1
|
Sánchez-Álvarez M, Lolo FN, Sailem H, Fulgoni G, Pascual-Vargas P, Agüera L, Catalá-Montoro M, Arias-García M, López JA, Vázquez J, Del Pozo MÁ, Bakal C. PERK-dependent reciprocal crosstalk between ER and non-centrosomal microtubules coordinates ER architecture and cell shape. Cell Rep 2025:115590. [PMID: 40267909 DOI: 10.1016/j.celrep.2025.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/19/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
The architecture of the endoplasmic reticulum (ER) is a key determinant of its function. Its dynamics are linked to those of the cytoskeleton, but our understanding of how this coordination occurs and what its functional relevance is, limited. Here, we report that the unfolded protein response (UPRER) transducer EIF2AK3/PERK (eukaryotic translation initiation factor 2-alpha kinase 3/protein kinase R-like endoplasmic reticulum kinase) is essential for acute-stress-induced peripheral redistribution and remodeling of the ER through eukaryotic initiation factor 2 alpha (eIF2α) phosphorylation and translation initiation shutdown. PERK-mediated eIF2α phosphorylation can be bypassed by blocking polysome assembly, depleting microtubule (MT)-anchoring ER proteins such as p180/RRBP1 (ribosome-binding protein 1), or disrupting the MT cytoskeleton. Specific disruption of non-centrosomal MTs, but not centrosome depletion, rescues ER redistribution in PERK-deficient cells. Conversely, PERK deficiency stabilizes non-centrosomal MTs against proteasomal degradation, promoting polarized protrusiveness in epithelial cells and neuroblasts. Thus, PERK coordinates ER architecture and homeostasis with cell morphogenesis by coupling ER remodeling and non-centrosomal MT stability and dynamics.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK; Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain.
| | - Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Heba Sailem
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Giulio Fulgoni
- Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain
| | - Patricia Pascual-Vargas
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Lucía Agüera
- Cell Compartmentalization, Homeostasis and Inflammation Team, Department of Metabolic and Inflammatory Diseases, Instituto de Investigaciones Biomédicas "Sols-Morreale", CSIC-UAM, CP 28029 Madrid, Spain
| | - Mauro Catalá-Montoro
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Mar Arias-García
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Juan Antonio López
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernandez Almagro, 3, CP 28029 Madrid, Spain
| | - Chris Bakal
- Dynamical Cell Systems Team, Division of Cancer Biology, The Institute of Cancer Research-Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
2
|
Vinopal S, Bradke F. Centrosomal and acentrosomal microtubule nucleation during neuronal development. Curr Opin Neurobiol 2025; 92:103016. [PMID: 40147111 DOI: 10.1016/j.conb.2025.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
Neurons rely on the microtubule cytoskeleton to create and maintain their sophisticated cellular architectures. Advances in cryogenic electron microscopy, expansion microscopy, live imaging, and gene editing have enabled novel insights into mechanisms of centrosomal and acentrosomal microtubule nucleation, the key process generating new microtubules. This has paved the way for the functional dissection of distinct microtubule networks that regulate various processes during neuronal development, including neuronal delamination, polarization, migration, maturation, and synapse function. We review recent progress in understanding the molecular concepts of microtubule nucleation, how these concepts underlie neurodevelopmental processes, and pinpoint the open questions. Since microtubules play a pivotal role in axon regeneration within the adult central nervous system, understanding the processes of microtubule nucleation could inform strategies to enhance the regenerative capabilities of neurons in the future.
Collapse
Affiliation(s)
- Stanislav Vinopal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyne University (UJEP), Usti nad Labem, Czech Republic.
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
3
|
Shilikbay T, Nawaz A, Doon M, Ceman S. RNA helicase MOV10 suppresses fear memory and dendritic arborization and regulates microtubule dynamics in hippocampal neurons. BMC Biol 2025; 23:36. [PMID: 39915816 PMCID: PMC11803958 DOI: 10.1186/s12915-025-02138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND RNA helicase MOV10 is highly expressed in postnatal brain and associates with FMRP and AGO2, suggesting a role in translation regulation in learning and memory. RESULTS We generated a brain-specific knockout mouse (Mov10 Deletion) with greatly reduced MOV10 expression in cortex and hippocampus. Behavior testing revealed enhanced fear memory, similar to that observed in a mouse with reduced brain microRNA production, supporting MOV10's reported role as an AGO2 cofactor. Cultured hippocampal neurons have elongated distal dendrites, a reported feature of augmin/HAUS over-expression in Drosophila da sensory neurons. In mitotic spindle formation, HAUS is antagonized by the microtubule bundling protein NUMA1. Numa1 mRNA is a MOV10 CLIP target and is among the genes significantly decreased in Mov10 Deletion hippocampus. Restoration of NUMA1 expression and knockdown of HAUS rescued phenotypes of the Mov10 Deletion hippocampal neurons. CONCLUSIONS This is the first evidence of translation regulation of NUMA1 by MOV10 as a control point in dendritogenesis.
Collapse
Affiliation(s)
- Temirlan Shilikbay
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Aatiqa Nawaz
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Megan Doon
- Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, USA
| | - Stephanie Ceman
- Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Nishizawa N, Arai R, Hiranuma K, Toya M, Sato M. CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells. PLoS One 2025; 20:e0308150. [PMID: 39787108 PMCID: PMC11717264 DOI: 10.1371/journal.pone.0308150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/15/2024] [Indexed: 01/12/2025] Open
Abstract
In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules. Here, we demonstrate that CAMSAP2, but not CAMSAP3, is required for spindle assembly upon mitotic entry. CAMSAP2 knockout (KO) Caco-2 cells showed a delay in mitotic progression, whereas CAMSAP3 KO cells did not. The spindle in CAMSAP2 KO cells was short and displayed a reduced microtubule density, particularly around chromosomes. This indicated a loss of bridging fibers, which are known to assist alignment of sister kinetochores through interaction with kinetochore fibers. Consistent with this, live-cell imaging of CAMSAP2 KO cells captured slow elongation of the anaphase spindle and errors in chromosome segregation. Therefore, we propose that CAMSAP2 ensures efficient reorganization of cytoplasmic microtubules into the mitotic spindle through constructing bridging fibers that assist faithful segregation of sister chromatids.
