1
|
Dang TN, Van CN, Ochi R, Kuwamura H, Kurose T, Nakamura Y, Hisaoka-Nakashima K, Morioka N, Nishijo H, Fujita N, Urakawa S. Voluntary exercise prevents and eradicates anxiety-like behavior by influencing parvalbumin-positive neurons, perineuronal nets, and microglia activation in corticolimbic regions of neuropathic pain rats. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 18:100181. [PMID: 40161039 PMCID: PMC11954125 DOI: 10.1016/j.ynpai.2025.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 04/02/2025]
Abstract
Anxiety-like behavior often emerges in the later stages of neuropathic pain, exacerbating the pain condition and potentially involving parvalbumin-positive (PV+) neurons. This study aimed to investigate the effects of voluntary exercise on neuropathic pain-induced anxiety and its relationship with PV+ neurons, perineuronal nets (PNNs, labeled with Wisteria floribunda agglutinin [WFA]), and microglia in the corticolimbic regions. Male Wistar rats with partial sciatic nerve ligation (PSL) were given access to running wheels either from 3 days (early voluntary exercise [EEx]) or from 4 weeks (late voluntary exercise [LEx]) postoperatively. Nociceptive behaviors were assessed using the von Frey and acetone tests, while anxiety-like behaviors were assessed using the open field and elevated plus maze tests. Brain sections were histologically analyzed using immunohistochemistry and immunofluorescence 8 weeks post-surgery. Both early and late exercise partially restored the paw withdrawal thresholds and the arousal response. PSL-EEx rats did not exhibit anxiety-like behaviors. PSL-LEx rats transiently showed anxiety-like behaviors, but these were eradicated by exercise. PSL altered PV+ neurons and PNNs in specific corticolimbic subregions. Notably, voluntary exercise restored the densities of PV+-strong WFA+ neurons in the basolateral amygdala, PV+-WFA-, and PV+-WFA+ neurons in the anterior cingulate cortex, and PV+-WFA+ neurons in the hippocampal cornu ammonis 1. These changes correlated with reduced anxiety-like behaviors. Exercise modulated PSL-induced microglial activation and interacted differently with these neurons. These findings suggest that voluntary exercise prevents and eliminates chronic pain-induced anxiety through neuronal mechanisms other than analgesic effects, potentially involving PV+ neurons, PNNs, and microglia in the corticolimbic subregions.
Collapse
Affiliation(s)
- Thu Nguyen Dang
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Anesthesiology, Military Hospital 103, Vietnam Military Medical University, No. 261 Phung Hung Street, Ha Dong District, Hanoi 12108, Viet Nam
| | - Cuong Nguyen Van
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Ryosuke Ochi
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka City, Fukuoka 812-8582, Japan
| | - Hiroki Kuwamura
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Tomoyuki Kurose
- Department of Anatomy and Histology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, 2-12-1 Ichinomiya Gakuen-cho, Shimonoseki City, Yamaguchi 751-8503, Japan
| | - Naoto Fujita
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
- Department of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| | - Susumu Urakawa
- Department of Neurorehabilitation and Emotional Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
2
|
Chunchai T, Pintana H, Kunasol C, Pantiya P, Arunsak B, Kerdphoo S, Nawara W, Donchada S, Apaijai N, Sripetchwandee J, Thonusin C, Chattipakorn N, Chattipakorn SC. Chronic High-Fat Diet Consumption Followed by Lipopolysaccharide Challenge Induces Persistent and Long-Lasting Microglial Priming, Mediates Synaptic Elimination via Complement C1q, and Leads to Behavioral Abnormalities in Male Wistar Rats. Acta Physiol (Oxf) 2025; 241:e70060. [PMID: 40387445 DOI: 10.1111/apha.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
AIM Microglia exhibit innate immune memory, altering their responses to subsequent challenges. Consumption of high-fat diet (HFD) triggers innate immune responses, but the characteristics of HFD-induced microglial priming remain unclear. We aim to investigate how HFD-induced microglial priming, followed by a lipopolysaccharide (LPS) challenge, affects brain functions. METHODS Male Wistar rats were divided into control, unprimed, and primed groups. The primed groups received either a single LPS injection (0.5 mg/kg, intraperitoneally) or HFD consumption for 4-8 weeks. Following the priming phase, all rats (except controls) were subjected to an LPS challenge with a 4- or 8-week interval. After 24 h of LPS challenge, cognition, anxiety-, and depressive-like behaviors were assessed. The brain and hippocampus were collected for further analysis. RESULTS Both LPS- and 4-week HFD-primed groups, followed by LPS challenge, exhibited increased peripheral and brain oxidative stress, impaired neurogenesis, disrupted neurotransmitter balance, and altered glycolysis and Krebs cycle substrates. These changes also caused microglial morphological alterations, elevated C1q levels, and synaptic loss, which were associated with anxiety- and depressive-like behaviors, indicating that 4-week HFD consumption has a similar immune priming ability to a single dose of LPS injection. Extending HFD priming to 8 weeks exacerbated microglial and brain inflammation, synaptic loss, and behavioral deficits. Furthermore, prolonging the interval between priming and LPS challenge worsened inflammation and cognitive decline, suggesting the persistent effects of microglial priming. CONCLUSIONS HFD consumption persistently and time-dependently primes microglia similar to a single LPS injection, influencing immune responses and contributing to behavioral abnormalities.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharapong Pantiya
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wichwara Nawara
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Suriphan Donchada
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Depp C, Doman JL, Hingerl M, Xia J, Stevens B. Microglia transcriptional states and their functional significance: Context drives diversity. Immunity 2025; 58:1052-1067. [PMID: 40328255 DOI: 10.1016/j.immuni.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
In the brain, microglia are continuously exposed to a dynamic microenvironment throughout life, requiring them to adapt accordingly to specific developmental or disease-related demands. The advent of single-cell sequencing technologies has revealed the diversity of microglial transcriptional states. In this review, we explore the various contexts that drive transcriptional diversity in microglia and assess the extent to which non-homeostatic conditions induce context-specific signatures. We discuss our current understanding and knowledge gaps regarding the relationship between transcriptional states and microglial function, review the influence of complex microenvironments and prior experiences on microglial state induction, and highlight strategies to bridge the gap between mouse and human studies to advance microglia-targeting therapeutics.
Collapse
Affiliation(s)
- Constanze Depp
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jordan L Doman
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Maximilian Hingerl
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Judy Xia
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhao Z, Xiang L, Hong JS, Wang Y, Feng J. Mechanisms of Acetate in Alleviating SETDB1-Linked Neuroinflammation and Cognitive Impairment in a Mouse Model of OSA. J Inflamm Res 2025; 18:5931-5950. [PMID: 40357375 PMCID: PMC12067661 DOI: 10.2147/jir.s510690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Background Microglia-mediated neuroinflammation is crucial for obstructive sleep apnea (OSA)-induced cognitive impairment. We aimed to investigate roles of acetate (ACE) and SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in neuroinflammation of OSA. Methods After C57BL/6J mice were exposed to OSA-associated intermittent hypoxia (IH) or normoxia for four weeks, the composition of the gut microbiota (GM) and the levels of serum short-chain fatty acids (SCFAs) were measured by 16S rRNA and GC-MS methods, respectively. To assess the effect of ACE on IH mice, glyceryl triacetate (GTA) was gavaged in IH-exposed mice and the cognitive function, microglial activation, and hippocampal neuronal death were examined. Moreover, ACE-treated BV2 microglia cells were also utilized for further mechanistic studies. Results IH disrupts the gut microbiome, reduces microbiota-SCFAs, and impairs cognitive function. Gavage with GTA significantly mitigated these cognitive deficits. Following IH exposure, we observed substantial increases in SETDB1 both in vivo and in vitro, along with elevated levels of histone H3 lysine 9 trimethylation (H3K9me3). Genetic or pharmacological inhibition of SETDB1 in microglia led to decreased induction of proinflammatory factors, as well as reduced reactive oxygen species (ROS) generation. Mechanistically, SETDB1 was found to upregulate the transcription factors p-signal transducer and activator of transcription 3 (p-STAT3) and p-NF-κB. In vitro, ACE supplementation effectively repressed high SETDB1 and H3K9me3 levels, thereby inhibiting microglial pro-inflammatory responses induced by IH. In vivo, ACE supplementation significantly reduced hippocampal levels of p-STAT3, p-NF-κB, and pro-inflammatory cytokines while also protecting neuronal integrity. Conclusion This study provides the first evidence that H3K9 methyltransferase SETDB1 promotes microglial pro-inflammatory response distinct from its previously shown role in macrophages. Our findings also identify ACE supplementation as a promising dietary intervention for OSA-related cognitive impairment with SETDB1 serving as both a mechanistic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Zhan Zhao
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People’s Republic of China
| | - Li Xiang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People’s Republic of China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Yubao Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People’s Republic of China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, 300052, People’s Republic of China
| |
Collapse
|
5
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
6
|
Gonzalez L, Bezzi P. Astrocyte Dysfunctions in Obsessive Compulsive Disorder: Rethinking Neurobiology and Therapeutic Targets. J Neurochem 2025; 169:e70092. [PMID: 40400176 DOI: 10.1111/jnc.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Obsessive-compulsive disorder (OCD) has long been conceptualized as a neuron-centric disorder of cortico-striato-thalamo-cortical (CSTC) circuit dysregulation. However, a growing body of evidence is now reframing this narrative, placing astrocytes-once relegated to passive support roles-at the center of OCD pathophysiology. Astrocytes are critical regulators of glutamate and GABA homeostasis, calcium signaling, and synaptic plasticity, all of which are disrupted in OCD. Recent high-resolution molecular and proteomic studies reveal that specific astrocyte subpopulations, including Crym-positive astrocytes, directly shape excitatory/inhibitory balance and control perseverative behaviors by modulating presynaptic inputs from the orbitofrontal cortex. Disruptions in astrocytic neurotransmitter clearance and dopamine metabolism amplify CSTC circuit hyperactivity and reinforce compulsions. This review reframes OCD as a disorder of neuro-glial dysfunctions, proposing that targeting astrocytic signaling, metabolism, and structural plasticity may unlock transformative therapeutic strategies. By integrating human and animal data, we advocate for a glial-centric model of OCD that not only enhances mechanistic understanding but also opens new frontiers for precision treatment.
