1
|
Connolly JG, Plant LD. SUMO Regulation of Ion Channels in Health and Disease. Physiology (Bethesda) 2025; 40:0. [PMID: 39499247 DOI: 10.1152/physiol.00034.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The small ubiquitin-like modifier (SUMO) protein pathway governs a panoply of vital biological processes including cell death, proliferation, differentiation, metabolism, and signal transduction by diversifying the functions, half-lives, and partnerships of target proteins in situ. More recently, SUMOylation has emerged as a key regulator of ion homeostasis and excitability across multiple tissues due to the regulation of a plethora of ion channels expressed in a range of tissue subtypes. Altogether, the balance of SUMOylation states among relevant ion channels can result in graded biophysical effects that tune excitability and contribute to a range of disease states including cardiac arrhythmia, epilepsy, pain transmission, and inflammation. Here, we consolidate these concepts by focusing on the role of ion channel SUMOylation in the central nervous system, peripheral nervous system, and cardiovascular system. In addition, we review what is known about the enigmatic factors that regulate the SUMO pathway and consider the emerging role of small molecule SUMO modulators as potential therapeutics in a range of diseases.
Collapse
Affiliation(s)
- Jenna G Connolly
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences and the Center for Drug Discovery, The School of Pharmacy and Pharmaceutical SciencesBouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Cao DF, Zhou XY, Guo Q, Xiang MY, Bao MH, He BS, Mao XY. Unveiling the role of histone deacetylases in neurological diseases: focus on epilepsy. Biomark Res 2024; 12:142. [PMID: 39563472 PMCID: PMC11575089 DOI: 10.1186/s40364-024-00687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Epilepsy remains a prevalent chronic neurological disease that is featured by aberrant, recurrent and hypersynchronous discharge of neurons and poses a great challenge to healthcare systems. Although several therapeutic interventions are successfully utilized for treating epilepsy, they can merely provide symptom relief but cannot exert disease-modifying effect. Therefore, it is of urgent need to explore other potential mechanism to develop a novel approach to delay the epileptic progression. Since approximately 30 years ago, histone deacetylases (HDACs), the versatile epigenetic regulators responsible for gene transcription via binding histones or non-histone substrates, have grabbed considerable attention in drug discovery. There are also substantial evidences supporting that aberrant expressions and/activities of HDAC isoforms are reported in epilepsy and HDAC inhibitors (HDACi) have been successfully utilized for therapeutic purposes in this condition. However, the specific mechanisms underlying the role of HDACs in epileptic progression have not been fully understood. Herein, we reviewed the basic information of HDACs, summarized the recent findings associated with the roles of diverse HDAC subunits in epilepsy and discussed the potential regulatory mechanisms by which HDACs affected the development of epilepsy. Additionally, we also provided a brief discussion on the potential of HDACs as promising therapeutic targets for epilepsy treatment, serving as a valuable reference for basic study and clinical translation in epilepsy field.
Collapse
Affiliation(s)
- Dan-Feng Cao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- The First Clinical College, Changsha Medical University, Changsha, 410219, China
| | - Xin-Yu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Qian Guo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming-Yao Xiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Mei-Hua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Bin-Sheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Cheng Y, Hou W, Fang H, Yan Y, Lu Y, Meng T, Ma C, Liu Q, Zhou Z, Li H, Li H, Xiao N. SENP2-NDR2-p21 axis modulates lung cancer cell growth. Eur J Pharmacol 2024; 978:176761. [PMID: 38908669 DOI: 10.1016/j.ejphar.2024.176761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) perform pivotal roles in SUMO maturation and recycling, which modulate the balance of SUMOylation/de-SUMOylation and spatiotemporal functions of SUMOylation targets. The malfunction of SENPs often results in cellular dysfunction and various diseases. However, studies rarely investigated the correlation between SENP2 and lung cancer. This study revealed that SENP2 is a required contributor to lung cancer-cell growth and targets nuclear Dbf2-related 2 (NDR2, also known as serine/threonine kinase 38L or STK38L) for de-SUMOylation, which improves NDR2 kinase activity. This condition leads to the instability of downstream target p21 in accelerating the G1/S cell cycle transition and suggests SENP2 as a promising therapeutic target for lung cancer in the future. Specifically, astragaloside IV, an active ingredient of Jinfukang Oral Liquid (JOL, a clinical combination antilung cancer drug approved by the National Food and Drug Administration (FDA) of China), can repress lung cancer-cell growth via the SENP2-NDR2-p21 axis, which provides new insights into the molecular mechanism of JOL for lung cancer treatment.
Collapse
Affiliation(s)
- Yixuan Cheng
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinjie Yan
- Department of Medical Affairs, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Lu
- Longhua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian Meng
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qinghai Liu
- Department of Performance Management, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Tianshan Hospital of Traditional Chinese Medicine in Changning District, Shanghai, China
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ning Xiao
- Institute of Traditional Chinese Medicine Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
He J, Chen Y, Ding H, Zhou JA, Xing Z, Yang X, Fan Q, Zuo Y, Wang T, Cheng J. Autocrine VEGF-B signaling maintains lipid synthesis and mitochondrial fitness to support T cell immune responses. J Clin Invest 2024; 134:e176586. [PMID: 39145452 PMCID: PMC11324299 DOI: 10.1172/jci176586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
T cells rewire their metabolic activities to meet the demand of immune responses, but how to coordinate the immune response by metabolic regulators in activated T cells is unknown. Here, we identified autocrine VEGF-B as a metabolic regulator to control lipid synthesis and maintain the integrity of the mitochondrial inner membrane for the survival of activated T cells. Disruption of autocrine VEGF-B signaling in T cells reduced cardiolipin mass, resulting in mitochondrial damage, with increased apoptosis and reduced memory development. The addition of cardiolipin or modulating VEGF-B signaling improved T cell mitochondrial fitness and survival. Autocrine VEGF-B signaling through GA-binding protein α (GABPα) induced sentrin/SUMO-specific protease 2 (SENP2) expression, which further de-SUMOylated PPARγ and enhanced phospholipid synthesis, leading to a cardiolipin increase in activated T cells. These data suggest that autocrine VEGF-B mediates a signal to coordinate lipid synthesis and mitochondrial fitness with T cell activation for survival and immune response. Moreover, autocrine VEGF-B signaling in T cells provides a therapeutic target against infection and tumors as well as an avenue for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jianli He
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Yalan Chen
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Huihua Ding
- Department of Rheumatology, Renji Hospital
- Shanghai Institute of Rheumatology, Renji Hospital, and
| | - Jin-An Zhou
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengcao Xing
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Xinyu Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Qiuju Fan
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Yong Zuo
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
| | - Jinke Cheng
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology
- Hainan Medical University, Hainan Academy of Medical Sciences, Haikou, Hainan, China
| |
Collapse
|
5
|
