipated impact of a central, peptidergic hub neuron in regulating lifespan, which we propose to be akin to hypothalamic control of lifespan in vertebrates. Taken together, our functional analysis reveals themes of bHLH gene function during terminal differentiation that are complementary to the earlier lineage specification roles of other bHLH family members. However, such late functions are much more sparsely employed by members of the bHLH transcription factor family, compared to the function of the much more broadly employed homeodomain transcription factor family.
Collapse
Affiliation(s)
- G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Hongzhu Ji
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Joke Evenblij
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
- Technische Universität, Braunschweig, Germany
| | - Hongfei Ji
- Department of Biomedical Engineering, Ohio State University, Columbus, OH
| | - Giulio Valperga
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | - Chien-Po Liao
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| | | | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY
| |
Collapse
|
10
|
Chen P, Long J, Hua T, Zheng Z, Xiao Y, Chen L, Yu K, Wu W, Zhang S. Transcriptome and open chromatin analysis reveals the process of myocardial cell development and key pathogenic target proteins in Long QT syndrome type 7. J Transl Med 2024; 22:307. [PMID: 38528561 PMCID: PMC10964537 DOI: 10.1186/s12967-024-05125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Hua
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhifa Zheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lianfeng Chen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Schilling K. Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses. Histochem Cell Biol 2024; 161:5-27. [PMID: 37940705 PMCID: PMC10794478 DOI: 10.1007/s00418-023-02251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut - Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Sepp M, Leiss K, Murat F, Okonechnikov K, Joshi P, Leushkin E, Spänig L, Mbengue N, Schneider C, Schmidt J, Trost N, Schauer M, Khaitovich P, Lisgo S, Palkovits M, Giere P, Kutscher LM, Anders S, Cardoso-Moreira M, Sarropoulos I, Pfister SM, Kaessmann H. Cellular development and evolution of the mammalian cerebellum. Nature 2024; 625:788-796. [PMID: 38029793 PMCID: PMC10808058 DOI: 10.1038/s41586-023-06884-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.
Collapse
Affiliation(s)
- Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Konstantin Okonechnikov
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Evgeny Leushkin
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lisa Spänig
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Noe Mbengue
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Céline Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Nils Trost
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Maria Schauer
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Philipp Khaitovich
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, Hungary
| | - Peter Giere
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Lena M Kutscher
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | | | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
13
|
Jovanović B, Temko D, Stevens LE, Seehawer M, Fassl A, Murphy K, Anand J, Garza K, Gulvady A, Qiu X, Harper NW, Daniels VW, Xiao-Yun H, Ge JY, Alečković M, Pyrdol J, Hinohara K, Egri SB, Papanastasiou M, Vadhi R, Font-Tello A, Witwicki R, Peluffo G, Trinh A, Shu S, Diciaccio B, Ekram MB, Subedee A, Herbert ZT, Wucherpfennig KW, Letai AG, Jaffe JD, Sicinski P, Brown M, Dillon D, Long HW, Michor F, Polyak K. Heterogeneity and transcriptional drivers of triple-negative breast cancer. Cell Rep 2023; 42:113564. [PMID: 38100350 PMCID: PMC10842760 DOI: 10.1016/j.celrep.2023.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with limited treatment options. To characterize TNBC heterogeneity, we defined transcriptional, epigenetic, and metabolic subtypes and subtype-driving super-enhancers and transcription factors by combining functional and molecular profiling with computational analyses. Single-cell RNA sequencing revealed relative homogeneity of the major transcriptional subtypes (luminal, basal, and mesenchymal) within samples. We found that mesenchymal TNBCs share features with mesenchymal neuroblastoma and rhabdoid tumors and that the PRRX1 transcription factor is a key driver of these tumors. PRRX1 is sufficient for inducing mesenchymal features in basal but not in luminal TNBC cells via reprogramming super-enhancer landscapes, but it is not required for mesenchymal state maintenance or for cellular viability. Our comprehensive, large-scale, multiplatform, multiomics study of both experimental and clinical TNBC is an important resource for the scientific and clinical research communities and opens venues for future investigation.
Collapse
Affiliation(s)
- Bojana Jovanović
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel Temko
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Murphy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayati Anand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kodie Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anushree Gulvady
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas W Harper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Veerle W Daniels
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Huang Xiao-Yun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Pyrdol
- Departments of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kunihiko Hinohara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn B Egri
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | | | - Raga Vadhi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alba Font-Tello
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert Witwicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guillermo Peluffo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Benedetto Diciaccio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Muhammad B Ekram
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ashim Subedee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zachary T Herbert
- Department of Molecular Biology Core Facility, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Departments of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Anthony G Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jacob D Jaffe
- The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Deborah Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
14
|
England SJ, Rusnock AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev 2023; 18:8. [PMID: 38017520 PMCID: PMC10683209 DOI: 10.1186/s13064-023-00176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
Affiliation(s)
| | | | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY, USA
| | | | - Sarah de Jager
- Physiology, Development and Neuroscience Department, Cambridge University, Cambridge, UK
| | | | - José L Juárez-Morales
- Biology Department, Syracuse University, Syracuse, NY, USA
- Programa de IxM-CONAHCYT, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, México
| | | | - Ginny Grieb
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY, USA
| | | |
Collapse
|
15
|
England SJ, Woodard AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular Analyses of V0v Spinal Interneurons and Identification of Transcriptional Regulators Downstream of Evx1 and Evx2 in these Cells. RESEARCH SQUARE 2023:rs.3.rs-3290462. [PMID: 37693471 PMCID: PMC10491344 DOI: 10.21203/rs.3.rs-3290462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. Methods To identify candidate members of V0v gene regulatory networks, we FAC-sorted WT and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. Results Our data reveal two molecularly distinct subtypes of V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuronal expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. Conclusions This study identifies two molecularly distinct subsets of V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
|
16
|
Wells AC, Lotfipour S. Prenatal nicotine exposure during pregnancy results in adverse neurodevelopmental alterations and neurobehavioral deficits. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11628. [PMID: 38389806 PMCID: PMC10880762 DOI: 10.3389/adar.2023.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Maternal tobacco use and nicotine exposure during pregnancy have been associated with adverse birth outcomes in infants and can lead to preventable pregnancy complications. Exposure to nicotine and other compounds in tobacco and electronic cigarettes (e-cigarettes) has been shown to increases the risk of miscarriage, prematurity, stillbirth, low birth weight, perinatal morbidity, and sudden infant death syndrome (SIDS). Additionally, recent data provided by clinical and pre-clinical research demonstrates that nicotine exposure during pregnancy may heighten the risk for adverse neurodevelopmental disorders such as Attention-Deficit Hyperactivity (ADHD), anxiety, and depression along with altering the infants underlying brain circuitry, response to neurotransmitters, and brain volume. In the United States, one in 14 women (7.2%) reported to have smoked cigarettes during their pregnancy with the global prevalence of smoking during pregnancy estimated to be 1.7%. Approximately 1.1% of women in the United States also reported to have used e-cigarettes during the last 3 months of pregnancy. Due to the large percentage of women utilizing nicotine products during pregnancy in the United States and globally, this review seeks to centralize pre-clinical and clinical studies focused on the neurobehavioral and neurodevelopmental complications associated with prenatal nicotine exposure (PNE) such as alterations to the hypothalamic-pituitary-adrenal (HPA) axis and brain regions such as the prefrontal cortex (PFC), ventral tegmental area (VTA), nucleus accumbens (NA), hippocampus, and caudate as well as changes to nAChR and cholinergic receptor signaling, long-term drug seeking behavior following PNE, and other related developmental disorders. Current literature analyzing the association between PNE and the risk for offspring developing schizophrenia, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), anxiety, and obesity will also be discussed.