Collapse
Affiliation(s)
- Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
7
|
Sah A, Singewald N. The (neuro)inflammatory system in anxiety disorders and PTSD: Potential treatment targets. Pharmacol Ther 2025; 269:108825. [PMID: 39983845 DOI: 10.1016/j.pharmthera.2025.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Targeting the immune system has recently garnered attention in the treatment of stress- associated psychiatric disorders resistant to existing pharmacotherapeutics. While such approaches have been studied in considerable detail in depression, the role of (neuro)inflammation in anxiety-related disorders, or in anxiety as an important transdiagnostic symptom, is much less clear. In this review we first critically review clinical and in part preclinical evidence of central and peripheral immune dysregulation in anxiety disorders and post-traumatic stress disorder (PTSD) and briefly discuss proposed mechanisms of how inflammation can affect anxiety-related symptoms. We then give an overview of existing and potential future targets in inflammation-associated signal transduction pathways and discuss effects of different immune-modulatory drugs in anxiety-related disorders. Finally, we discuss key gaps in current clinical trials such as the lack of prospective studies involving anxiety patient stratification strategies based on inflammatory biomarkers. Overall, although evidence is rather limited so far, there is data to indicate that increased (neuro)inflammation is present in subgroups of anxiety disorder patients. Although exact identification of such immune subtypes of anxiety disorders and PTSD is still challenging, these patients will likely particularly benefit from therapeutic targeting of aspects of the inflammatory system. Different anti-inflammatory treatment approaches (microglia-directed treatments, pro-inflammatory cytokine inhibitors, COX-inhibitors, phytochemicals and a number of novel anti-inflammatory agents) have indeed shown some efficacy even in non-stratified anxiety patient groups and appear promising as novel alternative or complimentary therapeutic options in specific ("inflammatory") subtypes of anxiety disorder and PTSD patients.
Collapse
Affiliation(s)
- Anupam Sah
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Straume T, Mora AM, Brown JB, Bansal I, Rabin BM, Braby LA, Wyrobek AJ. Non-DNA radiosensitive targets that initiate persistent behavioral deficits in rats exposed to space radiation. LIFE SCIENCES IN SPACE RESEARCH 2025; 45:44-60. [PMID: 40280642 DOI: 10.1016/j.lssr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 04/29/2025]
Abstract
Predicting future CNS risks for astronauts during deep-space missions will rely substantially on ground-based rodent data with space-relevant ions and behaviors. For rats, the accumulated evidence indicates that less densely ionizing radiation, such as 4He and 12C ions, induce behavior deficits at lower doses than densely ionizing ions, such as 48Ti and 56Fe. However, this observation conflicts with standard somatic radiobiology, in which densely ionizing ions are generally more effective than less densely ionizing ions, and where the DNA/nucleus is the accepted target for radiation-induced tumorigenesis, cytogenetic aberrations, genetic mutations, and reproductive cell death. To gain deeper insight into the subcellular nature of the radiation targets for behavior risks, we compared the effects of dose, fluence, and linear energy transfer (LET) of 4He and 56Fe particles using existing datasets for four distinct behavioral outcomes in rats: elevated plus maze (EPM-anxiety), novel object recognition (NOR-memory), operant responding (OR-response to environmental stimuli), and attentional set-shifting (ATSET-cognitive flexibility). We confirmed that less densely ionizing particles (except protons) showed ∼100-fold lower threshold doses than densely ionizing particles for behavioral deficits (0.1-1 cGy for 4He vs. 15-100 cGy for 56Fe). However, when analyzed by fluence the behavioral responses converged, indicating that 4He and 56Fe were equally effective on a per-track basis. When analyzed by LET, there were ∼100-fold differences in the LET for maximum effectiveness for behavioral deficits and DNA endpoints (∼1 vs ∼100 keV/μm, respectively). These unique features of radiation-induced behavioral deficits (high sensitivity to particles in the 1-keV/μm range, insensitivity to protons in the 0.2 keV/μm range, and isofluence dependence for particles with LET>1 keV/μm) provide evidence in support of a new hypothesis of sub-micron sized radiosensitive targets for behavioral effects consistent with the thickness of plasma membranes and/or small subcellular structures, smaller than a whole synapse. Like our behavior findings, mouse immature oocyte killing which is known to have a plasma membrane target was also better explained by fluence, rather than dose. In contrast, fluence analyses for DNA/nuclear endpoints in somatic cells (e.g., tumor induction, chromosome aberrations) showed opposite results, suggesting that behavior targets are not DNA. Our findings raise questions regarding the identity of subcellular targets and the multi-cellular functional unit for behavior risks, low-dose susceptibility, and generalizability from rat to other species and astronauts.
Collapse
Affiliation(s)
- Tore Straume
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA; NASA Ames Research Center (retired affiliation), Moffett Field, CA 94035, USA.
| | - Ana M Mora
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ishan Bansal
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | | - Andrew J Wyrobek
- Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Cao Q, Zhang N, Leng C, Wang S, Ma J. Emerging Viral Infections (ZIKV, SARS-CoV-2, and MPXV) and Depression: Ketamine and (S, R)-Ketamine as Promising Antidepressants. Rev Med Virol 2025; 35:e70036. [PMID: 40205087 DOI: 10.1002/rmv.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Emerging viral pathogens, newly reported or rapidly evolving viruses, are a significant public health concern worldwide. Beyond their characteristic clinical presentations, emerging viruses, such as monkeypox virus (MPXV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been increasingly implicated in the development of various neuropsychiatric complications including depression, mainly due to their ability to induce neuroinflammation, immune dysfunction, and neurotransmitter imbalances. Depression is a common mental health condition characterised by continuous low mood or sadness, pessimism, anxiety, and even a tendency to suicide as the main symptoms. Post viral depression commonly shows significant challenges, as traditional antidepressant agents exhibit suboptimal efficacy and prolonged onset of action. Regarding this, ketamine and its enantiomers, S-ketamine and R-ketamine, have recently received increasing attention as potential options in light of their potent and effective antidepressant properties. The present review describes the underlying pathophysiological mechanisms of depression associated with emerging viruses, highlighting the role of neuroinflammation and disturbances inneurotransmitter systems. It also discusses the antidepressant mechanisms of ketamine and its enantiomers, the current clinical evidence demonstrating their effectiveness and safety, especially in the case of treatment-resistant depression, and their growing relevance for mood complications linked to emerging viral infections, including depression. Although preliminary reports propose effectiveness, additional studies are needed to present optimal treatment strategies, long-term safety, and incorporation into clinical practice. Addressing these challenges will be critical for optimising the effectiveness of ketamine- and (S, R)-ketamine-containing therapeutic protocols in treating depression linked to emerging viral infections.
Collapse
Affiliation(s)
- Qianqian Cao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Ning Zhang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Cuibo Leng
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Shoushi Wang
- Department of Anesthesia and Perioperative Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Kettenmann H, Ugursu B, Ransom BR, Steinhäuser C. The Concept of Neuroglia - the State of the Art Circa 1900. Glia 2025; 73:890-904. [PMID: 39902825 PMCID: PMC11920685 DOI: 10.1002/glia.24678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Glial cells were first defined by Rudolf Virchow in 1856. About 40 years later, glial research had developed into a field distinct from the mainstream study of neurons as the central elements governing brain function. By that time, substantial knowledge about the properties of glial cells had accumulated, exemplified by five important publications by four distinguished investigators: Gustav Retzius, Michael von Lenhossek, Carl Weigert, and Hans Held. These treatises broadly summarized what was known about glial cells, comparing findings from leeches to humans. Practically speaking, these articles represent the foundation of our current knowledge. All five contributions were published in German, which at the time was one of the dominant languages for scientific exchange. This article summarizes and comments on their findings and thus provides insight into what was known about glial cells at that time. More importantly, in the Supporting Information, we provide English translations and original scans of these five publications, making them accessible to an international readership.