Yang F, Zhang XL, Liu HH, Qian LL, Wang RX. Post translational modifications of connexin 43 in ventricular arrhythmias after myocardial infarction. Mol Biol Rep 2024; 51:329. [PMID: 38393658 DOI: 10.1007/s11033-024-09290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death in patients after myocardial infarction (MI). Connexin43 (Cx43) is the most important gap junction channel-forming protein in cardiomyocytes. Dysfunction of Cx43 contributes to impaired myocardial conduction and the development of ventricular arrhythmias. Following an MI, Cx43 undergoes structural remodeling, including expression abnormalities, and redistribution. These alterations detrimentally affect intercellular communication and electrical conduction within the myocardium, thereby increasing the susceptibility to post-infarction ventricular arrhythmias. Emerging evidence suggests that post-translational modifications play essential roles in Cx43 regulation after MI. Therefore, Cx43-targeted management has the potential to be a promising protective strategy for the prevention and treatment of post infarction ventricular arrhythmias. In this article, we primarily reviewed the regulatory mechanisms of Cx43 mediated post-translational modifications on post-infarction ventricular arrhythmias. Furthermore, Cx43-targeted therapy have also been discussed, providing insights into an innovative treatment strategy for ventricular arrhythmias after MI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Lu Zhang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital, Wuxi Medical Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Nanjing Medical University, Wuxi, 214023, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Dong Y, Lu Z, Gao T, Wei Z, Ou Z, Shi Z, Shen J. A polypeptide derived from pilose antler ameliorates CUMS-induced depression-like behavior by SENP2-PLCβ4 signaling axis. Eur J Pharmacol 2024; 963:176247. [PMID: 38056617 DOI: 10.1016/j.ejphar.2023.176247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Neurogenesis is known to be closely associated with depression. We aimed to investigate whether a polypeptide monomer derived from pilose antler (polypeptide sequence LSALEGVFYP, PAP) exerts an antidepressant effect by influencing neurogenesis, and to elucidate the mechanism of its antidepressant action. Behavioral tests were performed to observe the antidepressant effect of PAP. Neurogenesis in the dentate gyrus (DG) region of hippocampus was observed by immunofluorescence. The expression of key proteins of Sentrin/SUMO-specific proteases 2 (SENP2)- Phosphoinositide-specific phospholipase C beta 4 (PLCβ4) pathway was accessed by co-immunoprecipitation (Co-IP), and the calcium homeostasis associated proteins were observed via Western blot (WB). Subsequently, temozolomide (TMZ) pharmacologically blocked neurogenesis to verify the antidepressant effect of PAP on neurogenesis. The mechanism of PAP antidepressant effect was verified by constructing a sh-SENP2 virus vector to silence SENP2 protein. Finally, corticosterone (CORT)-induced PC12 cell model was used to verify whether PAP was involved in the process of deconjugated PLCβ4 SUMOylated. The results showed that PAP improved depression-like behavior and neurogenesis induced by chronic unpredictable mild stimulation (CUMS). In addition, PAP acted on SENP2-PLCβ4 pathway to deconjugate the SUMOylation of PLCβ4 and affect calcium homeostasis. Pharmacological blockade of neurogenesis by TMZ treatment impaired the antidepressant efficacy of PAP. Knockout of SENP2 in the CUMS model attenuated the antidepressant response of PAP, and the impaired neurogenesis was not ameliorated by PAP treatment. In summary, PAP acted on the SENP2-PLCβ4 signaling pathway to inhibit the SUMOylation of PLCβ4 and maintain calcium homeostasis, thereby protecting neurogenesis and playing an antidepressant role.
Collapse
Affiliation(s)
- Yu Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zihan Lu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China
| | - Tiantian Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhijie Ou
- Neurology Department, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, 215500, China.
| | - Zheng Shi
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jie Shen
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Yoon JY, Greiner AM, Jacobs JS, Kim YR, Rasmussen TP, Kutschke WJ, Matasic DS, Vikram A, Gaddam RR, Mehdi H, Irani K, London B. SUMOylation of the cardiac sodium channel Na V1.5 modifies inward current and cardiac excitability. Heart Rhythm 2023; 20:1548-1557. [PMID: 37543305 PMCID: PMC12007604 DOI: 10.1016/j.hrthm.2023.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Decreased peak sodium current (INa) and increased late sodium current (INa,L), through the cardiac sodium channel NaV1.5 encoded by SCN5A, cause arrhythmias. Many NaV1.5 posttranslational modifications have been reported. A recent report concluded that acute hypoxia increases INa,L by increasing a small ubiquitin-like modifier (SUMOylation) at K442-NaV1.5. OBJECTIVE The purpose of this study was to determine whether and by what mechanisms SUMOylation alters INa, INa,L, and cardiac electrophysiology. METHODS SUMOylation of NaV1.5 was detected by immunoprecipitation and immunoblotting. INa was measured by patch clamp with/without SUMO1 overexpression in HEK293 cells expressing wild-type (WT) or K442R-NaV1.5 and in neonatal rat cardiac myocytes (NRCMs). SUMOylation effects were studied in vivo by electrocardiograms and ambulatory telemetry using Scn5a heterozygous knockout (SCN5A+/-) mice and the de-SUMOylating protein SENP2 (AAV9-SENP2), AAV9-SUMO1, or the SUMOylation inhibitor anacardic acid. NaV1.5 trafficking was detected by immunofluorescence. RESULTS NaV1.5 was SUMOylated in HEK293 cells, NRCMs, and human heart tissue. HyperSUMOylation at NaV1.5-K442 increased INa in NRCMs and in HEK cells overexpressing WT but not K442R-Nav1.5. SUMOylation did not alter other channel properties including INa,L. AAV9-SENP2 or anacardic acid decreased INa, prolonged QRS duration, and produced heart block and arrhythmias in SCN5A+/- mice, whereas AAV9-SUMO1 increased INa and shortened QRS duration. SUMO1 overexpression enhanced membrane localization of NaV1.5. CONCLUSION SUMOylation of K442-Nav1.5 increases peak INa without changing INa,L, at least in part by altering membrane abundance. Our findings do not support SUMOylation as a mechanism for changes in INa,L. Nav1.5 SUMOylation may modify arrhythmic risk in disease states and represents a potential target for pharmacologic manipulation.
Collapse
Affiliation(s)
- Jin-Young Yoon
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Alexander M Greiner
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Julia S Jacobs
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Tyler P Rasmussen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - William J Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Ravinder R Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Haider Mehdi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, and Heart and Vascular Center, University of Iowa, Iowa City, Iowa.
| | - Barry London
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
8
|
Su Q, Chen X, Ling X, Li D, Ren X, Zhao Y, Yang Y, Liu Y, He A, Zhu X, Yang X, Lu W, Wu H, Qi Y. SUMOylation of Smad2 mediates TGF-β-regulated endothelial-mesenchymal transition. J Biol Chem 2023; 299:105244. [PMID: 37690680 PMCID: PMC10570702 DOI: 10.1016/j.jbc.2023.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is a complex biological process in which endothelial cells are transformed into mesenchymal cells, and dysregulated EndoMT causes a variety of pathological processes. Transforming growth factor beta (TGF-β) signaling effectively induces the EndoMT process in endothelial cells, and Smad2 is the critical protein of the TGF-β signaling pathway. However, whether small ubiquitin-like modifier modification (SUMOylation) is involved in EndoMT remains unclear. Here, we show that Smad2 is predominantly modified by SUMO1 at two major SUMOylation sites with PIAS2α as the primary E3 ligase, whereas SENP1 (sentrin/SUMO-specific protease 1) mediates the deSUMOylation of Smad2. In addition, we identified that SUMOylation significantly enhances the transcriptional activity and protein stability of Smad2, regulating the expression of downstream target genes. SUMOylation increases the phosphorylation of Smad2 and the formation of the Smad2-Smad4 complex, thus promoting the nuclear translocation of Smad2. Ultimately, the wildtype, but not SUMOylation site mutant Smad2 facilitated the EndoMT process. More importantly, TGF-β enhances the nuclear translocation of Smad2 by enhancing its SUMOylation and promoting the EndoMT process. These results demonstrate that SUMOylation of Smad2 plays a critical role in the TGF-β-mediated EndoMT process, providing a new theoretical basis for the treatment and potential drug targets of EndoMT-related clinical diseases.