Collapse
Affiliation(s)
- Alicia C Wells
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, Pharmaceutical Sciences, Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Powell SK, Liao W, O’Shea C, Kammourh S, Ghorbani S, Rigat R, Elahi R, Deans PJM, Le DJ, Agarwal P, Seow WQ, Wang KC, Akbarian S, Brennand KJ. Schizophrenia Risk Mapping and Functional Engineering of the 3D Genome in Three Neuronal Subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549339. [PMID: 37502907 PMCID: PMC10370055 DOI: 10.1101/2023.07.17.549339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Common variants associated with schizophrenia are concentrated in non-coding regulatory sequences, but their precise target genes are context-dependent and impacted by cell-type-specific three-dimensional spatial chromatin organization. Here, we map long-range chromosomal conformations in isogenic human dopaminergic, GABAergic, and glutamatergic neurons to track developmentally programmed shifts in the regulatory activity of schizophrenia risk loci. Massive repressive compartmentalization, concomitant with the emergence of hundreds of neuron-specific multi-valent chromatin architectural stripes, occurs during neuronal differentiation, with genes interconnected to genetic risk loci through these long-range chromatin structures differing in their biological roles from genes more proximal to sequences conferring heritable risk. Chemically induced CRISPR-guided chromosomal loop-engineering for the proximal risk gene SNAP91 and distal risk gene BHLHE22 profoundly alters synaptic development and functional activity. Our findings highlight the large-scale cell-type-specific reorganization of chromosomal conformations at schizophrenia risk loci during neurodevelopment and establish a causal link between risk-associated gene-regulatory loop structures and neuronal function.
Collapse
Affiliation(s)
- Samuel K. Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Will Liao
- New York Genome Center, New York, NY, 10029
| | - Callan O’Shea
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Sarah Kammourh
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Sadaf Ghorbani
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Raymond Rigat
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Rahat Elahi
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - PJ Michael Deans
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| | - Derek J. Le
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, 94305, California, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Poonam Agarwal
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Wei Qiang Seow
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, 94305, California, USA
| | - Kevin C. Wang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine, Stanford, 94305, California, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, California, 94304, USA
| | - Schahram Akbarian
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven CT, 06511
| |
Collapse
|
18
|
Betto F, Chiricosta L, Mazzon E. An In Silico Analysis Reveals Sustained Upregulation of Neuroprotective Genes in the Post-Stroke Human Brain. Brain Sci 2023; 13:986. [PMID: 37508918 PMCID: PMC10377198 DOI: 10.3390/brainsci13070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ischemic stroke is a cerebrovascular disease caused by an interruption of blood flow to the brain, thus determining a lack of oxygen and nutrient supply. The ischemic event leads to the activation of several molecular signaling pathways involved in inflammation and the production of reactive oxygen species, causing irreversible neuronal damage. Several studies have focused on the acute phase of ischemic stroke. It is not clear if this traumatic event can influence some of the molecular processes in the affected area even years after the clinical event. In our study, we performed an in silico analysis using freely available raw data with the purpose of evaluating the transcriptomic state of post-mortem brain tissue. The samples were taken from non-fatal ischemic stroke patients, meaning that they suffered an ischemic stroke and lived for a period of about 2 years after the event. These samples were compared with healthy controls. The aim was to evaluate possible recovery processes useful to mitigating neuronal damage and the detrimental consequences of stroke. Our results highlighted differentially expressed genes codifying for proteins along with long non-coding genes with anti-inflammatory and anti-oxidant functions. This suggests that even after an amount of time from the ischemic insult, different neuroprotective mechanisms are activated to ameliorate brain conditions and repair post-stroke neuronal injury.
Collapse
Affiliation(s)
- Federica Betto
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
19
|
Khandelwal A, Cushman J, Choi J, Zhuravka I, Rajbhandari A, Valiulahi P, Li X, Zhou C, Comai L, Reddy S. Mbnl2 loss alters novel context processing and impairs object recognition memory. iScience 2023; 26:106732. [PMID: 37216102 PMCID: PMC10193234 DOI: 10.1016/j.isci.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.
Collapse
Affiliation(s)
- Abinash Khandelwal
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse Cushman
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Irina Zhuravka
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Abha Rajbhandari
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Parvin Valiulahi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiandu Li
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chenyu Zhou
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
20
|
Zhao K, Bai X, Wang X, Cao Y, Zhang L, Li W, Wang S. Insight on the hub gene associated signatures and potential therapeutic agents in epilepsy and glioma. Brain Res Bull 2023; 199:110666. [PMID: 37192718 DOI: 10.1016/j.brainresbull.2023.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 05/13/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The relationship between epilepsy and glioma has long been widely recognized, but the mechanisms of interaction remain unclear. This study aimed to investigate the shared genetic signature and treatment strategies between epilepsy and glioma. METHODS We subjected hippocampal tissue samples from patients with epilepsy and glioma to transcriptomic analysis to identify differential genes and associated pathways, respectively. Weight gene co-expression network (WGCNA) analysis was performed to identify conserved modules in epilepsy and glioma and to obtain differentially expressed conserved genes. Prognostic and diagnostic models were built using lasso regression. We also focused on building transcription factor-gene interaction networks and assessing the proportion of immune invading cells in epilepsy patients. Finally, drug compounds were inferred using a drug signature database (DSigDB) based on core targets. RESULTS We discovered 88 differently conserved genes, most of which are involved in synaptic signaling and calcium ion pathways. We used lasso regression model to reduce 88 characteristic genes, and finally screened out 14 genes (EIF4A2, CEP170B, SNPH, EPHA4, KLK7, GNG3, MYOP, ANKRD29, RASD2, PRRT3, EFR3A, SGIP1, RAB6B, CNNM1) as the features of glioma prognosis model whose ROC curve is 0.9. Then, we developed a diagnosis model for epilepsy patients using 8 genes (PRRT3, RASD2, MYPOP, CNNM1, ANKRD29, GNG3, SGIP1, KLK7) with area under ROC curve (AUC) values near 1. According to the ssGSEA method, we observed an increase in activated B cells, eosinophils, follicular helper T cells and type 2T helper cells, and a decrease in monocytes in patients with epilepsy. Notably, the great majority of these immune cells showed a negative correlation with hub genes. To reveal the transcriptional-level regulation mechanism, we also built a TF-gene network. In addition, we discovered that patients with glioma-related epilepsy may benefit more from gabapentin and pregabalin. CONCLUSION This study reveals the modular conserved phenotypes of epilepsy and glioma and constructs effective diagnostic and prognostic markers. It provides new biological targets and ideas for the early diagnosis and effective treatment of epilepsy.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Brain Trauma and Neurology, Pingjin Hospital, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin, 300000, China
| | - Xuexue Bai
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Xiao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Yiyao Cao
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Shiyong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
21
|
Li Z, Qi Y, Li Z, Chen S, Geng H, Han J, Wang J, Wang Z, Lei S, Huang B, Li G, Li X, Wu S, Ni S. Nervous tract-bioinspired multi-nanoyarn model system regulating neural differentiation and its transcriptional architecture at single-cell resolution. Biomaterials 2023; 298:122146. [PMID: 37149989 DOI: 10.1016/j.biomaterials.2023.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Bioinspired by native nervous tracts, a spinal cord-mimicking model system that was composed of multiple nanofibrous yarns (NYs) ensheathed in a nanofibrous tube was constructed by an innovative electrospinning-based fabrication and integration strategy. The infilling NYs exhibited uniaxially aligned nanofibrous architecture that had a great resemblance to spatially-arranged native nervous tracts, while the outer nanofibrous tubes functioned as an artificial dura matter to provide a stable intraluminal microenvironment. The three-dimensional (3D) NYs were demonstrated to induce alignment, facilitate migration, promote neuronal differentiation, and even phenotypic maturation of seeded neural stem and progenitor cells (NSPCs), while inhibiting gliogenesis. Single-cell transcriptome analysis showed that the NSPC-loaded 3D NY model shared many similarities with native spinal cords, with a great increase in excitatory/inhibitory (EI) neuron ratio. Curcumin, as a model drug, was encapsulated into nanofibers of NYs to exert an antioxidant effect and enhanced axon regeneration. Overall, this study provides a new paradigm for the development of a next-generation in vitro neuronal model system via anatomically accurate nervous tract simulation and constructs a blueprint for the research on NSPC diversification in the biomimetic microenvironment.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Zheng Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jinming Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jiahao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Zhaoqing Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Sun Lei
- Department of Endocrinology, Qilu Hospital of Shandong University and Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China.
