1
|
Guo R, Chen O, Zhou Y, Bang S, Chandra S, Li Y, Chen G, Xie RG, He W, Xu J, Zhou R, Song S, Person KL, Moore MN, Alwin AR, Spasojevic I, Jackson MR, Olson SH, Caron MG, Slosky LM, Wetsel WC, Barak LS, Ji RR. Arrestin-biased allosteric modulator of neurotensin receptor 1 alleviates acute and chronic pain. Cell 2025:S0092-8674(25)00508-2. [PMID: 40393456 DOI: 10.1016/j.cell.2025.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/12/2025] [Accepted: 04/28/2025] [Indexed: 05/22/2025]
Abstract
G-protein-biased agonists have been shown to enhance opioid analgesia by circumventing β-arrestin-2 (βarr2) signaling. We previously reported that SBI-553, a neurotensin receptor 1 (NTSR1)-positive allosteric modulator biased toward βarr2 signaling, attenuates psychostimulant effects in mice. Here, we demonstrate that its analog, SBI-810, exhibits potent antinociceptive properties in rodent models of postoperative pain, inflammatory pain, and neuropathic pain via systemic and local administration. SBI-810's analgesic effects require NTSR1 and βarr2 but not NTSR2 or βarr1. Mechanistically, SBI-810 suppresses excitatory synaptic transmission, inhibits NMDA receptor and extracellular-regulated signal kinase (ERK) signaling in spinal cord nociceptive neurons, reduces Nav1.7 surface expression and action potential firing in primary sensory neurons, and dampens C-fiber responses. Behaviorally, it reduces opioid-induced conditioned place preference, alleviates constipation, and mitigates chronic opioid withdrawal symptoms. These findings highlight NTSR1-biased allosteric modulators as a promising, non-addictive therapeutic strategy for acute and chronic pain management, acting through both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Ran Guo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Sharat Chandra
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Yize Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Gang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Rou-Gang Xie
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Wei He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Richard Zhou
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Shaoyong Song
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA
| | - Kelsey L Person
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Madelyn N Moore
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Abigail R Alwin
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Pharmacokinetics/Pharmacodynamics Core Laboratory, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael R Jackson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Steven H Olson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lauren M Slosky
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lawrence S Barak
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27705, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Lee S, Edwards S. Alcohol and cannabis use for pain management: Translational findings of relative risks, benefits, and interactions. Physiol Behav 2025; 294:114867. [PMID: 40023207 DOI: 10.1016/j.physbeh.2025.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Chronic pain affects over 20% of the global population and contributes to the vast burden of psychiatric illness. While effective treatments for chronic pain remain limited, both alcohol and cannabis have been used for centuries to manage pain and closely associated negative affective symptoms. However, persistent misuse of alcohol and/or cannabis in such a negative reinforcement fashion is hypothesized to increase the risk of severity of substance use disorders (SUDs). The current review describes neurobiological evidence for the analgesic efficacy of alcohol and primary cannabis constituents and how use or co-use of these substances may influence SUD risk.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Room 734, New Orleans, LA 70112, USA
| | - Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 2020 Gravier St. Room 734, New Orleans, LA 70112, USA.
| |
Collapse
|
3
|
Islam J, Rahman MT, Ali M, Kc E, Lee HJ, Hyun SH, Park YS. CaMKIIα-NpHR-Mediated Optogenetic Inhibition of DRG Glutamatergic Neurons by Flexible Optic Fiber Alleviates Chronic Neuropathic Pain. Neuromolecular Med 2025; 27:26. [PMID: 40227491 DOI: 10.1007/s12017-025-08848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Glutamatergic neurons of the dorsal root ganglion (DRGg) exert a significant effect on peripheral nociceptive signal transmission. However, assessing the explicit modulatory effect of DRGg during chronic neuropathic pain (CNP) with neuromodulation techniques remains largely unexplored. Therefore, we inhibited DRGg by optogenetic stimulation and examined whether it could alleviate CNP and associated anxiety-related behaviors in a chronic compressed DRG (CCD) rat model. The CCD pain model was established by inserting an L-shaped rod into the lumbar 5 (L5) intervertebral foramen, and either AAV2-CaMKIIα-eNpHR3.0-mCherry or AAV2-CaMKIIα-mCherry was injected into the L5 DRG. Flexible optic fibers were implanted to direct yellow light into the L5 DRG. Pain and anxiety-related behavioral responses were assessed using mechanical threshold, mechanical latency, thermal latency, and open field tests. In vivo single-unit extracellular recording from the DRG and ventral posterolateral (VPL) thalamus was performed. CNP and anxiety-related behavioral responses along with increased neural firing activity of the DRG and VPL thalamus were observed in CCD animals. Enhanced expression of nociception-influencing molecules was found in the DRG and spinal dorsal horn (SDH). In contrast during optogenetic stimulation, specific DRGg inhibition markedly alleviated the CNP responses and reduced the DRG and VPL thalamic neural hyperactivity in CCD animals. Inhibition of DRGg also reduced the active expression of nociceptive signal mediators in the DRG and SDH. Taken together, our findings suggest that CaMKIIα-NpHR-mediated optogenetic inhibition of DRGg can produce antinociceptive effects in CCD rats during peripheral nerve injury-induced CNP condition by altering peripheral nociceptive signal input in the spinothalamic tract.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Muhammad Ali
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang Hwan Hyun
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Chungbuk, Korea.
| |
Collapse
|
4
|
Zhu C, Jeong KS, Edhi M, Rogness V, Saab CY, Esteller R. Spinal cord stimulation using time-dynamic pulses achieves longer reversal of allodynia compared to tonic pulses in a rat model of neuropathic pain. FRONTIERS IN PAIN RESEARCH 2025; 6:1541078. [PMID: 40270935 PMCID: PMC12014672 DOI: 10.3389/fpain.2025.1541078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Background Spinal cord stimulation (SCS) utilizing time-dynamic pulses (TDPs) is an emergent field of neuromodulation that continuously and automatically modulates pulse parameters. We previously demonstrated that TDPs delivered for 60 min at paresthesia-free or minimal paresthesia amplitudes significantly reversed allodynia in a rat model of neuropathic pain. Because the anti-allodynic effect was observed to persist post-stimulation, we hypothesized that the anti-nociceptive effects of TDPs may persist longer than those of tonic stimulation. Methods We extended SCS stimulation period up to 90 min and investigated the temporal dynamics of SCS-induced analgesia through PWT analysis of the aggregated data from both cohorts. Results Both TDPs and tonic stimulation reversed paw withdrawal thresholds (PWT) to near pre-neuropathic levels within 30 min. Most TDPs exhibited significantly slower ramp-up slope (analgesia 'wash-in' rates) as compared to tonic stimulation. All TDPs showed slower wind-down slopes (analgesia 'wash-out' rates) compared to tonic, with pulse width modulation reaching significance. Extending SCS from 60 to 90 min revealed that all TDPs maintained analgesic efficacy longer than tonic stimulation, which showed significant decrease at both 75 and 90 min. Discussion Although TDPs and tonic stimulation comparably mitigated allodynia, TDPs exhibited slower rate of wash-out, suggesting longer-lasting analgesic effects and potentially different mechanisms of action.
Collapse
Affiliation(s)
- Changfang Zhu
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Ki-Soo Jeong
- Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- School of Engineering, Brown University, Providence, RI, United States
| | - Muhammad Edhi
- Internal Medicine, University of Buffalo, Buffalo, NY, United States
| | - Victoria Rogness
- School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Carl Y. Saab
- Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
- School of Engineering, Brown University, Providence, RI, United States
| | - Rosana Esteller
- Research and Development, Boston Scientific Neuromodulation, Valencia, CA, United States
| |
Collapse
|
5
|
Ding WQ, Song W, Shi X, Feng Z, Chen X, Xie T, Liu Y, Zhou J, Chen Y, Lin JK, Wang QM, Zhou H, Liang TY, Jiang T, Ren B, Yao H, Li YQ, Evrard HC, Poo MM, Li H, Li X, Gong H, Todd AJ, Li A, Wang X, Deng J, Sun YG. Single-neuron projectome reveals organization of somatosensory ascending pathways in the mouse brain. Neuron 2025:S0896-6273(25)00179-5. [PMID: 40209714 DOI: 10.1016/j.neuron.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025]
Abstract
Relay of multimodal somatosensory information from the spinal cord to the brain is critical for sensory perception, but the underlying circuit organization remains unclear. We have reconstructed mouse cervical spinal projection neurons at single-cell resolution and identified 19 projectome-defined subtypes exhibiting diverse projection patterns. We also reconstructed the brain-wide axonal projections of central relay neurons that receive direct spinal inputs at the single-cell resolution. We discovered parallel, divergent, and convergent projection patterns for spinal projection neurons and central relay neurons. Our results revealed the diverse pathways channeling spinal information to the cortex. Furthermore, we identified parallel lateral and medial spinal-superior colliculus-brainstem pathways, which could be involved in orienting and defensive behaviors, respectively. These data allowed us to construct a wiring diagram for ascending somatosensory pathways with projectome-defined subtype resolution. Our single-cell projectome analysis provided a new framework for understanding the complex neural circuitry underlying coordinated processing of diverse somatosensory modalities.
Collapse
Affiliation(s)
- Wen-Qun Ding
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Xu Chen
- Lingang Laboratory, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiandong Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Chen
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu-Miao Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong-Yu Liang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Henry C Evrard
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence, Institute of Neuroscience, Chinese Academy of Sciences, Songjiang, Shanghai, China; Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, the Fourth Military Medical University, Xi'an 710032, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya 572025, China.
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Juan Deng
- Department of Anesthesiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Ma W, Polgár E, Dickie AC, Hajer MA, Quillet R, Gutierrez-Mecinas M, Yadav M, Hachisuka J, Todd AJ, Bell AM. Anatomical characterisation of somatostatin-expressing neurons belonging to the anterolateral system. Sci Rep 2025; 15:9549. [PMID: 40108302 PMCID: PMC11923155 DOI: 10.1038/s41598-025-93816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Anterolateral system (ALS) spinal projection neurons are essential for pain perception. However, these cells are heterogeneous, and there has been extensive debate about the roles of ALS populations in the different pain dimensions. We recently performed single-nucleus RNA sequencing on a developmentally-defined subset of ALS neurons, and identified 5 transcriptomic populations. One of these, ALS4, consists of cells that express Sst, the gene coding for somatostatin, and we reported that these were located in the lateral part of lamina V. Here we use a SstCre mouse line to characterise these cells and define their axonal projections. We find that their axons ascend mainly on the ipsilateral side, giving off collaterals throughout their course in the spinal cord. They target various brainstem nuclei, including the parabrachial internal lateral nucleus, and the posterior triangular and medial dorsal thalamic nuclei. We also show that in the L4 segment Sst is expressed by ~ 75% of ALS neurons in lateral lamina V and that there are around 120 Sst-positive lateral lamina V cells on each side. Our findings indicate that this is a relatively large population, and based on projection targets we conclude that they are likely to contribute to the affective-motivational dimension of pain.