Collapse
Affiliation(s)
- Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhang Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Anqi He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinjie Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
10
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
11
|
Kotler O, Khrapunsky Y, Shvartsman A, Dai H, Plant LD, Goldstein SAN, Fleidervish I. SUMOylation of Na V1.2 channels regulates the velocity of backpropagating action potentials in cortical pyramidal neurons. eLife 2023; 12:e81463. [PMID: 36794908 PMCID: PMC10014073 DOI: 10.7554/elife.81463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Voltage-gated sodium channels located in axon initial segments (AIS) trigger action potentials (AP) and play pivotal roles in the excitability of cortical pyramidal neurons. The differential electrophysiological properties and distributions of NaV1.2 and NaV1.6 channels lead to distinct contributions to AP initiation and propagation. While NaV1.6 at the distal AIS promotes AP initiation and forward propagation, NaV1.2 at the proximal AIS promotes the backpropagation of APs to the soma. Here, we show the small ubiquitin-like modifier (SUMO) pathway modulates Na+ channels at the AIS to increase neuronal gain and the speed of backpropagation. Since SUMO does not affect NaV1.6, these effects were attributed to SUMOylation of NaV1.2. Moreover, SUMO effects were absent in a mouse engineered to express NaV1.2-Lys38Gln channels that lack the site for SUMO linkage. Thus, SUMOylation of NaV1.2 exclusively controls INaP generation and AP backpropagation, thereby playing a prominent role in synaptic integration and plasticity.
Collapse
Affiliation(s)
- Oron Kotler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Yana Khrapunsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Arik Shvartsman
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Hui Dai
- Departments of Pediatrics and Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Northeastern UniversityBostonUnited States
| | - Steven AN Goldstein
- Departments of Pediatrics and Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Ilya Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
12
|
Dufour D, Dumontet T, Sahut-Barnola I, Carusi A, Onzon M, Pussard E, Wilmouth JJ, Olabe J, Lucas C, Levasseur A, Damon-Soubeyrand C, Pointud JC, Roucher-Boulez F, Tauveron I, Bossis G, Yeh ET, Breault DT, Val P, Lefrançois-Martinez AM, Martinez A. Loss of SUMO-specific protease 2 causes isolated glucocorticoid deficiency by blocking adrenal cortex zonal transdifferentiation in mice. Nat Commun 2022; 13:7858. [PMID: 36543805 PMCID: PMC9772323 DOI: 10.1038/s41467-022-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
SUMOylation is a dynamic posttranslational modification, that provides fine-tuning of protein function involved in the cellular response to stress, differentiation, and tissue development. In the adrenal cortex, an emblematic endocrine organ that mediates adaptation to physiological demands, the SUMOylation gradient is inversely correlated with the gradient of cellular differentiation raising important questions about its role in functional zonation and the response to stress. Considering that SUMO-specific protease 2 (SENP2), a deSUMOylating enzyme, is upregulated by Adrenocorticotropic Hormone (ACTH)/cAMP-dependent Protein Kinase (PKA) signalling within the zona fasciculata, we generated mice with adrenal-specific Senp2 loss to address these questions. Disruption of SENP2 activity in steroidogenic cells leads to specific hypoplasia of the zona fasciculata, a blunted reponse to ACTH and isolated glucocorticoid deficiency. Mechanistically, overSUMOylation resulting from SENP2 loss shifts the balance between ACTH/PKA and WNT/β-catenin signalling leading to repression of PKA activity and ectopic activation of β-catenin. At the cellular level, this blocks transdifferentiation of β-catenin-positive zona glomerulosa cells into fasciculata cells and sensitises them to premature apoptosis. Our findings indicate that the SUMO pathway is critical for adrenal homeostasis and stress responsiveness.
Collapse
Affiliation(s)
- Damien Dufour
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Typhanie Dumontet
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Sahut-Barnola
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Aude Carusi
- IGMM, Université de Montpellier, CNRS, Montpellier, France
| | - Méline Onzon
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Eric Pussard
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital de Bicêtre, Assistance Publique-Hôpitaux de Paris (APHP), Physiologie et Physiopathologie Endocriniennes, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - James Jr Wilmouth
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Julie Olabe
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Cécily Lucas
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Adrien Levasseur
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Christelle Damon-Soubeyrand
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Jean-Christophe Pointud
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Florence Roucher-Boulez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Endocrinologie Moléculaire et Maladies Rares, Centre Hospitalier Universitaire, Université Claude Bernard Lyon 1, Bron, France
| | - Igor Tauveron
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
- Service d'Endocrinologie, Centre Hospitalier Universitaire Gabriel Montpied, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Edward T Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pierre Val
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Anne-Marie Lefrançois-Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France
| | - Antoine Martinez
- institut Génétique, Reproduction & Développement (iGReD), CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
13
|
Yoon JY, Ho WK. Involvement of Ca2+ in Signaling Mechanisms Mediating Muscarinic Inhibition of M Currents in Sympathetic Neurons. Cell Mol Neurobiol 2022:10.1007/s10571-022-01303-7. [DOI: 10.1007/s10571-022-01303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
AbstractAcetylcholine can excite neurons by suppressing M-type (KCNQ) potassium channels. This effect is mediated by M1 muscarinic receptors coupled to the Gq protein. Although PIP2 depletion and PKC activation have been strongly suggested to contribute to muscarinic inhibition of M currents (IM), direct evidence is lacking. We investigated the mechanism involved in muscarinic inhibition of IM with Ca2+ measurement and electrophysiological studies in both neuronal (rat sympathetic neurons) and heterologous (HEK cells expressing KCNQ2/KCNQ3) preparations. We found that muscarinic inhibition of IM was not blocked either by PIP2 or by calphostin C, a PKC inhibitor. We then examined whether muscarinic inhibition of IM uses multiple signaling pathways by blocking both PIP2 depletion and PKC activation. This maneuver, however, did not block muscarinic inhibition of IM. Additionally, muscarinic inhibition of IM was not prevented either by sequestering of G-protein βγ subunits from Gα-transducin or anti-Gβγ antibody or by preventing intracellular trafficking of channel proteins with blebbistatin, a class-II myosin inhibitor. Finally, we re-examined the role of Ca2+ signals in muscarinic inhibition of IM. Ca2+ measurements showed that muscarinic stimulation increased intracellular Ca2+ and was comparable to the Ca2+ mobilizing effect of bradykinin. Accordingly, 20-mM of BAPTA significantly suppressed muscarinic inhibition of IM. In contrast, muscarinic inhibition of IM was completely insensitive to 20-mM EGTA. Taken together, these data suggest a role of Ca2+ signaling in muscarinic modulation of IM. The differential effects of EGTA and BAPTA imply that Ca2+ microdomains or spatially local Ca2+ signals contribute to inhibition of IM.