| |
Collapse
|
22
|
Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H, Lang C, Dai Y, Peng X. BHLHE22 drives the immunosuppressive bone tumor microenvironment and associated bone metastasis in prostate cancer. J Immunother Cancer 2023; 11:jitc-2022-005532. [PMID: 36941015 PMCID: PMC10030795 DOI: 10.1136/jitc-2022-005532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME. METHODS In this study, the function of BHLHE22 in PCa bone metastases was clarified. We performed immunohistochemical (IHC) staining of primary and bone metastatic PCa samples, and assessed the ability to promote bone metastasis in vivo and in vitro. Then, the role of BHLHE22 in bone TME was determined by immunofluorescence (IF), flow cytometry, and bioinformatic analyses. RNA sequencing, cytokine array, western blotting, IF, IHC, and flow cytometry were used to identify the key mediators. Subsequently, the role of BHLHE22 in gene regulation was confirmed using luciferase reporter, chromatin immunoprecipitation assay, DNA pulldown, co-immunoprecipitation, and animal experiments. Xenograft bone metastasis mouse models were used to assess whether the strategy of immunosuppressive neutrophils and monocytes neutralization by targeting protein arginine methyltransferase 5 (PRMT5)/colony stimulating factor 2 (CSF2) could improve the efficacy of ICT. Animals were randomly assigned to treatment or control groups. Moreover, we performed IHC and correlation analyses to identify whether BHLHE22 could act as a potential biomarker for ICT combination therapies in bone metastatic PCa. RESULTS Tumorous BHLHE22 mediates the high expression of CSF2, resulting in the infiltration of immunosuppressive neutrophils and monocytes and a prolonged immunocompromised T-cell status. Mechanistically, BHLHE22 binds to the CSF2 promoter and recruits PRMT5, forming a transcriptional complex. PRMT5 epigenetically activates CSF2 expression. In a tumor-bearing mouse model, ICT resistance of Bhlhe22+ tumors could be overcome by inhibition of Csf2 and Prmt5. CONCLUSIONS These results reveal the immunosuppressive mechanism of tumorous BHLHE22 and provide a potential ICT combination therapy for patients with BHLHE22+ PCa.
Collapse
Affiliation(s)
- Chi Yin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Min Wang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qijun Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Kaiyuan Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hong Du
- Department of Pathology, the First People's Hospital of Guangzhou City, Guangzhou, Guangdong, China
| | - Chuandong Lang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
24
|
Koshy A, Mathieux E, Stüder F, Bramoulle A, Lieb M, Colombo BM, Gronemeyer H, Mendoza-Parra MA. Synergistic activation of RARβ and RARγ nuclear receptors restores cell specialization during stem cell differentiation by hijacking RARα-controlled programs. Life Sci Alliance 2023; 6:6/2/e202201627. [PMID: 36446525 PMCID: PMC9711859 DOI: 10.26508/lsa.202201627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
How cells respond to different external cues to develop along defined cell lineages to form complex tissues is a major question in systems biology. Here, we investigated the potential of retinoic acid receptor (RAR)-selective synthetic agonists to activate the gene regulatory programs driving cell specialization during nervous tissue formation from embryonic carcinoma (P19) and mouse embryonic (E14) stem cells. Specifically, we found that the synergistic activation of the RARβ and RARγ by selective ligands (BMS641 or BMS961) induces cell maturation to specialized neuronal subtypes, and to astrocytes and oligodendrocyte precursors. Using RAR isotype knockout lines exposed to RAR-specific agonists, interrogated by global transcriptome landscaping and in silico modeling of transcription regulatory signal propagation, revealed major RARα-driven gene programs essential for optimal neuronal cell specialization and hijacked by the synergistic activation of the RARβ and RARγ receptors. Overall, this study provides a systems biology view of the gene programs accounting for the previously observed redundancy between RARs, paving the way toward their potential use for directing cell specialization during nervous tissue formation.
Collapse
Affiliation(s)
- Aysis Koshy
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Elodie Mathieux
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - François Stüder
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Aude Bramoulle
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Michele Lieb
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Bruno Maria Colombo
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Marco Antonio Mendoza-Parra
- UMR 8030 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry-val-d'Essonne, University Paris-Saclay, Évry, France
| |
Collapse
|
25
|
Du A, Zhao F, Liu Y, Xu L, Chen K, Sun D, Han B. Genetic polymorphisms of PKLR gene and their associations with milk production traits in Chinese Holstein cows. Front Genet 2022; 13:1002706. [PMID: 36118870 PMCID: PMC9479125 DOI: 10.3389/fgene.2022.1002706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Our previous work had confirmed that pyruvate kinase L/R (PKLR) gene was expressed differently in different lactation periods of dairy cattle, and participated in lipid metabolism through insulin, PI3K-Akt, MAPK, AMPK, mTOR, and PPAR signaling pathways, suggesting that PKLR is a candidate gene to affect milk production traits in dairy cattle. Here, we verified whether this gene has significant genetic association with milk yield and composition traits in a Chinese Holstein cow population. In total, we identified 21 single nucleotide polymorphisms (SNPs) by resequencing the entire coding region and partial flanking region of PKLR gene, in which, two SNPs were located in 5′ promoter region, two in 5′ untranslated region (UTR), three in introns, five in exons, six in 3′ UTR and three in 3′ flanking region. The single marker association analysis displayed that all SNPs were significantly associated with milk yield, fat and protein yields or protein percentage (p ≤ 0.0497). The haplotype block containing all the SNPs, predicted by Haploview, had a significant association with fat yield and protein percentage (p ≤ 0.0145). Further, four SNPs in 5′ regulatory region and eight SNPs in UTR and exon regions were predicted to change the transcription factor binding sites (TFBSs) and mRNA secondary structure, respectively, thus affecting the expression of PKLR, leading to changes in milk production phenotypes, suggesting that these SNPs might be the potential functional mutations for milk production traits in dairy cattle. In conclusion, we demonstrated that PKLR had significant genetic effects on milk production traits, and the SNPs with significant genetic effects could be used as candidate genetic markers for genomic selection (GS) in dairy cattle.