Collapse
Affiliation(s)
- Wenhui Ma
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mai Abu Hajer
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Raphaëlle Quillet
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mansi Yadav
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Junichi Hachisuka
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Andrew M Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
7
|
Antoniazzi AM, Unda SR, Norman S, Pomeranz LE, Marongiu R, Stanley SA, Friedman JM, Kaplitt MG. Non-invasive in vivo bidirectional magnetogenetic modulation of pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644041. [PMID: 40166248 PMCID: PMC11957015 DOI: 10.1101/2025.03.18.644041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primary nociceptors in the dorsal root ganglion (DRG) receive sensory information from discrete parts of the body and are responsible for initiating signaling events that in supraspinal regions will be interpreted as physiological or pathological pain. Genetic, pharmacologic and electric neuromodulation of nociceptor activity in freely moving non-transgenic animals has been shown to be challenging due to many factors including the immunogenicity of non-mammalian proteins, procedure invasiveness and poor temporal precision. Here, we introduce a magnetogenetic strategy that enables remote bidirectional regulation of nociceptor activity. Magnetogenetics utilizes a source of direct magnetic field (DMF) to control neuronal activity in cells that express an anti-ferritin nanobody-TRPV1 receptor fusion protein (Nb-Ft-TRPV1). In our study, AAV2retro-mediated delivery of an excitatory Nb-Ft-TRPV1 construct into the sciatic nerve of wild-type mice resulted in stable long-term transgene expression accompanied by significant reduction of mechanical withdrawal thresholds during DMF exposure, place aversion of the DMF zone and activity changes in the anterior cingulate (ACC) nucleus. Conversely, delivery of an inhibitory variant of the Nb-Ft-TRPV1 construct, engineered to gate chloride ions in response to DMF, led to reversed behavioral manifestations of mechanical allodynia and showed place preference for the DMF zone, suggestive of functional pain relief. Changes in DRG activity were confirmed by post-mortem levels, immediately following DMF exposure, of the activity-induced gene cfos, which increased with the excitatory construct in normal mice and decreased with the inhibitory construct in pain models Our study demonstrates that magnetogenetic channels can achieve long-term expression in the periphery without losing functionality, providing a stable gene therapy system for non-invasive, magnetic field regulation of pain-related neurons for research and potential clinical applications.
Collapse
Affiliation(s)
- Aldana M. Antoniazzi
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Santiago R. Unda
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sofya Norman
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Lisa E. Pomeranz
- Laboratory of Molecular Genetics, Rockefeller University; New York, NY, USA
| | - Roberta Marongiu
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| | - Sarah A. Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, Cornell University; New York, NY, USA
| |
Collapse
|
8
|
Zhang X, He XL, Jiang ZH, Qi J, Huang CC, Zhao JS, Gu N, Lu Y, Wang Q. The 5-HT Descending Facilitation System Contributes to the Disinhibition of Spinal PKCγ Neurons and Neuropathic Allodynia via 5-HT 2C Receptors. Neurosci Bull 2025:10.1007/s12264-025-01383-7. [PMID: 40089966 DOI: 10.1007/s12264-025-01383-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 03/18/2025] Open
Abstract
Neuropathic pain, often featuring allodynia, imposes significant physical and psychological burdens on patients, with limited treatments due to unclear central mechanisms. Addressing this challenge remains a crucial unsolved issue in pain medicine. Our previous study, using protein kinase C gamma (PKCγ)-tdTomato mice, highlights the spinal feedforward inhibitory circuit involving PKCγ neurons in gating neuropathic allodynia. However, the regulatory mechanisms governing this circuit necessitate further elucidation. We used diverse transgenic mice and advanced techniques to uncover the regulatory role of the descending serotonin (5-HT) facilitation system on spinal PKCγ neurons. Our findings revealed that 5-HT neurons from the rostral ventromedial medulla hyperpolarize spinal inhibitory interneurons via 5-HT2C receptors, disinhibiting the feedforward inhibitory circuit involving PKCγ neurons and exacerbating allodynia. Inhibiting spinal 5-HT2C receptors restored the feedforward inhibitory circuit, effectively preventing neuropathic allodynia. These insights offer promising therapeutic targets for neuropathic allodynia management, emphasizing the potential of spinal 5-HT2C receptors as a novel avenue for intervention.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Lan He
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen-Hua Jiang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Qi
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Chen Huang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Shuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Gu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Department of Pain Medicine, Key Laboratory of Anesthesiology, Ministry of Education of China, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Ko HG, Jung H, Han S, Choi DI, Lee C, Choi JE, Oh J, Kwak C, Han DH, Kim JN, Ye S, Lee J, Lee J, Lee K, Lee JH, Zhuo M, Kaang BK. Processing of pain and itch information by modality-specific neurons within the anterior cingulate cortex in mice. Nat Commun 2025; 16:2137. [PMID: 40038260 PMCID: PMC11880300 DOI: 10.1038/s41467-025-57041-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Pain and itch are aversive sensations with distinct qualities, processed in overlapping pathways and brain regions, including the anterior cingulate cortex (ACC), which is critical for their affective dimensions. However, the cellular mechanisms underlying their processing in the ACC remain unclear. Here, we identify modality-specific neuronal populations in layer II/III of the ACC in mice involved in pain and itch processing. Using a synapse labeling tool, we show that pain- and itch-related neurons selectively receive synaptic inputs from mediodorsal thalamic neurons activated by pain and itch stimuli, respectively. Chemogenetic inhibition of these neurons reduced pruriception or nociception without affecting the opposite modality. Conversely, activation of these neurons did not enhance stimulus-specific responses but commonly increased freezing-like behavior. These findings reveal that the processing of itch and pain information in the ACC involves activity-dependent and modality-specific neuronal populations, and that pain and itch are processed by functionally distinct ACC neuronal subsets.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Anatomy and Neurobiology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, South Korea.
- Department of Oral Anatomy and Developmental Biology, Kyung Hee University College of Dentistry, Seoul, South Korea.
| | - Hyunsu Jung
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Seunghyo Han
- Department of Anatomy and Neurobiology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, South Korea
| | - Dong Il Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Chiwoo Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Ja Eun Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Jihae Oh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Chuljung Kwak
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Dae Hee Han
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Jun-Nyeong Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Daegu, South Korea
| | - Sanghyun Ye
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Jiah Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Jaehyun Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea
| | - Kyungmin Lee
- Laboratory for Behavioral Neural Circuitry and Physiology, Department of Anatomy, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, South Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Seoul, South Korea
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
- International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, 1 Gwanangno, Seoul, South Korea.
| |
Collapse
|
10
|
Pedersen TR, Berendt M, Rusbridge C. Neuroanatomy of spinal nociception and pain in dogs and cats: a practical review for the veterinary clinician. Front Vet Sci 2025; 12:1534685. [PMID: 40051980 PMCID: PMC11884323 DOI: 10.3389/fvets.2025.1534685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic pain is a prevalent condition in companion animals and poses significant welfare challenges. To address these concerns effectively, veterinary clinicians must have a comprehensive understanding of the neuroanatomy of nociception and the intricate processes underlying pain perception. This knowledge is essential for planning and implementing targeted treatment strategies. However, much of the existing information on pain mechanisms is derived from studies on rodents or humans, highlighting the need for further translational research to bridge this gap for veterinary applications. This review aims to provide veterinary clinicians with an in-depth overview of the spinal nociceptive pathways in the dog and cat, tracing the journey from nociceptor activation to cortical processing in the brain. Additionally, the review explores factors influencing nociceptive signaling and pain perception. By enhancing the understanding of these fundamental physiological processes, this work seeks to lay the groundwork for developing effective therapies to manage the complexities of chronic pain in companion animals.
Collapse
Affiliation(s)
- Tenna Remler Pedersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Clare Rusbridge
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
11
|
Metzger C, Hammond B, Ferro R, North J, Pyles S, Kranenburg A, Washabaugh E, Goldberg E. Two-year outcomes using fast-acting sub-perception therapy for spinal cord stimulation: results of a real-world multicenter study in the United States. Expert Rev Med Devices 2025; 22:155-164. [PMID: 39819320 DOI: 10.1080/17434440.2025.2453554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
BACKGROUND Fast-acting Sub-perception Therapy (FAST) is a novel spinal cord stimulation (SCS) modality delivering paresthesia-free pain relief. Our study evaluated the longer-term, real-world impact of FAST on chronic pain. RESEARCH DESIGN AND METHODS As part of a multicenter, real-world, consecutive case series, we retrospectively identified patients who used FAST-SCS and analyzed their data. The numerical rating scale (NRS) was used to evaluate the overall pain. RESULTS Data from 315 patients were analyzed at baseline and their last available follow-up (median 6.8 months after SCS implantation). At the time of the analysis, 12-, 18-, and 24-month data were available for 112, 86, and 50 patients, respectively. At the last follow-up, NRS pain score was reduced by 5.5 ± 2.5 compared to baseline (from 7.8 ± 1.7 to 2.3 ± 2.0; p < 0.0001). Interim long-term analysis showed that results were sustained for up to 2 years, with 64% of patients reporting a minimal overall pain score (NRS ≤2/10). CONCLUSION This ongoing, real-world, multicenter study showed that FAST-SCS achieved significant paresthesia-free pain relief, while long-term interim analysis suggests that outcomes could be sustained for up to 2 years. Our data provide preliminary insights into the potential utility of this low-frequency sub-perception SCS paradigm using a biphasic active recharge pulse shape. TRIAL REGISTRATION ClinicalTrials.gov (CT.gov identifier: NCT01550575).
