1
|
Scott DS, Subramanian M, Yamamoto J, Tamminga CA. Schizophrenia pathology reverse-translated into mouse shows hippocampal hyperactivity, psychosis behaviors and hyper-synchronous events. Mol Psychiatry 2025; 30:1746-1757. [PMID: 39407000 PMCID: PMC12015171 DOI: 10.1038/s41380-024-02781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Decades of research into the function of the medial temporal lobe has driven curiosity around clinical outcomes associated with hippocampal dysfunction, including psychosis. Post-mortem analyses of brain tissue from human schizophrenia brain show decreased expression of the NMDAR subunit GluN1 confined to the dentate gyrus with evidence of downstream hippocampal hyperactivity in CA3 and CA1. Little is known about the mechanisms of the emergence of hippocampal hyperactivity as a putative psychosis biomarker. We have developed a reverse-translation mouse to study critical neural features. We had previously studied a dentate gyrus (DG)-specific GluN1 KO, which displays hippocampal hyperactivity and a psychosis-relevant behavioral phenotype. Here, we expressed an inhibitory DREADD (pAAV-CaMKIIa-hM4D(Gi)-mCherry) in granule cells of the mouse dentate gyrus, and continuously inhibited the region for 21 days in adolescent (6 weeks) and adult (10 weeks) C57BL/6 J mice with DREADD agonist Compound 21 (C21). Following this period, we quantified activity in the hippocampal subfields by assessing cFos expression, hippocampally mediated behaviors, and hippocampal local field potential with an intracerebral probe with continual monitoring over time. DG inhibition during adolescence generates an increase in hippocampal activity in CA3 and CA1, impairs social cognition and spatial working memory, as well as shows evidence of increased activity in local field potentials as spontaneous synchronous bursts of activity, which we term hyper-synchronous events (HSEs) in hippocampus. The same DG inhibition delivered during adulthood in the mouse lacks these outcomes. These results suggest a sensitive period in development in which the hippocampus is susceptible to DG inhibition resulting in hippocampal hyperactivity and psychosis-like behavioral outcomes.
Collapse
Affiliation(s)
- Daniel S Scott
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Jun Yamamoto
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is preferentially up-regulated during homeostatic scaling and reduces amyloid plaque burden in the 5xFAD mouse hippocampus. J Neurochem 2024; 168:3235-3249. [PMID: 39115041 PMCID: PMC11449639 DOI: 10.1111/jnc.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha-synuclein and β-amyloid fibrillation in vitro and is up-regulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control and/or altered protein degradation. ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Importantly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Mitias S, Schaffer N, Nair S, Hook C, Lindberg I. ProSAAS is Preferentially Secreted from Neurons During Homeostatic Scaling and Reduces Amyloid Plaque Size in the 5xFAD Mouse Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590133. [PMID: 38712265 PMCID: PMC11071301 DOI: 10.1101/2024.04.18.590133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The accumulation of β-amyloid in Alzheimer's disease greatly impacts neuronal health and synaptic function. To maintain network stability in the face of altered synaptic activity, neurons engage a feedback mechanism termed homeostatic scaling; however, this process is thought to be disrupted during disease progression. Previous proteomics studies have shown that one of the most highly regulated proteins in cell culture models of homeostatic scaling is the small secretory chaperone proSAAS. Our prior work has shown that proSAAS exhibits anti-aggregant behavior against alpha synuclein and β-amyloid fibrillation in vitro, and is upregulated in cell models of proteostatic stress. However, the specific role that this protein might play in homeostatic scaling, and its anti-aggregant role in Alzheimer's progression, is not clear. To learn more about the role of proSAAS in maintaining hippocampal proteostasis, we compared its expression in a primary neuron model of homeostatic scaling to other synaptic components using Western blotting and qPCR, revealing that proSAAS protein responses to homeostatic up- and down-regulation were significantly higher than those of two other synaptic vesicle components, 7B2 and carboxypeptidase E. However, proSAAS mRNA expression was static, suggesting translational control (and/or reduced degradation). ProSAAS was readily released upon depolarization of differentiated hippocampal cultures, supporting its synaptic localization. Immunohistochemical analysis demonstrated abundant proSAAS within the mossy fiber layer of the hippocampus in both wild-type and 5xFAD mice; in the latter, proSAAS was also concentrated around amyloid plaques. Interestingly, overexpression of proSAAS in the CA1 region via stereotaxic injection of proSAAS-encoding AAV2/1 significantly decreased amyloid plaque burden in 5xFAD mice. We hypothesize that dynamic changes in proSAAS expression play a critical role in hippocampal proteostatic processes, both in the context of normal homeostatic plasticity and in the control of protein aggregation during Alzheimer's disease progression.
Collapse
Affiliation(s)
- Samira Mitias
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Nicholas Schaffer
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Saaya Nair
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Chelsea Hook
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| | - Iris Lindberg
- Dept. of Neurobiology, Univ. of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Hurtado Silva M, van Waardenberg AJ, Mostafa A, Schoch S, Dietrich D, Graham ME. Multiomics of early epileptogenesis in mice reveals phosphorylation and dephosphorylation-directed growth and synaptic weakening. iScience 2024; 27:109534. [PMID: 38600976 PMCID: PMC11005001 DOI: 10.1016/j.isci.2024.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 01/26/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
To investigate the phosphorylation-based signaling and protein changes occurring early in epileptogenesis, the hippocampi of mice treated with pilocarpine were examined by quantitative mass spectrometry at 4 and 24 h post-status epilepticus at vast depth. Hundreds of posttranscriptional regulatory proteins were the major early targets of increased phosphorylation. At 24 h, many protein level changes were detected and the phosphoproteome continued to be perturbed. The major targets of decreased phosphorylation at 4 and 24 h were a subset of postsynaptic density scaffold proteins, ion channels, and neurotransmitter receptors. Many proteins targeted by dephosphorylation at 4 h also had decreased protein abundance at 24 h, indicating a phosphatase-mediated weakening of synapses. Increased translation was indicated by protein changes at 24 h. These observations, and many additional indicators within this multiomic resource, suggest that early epileptogenesis is characterized by signaling that stimulates both growth and a homeostatic response that weakens excitability.
Collapse
Affiliation(s)
- Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | | - Aya Mostafa
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Synaptic Neuroscience Unit, 53127 Bonn, North Rhine-Westphalia, Germany
| | - Mark E. Graham
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Tan JW, An JJ, Deane H, Xu H, Liao GY, Xu B. Neurotrophin-3 from the dentate gyrus supports postsynaptic sites of mossy fiber-CA3 synapses and hippocampus-dependent cognitive functions. Mol Psychiatry 2024; 29:1192-1204. [PMID: 38212372 PMCID: PMC11176039 DOI: 10.1038/s41380-023-02404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.
Collapse
Affiliation(s)
- Ji-Wei Tan
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Juan Ji An
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Hannah Deane
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Haifei Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Guey-Ying Liao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA
| | - Baoji Xu
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, 33458, USA.
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
6
|
Vandael D, Jonas P. Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal. Science 2024; 383:eadg6757. [PMID: 38452088 DOI: 10.1126/science.adg6757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and "flash-and-freeze" electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.
Collapse
Affiliation(s)
- David Vandael
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| | - Peter Jonas
- Institute of Science and Technology Austria (ISTA), A-3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
8
|
Kruse P, Brandes G, Hemeling H, Huang Z, Wrede C, Hegermann J, Vlachos A, Lenz M. Synaptopodin Regulates Denervation-Induced Plasticity at Hippocampal Mossy Fiber Synapses. Cells 2024; 13:114. [PMID: 38247806 PMCID: PMC10814840 DOI: 10.3390/cells13020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neurological diseases can lead to the denervation of brain regions caused by demyelination, traumatic injury or cell death. The molecular and structural mechanisms underlying lesion-induced reorganization of denervated brain regions, however, are a matter of ongoing investigation. In order to address this issue, we performed an entorhinal cortex lesion (ECL) in mouse organotypic entorhino-hippocampal tissue cultures of both sexes and studied denervation-induced plasticity of mossy fiber synapses, which connect dentate granule cells (dGCs) with CA3 pyramidal cells (CA3-PCs) and play important roles in learning and memory formation. Partial denervation caused a strengthening of excitatory neurotransmission in dGCs, CA3-PCs and their direct synaptic connections, as revealed by paired recordings (dGC-to-CA3-PC). These functional changes were accompanied by ultrastructural reorganization of mossy fiber synapses, which regularly contain the plasticity-regulating protein synaptopodin and the spine apparatus organelle. We demonstrate that the spine apparatus organelle and synaptopodin are related to ribosomes in close proximity to synaptic sites and reveal a synaptopodin-related transcriptome. Notably, synaptopodin-deficient tissue preparations that lack the spine apparatus organelle failed to express lesion-induced synaptic adjustments. Hence, synaptopodin and the spine apparatus organelle play a crucial role in regulating lesion-induced synaptic plasticity at hippocampal mossy fiber synapses.