Collapse
Affiliation(s)
- Naoko Nishizawa
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Riku Arai
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Koki Hiranuma
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Mika Toya
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Faculty of Science and Engineering, Global Center for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Masamitsu Sato
- Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Medical-Oriented Structural Biology, Waseda University, Shinjuku, Tokyo, Japan
| |
Collapse
|
5
|
Wang L, Bu T, Wu X, Gao S, Yun D, Mao B, Li H, Silvestrini B, Li L, Sun F, Cheng CY. Microtubule-Associated Proteins (MAPs) Are Multifunctional Cytoskeletal Proteins in the Testis That Regulate Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:411-431. [PMID: 40301267 DOI: 10.1007/978-3-031-82990-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Microtubule-associated proteins (MAPs) refer to a large superfamily of proteins that bind to microtubules (MTs) structurally, modulating the rapid transition of MTs from a stable state (polymerized) to shrinkage (or catastrophe) via depolymerization through a meta-stable state. Changes of MTs from an assembled structure as linear protofilaments that are a packed/bundled ultrastructure to disassembled subunits of heterodimers of α-/ß-tubulins (or oligomers) can take place in milliseconds within a living cell. These heterodimers can also be rapidly phosphorylated, becoming GTP-bound, or rapidly polymerized into linear protofilaments of MT again. It is such rapid cyclic changes of MTs that support cellular development, growth, and changes in cell shape in response to changes in development or other physiological phenomena, such as the series of cellular events during spermatogenesis, cell divisions, and in response to environmental toxicants to protect cellular life. In this review, we seek to give a concise update and discussion on MAPs. Particularly, we focus on a specific member of the structural MAPs, namely MAP1a, and its interaction with the microtubule affinity regulatory kinases (MARKs, including MARK1, 2, 3, and 4, all are Ser/Thr protein kinases) in particular MARK4, and how these two MAPs work together to regulate MT dynamics in Sertoli cells to support germ cell development. This information should be helpful to investigators who seek to better understand the role of MAPs in testis biology.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tiao Bu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of AnesthesiologyAffiliated Hospital of Guangdong Medical University Zhanjiang City, Guangdong Province, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Breuer H, Bell-Simons M, Zempel H. Axodendritic targeting of TAU and MAP2 and microtubule polarization in iPSC-derived versus SH-SY5Y-derived human neurons. Open Life Sci 2024; 19:20221010. [PMID: 39759106 PMCID: PMC11699562 DOI: 10.1515/biol-2022-1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 01/07/2025] Open
Abstract
Cell polarity is crucial in neurons, characterized by distinct axonal and dendritic structures. Neurons generally have one long axon and multiple shorter dendrites, marked by specific microtubule (MT)-associated proteins, e.g., MAP2 for dendrites and TAU for axons, while the scaffolding proteins AnkG and TRIM46 mark the axon-initial-segment. In tauopathies, such as Alzheimer's disease (AD), TAU sorting, and neuronal polarity are disrupted, leading to MT loss. However, modeling and studying MTs in human neuronal cells relevant to the study of AD and TAU-related neurodegenerative diseases (NDD) is challenging. To study MT dynamics in human neurons, we compared two cell culture systems: SH-SY5Y-derived neurons (SHN) and induced pluripotent stem cell-derived neurons (iN). Using immunostaining and EB3-tdTomato time-lapse imaging, we found AnkG absent in SHN but present in iN, while TRIM46 was present in both. TAU and MAP2 showed axonal and dendritic enrichment, respectively, similar to mouse primary neurons. Both neuron types exhibited polarized MT structures, with unidirectional MTs in axons and bidirectional MTs in dendrites. Polymerization speeds were similar; however, iNs had more retrograde MT growth events, while SHN showed a higher overall number of growth events. Thus, SHN and iN are both suitable for studying neuronal cell polarity, with SHN being particularly suitable if the focus is not the AIS.
Collapse
Affiliation(s)
- Helen Breuer
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
| | - Michael Bell-Simons
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
- Current address: Max-Planck-Institute for Aging, Joseph-Stelzmann-Straße 11, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931, Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| |
Collapse
|
7
|
Duan D, Koleske AJ. Phase separation of microtubule-binding proteins - implications for neuronal function and disease. J Cell Sci 2024; 137:jcs263470. [PMID: 39679446 PMCID: PMC11795294 DOI: 10.1242/jcs.263470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Protein liquid-liquid phase separation (LLPS) is driven by intrinsically disordered regions and multivalent binding domains, both of which are common features of diverse microtubule (MT) regulators. Many in vitro studies have dissected the mechanisms by which MT-binding proteins (MBPs) regulate MT nucleation, stabilization and dynamics, and investigated whether LLPS plays a role in these processes. However, more recent in vivo studies have focused on how MBP LLPS affects biological functions throughout neuronal development. Dysregulation of MBP LLPS can lead to formation of aggregates - an underlying feature in many neurodegenerative diseases - such as the tau neurofibrillary tangles present in Alzheimer's disease. In this Review, we highlight progress towards understanding the regulation of MT dynamics through the lens of phase separation of MBPs and associated cytoskeletal regulators, from both in vitro and in vivo studies. We also discuss how LLPS of MBPs regulates neuronal development and maintains homeostasis in mature neurons.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Mao BP, Pan M, Shan Y, Wang YN, Li H, Wu J, Zhu X, Hu E, Cheng CY, Shangguan W. Katanin regulatory subunit B1 (KATNB1) regulates BTB dynamics through changes in cytoskeletal organization. FASEB J 2024; 38:e70049. [PMID: 39275889 DOI: 10.1096/fj.202400966r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024]
Abstract
In this study, we have explored the role of the KATNB1 gene, a microtubule-severing protein, in the seminiferous epithelium of the rat testis. Our data have shown that KATNB1 expressed in rat brain, testes, and Sertoli cells. KATNB1 was found to co-localize with α-tubulin showing a unique stage-specific distribution across the seminiferous epithelium. Knockdown of KATNB1 by RNAi led to significant disruption of the tight junction (TJ) permeability barrier function in primary Sertoli cells cultured in vitro with an established functional TJ-barrier, as well as perturbations in the microtubule and actin cytoskeleton organization. The disruption in these cytoskeletal structures, in turn, led to improper distribution of TJ and basal ES proteins essential for maintaining the Sertoli TJ function. More importantly, overexpression of KATNB1 in the testis in vivo was found to block cadmium-induced blood-testis barrier (BTB) disruption and testis injury. KATNB1 exerted its promoting effects on BTB and spermatogenesis through corrective spatiotemporal expression of actin- and microtubule-based regulatory proteins by maintaining the proper organization of cytoskeletons in the testis, illustrating its plausible therapeutic implication. In summary, Katanin regulatory subunit B1 (KATNB1) plays a crucial role in BTB and spermatogenesis through its effects on the actin- and microtubule-based cytoskeletons in Sertoli cells and testis, providing important insights into male reproductive biology.
Collapse
Affiliation(s)
- Bai-Ping Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Mingdong Pan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Shan
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhan Wu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuanjing Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ende Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangning Shangguan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Park M, Shin JE, Yee J, Ahn YM, Joo EJ. Gene-gene interaction analysis for age at onset of bipolar disorder in a Korean population. J Affect Disord 2024; 361:97-103. [PMID: 38834091 DOI: 10.1016/j.jad.2024.05.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Multiple genes might interact to determine the age at onset of bipolar disorder. We investigated gene-gene interactions related to age at onset of bipolar disorder in the Korean population, using genome-wide association study (GWAS) data. METHODS The study population consisted of 303 patients with bipolar disorder. First, the top 1000 significant single-nucleotide polymorphisms (SNPs) associated with age at onset of bipolar disorder were selected through single SNP analysis by simple linear regression. Subsequently, the QMDR method was used to find gene-gene interactions. RESULTS The best 10 SNPs from simple regression were located in chromosome 1, 2, 3, 10, 11, 14, 19, and 21. Only five SNPs were found in several genes, such as FOXN3, KIAA1217, OPCML, CAMSAP2, and PTPRS. On QMDR analyses, five pairs of SNPs showed significant interactions with a CVC exceeding 1/5 in a two-locus model. The best interaction was found for the pair of rs60830549 and rs12952733 (CVC = 1/5, P < 1E-07). In three-locus models, four combinations of SNPs showed significant associations with age at onset, with a CVC of >1/5. The best three-locus combination was rs60830549, rs12952733, and rs12952733 (CVC = 2/5, P < 1E-6). The SNPs showing significant interactions were located in the KIAA1217, RBFOX3, SDK2, CYP19A1, NTM, SMYD3, and RBFOX1 genes. CONCLUSIONS Our analysis confirmed genetic interactions influencing the age of onset for bipolar disorder and identified several potential candidate genes. Further exploration of the functions of these promising genes, which may have multiple roles within the neuronal network, is necessary.
Collapse
Affiliation(s)
- Mira Park
- Department of Preventive Medicine, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Ji-Eun Shin
- Department of Biomedical Informatics, School of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jaeyong Yee
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Jeong Joo
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Gyeonggi, Republic of Korea; Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea.
| |
Collapse
|
10
|
Voglewede MM, Ozsen EN, Ivak N, Bernabucci M, Tang R, Sun M, Pang ZP, Zhang H. Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory. iScience 2024; 27:110308. [PMID: 39045101 PMCID: PMC11263792 DOI: 10.1016/j.isci.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.
Collapse
Affiliation(s)
- Mikayla M. Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Noah Ivak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ruizhe Tang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Zhou Z, Yang X, Mao A, Xu H, Lin C, Yang M, Hu W, Shao J, Xu P, Li Y, Li W, Lin R, Zhang R, Xie Q, Xu Z, Meng W. Deficiency of CAMSAP2 impairs olfaction and the morphogenesis of mitral cells. EMBO Rep 2024; 25:2861-2877. [PMID: 38839944 PMCID: PMC11239855 DOI: 10.1038/s44319-024-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.