Collapse
Affiliation(s)
- Clark Metzger
- Orthopedic Surgery Department, HCA Florida West Orthopedic Specialists, Pensacola, Florida, USA
| | - Blake Hammond
- Orthopedic Surgery Department, HCA Florida West Orthopedic Specialists, Pensacola, Florida, USA
| | - Richard Ferro
- Interventional Pain Management Department, Multidisciplinary Pain Management Services, Okemos, Michigan, USA
| | - James North
- Interventional Pain Management Department, The Center for Clinical Research, LLC, Winston-Salem, North Carolina, USA
| | - Stephen Pyles
- Interventional Pain Management Department, Florida Pain Clinic, Ocala, Florida, USA
| | - Andy Kranenburg
- Orthopedic Surgery Department, Southern Oregon Orthopedics, Medford, Oregon, USA
| | - Edward Washabaugh
- Interventional Pain Management Department, Michigan Pain Specialists, Ann Arbor, Michigan, USA
| | - Edward Goldberg
- Medical Director, Clinical Department, Boston Scientific Neuromodulation, Valencia, California, USA
| |
Collapse
|
12
|
Izuhara K, Nunomura S, Nanri Y, Honda Y. [Mechanism of transduction of itch and strategy of treatment for itch]. Nihon Yakurigaku Zasshi 2025; 160:79-85. [PMID: 40024709 DOI: 10.1254/fpj.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Itch is an unpleasant sense to evoke desire to scratch skin. Itch not only disturbs daily lives, but also exacerbates inflammation in case of atopic dermatitis (AD). It had been thought that both itch and pain are transduced by the same neurons; however, it is now known that neutrons transducing either itch or pain are distinct. Moreover, TRP channels, a family of calcium channels, play an important role for transducing itch as well as pain, temperature, and pressure. Development of neuroscience and molecular biology has dramatically advanced our understanding of how itch is transduced in recent years. On the other hand, development of immunology has revealed that there exist several immune types in our host defense mechanism and that type 2 immune reaction is dominant in the pathogenesis of allergic diseases including AD. Although it had been already known that type 2 cytokines contribute to the pathogenesis of AD by binding to their receptors on both immune cells and tissue resident cells, it has been recently found that several type 2 cytokines directly transduce the itch signals by binding to peripheral nerves. Due to this discovery, we can understand more deeply the itch mechanism of AD and can develop molecularly targeted drugs for AD targeting type 2 cytokines, which has dramatically changed the treatment of AD. In this review article, we describe the progress of our recent understanding of the itch mechanism and the strategy of treatment against it.
Collapse
Affiliation(s)
- Kenji Izuhara
- Division of Allergy, Department of Biomolecular Sciences, Saga Medical School
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yasuhiro Nanri
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| | - Yuko Honda
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School
| |
Collapse
|
13
|
Ginsberg AG, Lempka SF, Duan B, Booth V, Crodelle J. Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits. PLoS Comput Biol 2025; 21:e1012234. [PMID: 39808669 PMCID: PMC11771949 DOI: 10.1371/journal.pcbi.1012234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in laminae I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain symptom.
Collapse
Affiliation(s)
- Alexander G. Ginsberg
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bo Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America
| |
Collapse
|
14
|
Yin G, Duan K, Dong D, Du F, Guo C, Zhang C, Liu X, Sun Y, Huang T, Cui G, Cheng L. Central control of opioid-induced mechanical hypersensitivity and tolerance in mice. Neuron 2024; 112:3897-3923.e10. [PMID: 39406237 DOI: 10.1016/j.neuron.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 12/07/2024]
Abstract
Repetitive use of morphine (MF) and other opioids can trigger two major pain-related side effects: opioid-induced hypersensitivity (OIH) and analgesic tolerance, which can be subclassified as mechanical and thermal. The central mechanisms underlying mechanical OIH/tolerance remain unresolved. Here, we report that a brain-to-spinal opioid pathway, starting from μ-opioid receptor (MOR)-expressing neuron in the lateral parabrachial nucleus (lPBNMOR+) via dynorphin (Dyn) neuron in the paraventricular hypothalamic nucleus (PVHDyn+) to κ-opioid receptor (KOR)-expressing GABAergic neuron in the spinal dorsal horn (SDHKOR-GABA), controls repeated systemic administration of MF-induced mechanical OIH and tolerance in mice. The above effect is likely mediated by disruption of dorsal horn gate control for MF-resistant mechanical pain via silencing of the Dyn-positive GABAergic neurons in the SDH (lPBNMOR+ → PVHDyn+ → SDHKOR-GABA → SDHDyn-GABA). Repetitive binding of MF to MORs during repeated MF administration disrupted the above circuits. Targeting the above brain-to-spinal opioid pathways rescued repetitive MF-induced mechanical OIH and tolerance.
Collapse
Affiliation(s)
- Guangjuan Yin
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaifang Duan
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Dong
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng Du
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Guo
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Changyi Zhang
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Liu
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanjie Sun
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianwen Huang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangfu Cui
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Longzhen Cheng
- Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
15
|
Muligano D, Serlin A, Sidden T, Cramer GD. Self-Administered Traction as an Adjunct in the Chiropractic Treatment of Low Back Pain: A Case Report. J Chiropr Med 2024; 23:205-214. [PMID: 39776823 PMCID: PMC11701848 DOI: 10.1016/j.jcm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 01/11/2025] Open
Abstract
Objective The purpose of this case report is to describe self-administered lumbar traction as a component of the treatment of a patient with low back pain (LBP). Clinical Features A 41-year-old male chiropractic student presented with an exacerbation of intermittent LBP of approximately 2 years duration. Pain intensity was 4 to 8/10 on a verbal pain scale the day after exertion and 10 on the Patient Reported Outcomes Measurement Information System (PROMIS) 3a. Pain interference was 15 on the PROMIS-8a. The Oswestry Disability Index was 30%. Radiographs showed mild bilateral arthritic changes throughout the lumbar spine and sacroiliac joints. Diagnoses of acute exacerbation of recurrent, mechanical low back pain with thoracic and lumbar segmental dysfunction, lumbosacral spondylosis without myelopathy, and bilateral sacroiliac joint arthritis were made. Intervention and Outcomes The student received 14 treatments over 5 weeks consisting of spinal manipulation and therapeutic exercises in conjunction with clinician-supervised, self-administered traction. After 14 treatments, the patient was discharged, reporting resolution of LBP (pain intensity [PROMIS-3a] = 4; pain interference [PROMIS-8a] = 8; Oswestry 2%; and increased range of motion). Pain resolution remained for more than 2 years without additional treatment (pain intensity = 3; pain interference = 8; Oswestry 0%; continued increased range of motion). Conclusion The patient reported long-term benefit from a course of spinal manipulation and therapeutic exercises in conjunction with novel self-administered traction with flexion.
Collapse
Affiliation(s)
- Dana Muligano
- Private Practice of Chiropractic, National University of Health Sciences, Ingleside, Illinois
| | - Andrew Serlin
- National University of Health Sciences, Lombard, Illinois
| | | | | |
Collapse
|
16
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
17
|
Motzkin JC, Basbaum AI, Crowther AJ. Neuroanatomy of the nociceptive system: From nociceptors to brain networks. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:1-39. [PMID: 39580210 DOI: 10.1016/bs.irn.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain. We also describe neuropathic pain conditions, in which nociceptive processing is abnormal, not only because of the primary effects of a lesion or disease affecting peripheral nerves or the central nervous system (CNS), but also due to secondary effects on ascending pathways and brain networks. We discuss how the anatomical components (circuits/networks) reorganize under various etiologies of neuropathic pain and how these changes can give rise to pathological pain states.
Collapse
Affiliation(s)
- Julian C Motzkin
- Department of Neurology and Department Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| | - Andrew J Crowther
- Department of Anatomy, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Li J, Bai Y, Ge J, Zhang Y, Zhao Q, Li D, Guo B, Gao S, Zhu Y, Cai G, Wan X, Huang J, Wu S. Cell Type-Specific Modulation of Acute Itch Processing in the Anterior Cingulate Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403445. [PMID: 39316379 DOI: 10.1002/advs.202403445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/24/2024] [Indexed: 09/25/2024]
Abstract
Despite remarkable progress in understanding the fundamental bases of itching, its cortical mechanisms remain poorly understood. Herein, the causal contributions of defined anterior cingulate cortex (ACC) neuronal populations to acute itch modulation in mice are established. Using cell type-specific manipulations, the opposing functions of ACC glutamatergic and GABAergic neurons in regulating acute itching are demonstrated. Photometry studies indicated that ACC glutamatergic neurons are activated during scratching induced by both histamine and chloroquine, whereas the activation pattern of GABAergic neurons is complicated by GABAergic subpopulations and acute itch modalities. By combining cell type- and projection-specific techniques, a thalamocortical circuit is further identified from the mediodorsal thalamus driving the itch-scratching cycle related to histaminergic and non-histaminergic itching, which is contingent on the activation of postsynaptic parvalbumin-expressing neurons in the ACC. These findings reveal a cellular and circuit signature of ACC neurons orchestrating behavioral responses to itching and may provide insights into therapies for itch-related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110015, China
| | - Junye Ge
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yiwen Zhang
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiuying Zhao
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dangchao Li
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Baolin Guo
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shasha Gao
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuanyuan Zhu
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Guohong Cai
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiangdong Wan
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Huang
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
19
|
Li Y, Jiang Z, Zuo W, Huang C, Zhao J, Liu P, Wang J, Guo J, Zhang X, Wang M, Lu Y, Hou W, Wang Q. Sexual dimorphic distribution of G protein-coupled receptor 30 in pain-related regions of the mouse brain. J Neurochem 2024; 168:2423-2442. [PMID: 37924265 DOI: 10.1111/jnc.15995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
Sex differences in pain sensitivity have contributed to the fact that medications for curing chronic pain are unsatisfactory. However, the underlying mechanism remains to be elucidated. Brain-derived estrogen participates in modulation of sex differences in pain and related emotion. G protein-coupled receptor 30 (GPR30), identified as a novel estrogen receptor with a different distribution than traditional receptors, has been proved to play a vital role in regulating pain affected by estrogen. However, the contribution of its distribution to sexually dimorphic pain-related behaviors has not been fully explored. In the current study, immunofluorescence assays were applied to mark the neurons expressing GPR30 in male and female mice (in metestrus and proestrus phase) in pain-related brain regions. The neurons that express CaMKIIα or VGAT were also labeled to observe overlap with GPR30. We found that females had more GPR30-positive (GPR30+) neurons in the primary somatosensory (S1) and insular cortex (IC) than males. In the lateral habenula (LHb) and the nucleus tractus solitarius (NTS), males had more GPR30+ neurons than females. Moreover, within the LHb, the expression of GPR30 varied with estrous cycle phase; females in metestrus had fewer GPR30+ neurons than those in proestrus. In addition, females had more GPR30+ neurons, which co-expressed CaMKIIα in the medial preoptic nucleus (mPOA) than males, while males had more than females in the basolateral complex of the amygdala (BLA). These findings may partly explain the different modulatory effects of GPR30 in pain and related emotional phenotypes between sexes and provide a basis for comprehension of sexual dimorphism in pain related to estrogen and GPR30, and finally provide new targets for exploiting new treatments of sex-specific pain.