Collapse
Affiliation(s)
- Aixia Du
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yanan Liu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingna Xu
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kewei Chen
- Yantai Institute, China Agricultural University, Yantai, China
| | - Dongxiao Sun
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bo Han
- National Engineering Laboratory of Animal Breeding, Key Laboratory of Animal Genetics, Department of Animal Genetics and Breeding, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Bo Han, /
| |
Collapse
|
26
|
BHLHE22 Expression Is Associated with a Proinflammatory Immune Microenvironment and Confers a Favorable Prognosis in Endometrial Cancer. Int J Mol Sci 2022; 23:ijms23137158. [PMID: 35806162 PMCID: PMC9266305 DOI: 10.3390/ijms23137158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer (EC) rates are rising annually. Additional prediction markers need to be evaluated because only 10–20% of EC cases show an objective response to immune-checkpoint inhibitors (ICIs). Our previous methylomic study found that BHLHE22 is hypermethylated in EC tissues and can be detected using a Pap-smear sample. BHLHE22, a basic helix loop helix transcription factor family member, is known as a transcriptional repressor and is involved in cell differentiation. However, the role of BHLHE22 in EC remains poorly understood. Herein, we analyzed BHLHE22 expression in 54 paired cancer and normal endometrial tissue samples, and confirmed with databases (TCGA, GTEx, and human protein atlas). We found that BHLHE22 protein expression was significantly downregulated in EC compared with normal endometrium. High BHLHE22 expression was associated with microsatellite-instable subtype, endometrioid type, grade, and age. It showed a significant favorable survival. BHLHE22 overexpression inhibited the proliferation and migration of EC cells. Functional enrichment analysis showed that BHLHE22 was significantly associated with immune-related pathways. Furthermore, BHLHE22 was positively correlated with proinflammatory leukocyte infiltration and expression of chemokine genes in EC. In conclusion, BHLHE22 regulates immune-related pathways and modulates the immune microenvironment of EC.
Collapse
|
27
|
Davarzani A, Shahrokhi A, Hashemi SS, Ghasemi A, Habibi Kavashkohei MR, Farboodi N, Lang AE, Ghiasi M, Rohani M, Alavi A. The second family affected with a PRDM8-related disease. Neurol Sci 2022; 43:3847-3855. [DOI: 10.1007/s10072-021-05815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
|
28
|
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82:375-391. [PMID: 35606902 PMCID: PMC9540770 DOI: 10.1002/dneu.22882] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/30/2022]
Abstract
Ectopic expression of a single neural transcription factor NeuroD1 can reprogram reactive glial cells into functional neurons both in vitro and in vivo, but the underlying mechanisms are not well understood yet. Here, we used RNA-sequencing technology to capture the transcriptomic changes at different time points during the reprogramming process. We found that following NeuroD1 overexpression, astroglial genes (ACTG1, ALDH1A3, EMP1, CLDN6, SOX21) were significantly downregulated, whereas neuronal genes (DCX, RBFOX3/NeuN, CUX2, RELN, SNAP25) were significantly upregulated. NeuroD family members (NeuroD1/2/6) and signaling pathways (Wnt, MAPK, cAMP) as well as neurotransmitter receptors (acetylcholine, somatostatin, dopamine) were also significantly upregulated. Gene co-expression analysis identified many central genes among the NeuroD1-interacting network, including CABP7, KIAA1456, SSTR2, GADD45G, LRRTM2, and INSM1. Compared to chemical conversion, we found that NeuroD1 acted as a strong driving force and triggered fast transcriptomic changes during astrocyte-to-neuron conversion process. Together, this study reveals many important downstream targets of NeuroD1 such as HES6, BHLHE22, INSM1, CHRNA1/3, CABP7, and SSTR2, which may play critical roles during the transcriptomic landscape shift from a glial profile to a neuronal profile.
Collapse
Affiliation(s)
- Ning-Xin Ma
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Puls
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.,GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Slota JA, Medina SJ, Frost KL, Booth SA. Neurons and Astrocytes Elicit Brain Region Specific Transcriptional Responses to Prion Disease in the Murine CA1 and Thalamus. Front Neurosci 2022; 16:918811. [PMID: 35651626 PMCID: PMC9149297 DOI: 10.3389/fnins.2022.918811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023] Open
Abstract
Progressive dysfunction and loss of neurons ultimately culminates in the symptoms and eventual fatality of prion disease, yet the pathways and mechanisms that lead to neuronal degeneration remain elusive. Here, we used RNAseq to profile transcriptional changes in microdissected CA1 and thalamus brain tissues from prion infected mice. Numerous transcripts were altered during clinical disease, whereas very few transcripts were reliably altered at pre-clinical time points. Prion altered transcripts were assigned to broadly defined brain cell types and we noted a strong transcriptional signature that was affiliated with reactive microglia and astrocytes. While very few neuronal transcripts were common between the CA1 and thalamus, we described transcriptional changes in both regions that were related to synaptic dysfunction. Using transcriptional profiling to compare how different neuronal populations respond during prion disease may help decipher mechanisms that lead to neuronal demise and should be investigated with greater detail.
Collapse
Affiliation(s)
- Jessy A. Slota
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sarah J. Medina
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kathy L. Frost
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stephanie A. Booth
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
30
|
Coolen M, Altin N, Rajamani K, Pereira E, Siquier-Pernet K, Puig Lombardi E, Moreno N, Barcia G, Yvert M, Laquerrière A, Pouliet A, Nitschké P, Boddaert N, Rausell A, Razavi F, Afenjar A, Billette de Villemeur T, Al-Maawali A, Al-Thihli K, Baptista J, Beleza-Meireles A, Garel C, Legendre M, Gelot A, Burglen L, Moutton S, Cantagrel V. Recessive PRDM13 mutations cause fatal perinatal brainstem dysfunction with cerebellar hypoplasia and disrupt Purkinje cell differentiation. Am J Hum Genet 2022; 109:909-927. [PMID: 35390279 DOI: 10.1016/j.ajhg.2022.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.