Collapse
Affiliation(s)
- Helmut Kettenmann
- Department of NeuroscienceShenzhen University of Advanced TechnologyShenzhenChina
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Bilge Ugursu
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | | | | |
Collapse
|
11
|
McNally MA, Lau LA, Granak S, Hike D, Liu X, Yu X, Donahue RA, Chibnik LB, Ortiz JV, Che A, Chavez-Valdez R, Northington FJ, Staley KJ. Ongoing loss of viable neurons for weeks after mild hypoxia-ischaemia. Brain Commun 2025; 7:fcaf153. [PMID: 40297712 PMCID: PMC12034461 DOI: 10.1093/braincomms/fcaf153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Mild hypoxic-ischaemic encephalopathy is common in neonates, and there are no evidence-based therapies. By school age, 30-40% of those patients experience adverse neurodevelopmental outcomes. The nature and progression of mild injury is poorly understood. We studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent calcium-sensitive and insensitive proteins to provide a novel readout of neuronal viability and activity at cellular resolution in vitro and in vivo. In vitro, perinatal organotypic hippocampal cultures underwent 15-20 min of oxygen-glucose deprivation. In vivo, mild hypoxia-ischaemia was completed at post-natal day 10 with carotid ligation and 15 min of hypoxia (FiO2, 0.08). Consistent with a mild injury, minimal immediate neuronal death was seen in vitro or in vivo, and there was no volumetric evidence of injury by ex vivo MRI 2.5 weeks after injury (n = 3 pups/group). However, in both the hippocampus and neocortex, these mild injuries resulted in delayed and progressive neuronal loss by the second week after injury compared to controls; measured by fluorophore quenching (n = 6 slices/group in vitro, P < 0.001; n = 8 pups/group in vivo, P < 0.01). Mild hypoxia-ischaemia transiently suppressed cortical network calcium activity in vivo for over 2 h after injury (versus sham, n = 13 pups/group; P < 0.01). No post-injury seizures were seen. By 24 h, network activity fully recovered, and there was no disruption in the development of normal cortical activity for 11 days (n = 8 pups/group). The participation in network activity of individual neurons destined to die in vivo was indistinguishable from those that survived up to 4 days post-injury (n = 8 pups/group). Despite a lack of significant immediate neuronal death and only transient disruptions of network activity, mild perinatal brain injury resulted in a delayed and progressive increase of neuronal death in the hippocampus and neocortex. Neurons that died late were functioning normally for days after injury, suggesting a new pathophysiology of neuronal death after mild injury. Critically, the neurons destined to die late demonstrated multiple biomarkers of viability long after mild injury, suggesting their later death may be modified with neuroprotective interventions.
Collapse
Affiliation(s)
- Melanie A McNally
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren A Lau
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Simon Granak
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Hike
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiaochen Liu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02129, USA
| | - Rachel A Donahue
- Department of Medicine, Biostatics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lori B Chibnik
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - John V Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Raul Chavez-Valdez
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kevin J Staley
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Shafiek MZ, Zaki HF, Mohamed AF, Ibrahim WW. Novel Trajectories Towards Possible Effects of Semaglutide for Amelioration of Reserpine-induced Fibromyalgia in Rats: Contribution of cAMP/PKA/p-CREB and M1/M2 Microglia Polarization. J Neuroimmune Pharmacol 2025; 20:43. [PMID: 40240584 PMCID: PMC12003577 DOI: 10.1007/s11481-025-10196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Fibromyalgia (FM) is a pain disorder characterized by pervasive musculoskeletal pain associated with exhaustion, depression, and irregular sleep patterns. Semaglutide, an innovative glucagon-like peptide-1 (GLP-1) agonist, has shown analgesic effects by modulating pain hypersensitivity in animal models of inflammatory pain. The objective of this study is to ascertain semaglutide's therapeutic potential against FM-like symptoms caused by reserpine. Reserpine (1 mg/kg/day; SC) was administered into rats for 3 consecutive days, then they were treated daily with semaglutide intraperitoneally in low (5 nmol/kg), intermediate (10 nmol/kg), or high doses (20 nmol/kg), respectively, for 14 consecutive days. Semaglutide alleviated reserpine induced histopathological and immunohistopathological changes in spinal cord of rats evidenced by a remarkable rise in immuno-expression of cluster of differentiation 163 (CD163) contrary to a significant diminution in CD86 level as compared with reserpine group. Semaglutide also had an analgesic effect and improved motor incoordination, and depression brought on by reserpine. Furthermore, it had an anti-inflammatory impact via stimulating cyclic adenosine monophosphate (cAMP)/ protein kinase A (PKA)/ cAMP response element (CRE)-binding protein (CREB) signaling pathway and shifting M1/M2 macrophage polarization towards the M2. Semaglutide's anti-inflammatory actions were manifested through inhibition of inducible nitric oxide synthase and reduction in dorsal root ganglia concentrations of tumor necrosis factor-α together with elevation in the levels of arginase-1 and interleukin-4.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Sinai, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
13
|
Hassani Nia F, Wittamer V. Zebrafish in neurodevelopmental disorders studies: Genetic models and pathological involvement of microglia. Dev Med Child Neurol 2025. [PMID: 40156170 DOI: 10.1111/dmcn.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Neurodevelopmental disorders (NDDs) are a group of brain disorders with a neonatal or early childhood onset and are lifelong. Various factors including genetics, and environmental and immune-related risk factors have been associated with NDDs. Given the complex nature of these disorders, multiple animal models have been used to investigate their aetiology and underlying cellular and molecular mechanisms. Recently, zebrafish have attracted great attention as an emerging model for studying NDDs. In addition to their easy maintenance, short developmental cycle, ex utero embryonic evolution, and optical clarity, zebrafish have successfully recapitulated phenotypes seen in human genetic disorders. This review explores the growing role of zebrafish in NDD research, by summarizing recently developed zebrafish genetic models for autism spectrum disorder, schizophrenia, and cerebral palsy. We then explore the potential of zebrafish as a model for studying NDDs linked to immune system dysfunction.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire Jacques E. Dumont, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Valerie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire Jacques E. Dumont, Brussels, Belgium
- ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
14
|
Faustmann TJ, Corvace F, Faustmann PM, Ismail FS. Influence of antipsychotic drugs on microglia-mediated neuroinflammation in schizophrenia: perspectives in an astrocyte-microglia co-culture model. Front Psychiatry 2025; 16:1522128. [PMID: 40171306 PMCID: PMC11959008 DOI: 10.3389/fpsyt.2025.1522128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/12/2025] [Indexed: 04/03/2025] Open
Abstract
Schizophrenia is a severe mental disorder with a strong lifetime impact on patients' health and wellbeing. Usually, symptomatic treatment includes typical or atypical antipsychotics. Study findings show an involvement of low-grade inflammation (blood, brain parenchyma, and cerebrospinal fluid) in schizophrenia. Moreover, experimental and neuropathological evidence suggests that reactive microglia, which are the main resident immune cells of the central nervous system (CNS), have a negative impact on the differentiation and function of oligodendrocytes, glial progenitor cells, and astrocytes, which results in the disruption of neuronal networks and dysregulated synaptic transmission, contributing to the pathophysiology of schizophrenia. Here, the role of microglial cells related to neuroinflammation in schizophrenia was discussed to be essential. This review aims to summarize the evidence for the influence of antipsychotics on microglial inflammatory mechanisms in schizophrenia. Furthermore, we propose an established astrocyte-microglia co-culture model for testing regulatory mechanisms and examining the effects of antipsychotics on glia-mediated neuroinflammation. This could lead to a better understanding of how typical and atypical antipsychotics can be used to address positive and negative symptoms in schizophrenia and comorbidities like inflammatory diseases or the status of low-grade inflammation.
Collapse
Affiliation(s)
- Timo Jendrik Faustmann
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Franco Corvace
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Pedro M. Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| |
Collapse
|
15
|
Belančić A, Janković T, Gkrinia EMM, Kristić I, Rajič Bumber J, Rački V, Pilipović K, Vitezić D, Mršić-Pelčić J. Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications. Neurol Int 2025; 17:41. [PMID: 40137462 PMCID: PMC11944370 DOI: 10.3390/neurolint17030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the SMN1 gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Andrej Belančić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | | | - Iva Kristić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jelena Rajič Bumber
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Dinko Vitezić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| | - Jasenka Mršić-Pelčić
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (T.J.); (I.K.); (J.R.B.); (K.P.); (D.V.); (J.M.-P.)
| |
Collapse
|
16
|
Ding Y. Histone deacetylases: the critical enzymes for microglial activation involved in neuropathic pain. Front Pharmacol 2025; 16:1515787. [PMID: 40115267 PMCID: PMC11922887 DOI: 10.3389/fphar.2025.1515787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025] Open
Abstract
Neuropathic pain is a common health problem in clinical practice that can be caused by many different factors, including infection, ischemia, trauma, diabetes mellitus, nerve compression, autoimmune disorders, cancer, trigeminal neuralgia, and abuse of certain drugs. This type of pain can persistently affect patients for a long time, even after the rehabilitation of their damaged tissues. Researchers have identified the crucial role of microglial activation in the pathogenesis of neuropathic pain. Furthermore, emerging evidence has shown that the expression and/or activities of different histone deacetylases (HDACs) can modulate microglial function and neuropathic pain. In this review, we will summarize and discuss the functions and mechanisms of HDACs in microglial activation and neuropathic pain development. Additionally, we will also list the emerging HDAC inhibitors or activators that may contribute to therapeutic advancement in alleviating neuropathic pain.