Collapse
|
14
|
Jeoung SW, Park HS, Ryoo ZY, Cho DH, Lee HS, Ryu HY. SUMOylation and Major Depressive Disorder. Int J Mol Sci 2022; 23:8023. [PMID: 35887370 PMCID: PMC9316168 DOI: 10.3390/ijms23148023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Since the discovery of the small ubiquitin-like modifier (SUMO) protein in 1995, SUMOylation has been considered a crucial post-translational modification in diverse cellular functions. In neurons, SUMOylation has various roles ranging from managing synaptic transmitter release to maintaining mitochondrial integrity and determining neuronal health. It has been discovered that neuronal dysfunction is a key factor in the development of major depressive disorder (MDD). PubMed and Google Scholar databases were searched with keywords such as 'SUMO', 'neuronal plasticity', and 'depression' to obtain relevant scientific literature. Here, we provide an overview of recent studies demonstrating the role of SUMOylation in maintaining neuronal function in participants suffering from MDD.
Collapse
Affiliation(s)
- Seok-Won Jeoung
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| | - Hyun-Sun Park
- Department of Biochemistry, Inje University College of Medicine, Busan 50834, Korea;
| | - Zae Young Ryoo
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Dong-Hyung Cho
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hyun-Shik Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
| | - Hong-Yeoul Ryu
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-W.J.); (Z.Y.R.); (D.-H.C.); (H.-S.L.)
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
15
|
Liu Y, Tian X, Ke P, Gu J, Ma Y, Guo Y, Xu X, Chen Y, Yang M, Wang X, Xiao F. KIF17 Modulates Epileptic Seizures and Membrane Expression of the NMDA Receptor Subunit NR2B. Neurosci Bull 2022; 38:841-856. [PMID: 35678994 PMCID: PMC9352834 DOI: 10.1007/s12264-022-00888-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022] Open
Abstract
Epilepsy is a common and severe brain disease affecting >65 million people worldwide. Recent studies have shown that kinesin superfamily motor protein 17 (KIF17) is expressed in neurons and is involved in regulating the dendrite-targeted transport of N-methyl-D-aspartate receptor subtype 2B (NR2B). However, the effect of KIF17 on epileptic seizures remains to be explored. We found that KIF17 was mainly expressed in neurons and that its expression was increased in epileptic brain tissue. In the kainic acid (KA)-induced epilepsy mouse model, KIF17 overexpression increased the severity of epileptic activity, whereas KIF17 knockdown had the opposite effect. In electrophysiological tests, KIF17 regulated excitatory synaptic transmission, potentially due to KIF17-mediated NR2B membrane expression. In addition, this report provides the first demonstration that KIF17 is modified by SUMOylation (SUMO, small ubiquitin-like modifier), which plays a vital role in the stabilization and maintenance of KIF17 in epilepsy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Pingyang Ke
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Juan Gu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanlin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yi Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Fei Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| |
Collapse
|
16
|
Lv YY, Wang H, Fan HT, Xu T, Xin WJ, Guo RX. SUMOylation of Kir7.1 participates in neuropathic pain through regulating its membrane expression in spinal cord neurons. CNS Neurosci Ther 2022; 28:1259-1267. [PMID: 35633059 PMCID: PMC9253747 DOI: 10.1111/cns.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Potassium (K+) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain. Methods and Results Neuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co‐IP results showed that the spinal kir7.1 channels were decorated by SUMO‐1 but not SUMO‐2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2‐D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression. Conclusion SUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI‐induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.
Collapse
Affiliation(s)
- You-You Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hai-Ting Fan
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ting Xu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Xian Guo
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
17
|
Zhang H, Sheng ZF, Wang J, Zheng PR, Kang XL, Chang HM, Yeh ETH, Li DP. Signaling pathways involved in NMDA-induced suppression of M-channels in corticotropin-releasing hormone neurons in central amygdala. J Neurochem 2022; 161:478-491. [PMID: 35583089 DOI: 10.1111/jnc.15647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptors (NMDARs) and Kv7/M channels are importantly involved in regulating neuronal activity involved in various physiological and pathological functions. Corticotropin-releasing hormone (CRH)-expressing neurons in the central nucleus of the amygdala (CeA) critically mediate autonomic response during stress. However, the interaction between NMDA receptors and Kv7/M channels in the CRHCeA neurons remains unclear. In this study, we identified rat CRHCeA neurons through the expression of an AAV viral vector-mediated enhanced green fluorescent protein (eGFP) driven by the rat CRH promoter. M-currents carried by Kv7/M channels were recorded using the whole-cell patch-clamp approach in eGFP-tagged CRHCeA neurons in brain slices. Acute exposure to NMDA significantly reduced M-currents recorded from the CRHCeA neurons. NMDA-induced suppression of M-currents was eliminated by chelating intracellular Ca2+ , supplying phosphatidylinositol 4,5-bisphosphate (PIP2) intracellularly, or blocking phosphoinositide3-kinase (PI3K). In contrast, inhibiting protein kinase C (PKC) or calmodulin did not alter NMDA-induced suppression of M-currents. Sustained exposure of NMDA decreased Kv7.3 membrane protein levels and suppressed M-currents, while the Kv7.2 expression levels remained unaltered. Pre-treatment of brain slices with PKC inhibitors alleviated the decreases in Kv7.3 and reduction of M-currents in CRHCeA neurons induced by NMDA. PKC inhibitors did not alter Kv7.2 and Kv7.3 membrane protein levels and M-currents in CRHCeA neurons. These data suggest that transient activation of NMDARs suppresses M-currents through the Ca2+ -dependent PI3K-PIP2 signaling pathway. In contrast, sustained activation of NMDARs reduces Kv7.3 protein expression and suppresses M-currents through a PKC-dependent pathway.
Collapse
Affiliation(s)
- Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Jingxiong Wang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Pei Ru Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Xun Lei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| | - Hui-Ming Chang
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - Edward T H Yeh
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia MO 65212
| |
Collapse
|
18
|
Zhang Y, Li D, Darwish Y, Fu X, Trussell LO, Huang H. KCNQ Channels Enable Reliable Presynaptic Spiking and Synaptic Transmission at High Frequency. J Neurosci 2022; 42:3305-3315. [PMID: 35256530 PMCID: PMC9034779 DOI: 10.1523/jneurosci.0363-20.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
The presynaptic action potential (AP) is required to drive calcium influx into nerve terminals, resulting in neurotransmitter release. Accordingly, the AP waveform is crucial in determining the timing and strength of synaptic transmission. The calyx of Held nerve terminals of rats of either sex showed minimum changes in AP waveform during high-frequency AP firing. We found that the stability of the calyceal AP waveform requires KCNQ (KV7) K+ channel activation during high-frequency spiking activity. High-frequency presynaptic spikes gradually led to accumulation of KCNQ channels in open states which kept interspike membrane potential sufficiently negative to maintain Na+ channel availability. Blocking KCNQ channels during stimulus trains led to inactivation of presynaptic Na+, and to a lesser extent KV1 channels, thereby reducing the AP amplitude and broadening AP duration. Moreover, blocking KCNQ channels disrupted the stable calcium influx and glutamate release required for reliable synaptic transmission at high frequency. Thus, while KCNQ channels are generally thought to prevent hyperactivity of neurons, we find that in axon terminals these channels function to facilitate reliable high-frequency synaptic signaling needed for sensory information processing.SIGNIFICANCE STATEMENT The presynaptic spike results in calcium influx required for neurotransmitter release. For this reason, the spike waveform is crucial in determining the timing and strength of synaptic transmission. Auditory information is encoded by spikes phase locked to sound frequency at high rates. The calyx of Held nerve terminals in the auditory brainstem show minimum changes in spike waveform during high-frequency spike firing. We found that activation of KCNQ K+ channel builds up during high-frequency firing and its activation helps to maintain a stable spike waveform and reliable synaptic transmission. While KCNQ channels are generally thought to prevent hyperexcitability of neurons, we find that in axon terminals these channels function to facilitate high-frequency synaptic signaling during auditory information processing.