Collapse
Affiliation(s)
- Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- Neuroscience Center, Department of Basic Medical Sciences, Shantou University Medical College, 515041, Shantou, Guangdong, China.
| | - Xiaojuan Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aihua Mao
- Biology Department, College of Sciences, Shantou University, 515063, Shantou, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chunnuan Lin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mengge Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weichang Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinhui Shao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peipei Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenguang Li
- Animal Laboratory Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruifan Lin
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qi Xie
- Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
12
|
Laulumaa S, Kumpula EP, Huiskonen JT, Varjosalo M. Structure and interactions of the endogenous human Commander complex. Nat Struct Mol Biol 2024; 31:925-938. [PMID: 38459129 PMCID: PMC11189303 DOI: 10.1038/s41594-024-01246-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
The Commander complex, a 16-protein assembly, plays multiple roles in cell homeostasis, cell cycle and immune response. It consists of copper-metabolism Murr1 domain proteins (COMMD1-10), coiled-coil domain-containing proteins (CCDC22 and CCDC93), DENND10 and the Retriever subcomplex (VPS26C, VPS29 and VPS35L), all expressed ubiquitously in the body and linked to various diseases. Here, we report the structure and key interactions of the endogenous human Commander complex by cryogenic-electron microscopy and mass spectrometry-based proteomics. The complex consists of a stable core of COMMD1-10 and an effector containing DENND10 and Retriever, scaffolded together by CCDC22 and CCDC93. We establish the composition of Commander and reveal major interaction interfaces. These findings clarify its roles in intracellular transport, and uncover a strong association with cilium assembly, and centrosome and centriole functions.
Collapse
Affiliation(s)
- Saara Laulumaa
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Gao Z, Huang E, Wang W, Xu L, Xu W, Zheng T, Rui M. Patronin regulates presynaptic microtubule organization and neuromuscular junction development in Drosophila. iScience 2024; 27:108944. [PMID: 38318379 PMCID: PMC10839449 DOI: 10.1016/j.isci.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Synapses are fundamental components of the animal nervous system. Synaptic cytoskeleton is essential for maintaining proper neuronal development and wiring. Perturbations in neuronal microtubules (MTs) are correlated with numerous neuropsychiatric disorders. Despite discovering multiple synaptic MT regulators, the importance of MT stability, and particularly the polarity of MT in synaptic function, is still under investigation. Here, we identify Patronin, an MT minus-end-binding protein, for its essential role in presynaptic regulation of MT organization and neuromuscular junction (NMJ) development. Analyses indicate that Patronin regulates synaptic development independent of Klp10A. Subsequent research elucidates that it is short stop (Shot), a member of the Spectraplakin family of large cytoskeletal linker molecules, works synergistically with Patronin to govern NMJ development. We further raise the possibility that normal synaptic MT polarity contributes to proper NMJ morphology. Overall, this study demonstrates an unprecedented role of Patronin, and a potential involvement of MT polarity in synaptic development.
Collapse
Affiliation(s)
- Ziyang Gao
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Erqian Huang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanting Wang
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Lizhong Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Wanyue Xu
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Ting Zheng
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
16
|
Bhargava S, Kulkarni R, Dewangan B, Kulkarni N, Jiaswar C, Kumar K, Kumar A, Bodhe PR, Kumar H, Sahu B. Microtubule stabilising peptides: new paradigm towards management of neuronal disorders. RSC Med Chem 2023; 14:2192-2205. [PMID: 37974959 PMCID: PMC10650357 DOI: 10.1039/d3md00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/09/2023] [Indexed: 11/19/2023] Open
Abstract
Neuronal cells made of soma, axon, and dendrites are highly compartmentalized and possess a specialized transport system that can convey long-distance electrical signals for the cross-talk. The transport system is made up of microtubule (MT) polymers and MT-binding proteins. MTs play vital and diverse roles in various cellular processes. Therefore, defects and dysregulation of MTs and their binding proteins lead to many neurological disorders as exemplified by Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and many others. MT-stabilising agents (MSAs) altering the MT-associated protein connections have shown great potential for several neurodegenerative disorders. Peptides are an important class of molecules with high specificity, biocompatibility and are devoid of side effects. In the past, peptides have been explored in various neuronal disorders as therapeutics. Davunetide, a MT-stabilising octapeptide, has entered into phase II clinical trials for schizophrenia. Numerous examples of peptides emerging as MSAs reflect the emergence of a new paradigm for peptides which can be explored further as drug candidates for neuronal disorders. Although small molecule-based MSAs have been reviewed in the past, there is no systematic review in recent years focusing on peptides as MSAs apart from davunetide in 2013. Therefore, a systematic updated review on MT stabilising peptides may shed light on many hidden aspects and enable researchers to develop new therapies for diseases related to the CNS. In this review we have summarised the recent examples of peptides as MSAs.
Collapse
Affiliation(s)
- Shubhangi Bhargava
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Riya Kulkarni
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bhaskar Dewangan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Neeraj Kulkarni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Chirag Jiaswar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Kunal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Amit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Praveen Reddy Bodhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Ahmedabad India
| | - Bichismita Sahu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad India
| |
Collapse
|
17
|
Hu W, Zhang R, Xu H, Li Y, Yang X, Zhou Z, Huang X, Wang Y, Ji W, Gao F, Meng W. CAMSAP1 role in orchestrating structure and dynamics of manchette microtubule minus-ends impacts male fertility during spermiogenesis. Proc Natl Acad Sci U S A 2023; 120:e2313787120. [PMID: 37903275 PMCID: PMC10636317 DOI: 10.1073/pnas.2313787120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
The manchette is a crucial transient structure involved in sperm development, with its composition and regulation still not fully understood. This study focused on investigating the roles of CAMSAP1 and CAMSAP2, microtubule (MT) minus-end binding proteins, in regulating manchette MTs, spermiogenesis, and male fertility. The loss of CAMSAP1, but not CAMSAP2, disrupts the well-orchestrated process of spermiogenesis, leading to abnormal manchette elongation and delayed removal, resulting in deformed sperm nuclei and tails resembling oligoasthenozoospermia symptoms. We investigated the underlying molecular mechanisms by purifying manchette assemblies and comparing them through proteomic analysis, and results showed that the absence of CAMSAP1 disrupted the proper localization of key proteins (CEP170 and KIF2A) at the manchette minus end, compromising its structural integrity and hindering MT depolymerization. These findings highlight the significance of maintaining homeostasis in manchette MT minus-ends for shaping manchette morphology during late spermiogenesis, offering insights into the molecular mechanisms underlying infertility and sperm abnormalities.
Collapse
Affiliation(s)
- Weichang Hu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Rui Zhang
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Honglin Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
| | - Yuejia Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiaojuan Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wei Ji
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong510320, China
| | - Fei Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing10019, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
18
|
Ouzounidis VR, Prevo B, Cheerambathur DK. Sculpting the dendritic landscape: Actin, microtubules, and the art of arborization. Curr Opin Cell Biol 2023; 84:102214. [PMID: 37544207 DOI: 10.1016/j.ceb.2023.102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Dendrites are intricately designed neuronal compartments that play a vital role in the gathering and processing of sensory or synaptic inputs. Their diverse and elaborate structures are distinct features of neuronal organization and function. Central to the generation of these dendritic arbors is the neuronal cytoskeleton. In this review, we delve into the current progress toward our understanding of how dendrite arbors are generated and maintained, focusing on the role of the actin and microtubule cytoskeleton.