Collapse
Affiliation(s)
- Yi Ding
- Department of Anesthesiology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
17
|
Harbi RA, Mouihate A. Maternal immune activation alters the GABAergic system in the prefrontal cortex of female rat offspring: Role of interleukin-6. Neuroscience 2025; 568:399-407. [PMID: 39884421 DOI: 10.1016/j.neuroscience.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/06/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Maternal immune activation (MIA) induces long-term cognitive impairments by modulating the gamma-aminobutyric acid (GABA)ergic system. Experimental evidence suggests that maternal immune challenge with bacterial active ingredient lipopolysaccharide (LPS) reduces GABAergic tone in the offspring's prefrontal cortex. In this study, we aimed to assess whether interleukin-6 (IL-6) contributes to this reduced GABAergic system in the prefrontal cortex of juvenile offspring. Pregnant rats were given intraperitoneal injections of either LPS (100 µg/Kg) or a pyrogen-free saline solution in the absence or the presence of an IL-6 neutralizing antibody (IL-6Ab, 10 µg/Kg) on gestation day (GD) 15, GD17 and GD19. Parvalbumin and somatostatin GABAergic interneurons and the density of inhibitory synapses were monitored in 30-day-old male and female rat offspring using fluorescent immunohistochemistry. The expression levels of Cl- transporters (NKCC1 and KCC2) were assessed using western blotting. Prenatal LPS induced a significant reduction in the cell density of parvalbumin-containing interneurons in the prefrontal cortex of female but not male rat offspring. LPS-induced MIA led to a reduction in the expression levels of NKCC1 in the prefrontal cortices of both male and female offspring. These long-lasting impacts of the MIA were alleviated when the IL-6Ab was co-administered with LPS during pregnancy. This study shows that the GABAergic system in the prefrontal cortex of female rats is highly sensitive to prenatal immune challenges. These data pave the way for exploring the specific mechanism(s) underlying the sex-dependent effects of early-life immune challenges.
Collapse
Affiliation(s)
- Retaj Al Harbi
- Department of Physiology, College of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, College of Medicine, Health Sciences Centre, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
18
|
Zhang Y, Du B, Zou M, Peng B, Rao Y. Neuronal Ceroid Lipofuscinosis-Concepts, Classification, and Avenues for Therapy. CNS Neurosci Ther 2025; 31:e70261. [PMID: 39925015 PMCID: PMC11808193 DOI: 10.1111/cns.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bingying Du
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
- Department of NeurologyThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Miaozhan Zou
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bo Peng
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
| |
Collapse
|
19
|
Zhang X, Chen Z, Xiong Y, Zhou Q, Zhu LQ, Liu D. The emerging role of nitric oxide in the synaptic dysfunction of vascular dementia. Neural Regen Res 2025; 20:402-415. [PMID: 38819044 PMCID: PMC11317957 DOI: 10.4103/nrr.nrr-d-23-01353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024] Open
Abstract
With an increase in global aging, the number of people affected by cerebrovascular diseases is also increasing, and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate. However, few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients. Similarly in Alzheimer's disease and other neurological disorders, synaptic dysfunction is recognized as the main reason for cognitive decline. Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system. Recently, nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia. This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction, neuroinflammation, oxidative stress, and blood-brain barrier dysfunction that underlie the progress of vascular dementia. Additionally, we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Center for Cognitive Science and Transdisciplinary Studies, Jiujiang University, Jiangxi Province, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
- Department of Rehabilitation, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi Province, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi Province, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
21
|
Godeanu S, Mușat MI, Scheller A, Osiac E, Cătălin B. Minimal differences observed when comparing the morphological profiling of microglia obtained by confocal laser scanning and optical sectioning microscopy. Front Neuroanat 2025; 18:1507140. [PMID: 39829733 PMCID: PMC11739110 DOI: 10.3389/fnana.2024.1507140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Background While widefield microscopy has long been constrained by out-of-focus scattering, advancements have generated a solution in the form of confocal laser scanning microscopy (cLSM) and optical sectioning microscopy using structured illumination (OSM). In this study, we aim to investigate, using microglia branching, if cLSM and OSM can produce images with comparable morphological characteristics. Results By imaging the somatosensory microglia from a tissue slice of a 3-week-old mouse and establishing morphological parameters that characterizes the microglial branching pattern, we were able to show that there is no difference in total length of the branch tree, number of branches, mean branch length and number of primary to terminal branches. We did find that area-based parameters such as mean occupied area and mean surveillance area were bigger in cLSM isolated microglia compared to OSM ones. Additionally, by investigating the difference in acquisition time between techniques and personal costs we were able to establish that the amortization could be made in 6.11 ± 2.93 years in the case of countries with a Human Development Index (HDI) = 7-9 and 7.06 ± 3.13 years, respectably, for countries with HDI < 7. As such, OSM systems seem a valid option if one just wants basic histological evaluation, and cLSM should be considered for groups that demand higher resolution or volumetric images.
Collapse
Affiliation(s)
- Sânziana Godeanu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Saarbrücken, Germany
| | - Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Saarbrücken, Germany
- Center for Gender-Specific Biology and Medicine (CGBM), University of Saarland, Saarbrücken, Germany
| | - Eugen Osiac
- Department of Biophysics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
22
|
Grosche A, Grosche J, Verkhratsky A. Physiology and pathophysiology of the retinal neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:239-265. [PMID: 40148047 DOI: 10.1016/b978-0-443-19102-2.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia of the retina are represented by Müller glia, parenchymal astrocytes, microglia and oligodendrocytes mainly associated with the optic nerve. Müller glia are the most numerous glia, endowed with multiple homeostatic functions and indispensable for the retinal morphofunctional organization. Müller cells integrate retinal neurons into individual functional units (known as retinal columns) and act as a living light guide, transmitting photons to photoreceptors. In pathology, retinal neuroglia undergo complex changes, which include upregulation of neuroprotection, reactive gliosis, and functional asthenia. The balance between all these changes defines the progression and outcome of retinal disorders.
Collapse
Affiliation(s)
- Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, München, Germany.
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
23
|
Zhang L, Verkhratsky A, Shi FD. Astrocytes and microglia in multiple sclerosis and neuromyelitis optica. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:133-145. [PMID: 40148041 DOI: 10.1016/b978-0-443-19102-2.00001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multiple sclerosis and neuromyelitis optica are autoimmune neurodegenerative diseases primarily targeting myelin sheath and neuroglia. In multiple sclerosis, autoantibodies destroy oligodendrocytes and myelin, which underlies primary neurologic symptoms. Focal damage to myelin triggers reactive astrogliosis and microgliosis, which contribute to and to a large extent define the disease progression. In neuromyelitis optica, autoantibodies against water channel aquaporin 4 (AQP4), which are localized at astrocytic endfeet mediate damage of the glia limitans thus facilitating infiltration of blood-borne molecules and cells that propagate the damage to nerves and neurons. This primary astrocytopathy recruits microglia, which contribute to the neuroinflammatory response. Neuroglial cells therefore are potential targets for cell-specific therapies.
Collapse
Affiliation(s)
- Linjie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China; Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Yang L, Li J, Liu F, Chai X, Fang Z, Zhang X. The Biological Changes of Synaptic Plasticity in the Pathological Process of Sepsis-associated Encephalopathy. Curr Neuropharmacol 2025; 23:359-374. [PMID: 39473252 DOI: 10.2174/1570159x23666241028105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/24/2024] [Accepted: 02/14/2024] [Indexed: 03/25/2025] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a form of cognitive and psychological impairment resulting from sepsis, which occurs without any central nervous system infection or structural brain injury. Patients may experience long-term cognitive deficits and psychiatric disorders even after discharge. However, the underlying mechanism remains unclear. As cognitive function and mental disease are closely related to synaptic plasticity, it is presumed that alterations in synaptic plasticity play an essential role in the pathological process of SAE. Here, we present a systematic description of the pathogenesis of SAE, which is primarily driven by glial cell activation and subsequent release of inflammatory mediators. Additionally, we elucidate the alterations in synaptic plasticity that occur during SAE and comprehensively discuss the roles played by glial cells and inflammatory factors in this process. In this review, we mainly discuss the synaptic plasticity of SAE, and the main aim is to show the consequences of SAE on inflammatory factors and how they affect synaptic plasticity. This review may enhance our understanding of the mechanism underlying cognitive dysfunction and provide valuable insights into identifying appropriate therapeutic targets for SAE.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Li
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Critical Care Medicine, Air Force Medical Center, Beijing, 100142, China
| | - Fuhong Liu
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin Chai
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zongping Fang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- The Third Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xijing Zhang
- Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
25
|
Verkhratsky A, Hol EM, de Witte LD, Aronica E. Neuroglia in the healthy brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:1-5. [PMID: 40122619 DOI: 10.1016/b978-0-443-19104-6.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The nervous tissue is composed of neurons and neuroglia, which by working in a tightly coordinated manner, define the function of the nervous system. Neuroglia, defined as homeostatic and defensive cells of the nervous system, are highly heterogeneous in form and function and are endowed with a remarkable plasticity that allows life-long adaptation to environmental challenges. Neuroglia of the peripheral nervous system are represented by myelinating, nonmyelinating, perisynaptic, and cutaneous Schwann cells, satellite glia of sensory and sympathetic ganglia and enteric glia of the enteric nervous system. Neuroglia of the central nervous system (CNS) are classified into macroglia and microglia. Macroglia in turn are represented by astroglia and oligodendroglia. Astroglia represent an extended class of homeostatic glial cells, which include astrocytes (protoplasmic, fibrous, velate, and marginal), radial astrocytes (Bergmann glial cells, glia-like nervous stem cells, and tanycytes), and ependymoglia. The oligodendroglial lineage is mainly responsible for myelination and support of central axons and is represented by oligodendrocytes and oligodendrocyte precursor cells. Microglia are the cells of nonneural, myeloid origin that invade the neural tube early in embryonic development. These cells are tissue macrophages adapted to the nervous system requirements. Microglia contribute to physiology of the nervous tissue and to the innate immunity and defense of the CNS.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eleanora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Ispirjan M, Marx S, Freund E, Fleck SK, Baldauf J, Roessler K, Schroeder HW, Bekeschus S. Markers of tumor-associated macrophages and microglia exhibit high intratumoral heterogeneity in human glioblastoma tissue. Oncoimmunology 2024; 13:2425124. [PMID: 39523551 PMCID: PMC11556281 DOI: 10.1080/2162402x.2024.2425124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Human glioblastoma multiforme (GBM) is a highly aggressive tumor with insufficient therapies available. Especially, novel concepts of immune therapies fail due to a complex immunosuppressive microenvironment, high mutational rates, and inter-patient variations. The intratumoral heterogeneity is currently not sufficiently investigated. METHODS Biopsies from six different locations were taken in a cohort of 16 GBM patients who underwent surgery. The tissue slides were analyzed utilizing high-content imaging microscopy and algorithm-based image quantification. Several immune markers for macrophage and microglia subpopulations were investigated. Flow cytometry was used to validate key results. Besides the surface marker, cytokines were measured and categorized based on their heterogenicity and overall expression. RESULTS M2-like antigens, including CD204, CD163, Arg1, and CSF1R, showed comparatively higher expression, with GFAP displaying the least intratumoral heterogeneity. In contrast, anti-tumor-macrophage-like antigens, such as PSGL-1, CD16, CD68, and MHC-II, exhibited low overall expression and concurrent high intratumoral heterogeneity. CD16 and PSGL-1 were the most heterogeneous antigens. High expression levels were observed for cytokines IL-6, VEGF, and CCL-2. VILIP-a was revealed to differentiate most in principle component analysis. Cytokines with the lowest overall expression, such as TGF-β1, β-NGF, TNF-α, and TREM1, showed low intratumoral heterogeneity, in contrast to βNGF, TNF-α, and IL-18, which displayed high heterogeneity despite low expression. CONCLUSION The study showed high intratumoral heterogeneity in GBM, emphasizing the need for a more detailed understanding of the tumor microenvironment. The described findings could be essential for future personalized treatment strategies and the implementation of reliable diagnostics in GBM.