Collapse
Affiliation(s)
- Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hanna Hemeling
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Zhong Huang
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
9
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. PLoS Comput Biol 2023; 19:e1011027. [PMID: 37956202 PMCID: PMC10681319 DOI: 10.1371/journal.pcbi.1011027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 11/27/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms of long-term effects remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity among excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). Particularly, the feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced structural reorganization, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Reuss S, Linsmayer D, Balmaceda-Braun J, von Rittberg J, Mitz S, Disque-Kaiser U, Usdin T, Leube RE. Synaptoporin and parathyroid hormone 2 as markers of multimodal inputs to the auditory brainstem. J Chem Neuroanat 2023; 130:102259. [PMID: 36958466 PMCID: PMC10164705 DOI: 10.1016/j.jchemneu.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
The distribution of the synaptic vesicle protein synaptoporin was investigated by immunofluorescence in the central auditory system of the mouse brainstem. Synaptoporin immunostaining displayed region-specific differences. High and moderate accumulations of were seen in the superficial layer of the dorsal cochlear nucleus, dorsal and external regions of the inferior colliculus, the medial and dorsal divisions of the medial geniculate body and in periolivary regions of the superior olivary complex (SOC). Low or absent labeling was observed in the more central parts of these structures such as the principal nuclei of the SOC. It was conspicuous that dense synaptoporin immunoreactivity was detected predominantly in areas, which are known to be synaptic fields of multimodal, extra-auditory inputs. Target neurons of synaptoporin-positive synapses in the SOC were then identified by double-labelling immunofluorescence microscopy. We thereby detected synaptoporin puncta perisomatically at nitrergic, glutamatergic and serotonergic neurons but none next to neurons immunoreactive for choline-acetyltransferase and calcitonin-gene related peptide. These results leave open whether functionally distinct neuronal groups are accessed in the SOC by synaptoporin-containing neurons. The last part of our study sought to find out whether synaptoporin-positive neurons originate in the medial paralemniscal nucleus (MPL), which is characterized by expression of the peptide parathyroid hormone 2 (PTH2). Anterograde neuronal tracing upon injection into the MPL in combination with synaptoporin- and PTH2-immunodetection showed that (1) the MPL projects to the periolivary SOC using PTH2 as transmitter, (2) synaptoporin-positive neurons do not originate in the MPL, and (3) the close juxtaposition of synaptoporin-staining with either the anterograde tracer or PTH2 reflect concerted action of the different inputs to the SOC.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University, Mainz, Germany.
| | - Denise Linsmayer
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia Balmaceda-Braun
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Julia von Rittberg
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Stephanie Mitz
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ursula Disque-Kaiser
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Ted Usdin
- Systems Neuroscience Imaging Resource, National Institute of Mental Health, Bethesda, MD, USA
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Pagkalos M, Chavlis S, Poirazi P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nat Commun 2023; 14:131. [PMID: 36627284 PMCID: PMC9832130 DOI: 10.1038/s41467-022-35747-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Computational modeling has been indispensable for understanding how subcellular neuronal features influence circuit processing. However, the role of dendritic computations in network-level operations remains largely unexplored. This is partly because existing tools do not allow the development of realistic and efficient network models that account for dendrites. Current spiking neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic properties. Conversely, circuit models with morphologically detailed neuron models are computationally costly, thus impractical for large-network simulations. To bridge the gap between these two extremes and facilitate the adoption of dendritic features in spiking neural networks, we introduce Dendrify, an open-source Python package based on Brian 2. Dendrify, through simple commands, automatically generates reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more powerful neuromorphic systems.
Collapse
Affiliation(s)
- Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
13
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
14
|
Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, Thoumine O, Letellier M. miR
‐124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J 2022; 41:e109012. [PMID: 35875872 PMCID: PMC9574720 DOI: 10.15252/embj.2021109012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse‐specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine‐apparatus protein synaptopodin under the regulation of miR‐124. Using genetic manipulations to alter synaptopodin expression or regulation by miR‐124, we show that synaptopodin behaves as a “postsynaptic tag” whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input‐specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Anaïs Soula
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Sébastien Benquet
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Béatrice Tessier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Christel Poujol
- University of Bordeaux CNRS INSERM Bordeaux Imaging Center BIC UMS 3420, US 4 Bordeaux France
| | - Alexandre Favereaux
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Olivier Thoumine
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Mathieu Letellier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| |
Collapse
|
15
|
Kim J, Park D, Seo NY, Yoon TH, Kim GH, Lee SH, Seo J, Um JW, Lee KJ, Ko J. LRRTM3 regulates activity-dependent synchronization of synapse properties in topographically connected hippocampal neural circuits. Proc Natl Acad Sci U S A 2022; 119:e2110196119. [PMID: 35022233 PMCID: PMC8784129 DOI: 10.1073/pnas.2110196119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.
Collapse
Affiliation(s)
- Jinhu Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Dongseok Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Na-Young Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Taek-Han Yoon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Gyu Hyun Kim
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Sang-Hoon Lee
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
- Brain Research Core Facilities, KBRI, Daegu 41062, Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Won Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kea Joo Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Neural Circuits Group, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| |
Collapse
|
16
|
Yang Q, Song D, Xie Z, He G, Zhao J, Wang Z, Dong Z, Zhang H, Yang L, Jiang M, Wu Y, Shi Q, Li J, Yang J, Bai Z, Quan Z, Qing H. Optogenetic stimulation of CA3 pyramidal neurons restores synaptic deficits to improve spatial short-term memory in APP/PS1 mice. Prog Neurobiol 2021; 209:102209. [PMID: 34953962 DOI: 10.1016/j.pneurobio.2021.102209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022]
Abstract
The hippocampal CA3 region, that is involved in the encoding and retrieval of spatial memory, is found to be synaptically impaired in the early-onset of Alzheimer's disease (AD). It is reported optogenetic manipulation of DG or CA1 can rescue the memory impairment of APP/PS1 mice, however, how CA3 region contributes to AD-related deficits in cognitive function is still unknown. Our work shows optogenetic stimulation of CA3 pyramidal neurons (PNs) significantly restores the impaired spatial short-term memory of APP/PS1 mice. This enhances the anatomical synaptic density/strength and synaptic plasticity as well as activates astrocytes. Chemogenetic inhibiting the activity of CA3 astrocytes reverses the effect of optogenetic stimulation of CA3 PNs that leads to reduced anatomical synaptic density/strength, decreased synaptic protein and AMPA receptors GluA3/4, thus disrupting the cognitive restoration of APP/PS1 mice. These results reveal the molecular mechanism of optogenetic activation of CA3 PNs on restoration of the spatial short-term memory of APP/PS1 mice and unveil a potential strategy of manipulating CA3 for AD treatment.