Collapse
Affiliation(s)
- Marion Coolen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| | - Nami Altin
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karthyayani Rajamani
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Eva Pereira
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Karine Siquier-Pernet
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Emilia Puig Lombardi
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nadjeda Moreno
- HDBR Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Giulia Barcia
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Département de Génétique Médicale, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Marianne Yvert
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Annie Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245; Rouen University Hospital, Department of Pathology, Normandy Centre for Genomic and Personalized Medicine, Rouen 76183, France
| | - Aurore Pouliet
- Université Paris Cité, Genomics Platform, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Patrick Nitschké
- Université Paris Cité, Bioinformatics Core Facility, Imagine Institute, INSERM UMR 1163, Paris 75015, France
| | - Nathalie Boddaert
- Département de Radiologie Pédiatrique, INSERM UMR 1163 and INSERM U1299, Institut Imagine, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Antonio Rausell
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory and Molecular Genetics Service, Service de Médecine Génomique des Maladies Rares, AP-HP, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Féréchté Razavi
- Unité d'Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, AP-HP, Paris 75015, France
| | - Alexandra Afenjar
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Thierry Billette de Villemeur
- Sorbonne Université, Service de Neuropédiatrie - Pathologie du Développement, Centre de Référence Déficiences Intellectuelles de Causes Rares et Polyhandicap, Hôpital Trousseau AP-HP, Paris 75012, France
| | - Almundher Al-Maawali
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Khalid Al-Thihli
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital, Muscat 123, Oman
| | - Julia Baptista
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL6 8BT, UK
| | - Ana Beleza-Meireles
- Clinical Genetics Department, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Catherine Garel
- Service de Radiologie Pédiatrique, Hôpital Armand-Trousseau, Médecine Sorbonne Université, AP-HP, Paris 75012, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU Bordeaux, Pellegrin Hospital, Bordeaux 33300, France
| | - Antoinette Gelot
- Neuropathology, Department of Pathology, Trousseau Hospital, AP-HP, Paris 75012, France; INMED, Aix-Marseille University, INSERM UMR 1249, Marseille 13009, France
| | - Lydie Burglen
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France; Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique, AP-HP, Sorbonne Université, Hôpital Trousseau, Paris 75012, France
| | - Sébastien Moutton
- Centre Pluridisciplinaire de Diagnostic Prénatal, Pôle Mère Enfant, Maison de Santé Protestante Bordeaux Bagatelle, Talence 33400, France
| | - Vincent Cantagrel
- Université Paris Cité, Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris 75015, France.
| |
Collapse
|
31
|
Hupalo D, Forsberg CW, Goldberg J, Kremen WS, Lyons MJ, Soltis AR, Viollet C, Ursano RJ, Stein MB, Franz CE, Sun YV, Vaccarino V, Smith NL, Dalgard CL, Wilkerson MD, Pollard HB. Rare variant association study of veteran twin whole-genomes links severe depression with a nonsynonymous change in the neuronal gene BHLHE22. World J Biol Psychiatry 2022; 23:295-306. [PMID: 34664540 PMCID: PMC9148382 DOI: 10.1080/15622975.2021.1980316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Major Depressive Disorder (MDD) is a complex neuropsychiatric disease with known genetic associations, but without known links to rare variation in the human genome. Here we aim to identify rare genetic variants associated with MDD using deep whole-genome sequencing data in an independent population. METHODS We report the sequencing of 1,688 whole genomes in a large sample of male-male Veteran twins. Depression status was classified based on a structured diagnostic interview according to DSM-III-R diagnostic criteria. Searching only rare variants in genomic regions from recent GWAS on MDD, we used the optimised sequence kernel association test and Fisher's Exact test to fine map loci associated with severe depression. RESULTS Our analysis identified one gene associated with severe depression, basic helix loop helix e22 (PAdjusted = 0.03) via SKAT-O test between unrelated severely depressed cases compared to unrelated non-depressed controls. The same gene BHLHE22 had a non-silent variant rs13279074 (PAdjusted = 0.032) based on a single variant Fisher's Exact test between unrelated severely depressed cases compared to unrelated non-depressed controls. CONCLUSION The gene BHLHE22 shows compelling genetic evidence of directly impacting the severe depression phenotype. Together these results advance understanding of the genetic contribution to major depressive disorder in a new cohort and link a rare variant to severe forms of the disorder.
Collapse
Affiliation(s)
- Daniel Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Christopher W. Forsberg
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, U.S. Department of Veteran Affairs, Seattle, WA, USA
| | - Jack Goldberg
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, U.S. Department of Veteran Affairs, Seattle, WA, USA;,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - William S. Kremen
- Department of Psychiatry and of Family Medicine & Public Health, University of California, La Jolla, CA, USA;,VA San Diego Center of Excellence for Stress and Mental Health, San Diego, CA, USA
| | - Michael J. Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Anthony R. Soltis
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Coralie Viollet
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Robert J. Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Murray B. Stein
- Department of Psychiatry and of Family Medicine & Public Health, University of California, La Jolla, CA, USA
| | - Carol E. Franz
- Department of Psychiatry and of Family Medicine & Public Health, University of California, La Jolla, CA, USA
| | - Yan V. Sun
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Emory University, Atlanta, GA, USA
| | - Nicholas L. Smith
- Seattle Epidemiologic Research and Information Center, Office of Research and Development, U.S. Department of Veteran Affairs, Seattle, WA, USA;,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Clifton L. Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA;,Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Matthew D. Wilkerson
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA;,Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Harvey B. Pollard
- The American Genome Center, Collaborative Health Initiative Research Program, and Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA;,Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
32
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
33
|
Rienzo M, Di Zazzo E, Casamassimi A, Gazzerro P, Perini G, Bifulco M, Abbondanza C. PRDM12 in Health and Diseases. Int J Mol Sci 2021; 22:ijms222112030. [PMID: 34769459 PMCID: PMC8585061 DOI: 10.3390/ijms222112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
PRDM12 is a member of the PRDI-BF1 (positive regulatory domain I-binding factor 1) homologous domain (PRDM)-containing protein family, a subfamily of Kruppel-like zinc finger proteins, controlling key processes in the development of cancer. PRDM12 is expressed in a spatio-temporal manner in neuronal systems where it exerts multiple functions. PRDM12 is essential for the neurogenesis initiation and activation of a cascade of downstream pro-neuronal transcription factors in the nociceptive lineage. PRDM12 inactivation, indeed, results in a complete absence of the nociceptive lineage, which is essential for pain perception. Additionally, PRDM12 contributes to the early establishment of anorexigenic neuron identity and the maintenance of high expression levels of pro-opiomelanocortin, which impacts on the program bodyweight homeostasis. PRDMs are commonly involved in cancer, where they act as oncogenes/tumor suppressors in a “Yin and Yang” manner. PRDM12 is not usually expressed in adult normal tissues but its expression is re-activated in several cancer types. However, little information is currently available on PRDM12 expression in cancers and its mechanism of action has not been thoroughly described. In this review, we summarize the recent findings regarding PRDM12 by focusing on four main biological processes: neurogenesis, pain perception, oncogenesis and cell metabolism. Moreover, we wish to highlight the importance of future studies focusing on the PRDM12 signaling pathway(s) and its role in cancer onset and progression.