Collapse
Affiliation(s)
- Yihui Zhang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Dainan Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Youad Darwish
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
| | - Xin Fu
- Brain Institute, Tulane University, New Orleans, LA 70118
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239
| | - Hai Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118
- Brain Institute, Tulane University, New Orleans, LA 70118
| |
Collapse
|
19
|
Chen X, Qin Y, Zhang Y, Yang X, Xing Z, Shen Y, Cheng J, Yeh ETH, Wu H, Qi Y. SENP2-PLCβ4 signaling regulates neurogenesis through the maintenance of calcium homeostasis. Cell Death Differ 2022; 29:337-350. [PMID: 34465891 PMCID: PMC8817034 DOI: 10.1038/s41418-021-00857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neurogenesis plays a critical role in brain physiology and behavioral performance, and defective neurogenesis leads to neurological and psychiatric disorders. Here, we show that PLCβ4 expression is markedly reduced in SENP2-deficient cells and mice, resulting in decreased IP3 formation and altered intracellular calcium homeostasis. PLCβ4 stability is regulated by the SUMO-dependent ubiquitin-mediated proteolytic pathway, which is catalyzed by PIAS2α and RNF4. SUMOylated PLCβ4 is transported to the nucleus through Nup205- and RanBP2-dependent pathways and regulates nuclear signaling. Furthermore, dysregulated calcium homeostasis induced defects in neurogenesis and neuronal viability in SENP2-deficient mice. Finally, SENP2 and PLCβ4 are stimulated by starvation and oxidative stress, which maintain calcium homeostasis regulated neurogenesis. Our findings provide mechanistic insight into the critical roles of SENP2 in the regulation of PLCβ4 SUMOylation, and the involvement of SENP2-PLCβ4 axis in calcium homeostasis regulated neurogenesis under stress.
Collapse
Affiliation(s)
- Xu Chen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuanyuan Qin
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yuhong Zhang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Xinyi Yang
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Zhengcao Xing
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yajie Shen
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Jinke Cheng
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edward T. H. Yeh
- grid.241054.60000 0004 4687 1637Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Hongmei Wu
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| | - Yitao Qi
- grid.412498.20000 0004 1759 8395Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi China
| |
Collapse
|
20
|
Sheng ZF, Zhang H, Zheng P, Chen S, Gu Z, Zhou JJ, Phaup JG, Chang HM, Yeh ETH, Pan HL, Li DP. Impaired Kv7 channel activity in the central amygdala contributes to elevated sympathetic outflow in hypertension. Cardiovasc Res 2022; 118:585-596. [PMID: 33512443 PMCID: PMC8803073 DOI: 10.1093/cvr/cvab031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/11/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Elevated sympathetic outflow is associated with primary hypertension. However, the mechanisms involved in heightened sympathetic outflow in hypertension are unclear. The central amygdala (CeA) regulates autonomic components of emotions through projections to the brainstem. The neuronal Kv7 channel is a non-inactivating voltage-dependent K+ channel encoded by KCNQ2/3 genes involved in stabilizing the neuronal membrane potential and regulating neuronal excitability. In this study, we investigated if altered Kv7 channel activity in the CeA contributes to heightened sympathetic outflow in hypertension. METHODS AND RESULTS The mRNA and protein expression levels of Kv7.2/Kv7.3 in the CeA were significantly reduced in spontaneously hypertensive rats (SHRs) compared with Wistar-Kyoto (WKY) rats. Lowering blood pressure with coeliac ganglionectomy in SHRs did not alter Kv7.2 and Kv7.3 channel expression levels in the CeA. Fluospheres were injected into the rostral ventrolateral medulla (RVLM) to retrogradely label CeA neurons projecting to the RVLM (CeA-RVLM neurons). Kv7 channel currents recorded from CeA-RVLM neurons in brain slices were much smaller in SHRs than in WKY rats. Furthermore, the basal firing activity of CeA-RVLM neurons was significantly greater in SHRs than in WKY rats. Bath application of specific Kv7 channel blocker 10, 10-bis (4-pyridinylmethyl)-9(10H)-anthracnose (XE-991) increased the excitability of CeA-RVLM neurons in WKY rats, but not in SHRs. Microinjection of XE-991 into the CeA increased arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA), while microinjection of Kv7 channel opener QO-58 decreased ABP and RSNA, in anaesthetized WKY rats but not SHRs. CONCLUSIONS Our findings suggest that diminished Kv7 channel activity in the CeA contributes to elevated sympathetic outflow in primary hypertension. This novel information provides new mechanistic insight into the pathogenesis of neurogenic hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Shanyan Chen
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Jing-Jing Zhou
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Departments of Pharmacology and Toxicology and Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine, University of Missouri, 1 Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
21
|
Dou X, Zhou WY, Ding M, Ma YJ, Yang QQ, Qian SW, Tang Y, Tang QQ, Liu Y. The protease SENP2 controls hepatic gluconeogenesis by regulating the SUMOylation of the fuel sensor AMPKα. J Biol Chem 2021; 298:101544. [PMID: 34971706 PMCID: PMC8888337 DOI: 10.1016/j.jbc.2021.101544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled gluconeogenesis results in elevated hepatic glucose production in type 2 diabetes. The SUMO-specific protease 2 (SENP2) is known to catalyze deSUMOylation of target proteins, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic gluconeogenesis and the occurrence of type 2 diabetes remains unknown. Herein, we established SENP2 hepatic knockout mice and found that SENP2 deficiency could protect against high fat diet-induced hyperglycemia. Pyruvate or glucagon-induced elevation in blood glucose was attenuated by disruption of SENP2 expression, whereas overexpression of SENP2 in the liver facilitated high fat diet-induced hyperglycemia. Using an in vitro assay, we showed that SENP2 regulated hepatic glucose production. Mechanistically, the effects of SENP2 on gluconeogenesis were found to be mediated by the cellular fuel sensor kinase AMPKα, which is a negative regulator of gluconeogenesis. SENP2 interacted with and deSUMOylated AMPKα, thereby promoting its ubiquitination and reducing its protein stability. Inhibition of AMPKα kinase activity dramatically reversed impaired hepatic gluconeogenesis and reduced blood glucose levels in SENP2-deficient mice. Our study highlights the novel role of hepatic SENP2 in regulating gluconeogenesis and furthers our understanding of the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Xin Dou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Wei-Yu Zhou
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Meng Ding
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yin-Jun Ma
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Qi-Qi Yang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China.
| | - Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, and Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Jansen LAR, Forster LA, Smith XL, Rubaharan M, Murphy AZ, Baro DJ. Changes in peripheral HCN2 channels during persistent inflammation. Channels (Austin) 2021; 15:165-179. [PMID: 33423595 PMCID: PMC7808421 DOI: 10.1080/19336950.2020.1870086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/01/2023] Open
Abstract
Nociceptor sensitization following nerve injury or inflammation leads to chronic pain. An increase in the nociceptor hyperpolarization-activated current, Ih, is observed in many models of pathological pain. Pharmacological blockade of Ih prevents the mechanical and thermal hypersensitivity that occurs during pathological pain. Alterations in the Hyperpolarization-activated Cyclic Nucleotide-gated ion channel 2 (HCN2) mediate Ih-dependent thermal and mechanical hyperalgesia. Limited knowledge exists regarding the nature of these changes during chronic inflammatory pain. Modifications in HCN2 expression and post-translational SUMOylation have been observed in the Complete Freund's Adjuvant (CFA) model of chronic inflammatory pain. Intra-plantar injection of CFA into the rat hindpaw induces unilateral hyperalgesia that is sustained for up to 14 days following injection. The hindpaw is innervated by primary afferents in lumbar DRG, L4-6. Adjustments in HCN2 expression and SUMOylation have been well-documented for L5 DRG during the first 7 days of CFA-induced inflammation. Here, we examine bilateral L4 and L6 DRG at day 1 and day 3 post-CFA. Using L4 and L6 DRG cryosections, HCN2 expression and SUMOylation were measured with immunohistochemistry and proximity ligation assays, respectively. Our findings indicate that intra-plantar injection of CFA elicited a bilateral increase in HCN2 expression in L4 and L6 DRG at day 1, but not day 3, and enhanced HCN2 SUMOylation in ipsilateral L6 DRG at day 1 and day 3. Changes in HCN2 expression and SUMOylation were transient over this time course. Our study suggests that HCN2 is regulated by multiple mechanisms during CFA-induced inflammation.
Collapse
Affiliation(s)
- L-A. R. Jansen
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - L. A. Forster
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - X. L. Smith
- Department of Biology, Georgia State University, Atlanta, Georgia
| | - M. Rubaharan
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - A. Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - D. J. Baro
- Department of Biology, Georgia State University, Atlanta, Georgia
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
23
|
Zhang Y, Chen X, Wang Q, Du C, Lu W, Yuan H, Zhang Z, Li D, Ling X, Ren X, Zhao Y, Su Q, Xing Z, Qin Y, Yang X, Shen Y, Wu H, Qi Y. Hyper-SUMOylation of SMN induced by SENP2 deficiency decreases its stability and leads to spinal muscular atrophy-like pathology. J Mol Med (Berl) 2021; 99:1797-1813. [PMID: 34628513 DOI: 10.1007/s00109-021-02130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy (SMA), a degenerative motor neuron disease and a leading cause of infant mortality, is caused by loss of functional survival motor neuron (SMN) protein due to SMN1 gene mutation. Here, using mouse and cell models for behavioral and histological studies, we found that SENP2 (SUMO/sentrin-specific protease 2)-deficient mice developed a notable SMA-like pathology phenotype with significantly decreased muscle fibers and motor neurons. At the molecular level, SENP2 deficiency in mice did not affect transcription but decreased SMN protein levels by promoting the SUMOylation of SMN. SMN was modified by SUMO2 with the E3 PIAS2α and deconjugated by SENP2. SUMOylation of SMN accelerated its degradation by the ubiquitin-proteasome degradation pathway with the ubiquitin E1 UBA1 (ubiquitin-like modifier activating enzyme 1) and E3 ITCH. SUMOylation of SMN increased its acetylation to inhibit the formation of Cajal bodies (CBs). These results showed that SENP2 deficiency induced hyper-SUMOylation of the SMN protein, which further affected the stability and functions of the SMN protein, eventually leading to the SMA-like phenotype. Thus, we uncovered the important roles for hyper-SUMOylation of SMN induced by SENP2 deficiency in motor neurons and provided a novel targeted therapeutic strategy for SMA. KEY MESSAGES: SENP2 deficiency enhanced the hyper-SUMOylation of SMN and promoted the degradation of SMN by the ubiquitin-proteasome pathway. SUMOylation increased the acetylation of SMN to inhibit CB formation. SENP2 deficiency caused hyper-SUMOylation of SMN protein, which further affected the stability and functions of SMN protein and eventually led to the occurrence of SMA-like pathology.
Collapse
Affiliation(s)
- Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Danqing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xing Ling
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yang Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
24
|
Welch MA, Jansen LAR, Baro DJ. SUMOylation of the Kv4.2 Ternary Complex Increases Surface Expression and Current Amplitude by Reducing Internalization in HEK 293 Cells. Front Mol Neurosci 2021; 14:757278. [PMID: 34795560 PMCID: PMC8593141 DOI: 10.3389/fnmol.2021.757278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022] Open
Abstract
Kv4 α-subunits exist as ternary complexes (TC) with potassium channel interacting proteins (KChIP) and dipeptidyl peptidase-like proteins (DPLP); multiple ancillary proteins also interact with the α-subunits throughout the channel’s lifetime. Dynamic regulation of Kv4.2 protein interactions adapts the transient potassium current, IA, mediated by Kv4 α-subunits. Small ubiquitin-like modifier (SUMO) is an 11 kD peptide post-translationally added to lysine (K) residues to regulate protein–protein interactions. We previously demonstrated that when expressed in human embryonic kidney (HEK) cells, Kv4.2 can be SUMOylated at two K residues, K437 and K579. SUMOylation at K437 increased surface expression of electrically silent channels while SUMOylation at K579 reduced IA maximal conductance (Gmax) without altering surface expression. KChIP and DPLP subunits are known to modify the pattern of Kv4.2 post-translational decorations and/or their effects. In this study, co-expressing Kv4.2 with KChIP2a and DPP10c altered the effects of enhanced Kv4.2 SUMOylation. First, the effect of enhanced SUMOylation was the same for a TC containing either the wild-type Kv4.2 or the mutant K437R Kv4.2, suggesting that either the experimental manipulation no longer enhanced K437 SUMOylation or K437 SUMOylation no longer influenced Kv4.2 surface expression. Second, instead of decreasing IA Gmax, enhanced SUMOylation at K579 now produced a significant ∼37–70% increase in IA maximum conductance (Gmax) and a significant ∼30–50% increase in Kv4.2g surface expression that was accompanied by a 65% reduction in TC internalization. Blocking clathrin-mediated endocytosis (CME) in HEK cells expressing the Kv4.2 TC mimicked and occluded the effect of SUMO on IA Gmax; however, the amount of Kv4.2 associated with the major adaptor for constitutive CME, adaptor protein 2 (AP2), was not SUMO dependent. Thus, SUMOylation reduced Kv4.2 internalization by acting downstream of Kv4.2 recruitment into clathrin-coated pits. In sum, the two major findings of this study are: SUMOylation of Kv4.2 at K579 regulates TC internalization most likely by promoting channel recycling. Additionally, there is a reciprocity between Kv4.2 SUMOylation and the Kv4.2 interactome such that SUMOylation regulates the interactome and the interactome influences the pattern and effect of SUMOylation.