Collapse
Affiliation(s)
- Qinghu Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China; College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, YananUniversity, Yanan, 716000, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China; Department of Anatomy, Chongqing Medical University, Chongqing, 400016, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China
| | - Zhe Wang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Heao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China
| | - Liang Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China; College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, YananUniversity, Yanan, 716000, China
| | - Ming Jiang
- College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, YananUniversity, Yanan, 716000, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of mental disorders, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, 272067, China; Shandong Key Laboratory of Behavioral Medicine, Institute of Mental Health, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong, 272067, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China; Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing, 100081, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhantao Bai
- College of Life Sciences & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, YananUniversity, Yanan, 716000, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 10008, China.
| |
Collapse
|
17
|
Derner M, Chaieb L, Dehnen G, Reber TP, Borger V, Surges R, Staresina BP, Mormann F, Fell J. Auditory Beat Stimulation Modulates Memory-Related Single-Neuron Activity in the Human Medial Temporal Lobe. Brain Sci 2021; 11:brainsci11030364. [PMID: 33809386 PMCID: PMC8000797 DOI: 10.3390/brainsci11030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Auditory beats are amplitude-modulated signals (monaural beats) or signals that subjectively cause the perception of an amplitude modulation (binaural beats). We investigated the effects of monaural and binaural 5 Hz beat stimulation on neural activity and memory performance in neurosurgical patients performing an associative recognition task. Previously, we had reported that these beat stimulation conditions modulated memory performance in opposite directions. Here, we analyzed data from a patient subgroup, in which microwires were implanted in the amygdala, hippocampus, entorhinal cortex and parahippocampal cortex. We identified neurons responding with firing rate changes to binaural versus monaural 5 Hz beat stimulation. In these neurons, we correlated the differences in firing rates for binaural versus monaural beats to the memory-related differences for remembered versus forgotten items and associations. In the left hemisphere, we detected statistically significant negative correlations between firing rate differences for binaural versus monaural beats and remembered versus forgotten items/associations. Importantly, such negative correlations were also observed between beat stimulation-related firing rate differences in the pre-stimulus window and memory-related firing rate differences in the post-stimulus windows. In line with concepts of homeostatic plasticity, our findings suggest that beat stimulation is linked to memory performance via shifting baseline firing levels.
Collapse
Affiliation(s)
- Marlene Derner
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
| | - Leila Chaieb
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
| | - Gert Dehnen
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
| | - Thomas P. Reber
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
- Faculty of Psychology, Swiss Distance University Institute, Ueberlandstr. 12, 3900 Brig, Switzerland
| | - Valeri Borger
- Department of Neurosurgery, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany;
| | - Rainer Surges
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
| | - Bernhard P. Staresina
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK;
| | - Florian Mormann
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
| | - Juergen Fell
- Department of Epileptology, Venusberg-Campus 1, University Hospital Bonn, 53127 Bonn, Germany; (M.D.); (L.C.); (G.D.); (T.P.R.); (R.S.); (F.M.)
- Correspondence:
| |
Collapse
|
18
|
Ho AMC, Cabello-Arreola A, Markota M, Heppelmann CJ, Charlesworth MC, Ozerdem A, Mahajan G, Rajkowska G, Stockmeier CA, Frye MA, Choi DS, Veldic M. Label-free proteomics differences in the dorsolateral prefrontal cortex between bipolar disorder patients with and without psychosis. J Affect Disord 2020; 270:165-173. [PMID: 32339108 PMCID: PMC7234814 DOI: 10.1016/j.jad.2020.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/01/2020] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Psychosis is common in bipolar disorder (BD) and is related to more severe cognitive impairments. Since the molecular mechanism of BD psychosis is elusive, we conducted this study to explore the proteomic differences associated with BD psychosis in the dorsolateral prefrontal cortex (DLPFC; BA9). METHODS Postmortem DLPFC gray matter tissues from five pairs of age-matched male BD subjects with and without psychosis history were used. Tissue proteomes were identified and quantified by label-free liquid chromatography tandem mass spectrometry and then compared between groups. Statistical significance was set at q < 0.40 and Log2 fold change (Log2FC) ≥ |1|. Protein groups with differential expression between groups at p < 0.05 were subjected to pathway analysis. RESULTS Eleven protein groups differed significantly between groups, including the reduction of tenascin C (q = 0.005, Log2FC = -1.78), the elevations of synaptoporin (q = 0.235, Log2FC = 1.17) and brain-specific angiogenesis inhibitor 1-associated protein 3 (q = 0.241, Log2FC = 2.10) in BD with psychosis. The between-group differences of these proteins were confirmed by Western blots. The top enriched pathways (p < 0.05 with ≥ 3 hits) were the outgrowth of neurons, neuronal cell proliferation, growth of neurites, and outgrowth of neurites, which were all predicted to be upregulated in BD with psychosis. LIMITATIONS Small sample size and uncertain relationships of the observed proteomic differences with illness stage and acute psychosis. CONCLUSIONS These results suggested BD with psychosis history may be associated with abnormalities in neurodevelopment, neuroplasticity, neurotransmission, and neuromodulation in the DLPFC.
Collapse
Affiliation(s)
- Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Matej Markota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Aysegul Ozerdem
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Gouri Mahajan
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Grazyna Rajkowska
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Craig A. Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA,Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging (Albany NY) 2020; 11:1934-1964. [PMID: 30958793 PMCID: PMC6503885 DOI: 10.18632/aging.101884] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
Memory deficiency is a common non-motor symptom of Parkinson’s disease (PD), and conventionally, α-synuclein is considered to be an important biomarker for both motor and cognitive characteristics attributed to PD. However, the role of physiological α-synuclein in cognitive impairment remains undetermined. Ginsenoside Rb1 has been shown to protect dopaminergic neurons (DA) from death and inhibit α-synuclein fibrillation and toxicity in vitro. Our recent study also revealed that ginsenoside Rb1 ameliorates motor deficits and prevents DA neuron death via upregulating glutamate transporter GLT-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Whether Rb1 can improve memory deficiency and the underlying mechanism is still unknown. In this study, we found that Rb1 can prevent the spatial learning and memory deficits, increase long-term potentiation (LTP) and hippocampal glutamatergic transmission in the MPTP mouse model. The underlying neuroprotective mechanism of Rb1-improved synaptic plasticity involves Rb1 promoting hippocampal CA3 α-synuclein expression, restoring the glutamate in the CA3-schaffer collateral-CA1 pathway, and sequentially increasing postsynaptic density-95 (PSD-95) expression. Thus, we provide evidence that Rb1 modulates memory function, synaptic plasticity, and excitatory transmission via the trans-synaptic α-synuclein/PSD-95 pathway. Our findings suggest that Rb1 may serve as a functional drug in treating the memory deficiency in PD.
Collapse
Affiliation(s)
- Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
20
|
Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures. J Neurosci 2020; 40:4090-4102. [PMID: 32312887 DOI: 10.1523/jneurosci.1393-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons can respond to decreased network activity with a homeostatic increase in the amplitudes of miniature EPSCs (mEPSCs). The prevailing view is that mEPSC amplitudes are uniformly multiplied by a single factor, termed "synaptic scaling." Deviations from purely multiplicative scaling have been attributed to biological differences, or to a distortion imposed by a detection threshold limit. Here, we demonstrate in neurons dissociated from cortices of male and female mice that the shift in mEPSC amplitudes observed in the experimental data cannot be reproduced by simulation of uniform multiplicative scaling, with or without the distortion caused by applying a detection threshold. Furthermore, we demonstrate explicitly that the scaling factor is not uniform but is close to 1 for small mEPSCs, and increases with increasing mEPSC amplitude across a substantial portion of the data. This pattern was also observed for previously published data from dissociated mouse hippocampal neurons and dissociated rat cortical neurons. The finding of "divergent scaling" shifts the current view of homeostatic plasticity as a process that alters all synapses on a neuron equally to one that must accommodate the differential effect observed for small versus large mEPSCs. Divergent scaling still accomplishes the essential homeostatic task of modifying synaptic strengths in the opposite direction of the activity change, but the consequences are greatest for those synapses which individually are more likely to bring a neuron to threshold.SIGNIFICANCE STATEMENT In homeostatic plasticity, the responses to chronic increases or decreases in network activity act in the opposite direction to restore normal activity levels. Homeostatic plasticity is likely to play a role in diseases associated with long-term changes in brain function, such as epilepsy and neuropsychiatric illnesses. One homeostatic response is the increase in synaptic strength following a chronic block of activity. Research is focused on finding a globally expressed signaling pathway, because it has been proposed that the plasticity is uniformly expressed across all synapses. Here, we show that the plasticity is not uniform. Our work suggests that homeostatic signaling molecules are likely to be differentially expressed across synapses.
Collapse
|
21
|
Kim Y, Jang YN, Kim JY, Kim N, Noh S, Kim H, Queenan BN, Bellmore R, Mun JY, Park H, Rah JC, Pak DTS, Lee KJ. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J 2020; 34:6965-6983. [PMID: 32237183 DOI: 10.1096/fj.201902122rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.