Collapse
Affiliation(s)
- Vasileios R Ouzounidis
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Bram Prevo
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
19
|
Gujar MR, Gao Y, Teng X, Ding WY, Lin J, Tan YS, Chew LY, Toyama Y, Wang H. Patronin/CAMSAP promotes reactivation and regeneration of Drosophila quiescent neural stem cells. EMBO Rep 2023; 24:e56624. [PMID: 37440685 PMCID: PMC10481672 DOI: 10.15252/embr.202256624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (qNSCs) extend a primary protrusion that is enriched in acentrosomal microtubules and can be regenerated upon injury. Arf1 promotes microtubule growth, reactivation (exit from quiescence), and regeneration of qNSC protrusions upon injury. However, how Arf1 is regulated in qNSCs remains elusive. Here, we show that the microtubule minus-end binding protein Patronin/CAMSAP promotes acentrosomal microtubule growth and quiescent NSC reactivation. Patronin is important for the localization of Arf1 at Golgi and physically associates with Arf1, preferentially with its GDP-bound form. Patronin is also required for the regeneration of qNSC protrusion, likely via the regulation of microtubule growth. Finally, Patronin functions upstream of Arf1 and its effector Msps/XMAP215 to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings reveal a novel link between Patronin/CAMSAP and Arf1 in the regulation of microtubule growth and NSC reactivation. A similar mechanism might apply to various microtubule-dependent systems in mammals.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Xiang Teng
- Mechanobiology InstituteSingaporeSingapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Present address:
Temasek LifeSciences LaboratorySingaporeSingapore
| | - Yusuke Toyama
- Mechanobiology InstituteSingaporeSingapore
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders ProgrammeDuke‐NUS Medical SchoolSingaporeSingapore
- Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNational University of SingaporeSingaporeSingapore
| |
Collapse
|
20
|
Chandra S, Chatterjee R, Olmsted ZT, Mukherjee A, Paluh JL. Axonal transport during injury on a theoretical axon. Front Cell Neurosci 2023; 17:1215945. [PMID: 37636588 PMCID: PMC10450981 DOI: 10.3389/fncel.2023.1215945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Neurodevelopment, plasticity, and cognition are integral with functional directional transport in neuronal axons that occurs along a unique network of discontinuous polar microtubule (MT) bundles. Axonopathies are caused by brain trauma and genetic diseases that perturb or disrupt the axon MT infrastructure and, with it, the dynamic interplay of motor proteins and cargo essential for axonal maintenance and neuronal signaling. The inability to visualize and quantify normal and altered nanoscale spatio-temporal dynamic transport events prevents a full mechanistic understanding of injury, disease progression, and recovery. To address this gap, we generated DyNAMO, a Dynamic Nanoscale Axonal MT Organization model, which is a biologically realistic theoretical axon framework. We use DyNAMO to experimentally simulate multi-kinesin traffic response to focused or distributed tractable injury parameters, which are MT network perturbations affecting MT lengths and multi-MT staggering. We track kinesins with different motility and processivity, as well as their influx rates, in-transit dissociation and reassociation from inter-MT reservoirs, progression, and quantify and spatially represent motor output ratios. DyNAMO demonstrates, in detail, the complex interplay of mixed motor types, crowding, kinesin off/on dissociation and reassociation, and injury consequences of forced intermingling. Stalled forward progression with different injury states is seen as persistent dynamicity of kinesins transiting between MTs and inter-MT reservoirs. DyNAMO analysis provides novel insights and quantification of axonal injury scenarios, including local injury-affected ATP levels, as well as relates these to influences on signaling outputs, including patterns of gating, waves, and pattern switching. The DyNAMO model significantly expands the network of heuristic and mathematical analysis of neuronal functions relevant to axonopathies, diagnostics, and treatment strategies.
Collapse
Affiliation(s)
- Soumyadeep Chandra
- Electrical and Computer Science Engineering, Purdue University, West Lafayette, IN, United States
| | - Rounak Chatterjee
- Department of Electronics, Electrical and Systems Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Zachary T. Olmsted
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amitava Mukherjee
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
- School of Computing, Amrita Vishwa Vidyapeetham (University), Kollam, Kerala, India
| | - Janet L. Paluh
- Nanobioscience, College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, United States
| |
Collapse
|
21
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Rosito M, Sanchini C, Gosti G, Moreno M, De Panfilis S, Giubettini M, Debellis D, Catalano F, Peruzzi G, Marotta R, Indrieri A, De Leonibus E, De Stefano ME, Ragozzino D, Ruocco G, Di Angelantonio S, Bartolini F. Microglia reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays. Cell Rep 2023; 42:112104. [PMID: 36787220 PMCID: PMC10423306 DOI: 10.1016/j.celrep.2023.112104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/02/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023] Open
Abstract
Microglia reactivity entails a large-scale remodeling of cellular geometry, but the behavior of the microtubule cytoskeleton during these changes remains unexplored. Here we show that activated microglia provide an example of microtubule reorganization from a non-centrosomal array of parallel and stable microtubules to a radial array of more dynamic microtubules. While in the homeostatic state, microglia nucleate microtubules at Golgi outposts, and activating signaling induces recruitment of nucleating material nearby the centrosome, a process inhibited by microtubule stabilization. Our results demonstrate that a hallmark of microglia reactivity is a striking remodeling of the microtubule cytoskeleton and suggest that while pericentrosomal microtubule nucleation may serve as a distinct marker of microglia activation, inhibition of microtubule dynamics may provide a different strategy to reduce microglia reactivity in inflammatory disease.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Giorgio Gosti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Manuela Moreno
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
| | - Simone De Panfilis
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | | | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Institute for Genetic and Biomedical Research, National Research Council, 20090 Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Institute of Biochemistry and Cellular Biology, National Research Council, 00015 Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00179 Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physics, Sapienza University, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; D-Tails s.r.l, 00165 Rome, Italy.
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
24
|
Ho KH, Jayathilake A, Yagan M, Nour A, Osipovich AB, Magnuson MA, Gu G, Kaverina I. CAMSAP2 localizes to the Golgi in islet β-cells and facilitates Golgi-ER trafficking. iScience 2023; 26:105938. [PMID: 36718359 PMCID: PMC9883185 DOI: 10.1016/j.isci.2023.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Glucose stimulation induces the remodeling of microtubules, which potentiates insulin secretion in pancreatic β-cells. CAMSAP2 binds to microtubule minus ends to stabilize microtubules in several cultured clonal cells. Here, we report that the knockdown of CAMSAP2 in primary β-cells reduces total insulin content and attenuates GSIS without affecting the releasability of insulin vesicles. Surprisingly, CAMSAP2 knockdown does not change microtubule stability. Unlike in cultured insulinoma cells, CAMSAP2 in primary β-cells predominantly localizes to the Golgi apparatus instead of microtubule minus ends. This novel localization is specific to primary β- but not α-cells and is independent of microtubule binding. Consistent with its specific localization at the Golgi, CAMSAP2 promotes efficient Golgi-ER trafficking in primary β-cells. Moreover, primary β-cells and insulinoma cells likely express different CAMSAP2 isoforms. We propose that a novel CAMSAP2 isoform in primary β-cells has a non-canonical function, which promotes Golgi-ER trafficking to support efficient production of insulin and secretion.
Collapse
Affiliation(s)
- Kung-Hsien Ho
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anissa Jayathilake
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Mahircan Yagan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Aisha Nour
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
25
|
Zocchi R, Compagnucci C, Bertini E, Sferra A. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons. Int J Mol Sci 2023; 24:ijms24032781. [PMID: 36769099 PMCID: PMC9917122 DOI: 10.3390/ijms24032781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Microtubules (MTs) are dynamic components of the cell cytoskeleton involved in several cellular functions, such as structural support, migration and intracellular trafficking. Despite their high similarity, MTs have functional heterogeneity that is generated by the incorporation into the MT lattice of different tubulin gene products and by their post-translational modifications (PTMs). Such regulations, besides modulating the tubulin composition of MTs, create on their surface a "biochemical code" that is translated, through the action of protein effectors, into specific MT-based functions. This code, known as "tubulin code", plays an important role in neuronal cells, whose highly specialized morphologies and activities depend on the correct functioning of the MT cytoskeleton and on its interplay with a myriad of MT-interacting proteins. In recent years, a growing number of mutations in genes encoding for tubulins, MT-interacting proteins and enzymes that post-translationally modify MTs, which are the main players of the tubulin code, have been linked to neurodegenerative processes or abnormalities in neural migration, differentiation and connectivity. Nevertheless, the exact molecular mechanisms through which the cell writes and, downstream, MT-interacting proteins decipher the tubulin code are still largely uncharted. The purpose of this review is to describe the molecular determinants and the readout mechanisms of the tubulin code, and briefly elucidate how they coordinate MT behavior during critical neuronal events, such as neuron migration, maturation and axonal transport.