Collapse
Affiliation(s)
- Meghyn A Welch
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | | | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
25
|
Du C, Chen X, Su Q, Lu W, Wang Q, Yuan H, Zhang Z, Wang X, Wu H, Qi Y. The Function of SUMOylation and Its Critical Roles in Cardiovascular Diseases and Potential Clinical Implications. Int J Mol Sci 2021; 22:10618. [PMID: 34638970 PMCID: PMC8509021 DOI: 10.3390/ijms221910618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease caused by many factors, including atherosclerosis, congenital heart disease, heart failure, and ischemic cardiomyopathy. CVD has been regarded as one of the most common diseases and has a severe impact on the life quality of patients. The main features of CVD include high morbidity and mortality, which seriously threaten human health. SUMO proteins covalently conjugate lysine residues with a large number of substrate proteins, and SUMOylation regulates the function of target proteins and participates in cellular activities. Under certain pathological conditions, SUMOylation of proteins related to cardiovascular development and function are greatly changed. Numerous studies have suggested that SUMOylation of substrates plays critical roles in normal cardiovascular development and function. We reviewed the research progress of SUMOylation in cardiovascular development and function, and the regulation of protein SUMOylation may be applied as a potential therapeutic strategy for CVD treatment.
Collapse
Affiliation(s)
- Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai 246011, China;
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (C.D.); (X.C.); (Q.S.); (W.L.); (Q.W.); (H.Y.); (Z.Z.)
| |
Collapse
|
26
|
Chen X, Zhang Y, Ren X, Su Q, Liu Y, Dang X, Qin Y, Yang X, Xing Z, Shen Y, Wang Y, Bai Z, Yeh ETH, Wu H, Qi Y. The SUMO-specific protease SENP2 plays an essential role in the regulation of Kv7.2 and Kv7.3 potassium channels. J Biol Chem 2021; 297:101183. [PMID: 34509475 PMCID: PMC8488601 DOI: 10.1016/j.jbc.2021.101183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 11/04/2022] Open
Abstract
Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2)-deficient mice develop spontaneous seizures in early life because of a marked reduction in M currents, which regulate neuronal membrane excitability. We have previously shown that hyper-SUMOylation of the Kv7.2 and Kv7.3 channels is critically involved in the regulation of the M currents conducted by these potassium voltage-gated channels. Here, we show that hyper-SUMOylation of the Kv7.2 and Kv7.3 proteins reduced binding to the lipid secondary messenger PIP2. CaM1 has been shown to be tethered to the Kv7 subunits via hydrophobic motifs in its C termini and implicated in the channel assembly. Mutation of the SUMOylation sites on Kv7.2 and Kv7.3 specifically resulted in decreased binding to CaM1 and enhanced CaM1-mediated assembly of Kv7.2 and Kv7.3, whereas hyper-SUMOylation of Kv7.2 and Kv7.3 inhibited channel assembly. SENP2-deficient mice exhibited increased acetylcholine levels in the brain and the heart tissue because of increases in the vagal tone induced by recurrent seizures. The SENP2-deficient mice develop seizures followed by a period of sinus pauses or atrioventricular conduction blocks. Chronic administration of the parasympathetic blocker atropine or unilateral vagotomy significantly prolonged the life of the SENP2-deficient mice. Furthermore, we showed that retigabine, an M-current opener, reduced the transcription of SUMO-activating enzyme SAE1 and inhibited SUMOylation of the Kv7.2 and Kv7.3 channels, and also prolonged the life of SENP2-deficient mice. Taken together, the previously demonstrated roles of PIP2, CaM1, and retigabine on the regulation of Kv7.2 and Kv7.3 channel function can be explained by their roles in regulating SUMOylation of this critical potassium channel.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiang Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yan Liu
- School of Life Sciences & Research Center for Peptide Drugs, Yan'an University, Yan'an, Shaanxi, China
| | - Xing Dang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China
| | - Zhantao Bai
- School of Life Sciences & Research Center for Peptide Drugs, Yan'an University, Yan'an, Shaanxi, China
| | - Edward T H Yeh
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
27
|
Khayachi A, Schorova L, Alda M, Rouleau GA, Milnerwood AJ. Posttranslational modifications & lithium's therapeutic effect-Potential biomarkers for clinical responses in psychiatric & neurodegenerative disorders. Neurosci Biobehav Rev 2021; 127:424-445. [PMID: 33971223 DOI: 10.1016/j.neubiorev.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/14/2021] [Accepted: 05/03/2021] [Indexed: 01/03/2023]
Abstract
Several neurodegenerative diseases and neuropsychiatric disorders display aberrant posttranslational modifications (PTMs) of one, or many, proteins. Lithium treatment has been used for mood stabilization for many decades, and is highly effective for large subsets of patients with diverse neurological conditions. However, the differential effectiveness and mode of action are not fully understood. In recent years, studies have shown that lithium alters several protein PTMs, altering their function, and consequently neuronal physiology. The impetus for this review is to outline the links between lithium's therapeutic mode of action and PTM homeostasis. We first provide an overview of the principal PTMs affected by lithium. We then describe several neuropsychiatric disorders in which PTMs have been implicated as pathogenic. For each of these conditions, we discuss lithium's clinical use and explore the putative mechanism of how it restores PTM homeostasis, and thereby cellular physiology. Evidence suggests that determining specific PTM patterns could be a promising strategy to develop biomarkers for disease and lithium responsiveness.
Collapse
Affiliation(s)
- A Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - L Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - A J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
28
|
Qin Y, Yuan H, Chen X, Yang X, Xing Z, Shen Y, Dong W, An S, Qi Y, Wu H. SUMOylation Wrestles With the Occurrence and Development of Breast Cancer. Front Oncol 2021; 11:659661. [PMID: 33968766 PMCID: PMC8097099 DOI: 10.3389/fonc.2021.659661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
29
|
Chen X, Qin Y, Zhang Z, Xing Z, Wang Q, Lu W, Yuan H, Du C, Yang X, Shen Y, Zhao B, Shao H, Wang X, Wu H, Qi Y. Hyper-SUMOylation of ERG Is Essential for the Progression of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:652284. [PMID: 33842551 PMCID: PMC8032903 DOI: 10.3389/fmolb.2021.652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
30
|
Chen X, Zhang Y, Wang Q, Qin Y, Yang X, Xing Z, Shen Y, Wu H, Qi Y. The function of SUMOylation and its crucial roles in the development of neurological diseases. FASEB J 2021; 35:e21510. [PMID: 33710677 DOI: 10.1096/fj.202002702r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Neurological diseases are relatively complex diseases of a large system; however, the detailed mechanism of their pathogenesis has not been completely elucidated, and effective treatment methods are still lacking for some of the diseases. The SUMO (small ubiquitin-like modifier) modification is a dynamic and reversible process that is catalyzed by SUMO-specific E1, E2, and E3 ligases and reversed by a family of SENPs (SUMO/Sentrin-specific proteases). SUMOylation covalently conjugates numerous cellular proteins, and affects their cellular localization and biological activity in numerous cellular processes. A wide range of neuronal proteins have been identified as SUMO substrates, and the disruption of SUMOylation results in defects in synaptic plasticity, neuronal excitability, and neuronal stress responses. SUMOylation disorders cause many neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease. By modulating the ion channel subunit, SUMOylation imbalance is responsible for the development of various channelopathies. The regulation of protein SUMOylation in neurons may provide a new strategy for the development of targeted therapeutic drugs for neurodegenerative diseases and channelopathies.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
31
|
Henley JM, Seager R, Nakamura Y, Talandyte K, Nair J, Wilkinson KA. SUMOylation of synaptic and synapse-associated proteins: An update. J Neurochem 2021; 156:145-161. [PMID: 32538470 PMCID: PMC8218484 DOI: 10.1111/jnc.15103] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
SUMOylation is a post-translational modification that regulates protein signalling and complex formation by adjusting the conformation or protein-protein interactions of the substrate protein. There is a compelling and rapidly expanding body of evidence that, in addition to SUMOylation of nuclear proteins, SUMOylation of extranuclear proteins contributes to the control of neuronal development, neuronal stress responses and synaptic transmission and plasticity. In this brief review we provide an update of recent developments in the identification of synaptic and synapse-associated SUMO target proteins and discuss the cell biological and functional implications of these discoveries.