Collapse
Affiliation(s)
- Yoonju Kim
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - You-Na Jang
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Ji-Young Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Nari Kim
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Seulgi Noh
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan Bellmore
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jong Cheol Rah
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea.,Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
22
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
23
|
Djemil S, Chen X, Zhang Z, Lee J, Rauf M, Pak DTS, Dzakpasu R. Activation of nicotinic acetylcholine receptors induces potentiation and synchronization within in vitro hippocampal networks. J Neurochem 2019; 153:468-484. [PMID: 31821553 DOI: 10.1111/jnc.14938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are known to play a role in cognitive functions of the hippocampus, such as memory consolidation. Given that they conduct Ca2+ and are capable of regulating the release of glutamate and γ-aminobutyric acid (GABA) within the hippocampus, thereby shifting the excitatory-inhibitory ratio, we hypothesized that the activation of nAChRs will result in the potentiation of hippocampal networks and alter synchronization. We used nicotine as a tool to investigate the impact of activation of nAChRs on neuronal network dynamics in primary embryonic rat hippocampal cultures prepared from timed-pregnant Sprague-Dawley rats. We perturbed cultured hippocampal networks with increasing concentrations of bath-applied nicotine and performed network extracellular recordings of action potentials using a microelectrode array. We found that nicotine modulated network dynamics in a concentration-dependent manner; it enhanced firing of action potentials as well as facilitated bursting activity. In addition, we used pharmacological agents to determine the contributions of discrete nAChR subtypes to the observed network dynamics. We found that β4-containing nAChRs are necessary for the observed increases in spiking, bursting, and synchrony, while the activation of α7 nAChRs augments nicotine-mediated network potentiation but is not necessary for its manifestation. We also observed that antagonists of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs) partially blocked the effects of nicotine. Furthermore, nicotine exposure promoted autophosphorylation of Ca2+ /calmodulin-dependent kinase II (CaMKII) and serine 831 phosphorylation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit GluA1. These results suggest that nicotinic receptors induce potentiation and synchronization of hippocampal networks and glutamatergic synaptic transmission. Findings from this work highlight the impact of cholinergic signaling in generating network-wide potentiation in the form of enhanced spiking and bursting dynamics that coincide with molecular correlates of memory such as increased phosphorylation of CaMKII and GluA1. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sarra Djemil
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Ziyue Zhang
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Jisoo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Mikael Rauf
- Department of Human Science, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Rhonda Dzakpasu
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, USA.,Department of Physics, Georgetown University, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
24
|
Christian KM, Ming GL, Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2019; 379:112346. [PMID: 31722241 DOI: 10.1016/j.bbr.2019.112346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Hypotheses about the functional properties of the dentate gyrus and adult dentate neurogenesis have been shaped by early observations of the anatomy of this region, mostly in rodents. This has led to the development of a few core propositions that have guided research over the past several years, including the predicted role of this region in pattern separation and the local transformation of inputs from the entorhinal cortex. We now have the opportunity to review these predictions and update these anatomical observations based on recently developed techniques that reveal the complex structure, connectivity, and dynamic properties of distinct cell populations in the dentate gyrus at a higher resolution. Cumulative evidence suggests that the dentate gyrus and adult-born granule cells play a role in some forms of behavioral discriminations, but there are still many unanswered questions about how the dentate gyrus processes information to support the disambiguation of stimuli.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Mao W, Salzberg AC, Uchigashima M, Hasegawa Y, Hock H, Watanabe M, Akbarian S, Kawasawa YI, Futai K. Activity-Induced Regulation of Synaptic Strength through the Chromatin Reader L3mbtl1. Cell Rep 2019; 23:3209-3222. [PMID: 29898393 DOI: 10.1016/j.celrep.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Homeostatic synaptic downscaling reduces neuronal excitability by modulating the number of postsynaptic receptors. Histone modifications and the subsequent chromatin remodeling play critical roles in activity-dependent gene expression. Histone modification codes are recognized by chromatin readers that affect gene expression by altering chromatin structure. We show that L3mbtl1 (lethal 3 malignant brain tumor-like 1), a polycomb chromatin reader, is downregulated by neuronal activity and is essential for synaptic response and downscaling. Genome-scale mapping of L3mbtl1 occupancies identified Ctnnb1 as a key gene downstream of L3mbtl1. Importantly, the occupancy of L3mbtl1 on the Ctnnb1 gene was regulated by neuronal activity. L3mbtl1 knockout neurons exhibited reduced Ctnnb1 expression. Partial knockdown of Ctnnb1 in wild-type neurons reduced excitatory synaptic transmission and abolished homeostatic downscaling, and transfecting Ctnnb1 in L3mbtl1 knockout neurons enhanced synaptic transmission and restored homeostatic downscaling. These results highlight a role for L3mbtl1 in regulating homeostasis of synaptic efficacy.
Collapse
Affiliation(s)
- Wenjie Mao
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Anna C Salzberg
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Motokazu Uchigashima
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yuto Hasegawa
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | - Hanno Hock
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School,185 Cambridge Street, Boston, MA 02114, USA
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Schahram Akbarian
- Mount Sinai Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Department of Biochemistry and Molecular Biology, and Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA.
| |
Collapse
|
26
|
Lu H, Gallinaro JV, Rotter S. Network remodeling induced by transcranial brain stimulation: A computational model of tDCS-triggered cell assembly formation. Netw Neurosci 2019; 3:924-943. [PMID: 31637332 PMCID: PMC6777963 DOI: 10.1162/netn_a_00097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a variant of noninvasive neuromodulation, which promises treatment for brain diseases like major depressive disorder. In experiments, long-lasting aftereffects were observed, suggesting that persistent plastic changes are induced. The mechanism underlying the emergence of lasting aftereffects, however, remains elusive. Here we propose a model, which assumes that tDCS triggers a homeostatic response of the network involving growth and decay of synapses. The cortical tissue exposed to tDCS is conceived as a recurrent network of excitatory and inhibitory neurons, with synapses subject to homeostatically regulated structural plasticity. We systematically tested various aspects of stimulation, including electrode size and montage, as well as stimulation intensity and duration. Our results suggest that transcranial stimulation perturbs the homeostatic equilibrium and leads to a pronounced growth response of the network. The stimulated population eventually eliminates excitatory synapses with the unstimulated population, and new synapses among stimulated neurons are grown to form a cell assembly. Strong focal stimulation tends to enhance the connectivity within new cell assemblies, and repetitive stimulation with well-chosen duty cycles can increase the impact of stimulation even further. One long-term goal of our work is to help in optimizing the use of tDCS in clinical applications. Noninvasive brain stimulation techniques like tDCS have the potential to directly interfere with neural activity, but may also trigger activity-dependent plasticity. We propose a model to study the mechanism of tDCS and persistent aftereffects that may be induced as a consequence of homeostatic structural plasticity. Based on the idea that tDCS perturbs the ongoing activity of neurons, our model predicts that the stimulation also triggers a rearrangement of synapses among stimulated and unstimulated neurons, eventually leading to network remodeling and cell assembly formation. Focal and strong stimulation leads to stronger cell assemblies, and so does repetitive stimulation with optimized stimulation protocols. This is the first original work studying possible long-lasting aftereffects of transcranial stimulation at the mesoscopic neuronal network level using a computational model.