Collapse
Affiliation(s)
- Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
- Correspondence:
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Salerno, Italy;
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy;
| |
Collapse
|
34
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
36
|
Aviel-Shekler K, Hamshawi Y, Sirhan W, Getselter D, Srikanth KD, Malka A, Piran R, Elliott E. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl Psychiatry 2020; 10:412. [PMID: 33239620 PMCID: PMC7688640 DOI: 10.1038/s41398-020-01096-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
The etiology of Autism Spectrum Disorders (ASD) includes a strong genetic component and a complicated environmental component. Recent evidence indicates that maternal diabetes, including gestational diabetes, is associated with an increased prevalence of ASD. While previous studies have looked into possible roles for maternal diabetes in neurodevelopment, there are few studies into how gestational diabetes, with no previous diabetic or metabolic phenotype, may affect neurodevelopment. In this study, we have specifically induced gestational diabetes in mice, followed by behavioral and molecular phenotyping of the mice offspring. Pregnant mice were injected with STZ a day after initiation of pregnancy. Glucose levels increased to diabetic levels between E7 and E14 in pregnancy in a subset of the pregnant animals. Male offspring of Gestational Diabetic mothers displayed increased repetitive behaviors with no dysregulation in the three-chambered social interaction test. RNA-seq analysis revealed a dysregulation in genes related to forebrain development in the frontal cortex and a dysregulation of a network of neurodevelopment and immune related genes in the striatum. Together, these results give evidence that gestational diabetes can induce changes in adulthood behavior and gene transcription in the brain.
Collapse
Affiliation(s)
- Keren Aviel-Shekler
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Yara Hamshawi
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Worood Sirhan
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dmitriy Getselter
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Kolluru D. Srikanth
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Assaf Malka
- grid.22098.310000 0004 1937 0503Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ron Piran
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| | - Evan Elliott
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
37
|
Turrero García M, Baizabal JM, Tran DN, Peixoto R, Wang W, Xie Y, Adam MA, English LA, Reid CM, Brito SI, Booker MA, Tolstorukov MY, Harwell CC. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production. Development 2020; 147:dev187526. [PMID: 33060132 PMCID: PMC7687860 DOI: 10.1242/dev.187526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 10/05/2020] [Indexed: 11/20/2022]
Abstract
The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.
Collapse
Affiliation(s)
| | | | - Diana N Tran
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Peixoto
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Wengang Wang
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yajun Xie
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren A English
- Summer Honors Undergraduate Research Program, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador I Brito
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Rahman MM, Kim IS, Ahn D, Tae HJ, Park BY. PR domaincontaining protein 12 (prdm12) is a downstream target of the transcription factor zic1 during cellular differentiation in the central nervous system: PR domain containing protein is the right form. Int J Dev Neurosci 2020; 80:528-537. [PMID: 32640092 DOI: 10.1002/jdn.10048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 11/05/2022] Open
Abstract
Transcription factor zic1 is an important regulator of neural plate patterning, formation of neural crest and cerebellar development, where its main function is neuronal cell differentiation. Among the genes identified, PR domain-containing 12 (prdm12) is a member of the prdm family and is expressed in the placode domain in the neurula stage. prdm12 is distinctly expressed in the dorsal part of the midbrain, trigeminal ganglion, and the motor neuron in the spinal cord. prdm12 knockdown results in the ventralization of the neural tube. zic1 knockdown results in the reduction of prdm12 expression in the midbrain, motor neuron and trigeminal ganglion, and overexpression of zic1 results in the expansion of prdm12 expression in the midbrain. zic1-activated wnt signaling is also a regulator of prdm12 expression in the midbrain. We propose that prdm12 is the downstream of zic1 and a novel player in the gene regulatory network controlling brain cell differentiation, along with some ganglions in Xenopus.
Collapse
Affiliation(s)
- Md Mahfujur Rahman
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea.,Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - In-Shik Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
39
|
Scott K, O'Rourke R, Gillen A, Appel B. Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response. Development 2020; 147:dev191023. [PMID: 32680935 PMCID: PMC7473643 DOI: 10.1242/dev.191023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express prdm8, which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether prdm8 controls pMN cell fate specification, we used zebrafish as a model system to investigate prdm8 function. Our analysis revealed that prdm8 mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, prdm8 mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Austin Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA
| |
Collapse
|
40
|
Cypris O, Eipel M, Franzen J, Rösseler C, Tharmapalan V, Kuo CC, Vieri M, Nikolić M, Kirschner M, Brümmendorf TH, Zenke M, Lampert A, Beier F, Wagner W. PRDM8 reveals aberrant DNA methylation in aging syndromes and is relevant for hematopoietic and neuronal differentiation. Clin Epigenetics 2020; 12:125. [PMID: 32819411 PMCID: PMC7439574 DOI: 10.1186/s13148-020-00914-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DKC) and idiopathic aplastic anemia (AA) are bone marrow failure syndromes that share characteristics of premature aging with severe telomere attrition. Aging is also reflected by DNA methylation changes, which can be utilized to predict donor age. There is evidence that such epigenetic age predictions are accelerated in premature aging syndromes, but it is yet unclear how this is related to telomere length. DNA methylation analysis may support diagnosis of DKC and AA, which still remains a challenge for these rare diseases. RESULTS In this study, we analyzed blood samples of 70 AA and 18 DKC patients to demonstrate that their epigenetic age predictions are overall increased, albeit not directly correlated with telomere length. Aberrant DNA methylation was observed in the gene PRDM8 in DKC and AA as well as in other diseases with premature aging phenotype, such as Down syndrome and Hutchinson-Gilford-Progeria syndrome. Aberrant DNA methylation patterns were particularly found within subsets of cell populations in DKC and AA samples as measured with barcoded bisulfite amplicon sequencing (BBA-seq). To gain insight into the functional relevance of PRDM8, we used CRISPR/Cas9 technology to generate induced pluripotent stem cells (iPSCs) with heterozygous and homozygous knockout. Loss of PRDM8 impaired hematopoietic and neuronal differentiation of iPSCs, even in the heterozygous knockout clone, but it did not impact on epigenetic age. CONCLUSION Taken together, our results demonstrate that epigenetic aging is accelerated in DKC and AA, independent from telomere attrition. Furthermore, aberrant DNA methylation in PRDM8 provides another biomarker for bone marrow failure syndromes and modulation of this gene in cellular subsets may be related to the hematopoietic and neuronal phenotypes observed in premature aging syndromes.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Monika Eipel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Chao-Chung Kuo
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Miloš Nikolić
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstrasse 20, Aachen, Germany
- Institute for Biomedical Engineering – Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
41
|
Ramzan M, Bashir R, Salman M, Mujtaba G, Sobreira N, Witmer PD, Naz S. Spectrum of genetic variants in moderate to severe sporadic hearing loss in Pakistan. Sci Rep 2020; 10:11902. [PMID: 32681043 PMCID: PMC7368073 DOI: 10.1038/s41598-020-68779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Hearing loss affects 380 million people worldwide due to environmental or genetic causes. Determining the cause of deafness in individuals without previous family history of hearing loss is challenging and has been relatively unexplored in Pakistan. We investigated the spectrum of genetic variants in hearing loss in a cohort of singleton affected individuals born to consanguineous parents. Twenty-one individuals with moderate to severe hearing loss were recruited. We performed whole-exome sequencing on DNA samples from the participants, which identified seventeen variants in ten known deafness genes and one novel candidate gene. All identified variants were homozygous except for two. Eleven of the variants were novel, including one multi-exonic homozygous deletion in OTOA. A missense variant in ESRRB was implicated for recessively inherited moderate to severe hearing loss. Two individuals were heterozygous for variants in MYO7A and CHD7, respectively, consistent with de novo variants or dominant inheritance with incomplete penetrance as the reason for their hearing loss. Our results indicate that similar to familial cases of deafness, variants in a large number of genes are responsible for moderate to severe hearing loss in sporadic individuals born to consanguineous couples.