Collapse
Affiliation(s)
- You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Nursing, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Chenchen Huang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Peizheng Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jingzhi Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yan Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Sendetski M, Wedel S, Furutani K, Hahnefeld L, Angioni C, Heering J, Zimmer B, Pierre S, Banica AM, Scholich K, Tunaru S, Geisslinger G, Ji RR, Sisignano M. Oleic acid released by sensory neurons inhibits TRPV1-mediated thermal hypersensitivity via GPR40. iScience 2024; 27:110552. [PMID: 39171292 PMCID: PMC11338150 DOI: 10.1016/j.isci.2024.110552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Noxious stimuli activate nociceptive sensory neurons, causing action potential firing and the release of diverse signaling molecules. Several peptides have already been identified to be released by sensory neurons and shown to modulate inflammatory responses and inflammatory pain. However, it is still unclear whether lipid mediators can be released upon sensory neuron activation to modulate intercellular communication. Here, we analyzed the lipid secretome of capsaicin-stimulated nociceptive neurons with LC-HRMS, revealing that oleic acid is strongly released from sensory neurons by capsaicin. We further demonstrated that oleic acid inhibits capsaicin-induced calcium transients in sensory neurons and reverses bradykinin-induced TRPV1 sensitization by a calcineurin (CaN) and GPR40 (FFAR1) dependent pathway. Additionally, oleic acid alleviated zymosan-mediated thermal hypersensitivity via the GPR40, suggesting that the capsaicin-mediated oleic acid release from sensory neurons acts as a protective and feedback mechanism, preventing sensory neurons from nociceptive overstimulation via the GPR40/CaN/TRPV1-axis.
Collapse
Affiliation(s)
- Maksim Sendetski
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Saskia Wedel
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Kenta Furutani
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lisa Hahnefeld
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Carlo Angioni
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Béla Zimmer
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Sandra Pierre
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
| | - Alexandra-Maria Banica
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Klaus Scholich
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Gerd Geisslinger
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Departments of Cell Biology and Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Marco Sisignano
- Goethe University Frankfurt, University Hospital, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590 Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor Stern-Kai 7, 60596 Frankfurt Am Main, Germany
| |
Collapse
|
21
|
Xu JF, Liu L, Liu Y, Lu KX, Zhang J, Zhu YJ, Fang F, Dou YN. Spinal Nmur2-positive Neurons Play a Crucial Role in Mechanical Itch. THE JOURNAL OF PAIN 2024; 25:104504. [PMID: 38442838 DOI: 10.1016/j.jpain.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
The dorsal spinal cord is crucial for the transmission and modulation of multiple somatosensory modalities, such as itch, pain, and touch. Despite being essential for the well-being and survival of an individual, itch and pain, in their chronic forms, have increasingly been recognized as clinical problems. Although considerable progress has been made in our understanding of the neurochemical processing of nociceptive and chemical itch sensations, the neural substrate that is crucial for mechanical itch processing is still unclear. Here, using genetic and functional manipulation, we identified a population of spinal neurons expressing neuromedin U receptor 2 (Nmur2+) as critical elements for mechanical itch. We found that spinal Nmur2+ neurons are predominantly excitatory neurons, and are enriched in the superficial laminae of the dorsal horn. Pharmacogenetic activation of cervical spinal Nmur2+ neurons evoked scratching behavior. Conversely, the ablation of these neurons using a caspase-3-based method decreased von Frey filament-induced scratching behavior without affecting responses to other somatosensory modalities. Similarly, suppressing the excitability of cervical spinal Nmur2+ neurons via the overexpression of functional Kir2.1 potassium channels reduced scratching in response to innocuous mechanical stimuli, but not to pruritogen application. At the lumbar level, pharmacogenetic activation of these neurons evoked licking and lifting behaviors. However, ablating these neurons did not affect the behavior associated with acute pain. Thus, these results revealed the crucial role of spinal Nmur2+ neurons in mechanical itch. Our study provides important insights into the neural basis of mechanical itch, paving the way for developing novel therapies for chronic itch. PERSPECTIVE: Excitatory Nmur2+ neurons in the superficial dorsal spinal cord are essential for mechanical but not chemical itch information processing. These spinal Nmur2+ neurons represent a potential cellular target for future therapeutic interventions against chronic itch. Spinal and supraspinal Nmur2+ neurons may play different roles in pain signal processing.
Collapse
Affiliation(s)
- Jun-Feng Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lian Liu
- Department of Endocrinology and Metabolic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Lingang Laboratory, Shanghai, China
| | - Ke-Xing Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan-Jing Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Fang
- Department of Endocrinology and Metabolic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Nong Dou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
22
|
Ginsberg AG, Lempka SF, Duan B, Booth V, Crodelle J. Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598179. [PMID: 38915505 PMCID: PMC11195069 DOI: 10.1101/2024.06.10.598179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common type of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in layers I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain condition.
Collapse
Affiliation(s)
- Alexander G. Ginsberg
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Bo Duan
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States
| |
Collapse
|
23
|
Wu Y, Yang M, Xu X, Gao Y, Li X, Li Y, Su S, Xie X, Yang Z, Ke C. Thrombospondin 4, a mediator and candidate indicator of pain. Eur J Cell Biol 2024; 103:151395. [PMID: 38340499 DOI: 10.1016/j.ejcb.2024.151395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pain is the most common symptom for which patients seek medical attention. Existing treatments for pain control are largely ineffective due to the lack of an accurate way to objectively measure pain intensity and a poor understanding of the etiology of pain. Thrombospondin 4(TSP4), a member of the thrombospondin gene family, is expressed in neurons and astrocytes and induces pain by interacting with the calcium channel alpha-2-delta-1 subunit (Cavα2δ1). In the present study we show that TSP4 expression level correlates positively with pain intensity, suggesting that TSP4 could be a novel candidate of pain indicator. Using RNAi-lentivirus (RNAi-LV) to knock down TSP4 both in vivo and in vitro, together with electrophysiological experiments involving paired patch-clamp recordings of evoked action potentials and post-synaptic currents in cultured neurons, we found that TSP4 contributes to the development of bone cancer pain, neuropathic pain, and inflammatory pain. This effect is mediated by regulation of neuron excitability via inhibition of synapsin I (Syn I) and modulation of excitatory and inhibitory presynaptic transmission via regulation of vesicular glutamate transporter 2(Vglut2), vesicular GABA transporter (VGAT), and glutamate decarboxylase (GAD) expression. The present study provides a replicable, predictive, valid indicator of pain and demonstrated the underlying molecular and electrophysiological mechanisms by which TSP4 contributes to pain.
Collapse
Affiliation(s)
- Yanqiong Wu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China; Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xueqin Xu
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yan Gao
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xiaohui Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Yang Li
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Shanchun Su
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Xianqiao Xie
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Huashan Rd. 1961, Shanghai 200030, China.
| | - Changbin Ke
- Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology,Department of Gynecology, Taihe Hospital, Hubei University of Medicine, China.
| |
Collapse
|
24
|
Dócs K, Balázs A, Papp I, Szücs P, Hegyi Z. Reactive spinal glia convert 2-AG to prostaglandins to drive aberrant astroglial calcium signaling. Front Cell Neurosci 2024; 18:1382465. [PMID: 38784707 PMCID: PMC11112260 DOI: 10.3389/fncel.2024.1382465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The endogenous cannabinoid 2-arachidonoylglycerol (2-AG) influences neurotransmission in the central nervous system mainly by activating type 1 cannabinoid receptor (CB1). Following its release, 2-AG is broken down by hydrolases to yield arachidonic acid, which may subsequently be metabolized by cyclooxygenase-2 (COX-2). COX-2 converts arachidonic acid and also 2-AG into prostanoids, well-known inflammatory and pro-nociceptive mediators. Here, using immunohistochemical and biochemical methods and pharmacological manipulations, we found that reactive spinal astrocytes and microglia increase the expression of COX-2 and the production of prostaglandin E2 when exposed to 2-AG. Both 2-AG and PGE2 evoke calcium transients in spinal astrocytes, but PGE2 showed 30% more efficacy and 55 times more potency than 2-AG. Unstimulated spinal dorsal horn astrocytes responded to 2-AG with calcium transients mainly through the activation of CB1. 2-AG induced exaggerated calcium transients in reactive astrocytes, but this increase in the frequency and area under the curve of calcium signals was only partially dependent on CB1. Instead, aberrant calcium transients were almost completely abolished by COX-2 inhibition. Our results suggest that both reactive spinal astrocytes and microglia perform an endocannabinoid-prostanoid switch to produce PGE2 at the expense of 2-AG. PGE2 in turn is responsible for the induction of aberrant astroglial calcium signals which, together with PGE2 production may play role in the development and maintenance of spinal neuroinflammation-associated disturbances such as central sensitization.
Collapse
Affiliation(s)
- Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anita Balázs
- Department of Theoretical and Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Ildikó Papp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HUN-REN-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
25
|
Bai Y, Pacheco-Barrios K, Pacheco-Barrios N, Liang G, Fregni F. Neurocircuitry basis of motor cortex-related analgesia as an emerging approach for chronic pain management. NATURE. MENTAL HEALTH 2024; 2:496-513. [PMID: 40376387 PMCID: PMC12080556 DOI: 10.1038/s44220-024-00235-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2025]
Abstract
Aside from movement initiation and control, the primary motor cortex (M1) has been implicated in pain modulation mechanisms. A large body of clinical data has demonstrated that stimulation and behavioral activation of M1 result in clinically important pain relief in patients with specific chronic pain syndromes. However, despite its clinical importance, the full range of circuits for motor cortex-related analgesia (MCRA) remains an enigma. This review draws on insights from experimental and clinical data and provides an overview of the neurobiological mechanisms of MCRA, with particular emphasis on its neurocircuitry basis. Based on structural and functional connections of the M1 within the pain connectome, neural circuits for MCRA are discussed at different levels of the neuroaxis, specifically, the endogenous pain modulation system, the thalamus, the extrapyramidal system, non-noxious somatosensory systems, and cortico-limbic pain signatures. We believe that novel insights from this review will expedite our understanding of M1-induced pain modulation and offer hope for successful mechanism-based refinements of this interventional approach in chronic pain management.
Collapse
Affiliation(s)
- Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | | | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Zheng J, Zhang XM, Tang W, Li Y, Wang P, Jin J, Luo Z, Fang S, Yang S, Wei Z, Song K, Huang Z, Wang Z, Zhu Z, Shi N, Xiao D, Yuan L, Shen H, Huang L, Li B. An insular cortical circuit required for itch sensation and aversion. Curr Biol 2024; 34:1453-1468.e6. [PMID: 38484733 DOI: 10.1016/j.cub.2024.02.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Itch encompasses both sensory and emotional dimensions, with the two dimensions reciprocally exacerbating each other. However, whether a shared neural circuit mechanism governs both dimensions remains elusive. Here, we report that the anterior insular cortex (AIC) is activated by both histamine-dependent and -independent itch stimuli. The activation of AIC elicits aversive emotion and exacerbates pruritogen-induced itch sensation and aversion. Mechanistically, AIC excitatory neurons project to the GABAergic neurons in the dorsal bed nucleus of the stria terminalis (dBNST). Manipulating the activity of the AIC → dBNST pathway affects both itch sensation and itch-induced aversion. Our study discovers the shared neural circuit (AIC → dBNST pathway) underlying the itch sensation and aversion, highlights the critical role of the AIC as a central hub for the itch processing, and provides a framework to understand the neural mechanisms underlying the sensation and emotion interaction.