Collapse
Affiliation(s)
- Riccardo Zocchi
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Research Hospital, IRCCS, 00146 Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| | - Antonella Sferra
- Unit of Neuromuscular Disorders, Translational Pediatrics and Clinical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
- Correspondence: (E.B.); or (A.S.); Tel.: +39-06-6859-2104 (E.B. & A.S.)
| |
Collapse
|
26
|
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, Al-Hijawi F, Keough KC, Gezdirici A, Pena L, Spaeth CG, Turnpenny PD, Walsh JR, Ray R, Neilson A, Kouranova E, Cui X, Curiel DT, Pehlivan D, Akdemir ZC, Posey JE, Lupski JR, Dobyns WB, Stottmann RW, Crosby AH, Baple EL. Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder. Am J Hum Genet 2022; 109:2068-2079. [PMID: 36283405 PMCID: PMC9674946 DOI: 10.1016/j.ajhg.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Biomedical Sciences Department, Faculty of Medicine, Arab American University of Palestine, Jenin P227, Palestine
| | - James Fasham
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Katherine A Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Lauren E Blizzard
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA
| | - Joseph S Leslie
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Matthew N Wakeling
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Nishanka Ubeyratna
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer L Griffith
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wisam Baker
- Paediatrics Department, Dr. Khalil Suleiman Government Hospital, Jenin, Palestine
| | - Fida' Al-Hijawi
- Paediatrics Community Outpatient Clinics, Palestinian Ministry of Health, Jenin, Palestine
| | - Karen C Keough
- Department of Pediatrics, Dell Medical School, 1400 Barbara Jordan Boulevard, Austin, TX 78723, USA; Child Neurology Consultants of Austin, 7940 Shoal Creek Boulevard, Suite 100, Austin, TX 78757, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, 34480 Istanbul, Turkey
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christine G Spaeth
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Peter D Turnpenny
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK
| | - Joseph R Walsh
- Department of Neurological Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Randall Ray
- Departments of Pediatrics and Medical Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amber Neilson
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Evguenia Kouranova
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Xiaoxia Cui
- Genome Engineering & Stem Cell Center, Department of Genetics, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - David T Curiel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Division of Cancer Biology, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA; Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, St. Louis, MO 63110, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - William B Dobyns
- Departments of Pediatrics and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Rolf W Stottmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Institute for Genomic Medicine at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7016, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Andrew H Crosby
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK
| | - Emma L Baple
- Department of Clinical and Biomedical Science, University of Exeter Faculty of Health and Life Science, RILD building, Barrack Road, Exeter EX2 5DW, UK; Peninsula Clinical Genetics Service, Royal Devon University Healthcare NHS Foundation Trust (Heavitree Hospital), Gladstone Road, Exeter EX1 2ED, UK.
| |
Collapse
|
27
|
Intertwined Wdr47-NTD dimer recognizes a basic-helical motif in Camsap proteins for proper central-pair microtubule formation. Cell Rep 2022; 41:111589. [DOI: 10.1016/j.celrep.2022.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
28
|
Huang J, Jiang B, Li GW, Zheng D, Li M, Xie X, Pan Y, Wei M, Liu X, Jiang X, Zhang X, Yang L, Bao L, Wang B. m6A-modified lincRNA Dubr is required for neuronal development by stabilizing YTHDF1/3 and facilitating mRNA translation. Cell Rep 2022; 41:111693. [DOI: 10.1016/j.celrep.2022.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
|
29
|
He L, van Beem L, Snel B, Hoogenraad CC, Harterink M. PTRN-1 (CAMSAP) and NOCA-2 (NINEIN) are required for microtubule polarity in Caenorhabditis elegans dendrites. PLoS Biol 2022; 20:e3001855. [PMID: 36395330 PMCID: PMC9714909 DOI: 10.1371/journal.pbio.3001855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/01/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The neuronal microtubule cytoskeleton is key to establish axon-dendrite polarity. Dendrites are characterized by the presence of minus-end out microtubules. However, the mechanisms that organize these microtubules with the correct orientation are still poorly understood. Using Caenorhabditis elegans as a model system for microtubule organization, we characterized the role of 2 microtubule minus-end related proteins in this process, the microtubule minus-end stabilizing protein calmodulin-regulated spectrin-associated protein (CAMSAP/PTRN-1), and the NINEIN homologue, NOCA-2 (noncentrosomal microtubule array). We found that CAMSAP and NINEIN function in parallel to mediate microtubule organization in dendrites. During dendrite outgrowth, RAB-11-positive vesicles localized to the dendrite tip to nucleate microtubules and function as a microtubule organizing center (MTOC). In the absence of either CAMSAP or NINEIN, we observed a low penetrance MTOC vesicles mislocalization to the cell body, and a nearly fully penetrant phenotype in double mutant animals. This suggests that both proteins are important for localizing the MTOC vesicles to the growing dendrite tip to organize microtubules minus-end out. Whereas NINEIN localizes to the MTOC vesicles where it is important for the recruitment of the microtubule nucleator γ-tubulin, CAMSAP localizes around the MTOC vesicles and is cotranslocated forward with the MTOC vesicles upon dendritic growth. Together, these results indicate that microtubule nucleation from the MTOC vesicles and microtubule stabilization are both important to localize the MTOC vesicles distally to organize dendritic microtubules minus-end out.
Collapse
Affiliation(s)
- Liu He
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Lotte van Beem
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Casper C. Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Neuroscience, Genentech, Inc., South San Francisco, California, United States of America
| | - Martin Harterink
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
30
|
Lin CH, Chen YC, Chan SP, Ou CY. TIAM-1 differentially regulates dendritic and axonal microtubule organization in patterning neuronal development through its multiple domains. PLoS Genet 2022; 18:e1010454. [PMID: 36223408 PMCID: PMC9612824 DOI: 10.1371/journal.pgen.1010454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 10/27/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
Axon and dendrite development require the cooperation of actin and microtubule cytoskeletons. Microtubules form a well-organized network to direct polarized trafficking and support neuronal processes formation with distinct actin structures. However, it is largely unknown how cytoskeleton regulators differentially regulate microtubule organization in axon and dendrite development. Here, we characterize the role of actin regulators in axon and dendrite development and show that the RacGEF TIAM-1 regulates dendritic patterns through its N-terminal domains and suppresses axon growth through its C-terminal domains. TIAM-1 maintains plus-end-out microtubule orientation in posterior dendrites and prevents the accumulation of microtubules in the axon. In somatodendritic regions, TIAM-1 interacts with UNC-119 and stabilizes the organization between actin filaments and microtubules. UNC-119 is required for TIAM-1 to control axon growth, and its expression levels determine axon length. Taken together, TIAM-1 regulates neuronal microtubule organization and patterns axon and dendrite development respectively through its different domains.