Collapse
Affiliation(s)
- Han Lu
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Júlia V Gallinaro
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg and Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Lee JS, Lee Y, André EA, Lee KJ, Nguyen T, Feng Y, Jia N, Harris BT, Burns MP, Pak DTS. Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer's disease model mice. PLoS One 2019; 14:e0219691. [PMID: 31306446 PMCID: PMC6629081 DOI: 10.1371/journal.pone.0219691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by pathological hallmarks of neurofibrillary tangles and amyloid plaques. The plaques are formed by aggregation and accumulation of amyloid β (Aβ), a cleavage fragment of amyloid precursor protein (APP). Enhanced neuronal activity and seizure events are frequently observed in AD, and elevated synaptic activity promotes Aβ production. However, the mechanisms that link synaptic hyperactivity to APP processing and AD pathogenesis are not well understood. We previously found that Polo-like kinase 2 (Plk2), a homeostatic repressor of neuronal overexcitation, promotes APP β-processing in vitro. Here, we report that Plk2 stimulates Aβ production in vivo, and that Plk2 levels are elevated in a spatiotemporally regulated manner in brains of AD mouse models and human AD patients. Genetic disruption of Plk2 kinase function reduces plaque deposits and activity-dependent Aβ production. Furthermore, pharmacological Plk2 inhibition hinders Aβ formation, synapse loss, and memory decline in an AD mouse model. Thus, Plk2 links synaptic overactivity to APP β-processing, Aβ production, and disease-relevant phenotypes in vivo, suggesting that Plk2 may be a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Emily A. André
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kea Joo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Thien Nguyen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yang Feng
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Nuo Jia
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Brent T. Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Daniel T. S. Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
28
|
Michaelsen‐Preusse K, Feuge J, Korte M. Imbalance of synaptic actin dynamics as a key to fragile X syndrome? J Physiol 2018; 596:2773-2782. [PMID: 29380377 PMCID: PMC6046079 DOI: 10.1113/jp275571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 11/08/2022] Open
Abstract
Our experiences and memories define who we are, and evidence has accumulated that memory formation is dependent on functional and structural adaptations of synaptic structures in our brain. Especially dendritic spines, the postsynaptic compartments of synapses show a strong structure-to-function relationship and a high degree of structural plasticity. Although the molecular mechanisms are not completely understood, it is known that these modifications are highly dependent on the actin cytoskeleton, the major cytoskeletal component of the spine. Given the crucial involvement of actin in these mechanisms, dysregulations of spine actin dynamics (reflected by alterations in dendritic spine morphology) can be found in a variety of neurological disorders ranging from schizophrenia to several forms of autism spectrum disorders such as fragile X syndrome (FXS). FXS is caused by a single mutation leading to an inactivation of the X-linked fragile X mental retardation 1 gene and loss of its gene product, the RNA-binding protein fragile X mental retardation protein 1 (FMRP), which normally can be found both pre- and postsynaptically. FMRP is involved in mRNA transport as well as regulation of local translation at the synapse, and although hundreds of FMRP-target mRNAs could be identified only a very few interactions between FMRP and actin-regulating proteins have been reported and validated. In this review we give an overview of recent work by our lab and others providing evidence that dysregulated actin dynamics might indeed be at the very base of a deeper understanding of neurological disorders ranging from cognitive impairment to the autism spectrum.
Collapse
Affiliation(s)
- Kristin Michaelsen‐Preusse
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Jonas Feuge
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular NeurobiologyTU BraunschweigSpielmannstr. 7Braunschweig38106Germany
- Helmholtz Centre for Infection ResearchAG NINDInhoffenstr. 7Braunschweig38124Germany
| |
Collapse
|
29
|
Kim HW, Oh S, Lee SH, Lee S, Na JE, Lee KJ, Rhyu IJ. Different types of multiple-synapse boutons in the cerebellar cortex between physically enriched and ataxic mutant mice. Microsc Res Tech 2018; 82:25-32. [PMID: 29774619 DOI: 10.1002/jemt.23054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/31/2018] [Accepted: 04/27/2018] [Indexed: 11/10/2022]
Abstract
Experience-dependent synapse remodeling is associated with information storage in the nervous system. Neuronal synapses show alteration in various neurological and cognitive disorders in their structure and function. At the ultrastructural level, parallel fiber boutons contacting multiple spines of Purkinje cells in the cerebellar cortex are commonly observed in physiologically enriched animals as well as pathological ataxic mutants. However, the dendritic origin of those spines on parallel fiber multiple-synapse boutons (MSBs) has been poorly understood. Here, we investigated this issue by 3-dimensional ultrastructural analysis to determine synaptic connectivity of MSBs in both mice housed in physically enriched environment and cerebellar ataxic mutants. Our results demonstrated that environmental enrichment selectively induced MSBs to contact spines from the same parent dendrite, indicating focal strengthening of synapse through the simultaneous activation of two adjacent spines. In contrast, ataxic mutants displaying impaired motor coordination had significantly more MSBs involving spines originating from different neighboring dendrites compared to both wild-type and environmentally enriched animals, suggesting that compromising multiple synapse formation may lead to abnormal motor behavior in the mutant mice. These findings propose that environmental stimulation in normal animals mainly involves the refinement of preexisting synaptic networks, whereas pathological ataxic conditions may results from less-selective but compromising multiple synaptic formation. This study underscores that different types of multiple synapse boutons may have disparate effects on cerebellar synaptic transmission.
Collapse
Affiliation(s)
- Hyun-Wook Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seunghak Oh
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Seung Hwan Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Sanghoon Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Ji-Eun Na
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| | - Kea Joo Lee
- Laboratory of Synaptic Circuit Plasticity, Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, 41068, Korea
| | - Im Joo Rhyu
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Korea
| |
Collapse
|
30
|
Shinoda Y, Sadakata T, Akagi T, Sakamaki Y, Hashikawa T, Sano Y, Furuichi T. Calcium-dependent activator protein for secretion 2 (CADPS2) deficiency causes abnormal synapse development in hippocampal mossy fiber terminals. Neurosci Lett 2018; 677:65-71. [PMID: 29689341 DOI: 10.1016/j.neulet.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
Hippocampal mossy fibers (MFs) project from dentate gyrus granule cells onto the CA2-CA3 region. MF-mediated synaptic transmission plays an important role in hippocampal learning and memory. However, the molecular mechanisms underlying MF synaptic development and subsequent functional organization are not fully understood. We previously reported that calcium-dependent activator protein for secretion 2 (CADPS2, also known as CAPS2) regulates the secretion of dense-core vesicles (DCVs). Because CADPS2 is strongly expressed in MF terminals, we hypothesized that CADPS2 regulates the development and functional organization of MF synapses by controlling the secretion of DCVs and their contents. To test this, we compared the synaptic microstructures of hippocampal MF terminals in Cadps2 knockout (KO) mice and wild-type (WT) mice by electron microscopy (EM). On postnatal day 15 (P15), KO mice exhibited morphological abnormalities in MF boutons, including smaller bouton size, a larger number of DCVs and a smaller number of post-synaptic densities (PSDs), compared with WT mice. In adults (P56), MF boutons were larger in KO mice. Synaptic vesicles (SVs) were increased but with a lower density compared with the WT. Furthermore, the number of SVs was decreased near the active zone. Moreover, MF-innervated CA3 postsynapses in KO mice displayed aberrant structures at the postsynaptic density (PSD), with an increased number of PSDs (likely because of a larger number of perforated PSDs), compared with WT mice. Taken together, our findings suggest that CADPS2 plays a critical role in MF synaptic development and functional organization.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takumi Akagi
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuriko Sakamaki
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Research Core, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tsutomu Hashikawa
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
31
|
De Bruyckere E, Simon R, Nestel S, Heimrich B, Kätzel D, Egorov AV, Liu P, Jenkins NA, Copeland NG, Schwegler H, Draguhn A, Britsch S. Stability and Function of Hippocampal Mossy Fiber Synapses Depend on Bcl11b/Ctip2. Front Mol Neurosci 2018; 11:103. [PMID: 29674952 PMCID: PMC5895709 DOI: 10.3389/fnmol.2018.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/15/2018] [Indexed: 01/04/2023] Open
Abstract
Structural and functional plasticity of synapses are critical neuronal mechanisms underlying learning and memory. While activity-dependent regulation of synaptic strength has been extensively studied, much less is known about the transcriptional control of synapse maintenance and plasticity. Hippocampal mossy fiber (MF) synapses connect dentate granule cells to CA3 pyramidal neurons and are important for spatial memory formation and consolidation. The transcription factor Bcl11b/Ctip2 is expressed in dentate granule cells and required for postnatal hippocampal development. Ablation of Bcl11b/Ctip2 in the adult hippocampus results in impaired adult neurogenesis and spatial memory. The molecular mechanisms underlying the behavioral impairment remained unclear. Here we show that selective deletion of Bcl11b/Ctip2 in the adult mouse hippocampus leads to a rapid loss of excitatory synapses in CA3 as well as reduced ultrastructural complexity of remaining mossy fiber boutons (MFBs). Moreover, a dramatic decline of long-term potentiation (LTP) of the dentate gyrus-CA3 (DG-CA3) projection is caused by adult loss of Bcl11b/Ctip2. Differential transcriptomics revealed the deregulation of genes associated with synaptic transmission in mutants. Together, our data suggest Bcl11b/Ctip2 to regulate maintenance and function of MF synapses in the adult hippocampus.