Collapse
Affiliation(s)
- Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenting Tang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pei Wang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kexin Song
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zihan Huang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zihao Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziyu Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Naizhen Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Diyun Xiao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linyu Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hualin Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
27
|
Kan BF, Liu XY, Han MM, Yang CW, Zhu X, Jin Y, Wang D, Huang X, Wu WJ, Fu T, Kang F, Zhang Z, Li J. Nerve Growth Factor/Tyrosine Kinase A Receptor Pathway Enhances Analgesia in an Experimental Mouse Model of Bone Cancer Pain by Increasing Membrane Levels of δ-Opioid Receptors. Anesthesiology 2024; 140:765-785. [PMID: 38118180 DOI: 10.1097/aln.0000000000004880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
BACKGROUND The role of nerve growth factor (NGF)/tyrosine kinase A receptor (TrKA) signaling, which is activated in a variety of pain states, in regulating membrane-associated δ-opioid receptor (mDOR) expression is poorly understood. The hypothesis was that elevated NGF in bone cancer tumors could upregulate mDOR expression in spinal cord neurons and that mDOR agonism might alleviate bone cancer pain. METHODS Bone cancer pain (BCP) was induced by inoculating Lewis lung carcinoma cells into the femoral marrow cavity of adult C57BL/6J mice of both sexes. Nociceptive behaviors were evaluated by the von Frey and Hargreaves tests. Protein expression in the spinal dorsal horn of animals was measured by biochemical analyses, and excitatory synaptic transmission was recorded in miniature excitatory synaptic currents. RESULTS The authors found that mDOR expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.18 ± 0.01 g vs. mean ± SD: 0.13 ± 0.01 g, n = 4, P < 0.001) and that administration of the DOR agonist deltorphin 2 (Del2) increased nociceptive thresholds (Del2 vs. vehicle, median [25th, 75th percentiles]: 1.00 [0.60, 1.40] g vs. median [25th, 75th percentiles]: 0.40 [0.16, 0.45] g, n = 10, P = 0.001) and reduced miniature excitatory synaptic current frequency in lamina II outer neurons (Del2 vs. baseline, mean ± SD: 2.21 ± 0.81 Hz vs. mean ± SD: 2.43 ± 0.90 Hz, n = 12, P < 0.001). Additionally, NGF expression was increased in BCP mice (BCP vs. sham, mean ± SD: 0.36 ± 0.03 vs. mean ± SD: 0.16 ± 0.02, n = 4, P < 0.001), and elevated NGF was associated with enhanced mDOR expression via TrKA signaling. CONCLUSIONS Activation of mDOR produces analgesia that is dependent on the upregulation of the NGF/TrKA pathway by increasing mDOR levels under conditions of BCP in mice. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Bu-Fan Kan
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing-Yun Liu
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Ming Han
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cheng-Wei Yang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xia Zhu
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Stroke Center and Department of Neurology, Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Di Wang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiang Huang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Jie Wu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Tong Fu
- Graduate School of Wannan Medical College, Wuhu, China
| | - Fang Kang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; and Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Li
- Department of Anesthesiology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
28
|
Abd-Elsayed A, Vardhan S, Aggarwal A, Vardhan M, Diwan SA. Mechanisms of Action of Dorsal Root Ganglion Stimulation. Int J Mol Sci 2024; 25:3591. [PMID: 38612402 PMCID: PMC11011701 DOI: 10.3390/ijms25073591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The dorsal root ganglion (DRG) serves as a pivotal site for managing chronic pain through dorsal root ganglion stimulation (DRG-S). In recent years, the DRG-S has emerged as an attractive modality in the armamentarium of neuromodulation therapy due to its accessibility and efficacy in alleviating chronic pain refractory to conventional treatments. Despite its therapeutic advantages, the precise mechanisms underlying DRG-S-induced analgesia remain elusive, attributed in part to the diverse sensory neuron population within the DRG and its modulation of both peripheral and central sensory processing pathways. Emerging evidence suggests that DRG-S may alleviate pain by several mechanisms, including the reduction of nociceptive signals at the T-junction of sensory neurons, modulation of pain gating pathways within the dorsal horn, and regulation of neuronal excitability within the DRG itself. However, elucidating the full extent of DRG-S mechanisms necessitates further exploration, particularly regarding its supraspinal effects and its interactions with cognitive and affective networks. Understanding these mechanisms is crucial for optimizing neurostimulation technologies and improving clinical outcomes of DRG-S for chronic pain management. This review provides a comprehensive overview of the DRG anatomy, mechanisms of action of the DRG-S, and its significance in neuromodulation therapy for chronic pain.
Collapse
Affiliation(s)
- Alaa Abd-Elsayed
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
- Advanced Spine on Park Avenue, New York, NY 10461, USA;
| | - Abhinav Aggarwal
- Department of Internal Medicine, Yale New Haven Health, Bridgeport Hospital, Bridgeport, CT 06605, USA; (S.V.); (A.A.)
| | - Madhurima Vardhan
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA;
| | | |
Collapse
|
29
|
Tian T, Li H, Zhang S, Yang M. Characterization of sensory and motor dysfunction and morphological alterations in late stages of type 2 diabetic mice. Front Endocrinol (Lausanne) 2024; 15:1374689. [PMID: 38532899 PMCID: PMC10964478 DOI: 10.3389/fendo.2024.1374689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Diabetic neuropathy is the most common complication of diabetes and lacks effective treatments. Although sensory dysfunction during the early stages of diabetes has been extensively studied in various animal models, the functional and morphological alterations in sensory and motor systems during late stages of diabetes remain largely unexplored. In the current work, we examined the influence of diabetes on sensory and motor function as well as morphological changes in late stages of diabetes. The obese diabetic Leprdb/db mice (db/db) were used for behavioral assessments and subsequent morphological examinations. The db/db mice exhibited severe sensory and motor behavioral defects at the age of 32 weeks, including significantly higher mechanical withdrawal threshold and thermal latency of hindpaws compared with age-matched nondiabetic control animals. The impaired response to noxious stimuli was mainly associated with the remarkable loss of epidermal sensory fibers, particularly CGRP-positive nociceptive fibers. Unexpectedly, the area of CGRP-positive terminals in the spinal dorsal horn was dramatically increased in diabetic mice, which was presumably associated with microglial activation. In addition, the db/db mice showed significantly more foot slips and took longer time during the beam-walking examination compared with controls. Meanwhile, the running duration in the rotarod test was markedly reduced in db/db mice. The observed sensorimotor deficits and motor dysfunction were largely attributed to abnormal sensory feedback and muscle atrophy as well as attenuated neuromuscular transmission in aged diabetic mice. Morphological analysis of neuromuscular junctions (NMJs) demonstrated partial denervation of NMJs and obvious fragmentation of acetylcholine receptors (AChRs). Intrafusal muscle atrophy and abnormal muscle spindle innervation were also detected in db/db mice. Additionally, the number of VGLUT1-positive excitatory boutons on motor neurons was profoundly increased in aged diabetic mice as compared to controls. Nevertheless, inhibitory synaptic inputs onto motor neurons were similar between the two groups. This excitation-inhibition imbalance in synaptic transmission might be implicated in the disturbed locomotion. Collectively, these results suggest that severe sensory and motor deficits are present in late stages of diabetes. This study contributes to our understanding of mechanisms underlying neurological dysfunction during diabetes progression and helps to identify novel therapeutic interventions for patients with diabetic neuropathy.
Collapse
Affiliation(s)
- Ting Tian
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haofeng Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
30
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. Cell Rep 2024; 43:113718. [PMID: 38294904 PMCID: PMC11101906 DOI: 10.1016/j.celrep.2024.113718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Genelle Rankin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zihe Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Bai HH, Wang KL, Zeng XR, Li J, Li Y, Xu JY, Zhang Y, Jiang HF, Yang X, Suo ZW, Hu XD. GPR39 regulated spinal glycinergic inhibition and mechanical inflammatory pain. SCIENCE ADVANCES 2024; 10:eadj3808. [PMID: 38306424 PMCID: PMC10836721 DOI: 10.1126/sciadv.adj3808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
G protein-coupled receptor 39 (GPR39) senses the change of extracellular divalent zinc ion and signals through multiple G proteins to a broad spectrum of downstream effectors. Here, we found that GPR39 was prevalent at inhibitory synapses of spinal cord somatostatin-positive (SOM+) interneurons, a mechanosensitive subpopulation that is critical for the conveyance of mechanical pain. GPR39 complexed specifically with inhibitory glycine receptors (GlyRs) and helped maintain glycinergic transmission in a manner independent of G protein signalings. Targeted knockdown of GPR39 in SOM+ interneurons reduced the glycinergic inhibition and facilitated the excitatory output from SOM+ interneurons to spinoparabrachial neurons that engaged superspinal neural circuits encoding both the sensory discriminative and affective motivational domains of pain experience. Our data showed that pharmacological activation of GPR39 or augmenting GPR39 interaction with GlyRs at the spinal level effectively alleviated the sensory and affective pain induced by complete Freund's adjuvant and implicated GPR39 as a promising therapeutic target for the treatment of inflammatory mechanical pain.
Collapse
Affiliation(s)
- Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Kang-Li Wang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiang-Ru Zeng
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yuan Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jia-Yu Xu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yue Zhang
- School of Public Health, Gansu University of Chinese medicine, Lanzhou, Gansu 730000, P.R. China
| | - Hai-Feng Jiang
- School of Public Health, Gansu University of Chinese medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
32
|
Okutani H, Lo Vecchio S, Arendt-Nielsen L. Mechanisms and treatment of opioid-induced pruritus: Peripheral and central pathways. Eur J Pain 2024; 28:214-230. [PMID: 37650457 DOI: 10.1002/ejp.2180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Pruritus (also known as itch) is defined as an unpleasant and irritating sensation of the skin that provokes an urge to scratch or rub. It is well known that opioid administration can cause pruritus, which is paradoxical as itch and pain share overlapping sensory pathways. Because opioids inhibit pain but can cause itching. Significant progress has been made to improve our understanding of the fundamental neurobiology of itch; however, much remains unknown about the mechanisms of opioid-induced pruritus. The prevention and treatment of opioid-induced pruritus remains a challenge in the field of pain management. The objective of this narrative review is to present and discuss the current body of literature and summarize the current understanding of the mechanisms underlying opioid-induced pruritus, and its relationship to analgesia, and possible treatment options. RESULTS The incidence of opioid-induced pruritus differs with different opioids and routes of administration, and the various mechanisms can be broadly divided into peripheral and central. Especially central mechanisms are intricate, even at the level of the spinal dorsal horn. There is evidence that opioid receptor antagonists and mixed agonist and antagonists, especially μ-opioid antagonists and κ-opioid agonists, are effective in relieving opioid-induced pruritus. Various treatments have been used for opioid-induced pruritus; however, most of them are controversial and have conflicting results. CONCLUSION The use of a multimodal analgesic treatment regimen combined with a mixed antagonist and κ agonists, especially μ-opioid antagonists, and κ-opioid agonists, seems to be the current best treatment modality for the management of opioid-induced pruritus and pain. SIGNIFICANCE Opioids remain the gold standard for the treatment of moderate to severe acute pain as well as cancer pain. It is well known that opioid-induced pruritus often does not respond to regular antipruritic treatment, thereby posing a challenge to clinicians in the field of pain management. We believe that our review makes a significant contribution to the literature, as studies on the mechanisms of opioid-induced pruritus and effective management strategies are crucial for the management of these patients.