Collapse
Affiliation(s)
- Mikael Ispirjan
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sascha Marx
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Eric Freund
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Steffen K. Fleck
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Joerg Baldauf
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Karl Roessler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Henry W.S. Schroeder
- Department of Neurosurgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
27
|
McNally MA, Lau LA, Granak S, Hike D, Liu X, Yu X, Donahue RA, Chibnik LB, Ortiz JV, Che A, Northington F, Staley K. Ongoing loss of viable neurons for weeks after mild perinatal hypoxia-ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629457. [PMID: 39763962 PMCID: PMC11702593 DOI: 10.1101/2024.12.19.629457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution. In vitro, perinatal murine organotypic hippocampal cultures underwent 15-20 minutes of oxygen-glucose deprivation. In vivo, mild hypoxia-ischemia was completed in post-natal day 10 mouse pups of both sexes with carotid ligation and 15 minutes of hypoxia. Consistent with a mild injury, minimal immediate neuronal death was seen and there was no volumetric evidence of injury by ex vivo MRI 2.5 weeks after injury. In both the hippocampus and neocortex, these mild injuries resulted in a significantly delayed and progressive neuronal loss in the second week after injury, measured by fluorophore quenching. Mild hypoxia-ischemia transiently suppressed cortical network activity followed by normal maturation. No post-injury seizures were seen. The participation in network activity of individual neurons destined to die was indistinguishable from those that survived for 4 days post-injury. In conclusion, our results showed that mild perinatal brain injury resulted in a prolonged increase of neuronal death. Neurons that died late were functioning normally for days after injury, suggesting a new pathophysiology of neuronal death. Critically, the neurons destined to die late demonstrated multiple biomarkers of viability long after mild injury, suggesting their later death may be modified with neuroprotective interventions. SIGNIFICANCE STATEMENT Neonatal encephalopathy due to peripartum hypoxia-ischemia (HI) is a major cause of neonatal mortality and morbidity worldwide. Of these infants, most are categorized as having mild HI. Infants with mild HI have significant long-term disabilities. There are currently no evidence-based therapies, largely because the progression and pathophysiology of mild injury is poorly understood. We have identified, for the first time, that mild perinatal HI results in a delayed and prolonged increase in neuronal death. The cortical and hippocampal neurons that die over a week after injury participate normally in neural network activity and exhibit robust viability for many days after injury, indicating a novel pathophysiology of neuronal death. Clinically, these data suggest an extended therapeutic window for mild perinatal HI.
Collapse
|
28
|
Chu CT, Uruno A, Katsuoka F, Yamamoto M. Role of NRF2 in Pathogenesis of Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1529. [PMID: 39765857 PMCID: PMC11727090 DOI: 10.3390/antiox13121529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Alzheimer's disease (AD) is a polygenic, multifactorial neurodegenerative disorder and remains the most prevalent form of dementia, globally. Despite decades of research efforts, there is still no effective cure for this debilitating condition. AD research has increasingly focused on transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) as a potential therapeutic target. NRF2 plays a crucial role in protecting cells and tissues from environmental stressors, such as electrophiles and reactive oxygen species. Recently, an increasing number of studies have demonstrated that NRF2 is a key regulator in AD pathology. NRF2 is highly expressed in microglia, resident macrophages in the central nervous system, and contributes to neuroinflammation, phagocytosis and neurodegeneration in AD. NRF2 has been reported to modulate microglia-induced inflammation and facilitate the transition from homeostatic microglia to a disease-associated microglia subset. Genetic and pharmacological activation of NRF2 has been demonstrated to improve cognitive function. Here, we review the current understanding of the involvement of NRF2 in AD and the critical role that NRF2 plays in microglia in the context of AD. Our aim is to highlight the potential of targeting NRF2 in the microglia as a promising therapeutic strategy for mitigating the progression of AD.
Collapse
Affiliation(s)
- Ching-Tung Chu
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Akira Uruno
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| | - Fumiki Katsuoka
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan;
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan; (C.-T.C.); (A.U.)
| |
Collapse
|
29
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
30
|
He D, Shi X, Liang L, Zhao Y, Ma S, Cao S, Liu B, Gao Z, Zhang X, Fan Z, Kuang F, Zhang H. Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice. Neurosci Bull 2024; 40:1858-1874. [PMID: 38907076 PMCID: PMC11625042 DOI: 10.1007/s12264-024-01248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 06/23/2024] Open
Abstract
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
Collapse
Affiliation(s)
- Danyi He
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaotong Shi
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lirong Liang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Youyi Zhao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Sanxing Ma
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuhui Cao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bing Liu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenzhen Gao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ze Fan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fang Kuang
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hui Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
31
|
Sabogal-Guaqueta AM, Mitchell-Garcia T, Hunneman J, Voshart D, Thiruvalluvan A, Foijer F, Kruyt F, Trombetta-Lima M, Eggen BJL, Boddeke E, Barazzuol L, Dolga AM. Brain organoid models for studying the function of iPSC-derived microglia in neurodegeneration and brain tumours. Neurobiol Dis 2024; 203:106742. [PMID: 39581553 DOI: 10.1016/j.nbd.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Microglia represent the main resident immune cells of the brain. The interplay between microglia and other cells in the central nervous system, such as neurons or other glial cells, influences the function and ability of microglia to respond to various stimuli. These cellular communications, when disrupted, can affect the structure and function of the brain, and the initiation and progression of neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as the progression of other brain diseases like glioblastoma. Due to the difficult access to patient brain tissue and the differences reported in the murine models, the available models to study the role of microglia in disease progression are limited. Pluripotent stem cell technology has facilitated the generation of highly complex models, allowing the study of control and patient-derived microglia in vitro. Moreover, the ability to generate brain organoids that can mimic the 3D tissue environment and intercellular interactions in the brain provide powerful tools to study cellular pathways under homeostatic conditions and various disease pathologies. In this review, we summarise the most recent developments in modelling degenerative diseases and glioblastoma, with a focus on brain organoids with integrated microglia. We provide an overview of the most relevant research on intercellular interactions of microglia to evaluate their potential to study brain pathologies.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guaqueta
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Teresa Mitchell-Garcia
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Jasmijn Hunneman
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Daniëlle Voshart
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Frank Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Faculty of Science and Engineering, Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Erik Boddeke
- Department of Biomedical Sciences, Section of Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences, Section of Molecular Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV Groningen, The Netherlands; Department Pathology and Medical biology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
32
|
Verkhratsky A, Zorec R. Neuroglia in cognitive reserve. Mol Psychiatry 2024; 29:3962-3967. [PMID: 38956370 PMCID: PMC11609093 DOI: 10.1038/s41380-024-02644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of cognitive reserve was born to account for the disjunction between the objective extent of brain damage in pathology and its clinical and intellectual outcome. The cognitive reserve comprises structural (brain reserve) and functional (brain maintenance, resilience, compensation) aspects of the nervous tissue reflecting exposome-driven life-long plasticity, which defines the ability of the brain to withstand aging and pathology. The mechanistic background of this concept was primarily focused on adaptive changes in neurones and neuronal networks. We present arguments favoring the more inclusive view, positing that neuroglia are fundamental for defining the cognitive reserve through homeostatic, neuroprotective, and neurodegenerative mechanisms. Neuroglia are critical for the life-long shaping of synaptically connected neuronal circuits as well as the brain connectome thus defining cognitive reserve. Neuroglial homeostatic and protective physiological responses define brain maintenance and resilience, while neuroglia regenerative capabilities are critical for brain compensation in pathology. Targeting neuroglia may represent an untrodden path for prolonging cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Department of Neurosciences, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| | - Robert Zorec
- University of Ljubljana, Institute of Pathophysiology, Laboratory of Neuroendocrinology and Molecular Cell Physiology, Zaloška cesta 4, SI-1000, Ljubljana, Slovenia.