Collapse
Affiliation(s)
- Memoona Ramzan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan
| | - Rasheeda Bashir
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Midhat Salman
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Virtual University of Pakistan, Lahore, Pakistan
| | - Ghulam Mujtaba
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.,Institute of Nuclear Medicine and Oncology (INMOL), Lahore, Pakistan
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Genomics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam campus, Lahore, 54590, Pakistan.
| |
Collapse
|
42
|
Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G, Yan W, Adiconis X, Arnold ME, Lee JM, Levin JZ, Lin D, Wang C, Lieber CM, Regev A, He Z, Sanes JR. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019; 104:1039-1055.e12. [PMID: 31784286 PMCID: PMC6923571 DOI: 10.1016/j.neuron.2019.11.006] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
Neuronal types in the central nervous system differ dramatically in their resilience to injury or other insults. Here we studied the selective resilience of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC), which severs their axons and leads to death of ∼80% of RGCs within 2 weeks. To identify expression programs associated with differential resilience, we first used single-cell RNA-seq (scRNA-seq) to generate a comprehensive molecular atlas of 46 RGC types in adult retina. We then tracked their survival after ONC; characterized transcriptomic, physiological, and morphological changes that preceded degeneration; and identified genes selectively expressed by each type. Finally, using loss- and gain-of-function assays in vivo, we showed that manipulating some of these genes improved neuronal survival and axon regeneration following ONC. This study provides a systematic framework for parsing type-specific responses to injury and demonstrates that differential gene expression can be used to reveal molecular targets for intervention.
Collapse
Affiliation(s)
- Nicholas M Tran
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karthik Shekhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Irene E Whitney
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Anne Jacobi
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Inbal Benhar
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Material Science and Engineering and Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xian Adiconis
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - McKinzie E Arnold
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jung Min Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua Z Levin
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dingchang Lin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Aviv Regev
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA and Department of Biology and Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
43
|
Genetic Susceptibility to Hepatic Sinusoidal Obstruction Syndrome in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 26:920-927. [PMID: 31790828 DOI: 10.1016/j.bbmt.2019.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Sinusoidal obstruction syndrome (SOS) is a well-recognized and potentially life-threatening complication of hematopoietic stem cell transplantation (HSCT). SOS arises from endothelial cell damage and hepatocellular injury mostly due to the transplantation conditioning regimens but also to other patient, disease, and treatment-related factors. Understanding risk factors associated with the development of SOS is critical for early initiation of treatment or prophylaxis. The knowledge about genetic contribution is limited; few studies investigated so far selected a set of genes. To get more comprehensive insight in the genetic component, we performed an exome-wide association study using genetic variants derived from whole-exome sequencing. The analyses were performed in a discovery cohort composed of 87 pediatric patients undergoing HSCT following a busulfan-containing conditioning regimen. Eight lead single-nucleotide polymorphisms (SNPs) were identified after correction for multiple testing and subsequently analyzed in a validation cohort (n = 182). Three SNPs were successfully replicated, including rs17146905 (P = .001), rs16931326 (P = .04), and rs2289971 (P = .03), located respectively in the UGT2B10, BHLHE22, and KIAA1715 genes. UGT2B10 and KIAA1715 were retained in a multivariable model while controlling for nongenetic covariates and previously identified risk variants in the GSTA1 promoter. The modulation of associations by conditioning regimens was noted; KIAA1715 was dependent on the intensity of the conditioning regimen, whereas the effect of UGT2B10 was equally applicable to all of them. Combined effect of associated loci was also observed (P = .00006) with a genotype-related SOS risk of 9.8. To our knowledge, this is the first study addressing the genetic component of SOS at an exome-wide level and identifying novel genetic variations conferring a higher risk of SOS, which might be useful for personalized prevention and treatment strategies.
Collapse
|
44
|
Hahn MA, Jin SG, Li AX, Liu J, Huang Z, Wu X, Kim BW, Johnson J, Bilbao ADV, Tao S, Yim JA, Fong Y, Goebbels S, Schwab MH, Lu Q, Pfeifer GP. Reprogramming of DNA methylation at NEUROD2-bound sequences during cortical neuron differentiation. SCIENCE ADVANCES 2019; 5:eaax0080. [PMID: 31681843 PMCID: PMC6810389 DOI: 10.1126/sciadv.aax0080] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/13/2019] [Indexed: 05/03/2023]
Abstract
The characteristics of DNA methylation changes that occur during neurogenesis in vivo remain unknown. We used whole-genome bisulfite sequencing to quantitate DNA cytosine modifications in differentiating neurons and their progenitors isolated from mouse brain at the peak of embryonic neurogenesis. Localized DNA hypomethylation was much more common than hypermethylation and often occurred at putative enhancers within genes that were upregulated in neurons and encoded proteins crucial for neuronal differentiation. The hypomethylated regions strongly overlapped with mapped binding sites of the key neuronal transcription factor NEUROD2. The 5-methylcytosine oxidase ten-eleven translocation 2 (TET2) interacted with NEUROD2, and its reaction product 5-hydroxymethylcytosine accumulated at the demethylated regions. NEUROD2-targeted differentially methylated regions retained higher methylation levels in Neurod2 knockout mice, and inducible expression of NEUROD2 caused TET2-associated demethylation at its in vivo binding sites. The data suggest that the reorganization of DNA methylation in developing neurons involves NEUROD2 and TET2-mediated DNA demethylation.
Collapse
Affiliation(s)
- Maria A. Hahn
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Seung-Gi Jin
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Arthur X. Li
- Department of Information Sciences, City of Hope, Duarte, CA 91010
| | - Jiancheng Liu
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
| | - Zhijun Huang
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Byung-Wook Kim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Jennifer Johnson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | - Shu Tao
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA
| | - Jacob A. Yim
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, CA 91010, USA
| | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, D-37075 Göttingen, Germany
| | - Markus H. Schwab
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, D-37075 Göttingen, Germany
- Cellular Neurophysiology and Center for Systems Neuroscience (ZSN), Hannover Medical School, 30625 Hannover, Germany
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, City of Hope, Duarte, CA 91010, USA
- Corresponding author. (G.P.P.); (Q.L.)
| | - Gerd P. Pfeifer
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
- Corresponding author. (G.P.P.); (Q.L.)
| |
Collapse
|
45
|
In vivo epigenetic editing of Sema6a promoter reverses transcallosal dysconnectivity caused by C11orf46/Arl14ep risk gene. Nat Commun 2019; 10:4112. [PMID: 31511512 PMCID: PMC6739341 DOI: 10.1038/s41467-019-12013-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Many neuropsychiatric risk genes contribute to epigenetic regulation but little is known about specific chromatin-associated mechanisms governing the formation of neuronal connectivity. Here we show that transcallosal connectivity is critically dependent on C11orf46, a nuclear protein encoded in the chromosome 11p13 WAGR risk locus. C11orf46 haploinsufficiency was associated with hypoplasia of the corpus callosum. C11orf46 knockdown disrupted transcallosal projections and was rescued by wild type C11orf46 but not the C11orf46R236H mutant associated with intellectual disability. Multiple genes encoding key regulators of axonal development, including Sema6a, were hyperexpressed in C11orf46-knockdown neurons. RNA-guided epigenetic editing of Sema6a gene promoters via a dCas9-SunTag system with C11orf46 binding normalized SEMA6A expression and rescued transcallosal dysconnectivity via repressive chromatin remodeling by the SETDB1 repressor complex. Our study demonstrates that interhemispheric communication is sensitive to locus-specific remodeling of neuronal chromatin, revealing the therapeutic potential for shaping the brain's connectome via gene-targeted designer activators and repressor proteins.