Collapse
Affiliation(s)
- Chih-Hsien Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Chun Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chan-Yen Ou
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Wang X, Liu Y, Ding Y, Feng G. CAMSAP2 promotes colorectal cancer cell migration and invasion through activation of JNK/c-Jun/MMP-1 signaling pathway. Sci Rep 2022; 12:16899. [PMID: 36207462 PMCID: PMC9546856 DOI: 10.1038/s41598-022-21345-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
CAMSAP2 has been reported to act as an oncogene in hepatocellular carcinoma. However, the expression CAMSAP2 and its potential roles in colorectal cancer remain unclear. In this study, qRT-PCR and immunoblotting analysis were used to detect the mRNA and protein levels of CAMSAP2 in colorectal cancer tissues and cell lines. Wound-healing, transwell migration and invasion assay were performed to determine whether CAMSAP2 promotes the capabilities of migration and invasion of colorectal cancer cells. The results showed that CAMSAP2 was highly elevated in colorectal cancer tissues and cell lines. Moreover, the high CAMSAP2 expression was positively correlated with tumor invasion depth, lymph node metastasis, distant metastasis, and the poor prognosis of colorectal cancer. Additionally, ectopic expression of CAMSAP2 in colorectal cancer cells promoted the migration and invasion in vitro and enhanced the lung metastasis in nude mice. Conversely, silencing CAMSAP2 resulted in an opposite phenomenon. By gain- and loss-of function experiments, we demonstrated that MMP-1 was a substantial downstream target of CAMSAP2, and it played a crucial role in regulating the migration and invasion induced by CAMSAP2 in colorectal cancer cells. Mechanistically, CAMSAP2 promoted the activation of JNK/c-Jun signaling pathway and subsequently upregulated the transcription activity of MMP-1. Taken together, our findings demonstrated that CAMSAP2 promoted colorectal cancer cell migration, invasion and metastasis through activation of JNK/c-Jun/MMP-1 signaling pathway, indicating CAMSAP2 is a promising therapeutic target for the treatment of metastatic colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China
| | - Yumin Liu
- Department of Obstetrics and Gynecology, Wuhan Hankou Hospital, Wuhan, 430010, Hubei, China
| | - Yawen Ding
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China
| | - Gang Feng
- Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, 473 Hanzheng Street, Wuhan, 430000, Hubei, China.
| |
Collapse
|
32
|
Eichel K, Uenaka T, Belapurkar V, Lu R, Cheng S, Pak JS, Taylor CA, Südhof TC, Malenka R, Wernig M, Özkan E, Perrais D, Shen K. Endocytosis in the axon initial segment maintains neuronal polarity. Nature 2022; 609:128-135. [PMID: 35978188 PMCID: PMC9433327 DOI: 10.1038/s41586-022-05074-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Neurons are highly polarized cells that face the fundamental challenge of compartmentalizing a vast and diverse repertoire of proteins in order to function properly1. The axon initial segment (AIS) is a specialized domain that separates a neuron's morphologically, biochemically and functionally distinct axon and dendrite compartments2,3. How the AIS maintains polarity between these compartments is not fully understood. Here we find that in Caenorhabditis elegans, mouse, rat and human neurons, dendritically and axonally polarized transmembrane proteins are recognized by endocytic machinery in the AIS, robustly endocytosed and targeted to late endosomes for degradation. Forcing receptor interaction with the AIS master organizer, ankyrinG, antagonizes receptor endocytosis in the AIS, causes receptor accumulation in the AIS, and leads to polarity deficits with subsequent morphological and behavioural defects. Therefore, endocytic removal of polarized receptors that diffuse into the AIS serves as a membrane-clearance mechanism that is likely to work in conjunction with the known AIS diffusion-barrier mechanism to maintain neuronal polarity on the plasma membrane. Our results reveal a conserved endocytic clearance mechanism in the AIS to maintain neuronal polarity by reinforcing axonal and dendritic compartment membrane boundaries.
Collapse
Affiliation(s)
- Kelsie Eichel
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Takeshi Uenaka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vivek Belapurkar
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - Caitlin A Taylor
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL, USA
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, Bordeaux, France
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Jia Y, He YF, Tian Y, Wang YZ, Zhao RT, Li XC, Sun J, Wei YS, An S, Yuan HJ, Wan CX, Jiang RC. MicroRNA alteration in cerebrospinal fluid from comatose patients with traumatic brain injury after right median nerve stimulation. Exp Brain Res 2022; 240:2459-2470. [DOI: 10.1007/s00221-022-06414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
|
34
|
Imasaki T, Kikkawa S, Niwa S, Saijo-Hamano Y, Shigematsu H, Aoyama K, Mitsuoka K, Shimizu T, Aoki M, Sakamoto A, Tomabechi Y, Sakai N, Shirouzu M, Taguchi S, Yamagishi Y, Setsu T, Sakihama Y, Nitta E, Takeichi M, Nitta R. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. eLife 2022; 11:77365. [PMID: 35762204 PMCID: PMC9239687 DOI: 10.7554/elife.77365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules. Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,JST, PRESTO, Saitama, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis, Thermo Fisher Scientific, Tokyo, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Aoki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoki Sakai
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Yamagishi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomiyoshi Setsu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Sakihama
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
35
|
Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol 2022; 23:541-558. [PMID: 35383336 DOI: 10.1038/s41580-022-00473-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
36
|
Fu Y, Lorrai I, Zorman B, Mercatelli D, Shankula C, Marquez Gaytan J, Lefebvre C, de Guglielmo G, Kim HR, Sumazin P, Giorgi FM, Repunte-Canonigo V, Sanna PP. Escalated (Dependent) Oxycodone Self-Administration Is Associated with Cognitive Impairment and Transcriptional Evidence of Neurodegeneration in Human Immunodeficiency Virus (HIV) Transgenic Rats. Viruses 2022; 14:669. [PMID: 35458399 PMCID: PMC9030762 DOI: 10.3390/v14040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Substance use disorder is associated with accelerated disease progression in people with human immunodeficiency virus (HIV; PWH). Problem opioid use, including high-dose opioid therapy, prescription drug misuse, and opioid abuse, is high and increasing in the PWH population. Oxycodone is a broadly prescribed opioid in both the general population and PWH. Here, we allowed HIV transgenic (Tg) rats and wildtype (WT) littermates to intravenously self-administer oxycodone under short-access (ShA) conditions, which led to moderate, stable, "recreational"-like levels of drug intake, or under long-access (LgA) conditions, which led to escalated (dependent) drug intake. HIV Tg rats with histories of oxycodone self-administration under LgA conditions exhibited significant impairment in memory performance in the novel object recognition (NOR) paradigm. RNA-sequencing expression profiling of the medial prefrontal cortex (mPFC) in HIV Tg rats that self-administered oxycodone under ShA conditions exhibited greater transcriptional evidence of inflammation than WT rats that self-administered oxycodone under the same conditions. HIV Tg rats that self-administered oxycodone under LgA conditions exhibited transcriptional evidence of an increase in neuronal injury and neurodegeneration compared with WT rats under the same conditions. Gene expression analysis indicated that glucocorticoid-dependent adaptations contributed to the gene expression effects of oxycodone self-administration. Overall, the present results indicate that a history of opioid intake promotes neuroinflammation and glucocorticoid dysregulation, and excessive opioid intake is associated with neurotoxicity and cognitive impairment in HIV Tg rats.
Collapse
Affiliation(s)
- Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK
| | - Irene Lorrai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Chase Shankula
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Jorge Marquez Gaytan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
- 92160 Antony, France
| | - Giordano de Guglielmo
- Department of Psychiatry, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Hyunjae Ryan Kim
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (B.Z.); (H.R.K.); (P.S.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (D.M.); (F.M.G.)
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| | - Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA; (Y.F.); (I.L.); (C.S.); (J.M.G.); (C.L.)
| |
Collapse
|
37
|
Rolls MM. Principles of microtubule polarity in linear cells. Dev Biol 2022; 483:112-117. [PMID: 35016908 PMCID: PMC10071391 DOI: 10.1016/j.ydbio.2022.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 01/30/2023]
Abstract
The microtubule cytoskeleton is critical for maintenance of long and long-lived neurons. The overlapping array of microtubules extends from the major site of synthesis in the cell body to the far reaches of axons and dendrites. New materials are transported from the cell body along these neuronal roads by motor proteins, and building blocks and information about the state of affairs in other parts of the cell are returned by motors moving in the opposite direction. As motor proteins walk only in one direction along microtubules, the combination of correct motor and correctly oriented microtubules is essential for moving cargoes in the right direction. In this review, we focus on how microtubule polarity is established and maintained in neurons. At first thought, it seems that figuring out how microtubules are organized in neurons should be simple. After all, microtubules are essentially sticks with a slow-growing minus end and faster-growing plus end, and arranging sticks within the constrained narrow tubes of axons and dendrites should be straightforward. It is therefore quite surprising how many mechanisms contribute to making sure they are arranged in the correct polarity. Some of these mechanisms operate to generate plus-end-out polarity of axons, and others control mixed or minus-end-out dendrites.