Collapse
Affiliation(s)
| | - Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Sigrun Nestel
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Bernd Heimrich
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Dennis Kätzel
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Alexei V Egorov
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Nancy A Jenkins
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Neal G Copeland
- Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Herbert Schwegler
- Institute of Anatomy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| |
Collapse
|
32
|
Weng FJ, Garcia RI, Lutzu S, Alviña K, Zhang Y, Dushko M, Ku T, Zemoura K, Rich D, Garcia-Dominguez D, Hung M, Yelhekar TD, Sørensen AT, Xu W, Chung K, Castillo PE, Lin Y. Npas4 Is a Critical Regulator of Learning-Induced Plasticity at Mossy Fiber-CA3 Synapses during Contextual Memory Formation. Neuron 2018; 97:1137-1152.e5. [PMID: 29429933 PMCID: PMC5843542 DOI: 10.1016/j.neuron.2018.01.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/26/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
Abstract
Synaptic connections between hippocampal mossy fibers (MFs) and CA3 pyramidal neurons are essential for contextual memory encoding, but the molecular mechanisms regulating MF-CA3 synapses during memory formation and the exact nature of this regulation are poorly understood. Here we report that the activity-dependent transcription factor Npas4 selectively regulates the structure and strength of MF-CA3 synapses by restricting the number of their functional synaptic contacts without affecting the other synaptic inputs onto CA3 pyramidal neurons. Using an activity-dependent reporter, we identified CA3 pyramidal cells that were activated by contextual learning and found that MF inputs on these cells were selectively strengthened. Deletion of Npas4 prevented both contextual memory formation and this learning-induced synaptic modification. We further show that Npas4 regulates MF-CA3 synapses by controlling the expression of the polo-like kinase Plk2. Thus, Npas4 is a critical regulator of experience-dependent, structural, and functional plasticity at MF-CA3 synapses during contextual memory formation.
Collapse
Affiliation(s)
- Feng-Ju Weng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Rodrigo I Garcia
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karina Alviña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuxiang Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Margaret Dushko
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Taeyun Ku
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Khaled Zemoura
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - David Rich
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Dario Garcia-Dominguez
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Matthew Hung
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Tushar D Yelhekar
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Andreas Toft Sørensen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Kwanghun Chung
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yingxi Lin
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
33
|
Hippocampal Pathophysiology: Commonality Shared by Temporal Lobe Epilepsy and Psychiatric Disorders. NEUROSCIENCE JOURNAL 2018; 2018:4852359. [PMID: 29610762 PMCID: PMC5828345 DOI: 10.1155/2018/4852359] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/02/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022]
Abstract
Accumulating evidence points to the association of epilepsy, particularly, temporal lobe epilepsy (TLE), with psychiatric disorders, such as schizophrenia. Among these illnesses, the hippocampus is considered the regional focal point of the brain, playing an important role in cognition, psychosis, and seizure activity and potentially suggesting common etiologies and pathophysiology of TLE and schizophrenia. In the present review, we overview abnormal network connectivity between the dentate gyrus (DG) and the Cornus Ammonis area 3 (CA3) subregions of the hippocampus relative to the induction of epilepsy and schizophrenia. In light of our recent finding on the misguidance of hippocampal mossy fiber projection in the rodent model of schizophrenia, we discuss whether ectopic mossy fiber projection is a commonality in order to evoke TLE as well as symptoms related to schizophrenia.
Collapse
|
34
|
André EA, Forcelli PA, Pak DT. What goes up must come down: homeostatic synaptic plasticity strategies in neurological disease. FUTURE NEUROLOGY 2018; 13:13-21. [PMID: 29379396 DOI: 10.2217/fnl-2017-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 11/21/2022]
Abstract
Brain activity levels are tightly regulated to minimize imbalances in activity state. Deviations from the normal range of activity are deleterious and often associated with neurological disorders. To maintain optimal levels of activity, regulatory mechanisms termed homeostatic synaptic plasticity establish desired 'set points' for neural activity, monitor the network for deviations from the set point and initiate compensatory responses to return activity to the appropriate level that permits physiological function [1,2]. We speculate that impaired homeostatic control may contribute to the etiology of various neurological disorders including epilepsy and Alzheimer's disease, two disorders that exhibit hyperexcitability as a key feature during pathogenesis. Here, we will focus on recent progress in developing homeostatic regulation of neural activity as a therapeutic tool.
Collapse
Affiliation(s)
- Emily A André
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Daniel Ts Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington DC 20057, USA
| |
Collapse
|
35
|
Queenan BN, Dunn RL, Santos VR, Feng Y, Huizenga MN, Hammack RJ, Vicini S, Forcelli PA, Pak DTS. Kappa opioid receptors regulate hippocampal synaptic homeostasis and epileptogenesis. Epilepsia 2017; 59:106-122. [PMID: 29114861 DOI: 10.1111/epi.13941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Homeostatic synaptic plasticity (HSP) serves as a gain control mechanism at central nervous system (CNS) synapses, including those between the dentate gyrus (DG) and CA3. Improper circuit control of DG-CA3 synapses is hypothesized to underlie epileptogenesis. Here, we sought to (1) identify compounds that preferentially modulate DG-CA3 synapses in primary neuronal culture and (2) determine if these compounds would delay or prevent epileptogenesis in vivo. METHODS We previously developed and validated an in vitro assay to visualize the behavior of DG-CA3 synapses and predict functional changes. We used this "synapse-on-chip" assay (quantification of synapse size, number, and type using immunocytochemical markers) to dissect the mechanisms of HSP at DG-CA3 synapses. Using chemogenetic constructs and pharmacological agents we determined the signaling cascades necessary for gain control at DG-CA3 synapses. Finally, we tested the implicated cascades (using kappa opioid receptor (OR) agonists and antagonists) in two models of epileptogenesis: electrical amygdala kindling in the mouse and chemical (pentylenetetrazole) kindling in the rat. RESULTS In vitro, synapses between DG mossy fibers (MFs) and CA3 neurons are the primary homeostatic responders during sustained periods of activity change. Kappa OR signaling is both necessary and sufficient for the homeostatic elaboration of DG-CA3 synapses, induced by presynaptic DG activity levels. Blocking kappa OR signaling in vivo attenuates the development of seizures in both mouse and rat models of epilepsy. SIGNIFICANCE This study elucidates mechanisms by which synapses between DG granule cells and CA3 pyramidal neurons undergo activity-dependent homeostatic compensation, via OR signaling in vitro. Modulation of kappa OR signaling in vivo alters seizure progression, suggesting that breakdown of homeostatic closed-loop control at DG-CA3 synapses contributes to seizures, and that targeting endogenous homeostatic mechanisms at DG-CA3 synapses may prove useful in combating epileptogenesis.
Collapse
Affiliation(s)
- Bridget N Queenan
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Department of Mechanical Engineering, Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Raymond L Dunn
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Georgetown Hughes Scholars Program, Department of Biology, Georgetown University, Washington, DC, USA
| | - Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Yang Feng
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Megan N Huizenga
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Robert J Hammack
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA
| | - Stefano Vicini
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel T S Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
36
|
Choi JG, Kim SY, Kim JW, Oh MS. Optimized-SopungSunkiwon, a Herbal Formula, Attenuates A β Oligomer-Induced Neurotoxicity in Alzheimer's Disease Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:7601486. [PMID: 29238386 PMCID: PMC5697377 DOI: 10.1155/2017/7601486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD), the most common form of dementia, is an age-related neurodegenerative disease that is characterized by memory dysfunction, neuronal cell damage, and neuroinflammation. It is believed that AD-related pathology is mostly due to the overproduction of Aβ, especially the oligomeric form (AβO), in the brain. Evidence of the effects of multifunctional medicinal herbs in the treatment of AD has been steadily increasing. Optimized-SopungSunkiwon (OSS), a multiherbal formulation that is composed of six medicinal herbs derived from SopungSunkiwon, is a traditional medicine that is prescribed for neurodegenerative disorders in elderly patients. We previously reported that OSS showed an antiamnesic and memory enhancing effect in mice, but it is unknown whether OSS has a protective effect against AβO neurotoxicity. In this study, we investigated the effects of OSS in AD models induced by AβO in vitro and in vivo. We found that OSS protected neuronal cells and inhibited the generation of nitric oxide and reactive oxygen species against AβO toxicity in vitro. These results were confirmed by in vivo data that oral administration of OSS for 14 days attenuated memory impairments and neuronal cell death by modulating gliosis, glutathione depletion, and synaptic damage in the mouse hippocampus induced by AβO.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21999, Republic of Korea
| | - Jong Woo Kim
- Department of Korean Neuropsychiatry, College of Korean Medicine and Institute of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
37
|
Evans MD, Tufo C, Dumitrescu AS, Grubb MS. Myosin II activity is required for structural plasticity at the axon initial segment. Eur J Neurosci 2017; 46:1751-1757. [PMID: 28452088 PMCID: PMC5573965 DOI: 10.1111/ejn.13597] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022]
Abstract
In neurons, axons possess a molecularly defined and highly organised proximal region – the axon initial segment (AIS) – that is a key regulator of both electrical excitability and cellular polarity. Despite existing as a large, dense structure with specialised cytoskeletal architecture, the AIS is surprisingly plastic, with sustained alterations in neuronal activity bringing about significant alterations to its position, length or molecular composition. However, although the upstream activity‐dependent signalling pathways that lead to such plasticity have begun to be elucidated, the downstream mechanisms that produce structural changes at the AIS are completely unknown. Here, we use dissociated cultures of rat hippocampus to show that two forms of AIS plasticity in dentate granule cells – long‐term relocation, and more rapid shortening – are completely blocked by treatment with blebbistatin, a potent and selective myosin II ATPase inhibitor. These data establish a link between myosin II and AIS function, and suggest that myosin II's primary role at the structure may be to effect activity‐dependent morphological alterations.