Collapse
Affiliation(s)
- Hiroai Okutani
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Anesthesiology and Pain Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Silvia Lo Vecchio
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
33
|
Swanson LW, Hahn JD, Sporns O. Network architecture of intrinsic connectivity in a mammalian spinal cord (the central nervous system's caudal sector). Proc Natl Acad Sci U S A 2024; 121:e2320953121. [PMID: 38252843 PMCID: PMC10835027 DOI: 10.1073/pnas.2320953121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The vertebrate spinal cord (SP) is the long, thin extension of the brain forming the central nervous system's caudal sector. Functionally, the SP directly mediates motor and somatic sensory interactions with most parts of the body except the face, and it is the preferred model for analyzing relatively simple reflex behaviors. Here, we analyze the organization of axonal connections between the 50 gray matter regions forming the bilaterally symmetric rat SP. The assembled dataset suggests that there are about 385 of a possible 2,450 connections between the 50 regions for a connection density of 15.7%. Multiresolution consensus cluster analysis reveals a hierarchy of structure-function subsystems in this neural network, with 4 subsystems at the top level and 12 at the bottom-level. The top-level subsystems include a) a bilateral subsystem related most clearly to somatic and autonomic motor functions and centered in the ventral horn and intermediate zone; b) a bilateral subsystem associated with general somatosensory functions and centered in the base, neck, and head of the dorsal horn; and c) a pair of unilateral, bilaterally symmetric subsystems associated with nociceptive information processing and occupying the apex of the dorsal horn. The intrinsic SP network displayed no hubs, rich club, or small-world attributes, which are common measures of global functionality. Advantages and limitations of our methodology are discussed in some detail. The present work is part of a comprehensive project to assemble and analyze the neurome of a mammalian nervous system and its interactions with the body.
Collapse
Affiliation(s)
- Larry W. Swanson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Joel D. Hahn
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Olaf Sporns
- Indiana University Network Science Institute, Indiana University, Bloomington, IN47405
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN47405
| |
Collapse
|
34
|
Chen S, Chen J, Tang D, Yin W, Xu S, Gao P, Jiao Y, Yu W. Mechanical and chemical itch regulated by neuropeptide Y-Y 1 signaling. Mol Pain 2024; 20:17448069241242982. [PMID: 38485252 PMCID: PMC10981256 DOI: 10.1177/17448069241242982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/28/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Junhui Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Wen Yin
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Po Gao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| |
Collapse
|
35
|
Charron A, Pepino L, Malapert P, Debrauwer V, Castets F, Salio C, Moqrich A. Sex-related exacerbation of injury-induced mechanical hypersensitivity in GAD67 haplodeficient mice. Pain 2024; 165:192-201. [PMID: 37578506 PMCID: PMC10723643 DOI: 10.1097/j.pain.0000000000003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Decreased GABA levels in injury-induced loss of spinal inhibition are still under intense interest and debate. Here, we show that GAD67 haplodeficient mice exhibited a prolonged injury-induced mechanical hypersensitivity in postoperative, inflammatory, and neuropathic pain models. In line with this, we found that loss of 1 copy of the GAD67-encoding gene Gad1 causes a significant decrease in GABA contents in spinal GABAergic neuronal profiles. Consequently, GAD67 haplodeficient males and females were unresponsive to the analgesic effect of diazepam. Remarkably, all these phenotypes were more pronounced in GAD67 haplodeficient females. These mice had significantly much lower amount of spinal GABA content, exhibited an exacerbated pain phenotype during the second phase of the formalin test, developed a longer lasting mechanical hypersensitivity in the chronic constriction injury of the sciatic nerve model, and were unresponsive to the pain relief effect of the GABA-transaminase inhibitor phenylethylidenehydrazine. Our study provides strong evidence for a role of GABA levels in the modulation of injury-induced mechanical pain and suggests a potential role of the GABAergic system in the prevalence of some painful diseases among females.
Collapse
Affiliation(s)
- Aude Charron
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Lucie Pepino
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Vincent Debrauwer
- Aix-Marseille-université, CNRS, Institut des Sciences Moléculaires de Marseille, UMR 7313, Campus Scientifique de St Jérôme, Marseille, France
| | - Francis Castets
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Aziz Moqrich
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| |
Collapse
|
36
|
Prajapati JN, Reddy P, Barik A. Neural pathways that compel us to scratch an itch. J Biosci 2024; 49:70. [PMID: 38973668 PMCID: PMC7617712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Itch is a unique sensory experience that is responded to by scratching. How pruritogens, which are mechanical and chemical stimuli with the potential to cause itch, engage specific pathways in the peripheral and central nervous system has been a topic of intense investigation over the last few years. Studies employing recently developed molecular, physiological, and behavioral techniques have delineated the dedicated mechanisms that transmit itch information to the brain. This review outlines the genetically defined and evolutionary conserved circuits for itch ranging from the skin-innervating peripheral neurons to the cortical neurons that drive scratching. Moreover, scratch suppression of itch is attributed to the concurrent activation of pain and itch pathways. Hence, we discuss the similarities between circuits driving pain and itch.
Collapse
Affiliation(s)
| | - Prannay Reddy
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| | - Arnab Barik
- Center for Neuroscience, Indian Institute of Science, Bengaluru560012, India
| |
Collapse
|
37
|
Fujiwara Y, Koga K, Nakamura NH, Maruo K, Tachibana T, Furue H. Optogenetic inhibition of spinal inhibitory neurons facilitates mechanical responses of spinal wide dynamic range neurons and causes mechanical hypersensitivity. Neuropharmacology 2024; 242:109763. [PMID: 37852319 DOI: 10.1016/j.neuropharm.2023.109763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Inhibitory interneurons in the spinal dorsal horn (DH) play a major role in regulating innocuous and noxious information. Reduction in inhibitory synaptic transmission is thought to contribute to the development of touch-evoked pain (allodynia), a common symptom of neuropathic pain. However, it is not fully understood how inhibitory neurons in the DH regulate sensory responses in surrounding neurons and modulate sensory transmission. In this study, we established a novel experimental method to analyze temporal activity of DH neurons during the optogenetically induced disinhibition state by combining extracellular recording and optogenetics. We investigated how specific and temporally restricted dysfunction of DH inhibitory neurons affected spinal neuronal activities evoked by cutaneous mechanical stimulation. In behavioral experiments, the specific and temporally restricted spinal optogenetic suppression of DH inhibitory neurons induced mechanical hypersensitivity. Furthermore, this manipulation enhanced the mechanical responses of wide dynamic range (WDR) neurons, which are important for pain transmission, in response to brush and von Frey stimulation but not in response to nociceptive pinch stimulation. In addition, we examined whether a neuropathic pain medication, mirogabalin, suppressed these optogenetically induced abnormal pain responses. We found that mirogabalin treatment attenuated the abnormal firing responses of WDR neurons and mechanical hypersensitivity. These results suggest that temporally restricted and specific reduction of spinal inhibitory neuronal activity facilitates the mechanical responses of WDR neurons, resulting in neuropathic-like mechanical allodynia which can be suppressed by mirogabalin. Our optogenetic methods could be useful for developing novel therapeutics for neuropathic pain.
Collapse
Affiliation(s)
- Yuka Fujiwara
- Department of Neurophysiology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan; Department of Orthopaedic Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan.
| | - Nozomu H Nakamura
- Department of Physiology, Hyogo Medical University, 1-1, Mukogawa, Nishinomiya, 663-8501, Japan
| | - Keishi Maruo
- Department of Orthopaedic Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan
| | - Toshiya Tachibana
- Department of Orthopaedic Surgery, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan.