Collapse
Affiliation(s)
- Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
38
|
Yi Y, Qiu Z, Yao Z, Lin A, Qin Y, Sha R, Wei T, Wang Y, Cheng Q, Zhang J, Luo P, Shen W. CAMSAP1 Mutation Correlates With Improved Prognosis in Small Cell Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Cell Dev Biol 2022; 9:770811. [PMID: 35087829 PMCID: PMC8787262 DOI: 10.3389/fcell.2021.770811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Platinum-based chemotherapy is the first-line treatment for small cell lung cancer (SCLC). However, due to patients developing a resistance to the drug, most experience relapse and their cancer can become untreatable. A large number of recent studies have found that platinum drug sensitivity of various cancers is affected by specific gene mutations, and so with this study, we attempted to find an effective genetic biomarker in SCLC patients that indicates their sensitivity to platinum-based drugs. To do this, we first analyzed whole exome sequencing (WES) and clinical data from two cohorts to find gene mutations related to the prognosis and to the platinum drug sensitivity of SCLC patients. The cohorts used were the Zhujiang cohort (N = 138) and the cohort reported by George et al. (N = 101). We then carried out gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to investigate possible molecular mechanisms through which these gene mutations affect patient prognosis and platinum drug sensitivity. We found that for SCLC patients, CAMSAP1 mutation can activate anti-tumor immunity, mediate tumor cell apoptosis, inhibit epithelial-mesenchymal transition (EMT), improve prognosis, and improve platinum drug sensitivity, suggesting that CAMSAP1 mutation may be a potential biomarker indicating platinum drug sensitivity and patient prognosis in SCLC.
Collapse
Affiliation(s)
- Yonglin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengang Qiu
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, Guangzhou, China
| | - Zifu Yao
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yimin Qin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ruizhan Sha
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanru Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Tsuchiya K, Goshima G. Microtubule-associated proteins promote microtubule generation in the absence of γ-tubulin in human colon cancer cells. J Cell Biol 2021; 220:e202104114. [PMID: 34779859 PMCID: PMC8598081 DOI: 10.1083/jcb.202104114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/13/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The γ-tubulin complex acts as the predominant microtubule (MT) nucleator that initiates MT formation and is therefore an essential factor for cell proliferation. Nonetheless, cellular MTs are formed after experimental depletion of the γ-tubulin complex, suggesting that cells possess other factors that drive MT nucleation. Here, by combining gene knockout, auxin-inducible degron, RNA interference, MT depolymerization/regrowth assay, and live microscopy, we identified four microtubule-associated proteins (MAPs), ch-TOG, CLASP1, CAMSAPs, and TPX2, which are involved in γ-tubulin-independent MT generation in human colon cancer cells. In the mitotic MT regrowth assay, nucleated MTs organized noncentriolar MT organizing centers (ncMTOCs) in the absence of γ-tubulin. Depletion of CLASP1 or TPX2 substantially delayed ncMTOC formation, suggesting that these proteins might promote MT nucleation in the absence of γ-tubulin. In contrast, depletion of ch-TOG or CAMSAPs did not affect the timing of ncMTOC appearance. CLASP1 also accelerates γ-tubulin-independent MT regrowth during interphase. Thus, MT generation can be promoted by MAPs without the γ-tubulin template.
Collapse
Affiliation(s)
- Kenta Tsuchiya
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
40
|
The Type 2 Diabetes Factor Methylglyoxal Mediates Axon Initial Segment Shortening and Alters Neuronal Function at the Cellular and Network Levels. eNeuro 2021; 8:ENEURO.0201-21.2021. [PMID: 34531281 PMCID: PMC8496204 DOI: 10.1523/eneuro.0201-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Recent evidence suggests that alteration of axon initial segment (AIS) geometry (i.e., length or location along the axon) contributes to CNS dysfunction in neurological diseases. For example, AIS length is shorter in the prefrontal cortex of type 2 diabetic mice with cognitive impairment. To determine the key type 2 diabetes-related factor that produces AIS shortening we modified levels of insulin, glucose, or the reactive glucose metabolite methylglyoxal in cultures of dissociated cortices from male and female mice and quantified AIS geometry using immunofluorescent imaging of the AIS proteins AnkyrinG and βIV spectrin. Neither insulin nor glucose modification altered AIS length. Exposure to 100 but not 1 or 10 μm methylglyoxal for 24 h resulted in accumulation of the methylglyoxal-derived advanced glycation end-product hydroimidazolone and produced reversible AIS shortening without cell death. Methylglyoxal-evoked AIS shortening occurred in both excitatory and putative inhibitory neuron populations and in the presence of tetrodotoxin (TTX). In single-cell recordings resting membrane potential was depolarized at 0.5-3 h and returned to normal at 24 h. In multielectrode array (MEA) recordings methylglyoxal produced an immediate ∼300% increase in spiking and bursting rates that returned to normal within 2 min, followed by a ∼20% reduction of network activity at 0.5-3 h and restoration of activity to baseline levels at 24 h. AIS length was unchanged at 0.5-3 h despite the presence of depolarization and network activity reduction. Nevertheless, these results suggest that methylglyoxal could be a key mediator of AIS shortening and disruptor of neuronal function during type 2 diabetes.
Collapse
|
41
|
Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules. Nat Commun 2021; 12:5796. [PMID: 34608154 PMCID: PMC8490363 DOI: 10.1038/s41467-021-26058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
The axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary beat. How they form, however, is poorly understood. Here, we show that mammalian CP formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Camsaps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47 concentrates Camsaps into the axonemal central lumen to properly position central microtubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat, and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding regions induces central microtubules in Wdr47-/- ependymal cells but at the expense of low efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the central microtubule number. We propose that Wdr47, Camsaps, and Katanin function together for the generation of non-centrosomal microtubule arrays in polarized subcellular compartments.
Collapse
|
42
|
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan JZ, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN. Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. eLife 2021; 10:68910. [PMID: 34545811 PMCID: PMC8494481 DOI: 10.7554/elife.68910] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity, and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that N-glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these N-glycosylation alterations, we discovered that they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with endoplasmic reticulum (ER) exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite’s satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction, and disease.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Okunola Jeyifous
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| | - Theron A Russell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Zola Yi
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Abhijit Ramaprasad
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Luke Newell
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - William Ramos
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Fernando M Valbuena
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jing-Zhi Yan
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | | | - William N Green
- Department of Neurobiology, University of Chicago, Chicago, United States.,Marine Biological Laboratory, Woods Hole, United States
| |
Collapse
|
43
|
Mishra N, Heisenberg CP. Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics. Annu Rev Genet 2021; 55:209-233. [PMID: 34460295 DOI: 10.1146/annurev-genet-071819-103748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multicellular organisms develop complex shapes from much simpler, single-celled zygotes through a process commonly called morphogenesis. Morphogenesis involves an interplay between several factors, ranging from the gene regulatory networks determining cell fate and differentiation to the mechanical processes underlying cell and tissue shape changes. Thus, the study of morphogenesis has historically been based on multidisciplinary approaches at the interface of biology with physics and mathematics. Recent technological advances have further improved our ability to study morphogenesis by bridging the gap between the genetic and biophysical factors through the development of new tools for visualizing, analyzing, and perturbing these factors and their biochemical intermediaries. Here, we review how a combination of genetic, microscopic, biophysical, and biochemical approaches has aided our attempts to understand morphogenesis and discuss potential approaches that may be beneficial to such an inquiry in the future. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nikhil Mishra
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; ,
| | | |
Collapse
|
44
|
Saito H, Matsukawa-Usami F, Fujimori T, Kimura T, Ide T, Yamamoto T, Shibata T, Onoue K, Okayama S, Yonemura S, Misaki K, Soba Y, Kakui Y, Sato M, Toya M, Takeichi M. Tracheal motile cilia in mice require CAMSAP3 for formation of central microtubule pair and coordinated beating. Mol Biol Cell 2021; 32:ar12. [PMID: 34319756 PMCID: PMC8684751 DOI: 10.1091/mbc.e21-06-0303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motile cilia of multiciliated epithelial cells undergo synchronized beating to produce fluid flow along the luminal surface of various organs. Each motile cilium consists of an axoneme and a basal body (BB), which are linked by a “transition zone” (TZ). The axoneme exhibits a characteristic 9+2 microtubule arrangement important for ciliary motion, but how this microtubule system is generated is not yet fully understood. Here we show that calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a protein that can stabilize the minus-end of a microtubule, concentrates at multiple sites of the cilium–BB complex, including the upper region of the TZ or the axonemal basal plate (BP) where the central pair of microtubules (CP) initiates. CAMSAP3 dysfunction resulted in loss of the CP and partial distortion of the BP, as well as the failure of multicilia to undergo synchronized beating. These findings suggest that CAMSAP3 plays pivotal roles in the formation or stabilization of the CP by localizing at the basal region of the axoneme and thereby supports the coordinated motion of multicilia in airway epithelial cells.