Collapse
|
46
|
Neuronal diversity in the somatosensory system: bridging the gap between cell type and function. Curr Opin Neurobiol 2019; 56:167-174. [PMID: 30953870 DOI: 10.1016/j.conb.2019.03.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
A recent flurry of genetic studies in mice have provided key insights into how the somatosensory system is organized at a cellular level to encode itch, pain, temperature, and touch. These studies are largely predicated on the idea that functional cell types can be identified by their unique developmental provenance and gene expression profile. However, the extent to which gene expression profiles can be correlated with functional cell types and circuit organization remains an open question. In this review, we focus on recent progress in characterizing the sensory afferent and dorsal horn neuron cell types that process cutaneous somatosensory information and ongoing circuit studies that are beginning to bridge the divide between cell type and function.
Collapse
|
47
|
Yaw AM, Prosser RA, Jones PC, Garcia BJ, Jacobson DA, Glass JD. Epigenetic effects of paternal cocaine on reward stimulus behavior and accumbens gene expression in mice. Behav Brain Res 2019; 367:68-81. [PMID: 30910707 DOI: 10.1016/j.bbr.2019.02.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Paternal cocaine use causes phenotypic alterations in offspring behavior and associated neural processing. In rodents, changes in first generation (F1) offspring include drug reward behavior, circadian timing, and anxiety responses. This study, utilizing a murine (C57BL/6J) oral cocaine model, examines the effects of paternal cocaine exposure on fundamental characteristics of offspring reward responses, including: 1) the extent of cocaine-induced effects after different durations of sire drug withdrawal; 2) sex- and drug-dependent differences in F1 reward preference; 3) effects on second generation (F2) cocaine preference; and 4) corresponding changes in reward area (nucleus accumbens) mRNA expression. We demonstrate that paternal cocaine intake over a single ˜40-day spermatogenic cycle significantly decreased cocaine (but not ethanol or sucrose) preference in a sex-specific manner in F1 mice from sires mated 24 h after drug withdrawal. However, F1 offspring of sires bred 4 months after withdrawal did not exhibit altered cocaine preference. Altered cocaine preference also was not observed in F2's. RNASeq analyses of F1 accumbens tissue revealed changes in gene expression in male offspring of cocaine-exposed sires, including many genes not previously linked to cocaine addiction. Enrichment analyses highlight genes linked to CNS development, synaptic signaling, extracellular matrix, and immune function. Expression correlation analyses identified a novel target, Fam19a4, that may negatively regulate many genes in the accumbens, including genes already identified in addiction. Collectively, these results reveal that paternal cocaine effects in F1 offspring may involve temporally limited epigenetic germline effects and identify new genetic targets for addiction research.
Collapse
Affiliation(s)
- Alexandra M Yaw
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States
| | - Rebecca A Prosser
- Dept. of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States; NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States
| | - Benjamin J Garcia
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Daniel A Jacobson
- NeuroNET Research Center, University of Tennessee, Knoxville, TN, 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, United States; Department of Psychology, University of Tennessee, Knoxville, TN, 37996, United States
| | - J David Glass
- School of Biomedical Sciences, Kent State Univ., Kent, OH, 44242, United States.
| |
Collapse
|
48
|
Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA. Cell Rep 2019; 26:3522-3536.e5. [DOI: 10.1016/j.celrep.2019.02.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
|
49
|
Yildiz O, Downes GB, Sagerström CG. Zebrafish prdm12b acts independently of nkx6.1 repression to promote eng1b expression in the neural tube p1 domain. Neural Dev 2019; 14:5. [PMID: 30813944 PMCID: PMC6391800 DOI: 10.1186/s13064-019-0129-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. METHODS We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. RESULTS We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. CONCLUSIONS We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in formation of the p1 domain - suggesting that prdm12b is not solely required to repress non-p1 fates, but is specifically needed to promote p1 fates.
Collapse
Affiliation(s)
- Ozge Yildiz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| | - Gerald B. Downes
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Charles G. Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 364 Plantation St/LRB815, Worcester, MA 01605 USA
| |
Collapse
|
50
|
Silva RS, Arno G, Cipriani V, Pontikos N, Defoort-Dhellemmes S, Kalhoro A, Carss KJ, Raymond FL, Dhaenens CM, Jensen H, Rosenberg T, van Heyningen V, Moore AT, Puech B, Webster AR. Unique noncoding variants upstream of PRDM13 are associated with a spectrum of developmental retinal dystrophies including progressive bifocal chorioretinal atrophy. Hum Mutat 2019; 40:578-587. [PMID: 30710461 DOI: 10.1002/humu.23715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
The autosomal dominant progressive bifocal chorioretinal atrophy (PBCRA) disease locus has been mapped to chromosome 6q14-16.2 that overlaps the North Carolina macular dystrophy (NCMD) locus MCDR1. NCMD is a nonprogressive developmental macular dystrophy, in which variants upstream of PRDM13 have been implicated. Whole genome sequencing was performed to interrogate structural variants (SVs) and single nucleotide variants (SNVs) in eight individuals, six affected individuals from two families with PBCRA, and two individuals from an additional family with a related developmental macular dystrophy. A SNV (chr6:100,046,804T>C), located 7.8 kb upstream of the PRDM13 gene, was shared by all PBCRA-affected individuals in the disease locus. Haplotype analysis suggested that the variant arose independently in the two families. The two affected individuals from Family 3 were screened for rare variants in the PBCRA and NCMD loci. This revealed a de novo variant in the proband, 21 bp from the first SNV (chr6:100,046,783A>C). This study expands the noncoding variant spectrum upstream of PRDM13 and suggests altered spatio-temporal expression of PRDM13 as a candidate disease mechanism in the phenotypically distinct but related conditions, NCMD and PBCRA.
Collapse
Affiliation(s)
- Raquel S Silva
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom
| | - Valentina Cipriani
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom.,Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, United Kingdom.,Department of Genetics, UCL Genetics Institute, Evolution and Environment, London, United Kingdom
| | - Nikolas Pontikos
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom.,Department of Genetics, UCL Genetics Institute, Evolution and Environment, London, United Kingdom
| | | | - Ambreen Kalhoro
- Department of Genetics, Moorfields Eye Hospital, London, United Kingdom
| | - Keren J Carss
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom.,NIHR BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - F Lucy Raymond
- NIHR BioResource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom.,Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Claire Marie Dhaenens
- Biochemistry and Molecular Biology Department-UF Génopathies, CHU Lille, Univ Lille, Inserm UMR-S 1172, F-59000, Lille, France
| | - Hanne Jensen
- Department of Ophthalmology, The Kennedy Eye Clinic, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Thomas Rosenberg
- Department of Ophthalmology, The Kennedy Eye Clinic, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Veronica van Heyningen
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom
| | - Anthony T Moore
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom.,Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA
| | - Bernard Puech
- Exploration de la Vision et Neuro-Ophtalmologie, Centre Hospitalier Universitaire, Lille, France
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Department of Genetics, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|