- Celica, BIOMEDICAL, Technology Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Dai M, Sun S, Dai Y, Dou X, Yang J, Chen X, Yang D, Lin Y. Maresin-1 Ameliorates Sepsis-Induced Microglial Activation Through Modulation of the P38 MAPK Pathway. Neurochem Res 2024; 50:26. [PMID: 39565476 DOI: 10.1007/s11064-024-04280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Sepsis is a life-threatening disease characterized by a dysregulated immune response to infection, often leading to neuroinflammation. As a known immunomodulator, Maresin-1 (MaR1) may have potential applications in the treatment of sepsis-induced neuroinflammation, but its effects in this context are unknown. We used a mouse cecum ligation and puncture (CLP)-induced sepsis model and an in vitro lipopolysaccharide (LPS)-induced neuroinflammatory model of BV2 microglia. Expression of microglial cell markers (IBA1, CD11B, CD68, CD86 and CD206) and pro-inflammatory markers (iNOS and COX2) was assessed. The role of MaR1 in regulating the P38 MAPK pathway was explored using the P38 MAPK inhibitor SB203580. In the CLP model, an increased proportion of M1-type microglia was observed, and MaR1 was able to reverse it. However, the combination of SB203580 and MaR1 did not enhance the therapeutic effect compared to SB20580 alone. In vitro experiments, MaR1 inhibited LPS-induced P38 MAPK nuclear translocation and decreased the expression of pro-inflammatory markers such as iNOS and COX2. As with the animal results, no stacking effect could be obtained with the co-administration of SB203580 and MaR1. Our findings suggest that MaR1 attenuates sepsis-induced neuroinflammation mainly by inhibiting phosphorylation of P38 MAPK in microglial cells. This suggests that MaR1 may have a potential therapeutic role in the treatment of sepsis neuroinflammation.
Collapse
Affiliation(s)
- Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Dong Yang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
34
|
Catalão CHR, da Costa LHA, Dos Santos JR, Alberici LC, Falconi-Sobrinho LL, Coimbra NC, Dominguini D, Dal-Pizzol F, Barichello T, Rocha MJA. Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 2024; 481:1585-1602. [PMID: 39466125 PMCID: PMC11957353 DOI: 10.1042/bcj20240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
Collapse
Affiliation(s)
- Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luis Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | | | - Norberto Cysne Coimbra
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria José Alves Rocha
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
35
|
Sun S, Chen X, Ding N, Zhang M, Li X, Chen L, Sun K, Liu Y. Gamma-aminobutyric acid-mediated neuro-immune interactions in glioblastoma: Implications for prognosis and immunotherapy response. Life Sci 2024; 357:123067. [PMID: 39322177 DOI: 10.1016/j.lfs.2024.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
AIMS This study aimed to investigate the role of gamma-aminobutyric acid (GABA) in the glioblastoma (GBM) tumor immune microenvironment (TIME) and its impact on prognosis and response to immunotherapy. MAIN METHODS This study employed single-cell RNA sequencing (scRNA-seq) to delineate the TIME of GBM, utilized non-negative matrix factorization (NMF) for GABA-associated cell clustering, and performed pseudotime analysis for cellular trajectories. Additionally, we integrated immunohistochemistry (IHC), immunofluorescence (IF), and protein-protein interaction (PPI) analysis to explore the regulatory mechanisms within the tumor microenvironment. KEY FINDINGS The study identified distinct GABA-associated immune cell subtypes, particularly macrophages and T-cells, with unique gene expression and developmental trajectories. The development of the GABA-associated scoring model (GABAAS), introduced novel prognostic indicators, enhancing our ability to predict patient outcomes. This study also suggests that GABA-related genes, including NDRG2 and TIMP1, play a crucial role in immune modulation, with potential implications for immunotherapy responsiveness. SIGNIFICANCE The findings underscore the potential of targeting GABA-related genes (NDRG2 and TIMP1) and M2 macrophage to reshape the glioblastoma immune landscape, offering a new frontier in personalized neuro-immunotherapy. This approach holds promise to counter individual tumor immunosuppressive mechanisms, enhancing patient outcomes.
Collapse
Affiliation(s)
- Shanyue Sun
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Xinyuan Chen
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoru Li
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lin Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kai Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; College of Medical Information and Artificial Intelligence & Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
36
|
Nairuz T, Heo JC, Lee JH. Differential Glial Response and Neurodegenerative Patterns in CA1, CA3, and DG Hippocampal Regions of 5XFAD Mice. Int J Mol Sci 2024; 25:12156. [PMID: 39596222 PMCID: PMC11594373 DOI: 10.3390/ijms252212156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, the distinct patterns of glial response and neurodegeneration within the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus were examined in 5XFAD mice at 6 and 12 months of age. The primary feature of this transgenic mouse model is the rapid onset of amyloid pathology. We employed quantitative assessments via immunohistochemistry, incorporating double staining techniques, followed by observation with light microscopy and subsequent digital analysis of microscopic images. We identified significantly increased Aβ deposition in these three hippocampal regions at 6 and 12 months of transgenic mice. Moreover, the CA1 and CA3 regions showed higher vulnerability, with signs of reactive astrogliosis such as increased astrocyte density and elevated GFAP expression. Additionally, we observed a significant rise in microglia density, along with elevated inflammatory markers (TNFα) in these hippocampal regions. These findings highlight a non-uniform glial and neuronal response to Aβ plaque deposition within the hippocampal regions of 5xFAD mice, potentially contributing to the neurodegenerative and memory deficit characteristics of Alzheimer's disease in this model.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (J.-C.H.)
| |
Collapse
|
37
|
Yin L, Liu W, Zhang Z, Zhang J, Chen H, Xiong L. Hyperbaric Oxygen Attenuates Chronic Postsurgical Pain by Regulating the CD73/Adenosine/A1R Axis of the Spinal Cord in Rats. THE JOURNAL OF PAIN 2024; 25:104623. [PMID: 39002742 DOI: 10.1016/j.jpain.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Chronic postsurgical pain (CPSP) affects postoperative rehabilitation and quality of life in patients, but its mechanisms are still poorly understood. Hyperbaric oxygen (HBO) attenuates neuropathic pain in animal and human studies, but its efficacy for CPSP treatment and its underlying mechanism have not been elucidated. This study aimed to investigate the analgesic effect of HBO in a CPSP rat model and the role of spinal cord adenosine circulation in HBO-induced analgesia. A skin/muscle incision and retraction (SMIR) rat model was used to mimic CPSP, and HBO treatment (2.5 atmospheric absolute, 60 minutes) was administered once daily for 5 consecutive days beginning 3 days after surgery. The role of spinal cord adenosine circulation in HBO-induced analgesia was investigated using β-methylene ADP (a CD73 inhibitor), 8-cyclopentyl-1,3-dipropylxanthine (an A1R antagonist), or an intrathecal injection of adenosine. The mechanical paw withdrawal threshold was determined at different timepoints before and after surgery. The spinal cord adenosine and adenosine triphosphate (ATP) contents were analyzed using high-performance liquid chromatography, and the spinal cord expression of adenosine-1 receptor (A1R), extracellular 5'-nucleotidase (CD73), and adenosine kinase (ADK) was examined by Western blotting and immunofluorescence staining. The results showed that the mechanical paw withdrawal threshold of the ipsilateral hind paw and the adenosine content decreased, and the spinal cord expression of A1R, CD73, and ADK and ATP content increased within 14 days after surgery. HBO treatment alleviated mechanical allodynia, reduced ATP content, and increased adenosine content by activating CD73 but downregulated the spinal cord expression of A1R, CD73, and ADK. Intrathecal adenosine alleviated mechanical allodynia after SMIR and downregulated the spinal cord expression of A1R and CD73, and intrathecal β-methylene ADP or 8-cyclopentyl-1,3-dipropylxanthine attenuated the analgesic effect of HBO treatment on SMIR-induced CPSP. PERSPECTIVE: Spinal cord adenosine is involved in the occurrence and development of CPSP, and HBO treatment alleviates CPSP by regulating adenosine production/metabolism in the spinal cord. Thus, HBO may be employed for the treatment of CPSP with favorable efficacy.