Collapse
Affiliation(s)
- Mark D Evans
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Candida Tufo
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Adna S Dumitrescu
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.,FENS-Kavli Network of Excellence, Europe-wide
| |
Collapse
|
38
|
Scharkowski F, Frotscher M, Lutz D, Korte M, Michaelsen-Preusse K. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cereb Cortex 2017; 28:852-867. [DOI: 10.1093/cercor/bhw408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- F Scharkowski
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Michael Frotscher
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - David Lutz
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, 38124 Braunschweig, Germany
| | | |
Collapse
|
39
|
Vaccaro V, Devine MJ, Higgs NF, Kittler JT. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity. EMBO Rep 2016; 18:231-240. [PMID: 28039205 PMCID: PMC5286383 DOI: 10.15252/embr.201642710] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial trafficking is influenced by neuronal activity, but it remains unclear how mitochondrial positioning influences neuronal transmission and plasticity. Here, we use live cell imaging with the genetically encoded presynaptically targeted Ca2+ indicator, SyGCaMP5, to address whether presynaptic Ca2+ responses are altered by mitochondria in synaptic terminals. We find that presynaptic Ca2+ signals, as well as neurotransmitter release, are significantly decreased in terminals containing mitochondria. Moreover, the localisation of mitochondria at presynaptic sites can be altered during long‐term activity changes, dependent on the Ca2+‐sensing function of the mitochondrial trafficking protein, Miro1. In addition, we find that Miro1‐mediated activity‐dependent synaptic repositioning of mitochondria allows neurons to homeostatically alter the strength of presynaptic Ca2+ signals in response to prolonged changes in neuronal activity. Our results support a model in which mitochondria are recruited to presynaptic terminals during periods of raised neuronal activity and are involved in rescaling synaptic signals during homeostatic plasticity.
Collapse
Affiliation(s)
- Victoria Vaccaro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Michael J Devine
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nathalie F Higgs
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
40
|
Dumitrescu AS, Evans MD, Grubb MS. Evaluating Tools for Live Imaging of Structural Plasticity at the Axon Initial Segment. Front Cell Neurosci 2016; 10:268. [PMID: 27932952 PMCID: PMC5120105 DOI: 10.3389/fncel.2016.00268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
The axon initial segment (AIS) is a specialized neuronal compartment involved in the maintenance of axo-dendritic polarity and in the generation of action potentials. It is also a site of significant structural plasticity—manipulations of neuronal activity in vitro and in vivo can produce changes in AIS position and/or size that are associated with alterations in intrinsic excitability. However, to date all activity-dependent AIS changes have been observed in experiments carried out on fixed samples, offering only a snapshot, population-wide view of this form of plasticity. To extend these findings by following morphological changes at the AIS of individual neurons requires reliable means of labeling the structure in live preparations. Here, we assessed five different immunofluorescence-based and genetically-encoded tools for live-labeling the AIS of dentate granule cells (DGCs) in dissociated hippocampal cultures. We found that an antibody targeting the extracellular domain of neurofascin provided accurate live label of AIS structure at baseline, but could not follow rapid activity-dependent changes in AIS length. Three different fusion constructs of GFP with full-length AIS proteins also proved unsuitable: while neurofascin-186-GFP and NaVβ4-GFP did not localize to the AIS in our experimental conditions, overexpressing 270kDa-AnkyrinG-GFP produced abnormally elongated AISs in mature neurons. In contrast, a genetically-encoded construct consisting of a voltage-gated sodium channel intracellular domain fused to yellow fluorescent protein (YFP-NaVII–III) fulfilled all of our criteria for successful live AIS label: this construct specifically localized to the AIS, accurately revealed plastic changes at the structure within hours, and, crucially, did not alter normal cell firing properties. We therefore recommend this probe for future studies of live AIS plasticity in vitro and in vivo.
Collapse
Affiliation(s)
- Adna S Dumitrescu
- Centre for Developmental Neurobiology, King's College London London, UK
| | - Mark D Evans
- Centre for Developmental Neurobiology, King's College London London, UK
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, King's College London London, UK
| |
Collapse
|
41
|
Benevento M, Iacono G, Selten M, Ba W, Oudakker A, Frega M, Keller J, Mancini R, Lewerissa E, Kleefstra T, Stunnenberg HG, Zhou H, van Bokhoven H, Nadif Kasri N. Histone Methylation by the Kleefstra Syndrome Protein EHMT1 Mediates Homeostatic Synaptic Scaling. Neuron 2016; 91:341-55. [PMID: 27373831 DOI: 10.1016/j.neuron.2016.06.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 02/01/2016] [Accepted: 05/25/2016] [Indexed: 02/01/2023]
Abstract
Homeostatic plasticity, a form of synaptic plasticity, maintains the fine balance between overall excitation and inhibition in developing and mature neuronal networks. Although the synaptic mechanisms of homeostatic plasticity are well characterized, the associated transcriptional program remains poorly understood. We show that the Kleefstra-syndrome-associated protein EHMT1 plays a critical and cell-autonomous role in synaptic scaling by responding to attenuated neuronal firing or sensory drive. Chronic activity deprivation increased the amount of neuronal dimethylated H3 at lysine 9 (H3K9me2), the catalytic product of EHMT1 and an epigenetic marker for gene repression. Genetic knockdown and pharmacological blockade of EHMT1 or EHMT2 prevented the increase of H3K9me2 and synaptic scaling up. Furthermore, BDNF repression was preceded by EHMT1/2-mediated H3K9me2 deposition at the Bdnf promoter during synaptic scaling up, both in vitro and in vivo. Our findings suggest that H3K9me2-mediated changes in chromatin structure govern a repressive program that controls synaptic scaling.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Giovanni Iacono
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Martijn Selten
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Wei Ba
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Astrid Oudakker
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Monica Frega
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Jason Keller
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Roberta Mancini
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Elly Lewerissa
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Henk G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
42
|
Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks. Nat Commun 2016; 7:11552. [PMID: 27174042 PMCID: PMC4869174 DOI: 10.1038/ncomms11552] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/06/2016] [Indexed: 01/23/2023] Open
Abstract
CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order. The STDP curve is symmetric and broad (half-width ∼150 ms). Consistent with these STDP induction properties, AP–EPSP sequences lead to supralinear summation of spine [Ca2+] transients. Furthermore, afterdepolarizations (ADPs) following APs efficiently propagate into dendrites of CA3 pyramidal neurons, and EPSPs summate with dendritic ADPs. In autoassociative network models, storage and recall are more robust with symmetric than with asymmetric STDP rules. Thus, a specialized STDP induction rule allows reliable storage and recall of information in the hippocampal CA3 network. STDP is dependent on the timing of pre- and post-synaptic activity. Here, the authors describe a symmetric STDP induction rule at CA3-CA3 synapses, which induces LTP over a broad range of paring intervals. Modelling suggests that this STDP rule may enhance storage capacity and pattern completion in the CA3 cell network.