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya, 663-8501, Japan
| |
Collapse
|
38
|
Quillet R, Gutierrez-Mecinas M, Polgár E, Dickie AC, Boyle KA, Watanabe M, Todd AJ. Synaptic circuits involving gastrin-releasing peptide receptor-expressing neurons in the dorsal horn of the mouse spinal cord. Front Mol Neurosci 2023; 16:1294994. [PMID: 38143564 PMCID: PMC10742631 DOI: 10.3389/fnmol.2023.1294994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The superficial dorsal horn (SDH) of the spinal cord contains a diverse array of neurons. The vast majority of these are interneurons, most of which are glutamatergic. These can be assigned to several populations, one of which is defined by expression of gastrin-releasing peptide receptor (GRPR). The GRPR cells are thought to be "tertiary pruritoceptors," conveying itch information to lamina I projection neurons of the anterolateral system (ALS). Surprisingly, we recently found that GRPR-expressing neurons belong to a morphological class known as vertical cells, which are believed to transmit nociceptive information to lamina I ALS cells. Little is currently known about synaptic circuits engaged by the GRPR cells. Here we combine viral-mediated expression of PSD95-tagRFP fusion protein with super-resolution microscopy to reveal sources of excitatory input to GRPR cells. We find that they receive a relatively sparse input from peptidergic and non-peptidergic nociceptors in SDH, and a limited input from A- and C-low threshold mechanoreceptors on their ventral dendrites. They receive synapses from several excitatory interneuron populations, including those defined by expression of substance P, neuropeptide FF, cholecystokinin, neurokinin B, and neurotensin. We investigated downstream targets of GRPR cells by chemogenetically exciting them and identifying Fos-positive (activated) cells. In addition to lamina I projection neurons, many ALS cells in lateral lamina V and the lateral spinal nucleus were Fos-positive, suggesting that GRPR-expressing cells target a broader population of projection neurons than was previously recognised. Our findings indicate that GRPR cells receive a diverse synaptic input from various types of primary afferent and excitatory interneuron, and that they can activate ALS cells in both superficial and deep regions of the dorsal horn.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | | | - Erika Polgár
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Andrew J. Todd
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Nelson TS, Allen HN, Basu P, Prasoon P, Nguyen E, Arokiaraj CM, Santos DF, Seal RP, Ross SE, Todd AJ, Taylor BK. Alleviation of neuropathic pain with neuropeptide Y requires spinal Npy1r interneurons that coexpress Grp. JCI Insight 2023; 8:e169554. [PMID: 37824208 PMCID: PMC10721324 DOI: 10.1172/jci.insight.169554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
Neuropeptide Y targets the Y1 receptor (Y1) in the spinal dorsal horn (DH) to produce endogenous and exogenous analgesia. DH interneurons that express Y1 (Y1-INs; encoded by Npy1r) are necessary and sufficient for neuropathic hypersensitivity after peripheral nerve injury. However, as Y1-INs are heterogenous in composition in terms of morphology, neurophysiological characteristics, and gene expression, we hypothesized that a more precisely defined subpopulation mediates neuropathic hypersensitivity. Using fluorescence in situ hybridization, we found that Y1-INs segregate into 3 largely nonoverlapping subpopulations defined by the coexpression of Npy1r with gastrin-releasing peptide (Grp/Npy1r), neuropeptide FF (Npff/Npy1r), and cholecystokinin (Cck/Npy1r) in the superficial DH of mice, nonhuman primates, and humans. Next, we analyzed the functional significance of Grp/Npy1r, Npff/Npy1r, and Cck/Npy1r INs to neuropathic pain using a mouse model of peripheral nerve injury. We found that chemogenetic inhibition of Npff/Npy1r-INs did not change the behavioral signs of neuropathic pain. Further, inhibition of Y1-INs with an intrathecal Y1 agonist, [Leu31, Pro34]-NPY, reduced neuropathic hypersensitivity in mice with conditional deletion of Npy1r from CCK-INs and NPFF-INs but not from GRP-INs. We conclude that Grp/Npy1r-INs are conserved in higher order mammalian species and represent a promising and precise pharmacotherapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
| | - Heather N. Allen
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Paramita Basu
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Eileen Nguyen
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cynthia M. Arokiaraj
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Diogo F.S. Santos
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Pittsburgh Center for Pain Research, and
| | - Rebecca P. Seal
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Todd
- Spinal Cord Group, School of Psychology and Neuroscience, University of Glasgow, Glasgow, United Kingdom
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine
- Pittsburgh Project to end Opioid Misuse
- Center for Neuroscience
- Pittsburgh Center for Pain Research, and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Gilbert JE, Zhang T, Esteller R, Grill WM. Network model of nociceptive processing in the superficial spinal dorsal horn reveals mechanisms of hyperalgesia, allodynia, and spinal cord stimulation. J Neurophysiol 2023; 130:1103-1117. [PMID: 37727912 DOI: 10.1152/jn.00186.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
The spinal dorsal horn (DH) processes sensory information and plays a key role in transmitting nociception to supraspinal centers. Loss of DH inhibition during neuropathic pain unmasks a pathway from nonnociceptive Aβ-afferent inputs to superficial dorsal horn (SDH) nociceptive-specific (NS) projection neurons, and this change may contribute to hyperalgesia and allodynia. We developed and validated a computational model of SDH neuronal circuitry that links nonnociceptive Aβ-afferent inputs in lamina II/III to a NS projection neuron in lamina I via a network of excitatory interneurons. The excitatory pathway and the NS projection neuron were in turn gated by inhibitory interneurons with connections based on prior patch-clamp recordings. Changing synaptic weights in the computational model to replicate neuropathic pain states unmasked a low-threshold excitatory pathway to NS neurons similar to experimental recordings. Spinal cord stimulation (SCS) is an effective therapy for neuropathic pain, and accumulating experimental evidence indicates that NS neurons in the SDH also respond to SCS. Accounting for these responses may inform therapeutic improvements, and we quantified responses to SCS in the SDH network model and examined the role of different modes of inhibitory control in modulating NS neuron responses to SCS. We combined the SDH network model with a previously published model of the deep dorsal horn (DDH) and identified optimal stimulation frequencies across different neuropathic pain conditions. Finally, we found that SCS-generated inhibition did not completely suppress model NS activity during simulated pinch inputs, providing an explanation of why SCS does not eliminate acute pain.NEW & NOTEWORTHY Chronic pain is a severe public health problem that reduces the quality of life for those affected and exacts an enormous socio-economic burden worldwide. Spinal cord stimulation (SCS) is an effective treatment for chronic pain, but SCS efficacy has not significantly improved over time, in part because the mechanisms of action remain unclear. Most preclinical studies investigating pain and SCS mechanisms have focused on the responses of deep dorsal horn (DDH) neurons, but neural networks in the superficial dorsal horn (SDH) are also important for processing nociceptive information. This work synthesizes heterogeneous experimental recordings from the SDH into a computational model that replicates experimental responses and that can be used to quantify neuronal responses to SCS under neuropathic pain conditions.
Collapse
Affiliation(s)
- John E Gilbert
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Tianhe Zhang
- Neuromodulation Research and Advanced Concepts, Boston Scientific Neuromodulation, Valencia, California, United States
| | - Rosana Esteller
- Neuromodulation Research and Advanced Concepts, Boston Scientific Neuromodulation, Valencia, California, United States
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, United States
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
41
|
Alsouhibani A, Speck P, Cole EF, Mustin DE, Li Y, Barron JR, Orenstein LAV, Harper DE. Quantitative Sensory Testing to Characterize Sensory Changes in Hidradenitis Suppurativa Skin Lesions. JAMA Dermatol 2023; 159:1102-1111. [PMID: 37702999 PMCID: PMC10500434 DOI: 10.1001/jamadermatol.2023.3243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/25/2023] [Indexed: 09/14/2023]
Abstract
Importance Pain is the most impactful symptom in patients with hidradenitis suppurativa (HS). Characterization of sensory profiles may improve understanding of pain mechanisms in HS and facilitate identification of effective pain management strategies. Objective To characterize somatosensory profiles in patients with HS at clinically affected and nonaffected sites compared with pain-free reference data. Design, Setting, and Participants This cross-sectional study was conducted at the Emory University Dermatology Clinic. It was hypothesized (1) that patients with HS would demonstrate hypersensitivity to pain in HS lesions and (2) that some patients would have sensory profiles consistent with complex pain mechanisms. Therefore, adults with dermatologist-diagnosed HS and at least 1 painful HS lesion at the time of testing were enrolled between September 10, 2020, and March 21, 2022. Patients with other diagnoses contributing to pain or neuropathy were excluded. Data analysis was conducted between March and April 2022. Exposure Quantitative sensory testing was performed on HS lesions and control skin according to a standardized protocol. Main Outcomes and Measures Quantitative sensory testing outcomes included innocuous thermal and mechanical sensitivity (cold, warmth, and light touch detection thresholds), noxious thermal and mechanical sensitivity (cold, heat, pinprick, and deep pressure pain thresholds and suprathreshold pinprick sensitivity), temporal summation of pinprick, paradoxical thermal sensations, and dynamic mechanical allodynia (pain upon light stroking of the skin). Sensitivity in HS lesions was compared with sensitivity in a control location (the hand) and in pain-free controls using t tests. Results This study included 20 participants with a median age of 35.5 (IQR, 30.0-46.5) years, the majority of whom were women (15 [75%]). In terms of race and ethnicity, 2 participants (10%) self-identified as Asian, 11 (55%) as Black, 6 (30%) as White, and 1 (5%) as more than 1 race or ethnicity. Compared with site-specific reference values from healthy, pain-free control participants, HS lesions were insensitive to innocuous cold and warmth, noxious heat, and light touch (t = -5.69, -10.20, -3.84, and 4.46, respectively; all P < .001). In contrast, HS lesions also demonstrated significant hypersensitivity to deep pressure pain (t = 8.36; P < .001) and cutaneous pinprick (t = 2.07; P = .046). Hypersensitivity to deep pressure pain was also observed in the control site (t = 5.85; P < .001). A subset of patients with HS displayed changes in pain processing that are often seen in neuropathic and nociplastic pain conditions, including hypersensitivity to repetitive pinprick (5 [26%]), paradoxical thermal sensations (3 [15%]), and pain upon light stroking of the skin (10 [50%]). Conclusions and Relevance The findings of this cross-sectional study suggest that HS involves local changes in the skin or its free nerve endings, possibly leading to peripheral neuropathy and alterations in the transduction of innocuous and noxious thermal and mechanical stimuli. For some patients, central nervous system changes in somatosensory processing may also occur, but confirmatory evidence is needed. Better understanding of neuropathic and nociplastic mechanisms in HS pain could lead to individually tailored treatments.
Collapse
Affiliation(s)
- Ali Alsouhibani
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia
| | - Patrick Speck
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Emily F. Cole
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Danielle E. Mustin
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Yiwen Li
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | - Jason R. Barron
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
| | | | - Daniel E. Harper
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
42
|
Du F, Yin G, Han L, Liu X, Dong D, Duan K, Huo J, Sun Y, Cheng L. Targeting Peripheral μ-opioid Receptors or μ-opioid Receptor-Expressing Neurons Does not Prevent Morphine-induced Mechanical Allodynia and Anti-allodynic Tolerance. Neurosci Bull 2023; 39:1210-1228. [PMID: 36622575 PMCID: PMC10387027 DOI: 10.1007/s12264-022-01009-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023] Open
Abstract
The chronic use of morphine and other opioids is associated with opioid-induced hypersensitivity (OIH) and analgesic tolerance. Among the different forms of OIH and tolerance, the opioid receptors and cell types mediating opioid-induced mechanical allodynia and anti-allodynic tolerance remain unresolved. Here we demonstrated that the loss of peripheral μ-opioid receptors (MORs) or MOR-expressing neurons attenuated thermal tolerance, but did not affect the expression and maintenance of morphine-induced mechanical allodynia and anti-allodynic tolerance. To confirm this result, we made dorsal root ganglia-dorsal roots-sagittal spinal cord slice preparations and recorded low-threshold Aβ-fiber stimulation-evoked inputs and outputs in superficial dorsal horn neurons. Consistent with the behavioral results, peripheral MOR loss did not prevent the opening of Aβ mechanical allodynia pathways in the spinal dorsal horn. Therefore, the peripheral MOR signaling pathway may not be an optimal target for preventing mechanical OIH and analgesic tolerance. Future studies should focus more on central mechanisms.
Collapse
Affiliation(s)
- Feng Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Han
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Xi Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanyan Sun
- Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
43
|
Ma Q, Su D, Huo J, Yin G, Dong D, Duan K, Cheng H, Xu H, Ma J, Liu D, Mou B, Peng J, Cheng L. Microglial Depletion does not Affect the Laterality of Mechanical Allodynia in Mice. Neurosci Bull 2023; 39:1229-1245. [PMID: 36637789 PMCID: PMC10387012 DOI: 10.1007/s12264-022-01017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023] Open
Abstract
Mechanical allodynia (MA), including punctate and dynamic forms, is a common and debilitating symptom suffered by millions of chronic pain patients. Some peripheral injuries result in the development of bilateral MA, while most injuries usually led to unilateral MA. To date, the control of such laterality remains poorly understood. Here, to study the role of microglia in the control of MA laterality, we used genetic strategies to deplete microglia and tested both dynamic and punctate forms of MA in mice. Surprisingly, the depletion of central microglia did not prevent the induction of bilateral dynamic and punctate MA. Moreover, in dorsal root ganglion-dorsal root-sagittal spinal cord slice preparations we recorded the low-threshold Aβ-fiber stimulation-evoked inputs and outputs of superficial dorsal horn neurons. Consistent with behavioral results, microglial depletion did not prevent the opening of bilateral gates for Aβ pathways in the superficial dorsal horn. This study challenges the role of microglia in the control of MA laterality in mice. Future studies are needed to further understand whether the role of microglia in the control of MA laterality is etiology-or species-specific.