Collapse
Affiliation(s)
- Lijun Yin
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Women and Children's Hospital of Ningbo University, Ningbo City, Zhejiang, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Chinese People's Liberation Army Naval Medical Center, Shanghai, PR China
| | - Zhe Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyue Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
38
|
Zhang LL, Cheng P, Chu YQ, Zhou ZM, Hua R, Zhang YM. The microglial innate immune receptor TREM2 participates in fear memory formation through excessive prelimbic cortical synaptic pruning. Front Immunol 2024; 15:1412699. [PMID: 39544929 PMCID: PMC11560470 DOI: 10.3389/fimmu.2024.1412699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Fear memory formation has been implicated in fear- and stress-related psychiatric disorders, including post-traumatic stress disorder (PTSD) and phobias. Synapse deficiency and microglial activation are common among patients with PTSD, and induced in animal models of fear conditioning. Increasing studies now focus on explaining the specific mechanisms between microglia and synapse deficiency. Though newly-identified microglia regulator triggering receptor expressed on myeloid cells 2 (TREM2) plays a role in microglial phagocytic activity, its role in fear-formation remains unknown. Methods We successfully constructed a fear- formation model by foot-shock. Four days after foot-shock, microglial capacity of synaptic pruning was investigated via western blotting, immunofluorescence and Golgi-Cox staining. Prelimbic chemical deletion or microglia inhibition was performed to detect the role of microglia in synaptic loss and neuron activity. Finally, Trem2 knockout mice or wild-type mice with Trem2 siRNA injection were exposed to foot-shock to identify the involvement of TREM2 in fear memory formation. Results The results herein indicate that the foot-shock protocol in male mice resulted in a fear formation model. Mechanistically, fear conditioning enhanced the microglial capacity for engulfing synapse materials, and led to glutamatergic neuron activation in the prelimbic cortex. Prelimbic chemical deletion or microglia inhibition improved fear memory formation. Further investigation demonstrated that TREM2 regulates microglial phagocytosis, enhancing synaptic pruning. Trem2 knockout mice showed remarkable reductions in prelimbic synaptic pruning and reduced neuron activation, with decreased fear memory formation. Discussion Our cumulative results suggest that prelimbic TREM2-mediated excessive microglial synaptic pruning is involved in the fear memory formation process, leading to development of abnormal stress-related behavior.
Collapse
Affiliation(s)
- Le-le Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yuan-qing Chu
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Zi-ming Zhou
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Rong Hua
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yong-mei Zhang
- National Medical Products Administration Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
39
|
Luczak-Sobotkowska ZM, Rosa P, Lopez MB, Ochocka N, Kiryk A, Lenkiewicz AM, Furhmann M, Jankowski A, Kaminska B. Tracking changes in functionality and morphology of repopulated microglia in young and old mice. J Neuroinflammation 2024; 21:248. [PMID: 39363245 PMCID: PMC11448401 DOI: 10.1186/s12974-024-03242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Microglia (MG) are myeloid cells of the central nervous system that support homeostasis and instigate neuroinflammation in pathologies. Single-cell RNA sequencing (scRNA-seq) revealed the functional heterogeneity of MG in mouse brains. Microglia are self-renewing cells and inhibition of colony-stimulating factor 1 receptor (CSF1R) signaling depletes microglia which rapidly repopulate. The functions of repopulated microglia are poorly known. METHODS We combined scRNA-seq, bulk RNA-seq, immunofluorescence, and confocal imaging to study the functionalities and morphology of repopulated microglia. RESULTS A CSRF1R inhibitor (BLZ-945) depleted microglia within 21 days and a number of microglia was fully restored within 7 days, as confirmed by TMEM119 staining and flow cytometry. ScRNA-seq and computational analyses demonstrate that repopulated microglia originated from preexisting progenitors and reconstituted functional clusters but upregulated inflammatory genes. Percentages of proliferating, immature microglia displaying inflammatory gene expression increased in aging mice. Morphometric analysis of MG cell body and branching revealed a distinct morphology of repopulated MG, particularly in brains of old mice. We demonstrate that with aging some repopulated MG fail to reach the homeostatic phenotype. These differences may contribute to the deterioration of MG protective functions with age.
Collapse
Affiliation(s)
| | - Patrycja Rosa
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Maria Banqueri Lopez
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Kiryk
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna M Lenkiewicz
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Martin Furhmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
40
|
Chokr SM, Bui-Tran A, Cramer KS. Loss of C1q alters the auditory brainstem response. Front Cell Neurosci 2024; 18:1464670. [PMID: 39416682 PMCID: PMC11480778 DOI: 10.3389/fncel.2024.1464670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Neural circuits in the auditory brainstem compute interaural time and intensity differences used to determine the locations of sound sources. These circuits display features that are specialized for these functions. The projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid (MNTB) body travels along highly myelinated fibers and terminates in the calyx of Held. This monoinnervating synapse emerges during development as multiple inputs are eliminated. We previously demonstrated that elimination of microglia with a colony stimulating factor-1 inhibitor results in impaired synaptic pruning so that multiple calyceal terminals reside on principal cells of MNTB. This inhibitor also resulted in impaired auditory brainstem responses (ABRs), with elevated thresholds and increased peak latencies. Loss of the microglial fractalkine receptor, CX3CR1, decreased peak latencies in the ABR. The mechanisms underlying these effects are not known. One prominent microglial signaling pathway involved in synaptic pruning and plasticity during development and aging is the C1q-initiated compliment cascade. Here we investigated the classical complement pathway initiator, C1q, in auditory brainstem maturation. We found that C1q expression is detected in the MNTB by the first postnatal week. C1q levels increased with age and were detected within microglia and surrounding the soma of MNTB principal neurons. Loss of C1q did not affect microglia-dependent calyceal pruning. Excitatory and inhibitory synaptic markers in the MNTB and LSO were not altered with C1q deletion. ABRs showed that C1q KO mice had normal hearing thresholds but shortened peak latencies. Altogether this study uncovers the developmental time frame of C1q expression in the sound localization pathway and shows a subtle functional consequence of C1q knockdown.
Collapse
Affiliation(s)
| | | | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
41
|
Wang H, Yang J, Sun Z, Nie Y, He Y. Neoprzewaquinone A alters the migration, phagocytosis and energy metabolism of IL-15-induced HMC3 cells. Mol Immunol 2024; 174:11-17. [PMID: 39128414 DOI: 10.1016/j.molimm.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Microglia play a major role in the immune defense system of the central nervous system and are activated in many neurological diseases. The immunomodulatory cytokine interleukin (IL)-15 is known to be involved in microglia response and inflammatory factors release. Neoprzewaquinone A (NEO) is an active compound isolated from Salvia miltiorrhiza Bunge. Our previous study has shown that NEO significantly inhibit the proliferation of IL-15-treated Mo7e cells. However, the role of NEO in the structure and function of IL-15-treated human microglial cells (HMC3) remains unclear. Thus, our study aimed to quantitatively analyze the beneficial effects of NEO on HMC3 cells following IL-15 treatment. The cell viability, phagocytosis, migration and energy metabolism were evaluated by Cell Counting Kit-8 (CCK8), scratch assay, pHrodo™ Red Zymosan BioParticles™ Conjugate, and Agilent Seahorse XF Cell Mito Test. Cephalothin (CEP) was selected as a positive drug because it has obvious inhibitory effect on IL-15 and IL-15Rɑ. Our results showed that IL-15 stimulated the proliferation, migration and phagocytosis of HMC3 cells in a time-dependent manner. Interestingly, NEO exhibited significant suppressive effects on these IL-15-induced changes, which were even superior to those observed with the CEP. Moreover, IL-15 treatment did not significantly alter energy metabolism, including glycolysis and mitochondrial respiration. NEO and CEP alone effectively reduced glycolysis, non-mitochondrial respiration, basal respiration, ATP turnover, respiration capacity, and H+ leak in HMC3 cells. Furthermore, NEO displayed a partial regulatory effect on mitochondrial function in IL-15-treated HMC3 cells. Our study confirms the effectively inhibition of NEO on IL-15-induced microglial activation and provides valuable insights into the therapeutic prospects of NEO in neuropsychiatric disorders associated with IL-15 and microglia.
Collapse
Affiliation(s)
- Haixia Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yadan Nie
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
42
|
Lopez-Ortiz AO, Eyo UB. Astrocytes and microglia in the coordination of CNS development and homeostasis. J Neurochem 2024; 168:3599-3614. [PMID: 37985374 PMCID: PMC11102936 DOI: 10.1111/jnc.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
Glia have emerged as important architects of central nervous system (CNS) development and maintenance. While traditionally glial contributions to CNS development and maintenance have been studied independently, there is growing evidence that either suggests or documents that glia may act in coordinated manners to effect developmental patterning and homeostatic functions in the CNS. In this review, we focus on astrocytes, the most abundant glia in the CNS, and microglia, the earliest glia to colonize the CNS highlighting research that documents either suggestive or established coordinated actions by these glial cells in various CNS processes including cell and/or debris clearance, neuronal survival and morphogenesis, synaptic maturation, and circuit function, angio-/vasculogenesis, myelination, and neurotransmission. Some molecular mechanisms underlying these processes that have been identified are also described. Throughout, we categorize the available evidence as either suggestive or established interactions between microglia and astrocytes in the regulation of the respective process and raise possible avenues for further research. We conclude indicating that a better understanding of coordinated astrocyte-microglial interactions in the developing and mature brain holds promise for developing effective therapies for brain pathologies where these processes are perturbed.
Collapse
Affiliation(s)
- Aída Oryza Lopez-Ortiz
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
43
|
Jiao H, Kalsbeek A, Yi CX. Microglia, circadian rhythm and lifestyle factors. Neuropharmacology 2024; 257:110029. [PMID: 38852838 DOI: 10.1016/j.neuropharm.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Microglia, a vital homeostasis-keeper of the central nervous system, perform critical functions such as synaptic pruning, clearance of cellular debris, and participation in neuroinflammatory processes. Recent research has shown that microglia exhibit strong circadian rhythms that not only actively regulate their own immune activity, but also affect neuronal function. Disruptions of the circadian clock have been linked to a higher risk of developing a variety of diseases. In this article we will provide an overview of how lifestyle factors impact microglial function, with a focus on disruptions caused by irregular sleep-wake patterns, reduced physical activity, and eating at the wrong time-of-day. We will also discuss the potential connection between these lifestyle factors, disrupted circadian rhythms, and the role of microglia in keeping brain health. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, the Netherlands; Department of Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
45
|
Cangalaya C, Sun W, Stoyanov S, Dunay IR, Dityatev A. Integrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling. Glia 2024; 72:1874-1892. [PMID: 38946065 DOI: 10.1002/glia.24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.