Collapse
|
43
|
Queenan BN, Lee KJ, Tan H, Huganir RL, Vicini S, Pak DTS. Mapping homeostatic synaptic plasticity using cable properties of dendrites. Neuroscience 2015; 315:206-16. [PMID: 26701298 DOI: 10.1016/j.neuroscience.2015.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 11/26/2022]
Abstract
When chronically silenced, cortical and hippocampal neurons homeostatically upregulate excitatory synaptic function. However, the subcellular position of such changes on the dendritic tree is not clear. We exploited the cable-filtering properties of dendrites to derive a parameter, the dendritic filtering index (DFI), to map the spatial distribution of synaptic currents. Our analysis indicates that young rat cortical neurons globally scale AMPA receptor-mediated currents, while mature hippocampal neurons do not, revealing distinct homeostatic strategies between brain regions and developmental stages. The DFI presents a useful tool for mapping the dendritic origin of synaptic currents and the location of synaptic plasticity changes.
Collapse
Affiliation(s)
- B N Queenan
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - K J Lee
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States; Research Division, Korea Brain Research Institute, Daegu, Republic of Korea
| | - H Tan
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - R L Huganir
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - S Vicini
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| | - D T S Pak
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, United States.
| |
Collapse
|
44
|
Maruo T, Mandai K, Takai Y, Mori M. Activity-dependent alteration of the morphology of a hippocampal giant synapse. Mol Cell Neurosci 2015; 71:25-33. [PMID: 26687760 DOI: 10.1016/j.mcn.2015.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022] Open
Abstract
Activity-dependent synaptic plasticity is a fundamental cellular process for learning and memory. While electrophysiological plasticity has been intensively studied, morphological plasticity is less clearly understood. This study investigated the effect of presynaptic stimulation on the morphology of a giant mossy fiber-CA3 pyramidal cell synapse, and found that the mossy fiber bouton altered its morphology with an increase in the number of segments. This activity-dependent alteration in morphology required the activation of glutamate receptors and an increase in postsynaptic calcium concentration. In addition, the intercellular retrograde messengers nitric oxide and arachidonic acid were necessary. Simultaneous recordings demonstrated that the morphological complexity of the presynaptic bouton and the amplitude of excitatory postsynaptic currents were well correlated. Thus, a single mossy fiber synapse has the potential for activity-dependent morphological plasticity at the presynaptic bouton, which may be important for learning and memory.
Collapse
Affiliation(s)
- Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan; CREST, Japan Science and Technology Agency, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan; CREST, Japan Science and Technology Agency, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan; CREST, Japan Science and Technology Agency, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan.
| | - Masahiro Mori
- Division of Neurophysiology, Department of Cellular Physiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Faculty of Health Sciences, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; CREST, Japan Science and Technology Agency, Kobe BT Center, 1-5-6 Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
45
|
Ichinose S, Ogawa T, Hirokawa N. Mechanism of Activity-Dependent Cargo Loading via the Phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 2015; 87:1022-35. [PMID: 26335646 DOI: 10.1016/j.neuron.2015.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
A regulated mechanism of cargo loading is crucial for intracellular transport. N-cadherin, a synaptic adhesion molecule that is critical for neuronal function, must be precisely transported to dendritic spines in response to synaptic activity and plasticity. However, the mechanism of activity-dependent cargo loading remains unclear. To elucidate this mechanism, we investigated the activity-dependent transport of N-cadherin via its transporter, KIF3A. First, by comparing KIF3A-bound cargo vesicles with unbound KIF3A, we identified critical KIF3A phosphorylation sites and specific kinases, PKA and CaMKIIa, using quantitative phosphoanalyses. Next, mutagenesis and kinase inhibitor experiments revealed that N-cadherin transport was enhanced via phosphorylation of the KIF3A C terminus, thereby increasing cargo-loading activity. Furthermore, N-cadherin transport was enhanced during homeostatic upregulation of synaptic strength, triggered by chronic inactivation by TTX. We propose the first model of activity-dependent cargo loading, in which phosphorylation of the KIF3A C terminus upregulates the loading and transport of N-cadherin in homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Sotaro Ichinose
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadayuki Ogawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
46
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
47
|
Lee SH, Lee KJ. C2-P-04The role of hippocampal CA3 neurons as a homeostatic volume control. Microscopy (Oxf) 2015. [DOI: 10.1093/jmicro/dfv300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
48
|
Meadows JP, Guzman-Karlsson MC, Phillips S, Holleman C, Posey JL, Day JJ, Hablitz JJ, Sweatt JD. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 2015; 8:ra61. [PMID: 26106219 DOI: 10.1126/scisignal.aab0715] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced receptiveness at all synapses on a neuron that receive glutamatergic input is called cell-wide synaptic upscaling. We hypothesize that this type of synaptic plasticity may be critical for long-term memory storage within cortical circuits, a process that may also depend on epigenetic mechanisms, such as covalent chemical modification of DNA. We found that DNA cytosine demethylation mediates multiplicative synaptic upscaling of glutamatergic synaptic strength in cultured cortical neurons. Inhibiting neuronal activity with tetrodotoxin (TTX) decreased the cytosine methylation of and increased the expression of genes encoding glutamate receptors and trafficking proteins, in turn increasing the amplitude but not frequency of miniature excitatory postsynaptic currents (mEPSCs), indicating synaptic upscaling rather than increased spontaneous activity. Inhibiting DNA methyltransferase (DNMT) activity, either by using the small-molecule inhibitor RG108 or by knocking down Dnmt1 and Dnmt3a, induced synaptic upscaling to a similar magnitude as exposure to TTX. Moreover, upscaling induced by DNMT inhibition required transcription; the RNA polymerase inhibitor actinomycin D blocked upscaling induced by DNMT inhibition. Knocking down the cytosine demethylase TET1 also blocked the upscaling effects of RG108. DNMT inhibition induced a multiplicative increase in mEPSC amplitude, indicating that the alterations in glutamate receptor abundance occurred in a coordinated manner throughout a neuron and were not limited to individual active synapses. Our data suggest that DNA methylation status controls transcription-dependent regulation of glutamatergic synaptic homeostasis. Furthermore, covalent DNA modifications may contribute to synaptic plasticity events that underlie the formation and stabilization of memories.
Collapse
Affiliation(s)
- Jarrod P Meadows
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikael C Guzman-Karlsson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Phillips
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cassie Holleman
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica L Posey
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc Natl Acad Sci U S A 2015; 112:E3291-9. [PMID: 26056260 DOI: 10.1073/pnas.1424810112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.
Collapse
|
50
|
AP-1/σ1B-Dependent SV Protein Recycling Is Regulated in Early Endosomes and Is Coupled to AP-2 Endocytosis. Mol Neurobiol 2014; 52:142-61. [PMID: 25128028 DOI: 10.1007/s12035-014-8852-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/04/2014] [Indexed: 12/22/2022]
Abstract
Adaptor protein (AP)-1/σ1B(-/-) mice have reduced synaptic-vesicle (SV) recycling and increased endosomes. Mutant mice have impaired spatial memory, and σ1B-deficient humans have a severe mental retardation. In order to define these σ1B(-/-) 'bulk' endosomes and to determine their functions in SV recycling, we developed a protocol to separate them from the majority of the neuronal endosomes. The σ1B(-/-) 'bulk' endosomes proved to be classic early endosomes with an increase in the phospholipid phosphatidylinositol 3-phosphate (PI-3-P), which recruits proteins mediating protein sorting out of early endosomes into different routes. σ1B deficiency induced alterations in the endosomal proteome reveals two major functions: SV protein storage and sorting into endolysosomes. Alternative endosomal recycling pathways are not up-regulated, but certain SV proteins are misrouted. Tetraspanins are enriched in σ1B(-/-) synaptosomes, but not in their endosomes or in their clathrin-coated-vesicles (CCVs), indicating AP-1/σ1B-dependent sorting. Synapses contain also more AP-2 CCV, although it is expected that they contain less due to reduced SV recycling. Coat composition of these AP-2 CCVs is altered, and thus, they represent a subpopulation of AP-2 CCVs. Association of calmodulin-dependent protein kinase (CaMK)-IIα, -δ and casein kinase (CK)-IIα with the endosome/SV pool is altered, as well as 14-3-3η, indicating changes in specific signalling pathways regulating synaptic plasticity. The accumulation of early endosomes and endocytotic AP-2 CCV indicates the regulation of SV recycling via early endosomes by the interdependent regulation of AP-2-mediated endocytosis and AP-1/σ1B-mediated SV reformation.
Collapse
|