Collapse
Affiliation(s)
- Quan Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongmei Su
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiantao Huo
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guangjuan Yin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Dong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaifang Duan
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huiling Xu
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiao Ma
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Liu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Mou
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Longzhen Cheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Biology, Brain Research Center, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Boyle KA, Polgar E, Gutierrez-Mecinas M, Dickie AC, Cooper AH, Bell AM, Jumolea E, Casas-Benito A, Watanabe M, Hughes DI, Weir GA, Riddell JS, Todd AJ. Neuropeptide Y-expressing dorsal horn inhibitory interneurons gate spinal pain and itch signalling. eLife 2023; 12:RP86633. [PMID: 37490401 PMCID: PMC10392120 DOI: 10.7554/elife.86633] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Somatosensory information is processed by a complex network of interneurons in the spinal dorsal horn. It has been reported that inhibitory interneurons that express neuropeptide Y (NPY), either permanently or during development, suppress mechanical itch, with no effect on pain. Here, we investigate the role of interneurons that continue to express NPY (NPY-INs) in the adult mouse spinal cord. We find that chemogenetic activation of NPY-INs reduces behaviours associated with acute pain and pruritogen-evoked itch, whereas silencing them causes exaggerated itch responses that depend on cells expressing the gastrin-releasing peptide receptor. As predicted by our previous studies, silencing of another population of inhibitory interneurons (those expressing dynorphin) also increases itch, but to a lesser extent. Importantly, NPY-IN activation also reduces behavioural signs of inflammatory and neuropathic pain. These results demonstrate that NPY-INs gate pain and itch transmission at the spinal level, and therefore represent a potential treatment target for pathological pain and itch.
Collapse
Affiliation(s)
- Kieran A Boyle
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erika Polgar
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Gutierrez-Mecinas
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew H Cooper
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Evelline Jumolea
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian Casas-Benito
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - David I Hughes
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gregory A Weir
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - John S Riddell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
45
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells are a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. Sci Rep 2023; 13:11561. [PMID: 37464016 PMCID: PMC10354228 DOI: 10.1038/s41598-023-38605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C Davis
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B Mustapa
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A Boyle
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - David I Hughes
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
46
|
Zhao L, Ma Y, Song X, Wu Y, Jin P, Chen G. PD-1: A New Candidate Target for Analgesic Peptide Design. THE JOURNAL OF PAIN 2023; 24:1142-1150. [PMID: 36781089 DOI: 10.1016/j.jpain.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
Chronic pain is a common health problem in humans. The unique properties and valuable clinical applications of analgesic peptides make them attractive pharmacotherapy options for pain control. Numerous targets for pain modulation processes are currently known, including opioid receptors, transient receptor potential (TRP) channels, voltage-gated ion channels, neuronal nicotinic receptors, and neurotensin receptors. However, these targets are not able to address the development needs of peptide-based drugs. Recent studies revealed that programmed cell death 1 (PD-1) is widely expressed in the dorsal root ganglia (DRG), spinal cord, and cerebral cortex. PD-1 signaling in neurons is involved in the regulation of neuronal excitability, synaptic transmission, and synaptic plasticity. PD-1 is able to silence nociceptive neurons upon activation. Consistently, Pd1 deficiency or blockade increases the pain sensitivity in naïve mice. PD-1 agonists, including PD-L1 and H-20, evoke Src homology 2 domain-containing tyrosine phosphatase-1 (SHP-1) phosphorylation, modulate neuronal excitability, and attenuate acute and chronic pain with minimal opioid-related adverse effects, suggesting a superior therapeutic index and a sound strategy for the development novel nonopioid analgesics. In addition, PD-1 signaling in non-neuronal cells could alleviate chronic pain by regulating neuroinflammation. Here, we review the potential and challenges of PD-1 as a candidate target for the development of analgesic peptides. PERSPECTIVE: This review paper aims to review recent advances in research on PD-1 in the domain of pain interference, explore how to obtain more promising PD-1 receptor-targeting analgesic peptides based on PD-L1 and analgesic peptide H-20 for relieving pathological pain, and offer potential optimization strategies for follow-up work of H-20.
Collapse
Affiliation(s)
- Long Zhao
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Yu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaofei Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yongjiang Wu
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China
| | - Pengjie Jin
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gang Chen
- Center for Basic Medical Research, Co-innovation Center of Neuroregeneration, Medical School of Nantong University, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
47
|
Hirota I, Koyama Y, Shimada S. Histochemical analysis of the biphasic properties of formalin pain-induced behavior. Biochem Biophys Rep 2023; 34:101467. [PMID: 37125080 PMCID: PMC10139972 DOI: 10.1016/j.bbrep.2023.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
The formalin test has been established as a method for evaluating mouse models of pain. Although there have been numerous reports of formalin-pain-induced behavior, few reports of a detailed histochemical analysis of the central nervous system focus on behavioral biphasic properties. To investigate the alternation of spinal neuronal activity with formalin-induced pain, we performed immunofluorescent staining with c-Fos antibodies as neuronal activity markers using acute pain model mice induced by 2% formalin stimulation. As a result, phase-specific expression patterns were observed. In the spinal dorsal horn region, there were many neural activities in the deep region (layers V-VII) in the behavioral first phase and those in the surface region (layers I-III) in the behavioral second phase. Furthermore, we conducted comparative studies using low concentrations (0.25%) of formalin and capsaicin, which did not show distinct behavioral biphasic properties. Neural activity was observed only in the spinal dorsal horn surface region for both stimuli. Our study suggested that the histochemical biphasic nature of formalin-induced pain was attributable to the activity of the deep region of the spinal cord. In the future, treatment strategies focusing on the deep region neuron will lead to the development of effective treatments for allodynia and intractable chronic pain.
Collapse
Affiliation(s)
- Ikuei Hirota
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
- Corresponding author. Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
| |
Collapse
|
48
|
Olde Heuvel F, Ouali Alami N, Aousji O, Pogatzki-Zahn E, Zahn PK, Wilhelm H, Deshpande D, Khatamsaz E, Catanese A, Woelfle S, Schön M, Jain S, Grabrucker S, Ludolph AC, Verpelli C, Michaelis J, Boeckers TM, Roselli F. Shank2 identifies a subset of glycinergic neurons involved in altered nociception in an autism model. Mol Autism 2023; 14:21. [PMID: 37316943 DOI: 10.1186/s13229-023-00552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Autism Spectrum Disorders (ASD) patients experience disturbed nociception in the form of either hyposensitivity to pain or allodynia. A substantial amount of processing of somatosensory and nociceptive stimulus takes place in the dorsal spinal cord. However, many of these circuits are not very well understood in the context of nociceptive processing in ASD. METHODS We have used a Shank2-/- mouse model, which displays a set of phenotypes reminiscent of ASD, and performed behavioural and microscopic analysis to investigate the role of dorsal horn circuitry in nociceptive processing of ASD. RESULTS We determined that Shank2-/- mice display increased sensitivity to formalin pain and thermal preference, but a sensory specific mechanical allodynia. We demonstrate that high levels of Shank2 expression identifies a subpopulation of neurons in murine and human dorsal spinal cord, composed mainly by glycinergic interneurons and that loss of Shank2 causes the decrease in NMDAR in excitatory synapses on these inhibitory interneurons. In fact, in the subacute phase of the formalin test, glycinergic interneurons are strongly activated in wild type (WT) mice but not in Shank2-/- mice. Consequently, nociception projection neurons in laminae I are activated in larger numbers in Shank2-/- mice. LIMITATIONS Our investigation is limited to male mice, in agreement with the higher representation of ASD in males; therefore, caution should be applied to extrapolate the findings to females. Furthermore, ASD is characterized by extensive genetic diversity and therefore the findings related to Shank2 mutant mice may not necessarily apply to patients with different gene mutations. Since nociceptive phenotypes in ASD range between hyper- and hypo-sensitivity, diverse mutations may affect the circuit in opposite ways. CONCLUSION Our findings prove that Shank2 expression identifies a new subset of inhibitory interneurons involved in reducing the transmission of nociceptive stimuli and whose unchecked activation is associated with pain hypersensitivity. We provide evidence that dysfunction in spinal cord pain processing may contribute to the nociceptive phenotypes in ASD.
Collapse
Affiliation(s)
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany
- International PhD Program, Ulm University, Ulm, Germany
| | | | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Peter K Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- Clinic for Anesthesiology, Intensive Care and Pain Medicine, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Hanna Wilhelm
- Department of Neurology, Ulm University, Ulm, Germany
| | | | | | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sarah Woelfle
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Michael Schön
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sanjay Jain
- Department of Internal Medicine (Renal), Pathology and Immunology, Washington University School of Medicine, St. Louis, USA
| | | | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Chiara Verpelli
- Institute of Neuroscience, National Science Council, Milan, Italy
| | | | - Tobias M Boeckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Department of Anatomy and Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
- Center for Biomedical Research (ZBF), Helmholtzstraße 8/2, 89081, Ulm, Germany.
| |
Collapse
|
49
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells: a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543241. [PMID: 37333120 PMCID: PMC10274676 DOI: 10.1101/2023.06.01.543241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C. Davis
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C. Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B. Mustapa
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
- Present address: Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A. Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M. Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M. Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J. Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David I. Hughes
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
50
|
Wilson AC, Sweeney LB. Spinal cords: Symphonies of interneurons across species. Front Neural Circuits 2023; 17:1146449. [PMID: 37180760 PMCID: PMC10169611 DOI: 10.3389/fncir.2023.1146449] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Vertebrate movement is orchestrated by spinal inter- and motor neurons that, together with sensory and cognitive input, produce dynamic motor behaviors. These behaviors vary from the simple undulatory swimming of fish and larval aquatic species to the highly coordinated running, reaching and grasping of mice, humans and other mammals. This variation raises the fundamental question of how spinal circuits have changed in register with motor behavior. In simple, undulatory fish, exemplified by the lamprey, two broad classes of interneurons shape motor neuron output: ipsilateral-projecting excitatory neurons, and commissural-projecting inhibitory neurons. An additional class of ipsilateral inhibitory neurons is required to generate escape swim behavior in larval zebrafish and tadpoles. In limbed vertebrates, a more complex spinal neuron composition is observed. In this review, we provide evidence that movement elaboration correlates with an increase and specialization of these three basic interneuron types into molecularly, anatomically, and functionally distinct subpopulations. We summarize recent work linking neuron types to movement-pattern generation across fish, amphibians, reptiles, birds and mammals.
Collapse
Affiliation(s)
| | - Lora B. Sweeney
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Lower Austria, Austria
| |
Collapse
|