Collapse
Affiliation(s)
- Carla Cangalaya
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Weilun Sun
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Stoyan Stoyanov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
46
|
Wogram E, Sümpelmann F, Dong W, Rawat E, Fernández Maestre I, Fu D, Braswell B, Khalil A, Buescher JM, Mittler G, Borner GHH, Vlachos A, Tholen S, Schilling O, Bell GW, Rambold AS, Akhtar A, Schnell O, Beck J, Abu-Remaileh M, Prinz M, Jaenisch R. Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes. Immunity 2024; 57:2216-2231.e11. [PMID: 39151426 DOI: 10.1016/j.immuni.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.
Collapse
Affiliation(s)
- Emile Wogram
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Sümpelmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Eshaan Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | | | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brandyn Braswell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andrew Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; The Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
47
|
Beachum AN, Salazar G, Nachbar A, Krause K, Klose H, Meyer K, Maserejian A, Ross G, Boyd H, Weigel T, Ambaye L, Miller H, Coutinho-Budd J. Glia multitask to compensate for neighboring glial cell dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611719. [PMID: 39314422 PMCID: PMC11418964 DOI: 10.1101/2024.09.06.611719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
As glia mature, they undergo glial tiling to abut one another without invading each other's boundaries. Upon the loss of the secreted neurotrophin Spätzle3 (Spz3), Drosophila cortex glia transform morphologically and lose their intricate interactions with neurons and surrounding glial subtypes. Here, we reveal that all neighboring glial cell types (astrocytes, ensheathing glia, and subperineurial glia) react by extending processes into the previous cortex glial territory to compensate for lost cortex glial function and reduce the buildup of neuronal debris. However, the loss of Spz3 alone is not sufficient for glia to cross their natural borders, as blocking CNS growth via nutrient-restriction blocks the aberrant infiltration induced by the loss of Spz3. Surprisingly, even when these neighboring glia divert their cellular resources beyond their typical borders to take on new compensatory roles, they are able to multitask to continue to preserve their own normal functions to maintain CNS homeostasis.
Collapse
Affiliation(s)
- Allison N. Beachum
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Amelia Nachbar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kevin Krause
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Hannah Klose
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kate Meyer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | | | - Grace Ross
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hannah Boyd
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Thaddeus Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Lydia Ambaye
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hayes Miller
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
48
|
Martins-Ferreira R, Calafell-Segura J, Chaves J, Ciudad L, Martins da Silva A, Pinho e Costa P, Leal B, Ballestar E. Purinergic exposure induces epigenomic and transcriptomic-mediated preconditioning resembling epilepsy-associated microglial states. iScience 2024; 27:110546. [PMID: 39184445 PMCID: PMC11342283 DOI: 10.1016/j.isci.2024.110546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/10/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Microglia play a crucial role in a range of neuropathologies through exacerbated activation. Microglial inflammatory responses can be influenced by prior exposures to noxious stimuli, like increased levels of extracellular adenosine and ATP. These are characteristic of brain insults like epileptic seizures and could potentially shape subsequent responses through epigenetic regulation. We investigated DNA methylation and expression changes in human microglia-like cells differentiated from monocytes following ATP-mediated preconditioning. We demonstrate that microglia-like cells display homeostatic microglial features, shown by surface markers, transcriptome, and DNA methylome. After exposure to ATP, TLR-mediated activation leads to an exacerbated pro-inflammatory response. These changes are accompanied by methylation and transcriptional reprogramming associated with enhanced immune-related functions. The reprogramming associated with ATP-mediated preconditioning leads to profiles found in microglial subsets linked to epilepsy. Purine-driven microglia immune preconditioning drives epigenetic and transcriptional changes that could contribute to altered functions of microglia during seizure development and progression.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - João Chaves
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Neurology Service, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Neurophysiology Service, CHUdSA 4099-001 Porto, Portugal
| | - Paulo Pinho e Costa
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge 4000-055 Porto, Portugal
| | - Bárbara Leal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), 4050-313 Porto, Portugal
- Autoimmunity and Neuroscience Group. Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai 200241, China
| |
Collapse
|
49
|
Gabele L, Bochow I, Rieke N, Sieben C, Michaelsen-Preusse K, Hosseini S, Korte M. H7N7 viral infection elicits pronounced, sex-specific neuroinflammatory responses in vitro. Front Cell Neurosci 2024; 18:1444876. [PMID: 39171200 PMCID: PMC11335524 DOI: 10.3389/fncel.2024.1444876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Influenza A virus (IAV) infection can increase the risk of neuroinflammation, and subsequent neurodegenerative diseases. Certain IAV strains, such as avian H7N7 subtype, possess neurotropic properties, enabling them to directly invade the brain parenchyma and infect neurons and glia cells. Host sex significantly influences the severity of IAV infections. Studies indicate that females of the reproductive age exhibit stronger innate and adaptive immune responses to IAVs compared to males. This heightened immune response correlates with increased morbidity and mortality, and potential neuronal damage in females. Understanding the sex-specific neurotropism of IAV and associated mechanisms leading to adverse neurological outcomes is essential. Our study reveals that primary hippocampal cultures from female mice show heightened interferon-β and pro-inflammatory chemokine secretion following neurotropic IAV infection. We observed sex-specific differences in microglia activation: both sexes showed a transition into a hyper-ramified state, but only male-derived microglia exhibited an increase in amoeboid-shaped cells. These disparities extended to alterations in neuronal morphology. Neurons derived from female mice displayed increased spine density within 24 h post-infection, while no significant change was observed in male cultures. This aligns with sex-specific differences in microglial synaptic pruning. Data suggest that amoeboid-shaped microglia preferentially target postsynaptic terminals, potentially reducing neuronal hyperexcitability. Conversely, hyper-ramified microglia may focus on presynaptic terminals, potentially limiting viral spread. In conclusion, our findings underscore the utility of primary hippocampal cultures, incorporating microglia, as an effective model to study sex-specific, virus-induced effects on brain-resident cells.
Collapse
Affiliation(s)
- Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Isabell Bochow
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nele Rieke
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
| | - Christian Sieben
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
50
|
Lana D, Traini C, Bulli I, Sarti G, Magni G, Attorre S, Giovannini MG, Vannucchi MG. Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front Pharmacol 2024; 15:1451114. [PMID: 39166107 PMCID: PMC11333230 DOI: 10.3389/fphar.2024.1451114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction: The gut microbiota (MB), although one of the main producers of Aβ in the body, in physiological conditions contributes to the maintainance of a healthy brain. Dysbiosis, the dysbalance between Gram-negative and Gram-positive bacteria in the MB increases Aβ production, contributing to the accumulation of Aβ plaques in the brain, the main histopathological hallmark of Alzheimer's disease (AD). Administration of prebiotics and probiotics, maintaining or recovering gut-MB composition, could represent a nutraceutical strategy to prevent or reduce AD sympthomathology. Aim of this research was to evaluate whether treatment with pre- and probiotics could modify the histopathological signs of neurodegeneration in hippocampal CA1 and CA3 areas of a transgenic mouse model of AD (APP/PS1 mice). The hippocampus is one of the brain regions involved in AD. Methods: Tg mice and Wt littermates (Wt-T and Tg-T) were fed daily for 6 months from 2 months of age with a diet supplemented with prebiotics (a multi-extract of fibers and plant complexes, containing inulin/fruit-oligosaccharides) and probiotics (a 50%-50% mixture of Lactobacillus rhamnosus and Lactobacillus paracasei). Controls were Wt and Tg mice fed with a standard diet. Brain sections were immunostained for Aβ plaques, neurons, astrocytes, microglia, and inflammatory proteins that were evaluated qualitatively and quantitatively by immunofluorescence, confocal microscopy and digital imaging with ImageJ software. Results: Quantitative analyses demonstrated that: 1) The treatment with pre- and probiotics significantly decreased Aβ plaques in CA3, while in CA1 the reduction was not significant; 2) Neuronal damage in CA1 Stratum Pyramidalis was significantly prevented in Tg-T mice; no damage was found in CA3; 3) In both CA1 and CA3 the treatment significantly increased astrocytes density, and GFAP and IBA1 expression, especially around plaques; 4) Microglia reacted differently in CA1 and CA3: in CA3 of Tg-T mice there was a significant increase of CD68+ phagocytic microglia (ball-and-chain phenomic) and of CX3CR1 compared with CA1. Discussion: The higher microglia reactivity could be responsible for their more efficient scavenging activity towards Aβ plaques in CA3 in comparison to CA1. Treatment with pre- and probiotics, modifying many of the physiopathological hallmarks of AD, could be considered an effective nutraceutical strategy against AD symptomatology.
Collapse
Affiliation(s)
- Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Chiara Traini
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Irene Bulli
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giorgia Sarti
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giada Magni
- Cnr — Istituto di Fisica Applicata “Nello Carrara”, Sesto Fiorentino, Italy
| | - Selene Attorre
- Section of Anatomic Pathology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy
| | - Maria Giuliana Vannucchi
- Research Unit of Histology and Embryology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|