Collapse
Affiliation(s)
- Hiroko Saito
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Fumiko Matsukawa-Usami
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, and Department of Basic Biology, School of Life Science, SOKENDAI, the Graduate University for Advanced Studies, Okazaki, 444-8787 Japan
| | - Toshiya Kimura
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Takaki Yamamoto
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Satoko Okayama
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kazuyo Misaki
- Ultrastructural Research Team, RIKEN Center for Life Science Technologies, Kobe 650-0047, Japan
| | - Yurina Soba
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan
| | - Mika Toya
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo 162-8480, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
45
|
Buijs RR, Hummel JJA, Burute M, Pan X, Cao Y, Stucchi R, Altelaar M, Akhmanova A, Kapitein LC, Hoogenraad CC. WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. Cell Rep 2021; 36:109371. [PMID: 34260930 DOI: 10.1016/j.celrep.2021.109371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Axons and dendrites are long extensions of neurons that contain arrays of noncentrosomal microtubules. Calmodulin-regulated spectrin-associated proteins (CAMSAPs) bind to and stabilize free microtubule minus ends and are critical for proper neuronal development and function. Previous studies have shown that the microtubule-severing ATPase katanin interacts with CAMSAPs and limits the length of CAMSAP-decorated microtubule stretches. However, how CAMSAP and microtubule minus end dynamics are regulated in neurons is poorly understood. Here, we show that the neuron-enriched protein WDR47 interacts with CAMSAPs and is critical for axon and dendrite development. We find that WDR47 accumulates at CAMSAP2-decorated microtubules, is essential for maintaining CAMSAP2 stretches, and protects minus ends from katanin-mediated severing. We propose a model where WDR47 protects CAMSAP2 at microtubule minus ends from katanin activity to ensure proper stabilization of the neuronal microtubule network.
Collapse
Affiliation(s)
- Robin R Buijs
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Xingxiu Pan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Yujie Cao
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
46
|
Lee J, Magescas J, Fetter RD, Feldman JL, Shen K. Inherited apicobasal polarity defines the key features of axon-dendrite polarity in a sensory neuron. Curr Biol 2021; 31:3768-3783.e3. [PMID: 34270949 DOI: 10.1016/j.cub.2021.06.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
Neurons are highly polarized cells with morphologically and functionally distinct dendritic and axonal processes. The molecular mechanisms that establish axon-dendrite polarity in vivo are poorly understood. Here, we describe the initial polarization of posterior deirid (PDE), a ciliated mechanosensory neuron, during development in vivo through 4D live imaging with endogenously tagged proteins. PDE inherits and maintains apicobasal polarity from its epithelial precursor. Its apical domain is directly transformed into the ciliated dendritic tip through apical constriction, which is followed by axonal outgrowth from the opposite basal side of the cell. The apical Par complex and junctional proteins persistently localize at the developing dendritic domain throughout this transition. Consistent with their instructive role in axon-dendrite polarization, conditional depletion of the Par complex and junctional proteins results in robust defects in dendrite and axon formation. During apical constriction, a microtubule-organizing center (MTOC) containing the microtubule nucleator γ-tubulin ring complex (γ-TuRC) forms along the apical junction between PDE and its sister cell in a manner dependent on the Par complex and junctional proteins. This junctional MTOC patterns neuronal microtubule polarity and facilitate the dynein-dependent recruitment of the basal body for ciliogenesis. When non-ciliated neurons are genetically manipulated to obtain ciliated neuronal fate, inherited apicobasal polarity is required for generating ciliated dendritic tips. We propose that inherited apicobasal polarity, together with apical cell-cell interactions drive the morphological and cytoskeletal polarity in early neuronal differentiation.
Collapse
Affiliation(s)
- Joo Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jérémy Magescas
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard D Fetter
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | | | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
47
|
Shorey M, Rao K, Stone MC, Mattie FJ, Sagasti A, Rolls MM. Microtubule organization of vertebrate sensory neurons in vivo. Dev Biol 2021; 478:1-12. [PMID: 34147472 DOI: 10.1016/j.ydbio.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/30/2023]
Abstract
Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.
Collapse
Affiliation(s)
- Matthew Shorey
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kavitha Rao
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Floyd J Mattie
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alvaro Sagasti
- Molecular, Cell and Developmental Biology Department and Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
48
|
Puri D, Ponniah K, Biswas K, Basu A, Dey S, Lundquist EA, Ghosh-Roy A. Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. J Cell Biol 2021; 220:212396. [PMID: 34137792 DOI: 10.1083/jcb.202005080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Keerthana Ponniah
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kasturi Biswas
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
49
|
Coquand L, Victoria GS, Tata A, Carpentieri JA, Brault JB, Guimiot F, Fraisier V, Baffet AD. CAMSAPs organize an acentrosomal microtubule network from basal varicosities in radial glial cells. J Cell Biol 2021; 220:212175. [PMID: 34019079 PMCID: PMC8144914 DOI: 10.1083/jcb.202003151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/30/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Neurons of the neocortex are generated by stem cells called radial glial cells. These polarized cells extend a short apical process toward the ventricular surface and a long basal fiber that acts as a scaffold for neuronal migration. How the microtubule cytoskeleton is organized in these cells to support long-range transport is unknown. Using subcellular live imaging within brain tissue, we show that microtubules in the apical process uniformly emanate for the pericentrosomal region, while microtubules in the basal fiber display a mixed polarity, reminiscent of the mammalian dendrite. We identify acentrosomal microtubule organizing centers localized in varicosities of the basal fiber. CAMSAP family members accumulate in these varicosities, where they control microtubule growth. Double knockdown of CAMSAP1 and 2 leads to a destabilization of the entire basal process. Finally, using live imaging of human fetal cortex, we reveal that this organization is conserved in basal radial glial cells, a related progenitor cell population associated with human brain size expansion.
Collapse
Affiliation(s)
- Laure Coquand
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Guiliana Soraya Victoria
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Alice Tata
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jacopo Amerigo Carpentieri
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Jean-Baptiste Brault
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France
| | - Fabien Guimiot
- Unité de Fœtopathologie-Université de Paris et Institut national de la santé et de la recherche médicale UMR1141, Hôpital Robert Debré, Paris, France
| | - Vincent Fraisier
- UMR144-Cell and Tissue Imaging Facility, Centre national de la recherche scientifique-Institut Curie, Paris, France
| | - Alexandre D Baffet
- Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR144, Paris, France.,Institut national de la santé et de la recherche médicale, Paris, France
| |
Collapse
|
50
|
Lindhout FW, Portegies S, Kooistra R, Herstel LJ, Stucchi R, Hummel JJA, Scheefhals N, Katrukha EA, Altelaar M, MacGillavry HD, Wierenga CJ, Hoogenraad CC. Centrosome-mediated microtubule remodeling during axon formation in human iPSC-derived neurons. EMBO J 2021; 40:e106798. [PMID: 33835529 PMCID: PMC8126955 DOI: 10.15252/embj.2020106798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.
Collapse
Affiliation(s)
- Feline W Lindhout
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sybren Portegies
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Robbelien Kooistra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lotte J Herstel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jessica J A Hummel
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nicky Scheefhals
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Corette J Wierenga
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Department of Neuroscience, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|