Collapse
Affiliation(s)
- Jeremy M. Henley
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Richard Seager
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Yasuko Nakamura
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Karolina Talandyte
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Jithin Nair
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| | - Kevin A. Wilkinson
- School of BiochemistryCentre for Synaptic PlasticityUniversity of BristolUniversity WalkBristolUK
| |
Collapse
|
32
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
33
|
Zhao B, Zhang Z, Chen X, Shen Y, Qin Y, Yang X, Xing Z, Zhang S, Long X, Zhang Y, An S, Wu H, Qi Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J Cell Physiol 2020; 236:3466-3480. [PMID: 33151565 DOI: 10.1002/jcp.30143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.
Collapse
Affiliation(s)
- Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
34
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
35
|
Folci A, Mirabella F, Fossati M. Ubiquitin and Ubiquitin-Like Proteins in the Critical Equilibrium between Synapse Physiology and Intellectual Disability. eNeuro 2020; 7:ENEURO.0137-20.2020. [PMID: 32719102 PMCID: PMC7544190 DOI: 10.1523/eneuro.0137-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Posttranslational modifications (PTMs) represent a dynamic regulatory system that precisely modulates the functional organization of synapses. PTMs consist in target modifications by small chemical moieties or conjugation of lipids, sugars or polypeptides. Among them, ubiquitin and a large family of ubiquitin-like proteins (UBLs) share several features such as the structure of the small protein modifiers, the enzymatic cascades mediating the conjugation process, and the targeted aminoacidic residue. In the brain, ubiquitination and two UBLs, namely sumoylation and the recently discovered neddylation orchestrate fundamental processes including synapse formation, maturation and plasticity, and their alteration is thought to contribute to the development of neurological disorders. Remarkably, emerging evidence suggests that these pathways tightly interplay to modulate the function of several proteins that possess pivotal roles for brain homeostasis as well as failure of this crosstalk seems to be implicated in the development of brain pathologies. In this review, we outline the role of ubiquitination, sumoylation, neddylation, and their functional interplay in synapse physiology and discuss their implication in the molecular pathogenesis of intellectual disability (ID), a neurodevelopmental disorder that is frequently comorbid with a wide spectrum of brain pathologies. Finally, we propose a few outlooks that might contribute to better understand the complexity of these regulatory systems in regard to neuronal circuit pathophysiology.
Collapse
Affiliation(s)
- Alessandra Folci
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
| | - Filippo Mirabella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve 9 Emanuele - Milan, Italy
| | - Matteo Fossati
- Humanitas Clinical and Research Center-IRCCS, via Manzoni 56, 20089, Rozzano (MI), Italy
- CNR-Institute of Neuroscience, via Manzoni 56, 20089, Rozzano (MI), Italy
| |
Collapse
|
36
|
Regulation of organic anion transporters: Role in physiology, pathophysiology, and drug elimination. Pharmacol Ther 2020; 217:107647. [PMID: 32758646 DOI: 10.1016/j.pharmthera.2020.107647] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
The members of the organic anion transporter (OAT) family are mainly expressed in kidney, liver, placenta, intestine, and brain. These transporters play important roles in the disposition of clinical drugs, pesticides, signaling molecules, heavy metal conjugates, components of phytomedicines, and toxins, and therefore critical for maintaining systemic homeostasis. Alterations in the expression and function of OATs contribute to the intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs, and to many pathophysiological conditions. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. This review will present an update on the recent advance in understanding the cellular and molecular mechanisms underlying the regulation of renal OATs, emphasizing on the post-translational modification (PTM), the crosstalk among these PTMs, and the remote sensing and signaling network of OATs. Such knowledge will provide significant insights into the roles of these transporters in health and disease.
Collapse
|
37
|
Forster LA, Jansen LAR, Rubaharan M, Murphy AZ, Baro DJ. Alterations in SUMOylation of the hyperpolarization-activated cyclic nucleotide-gated ion channel 2 during persistent inflammation. Eur J Pain 2020; 24:1517-1536. [PMID: 32446289 PMCID: PMC7496191 DOI: 10.1002/ejp.1606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Background Unilateral injection of Complete Freund's Adjuvant (CFA) into the intra‐plantar surface of the rodent hindpaw elicits chronic inflammation and hyperalgesia in the ipsilateral hindlimb. Mechanisms contributing to this hyperalgesia may act over multiple time courses and can include changes in ion channel expression and post‐translational SUMOylation. Hyperpolarization‐activated, cyclic nucleotide‐gated (HCN) channels mediate the hyperpolarization‐activated current, Ih. An HCN2‐mediated increase in C‐nociceptor Ih contributes to mechanical hyperalgesia in the CFA model of inflammatory pain. Changes in HCN2 post‐translational SUMOylation and protein expression have not been systematically documented for a given dorsal root ganglia (DRG) throughout the time course of inflammation. Methods This study examined HCN2 protein expression and post‐translational SUMOylation in a rat model of CFA‐induced hindpaw inflammation. L5 DRG cryosections were used in immunohistochemistry experiments and proximity ligation assays to investigate HCN2 expression and SUMOylation, respectively, on days 1 and 3 post‐CFA. Results Unilateral CFA injection elicited a significant bilateral increase in HCN2 staining intensity in small diameter DRG neurons on day 1 post‐CFA, and a significant bilateral increase in the number of small neurons expressing HCN2 but not staining intensity on day 3 post‐CFA. HCN2 channels were hyper‐SUMOylated in small diameter neurons of ipsilateral relative to contralateral DRG on days 1 and 3 post‐CFA. Conclusions Unilateral CFA injection elicits unilateral mechanical hyperalgesia, a bilateral increase in HCN2 expression and a unilateral increase in post‐translational SUMOylation. This suggests that enhanced HCN2 expression in L5 DRG is not sufficient for mechanical hyperalgesia in the early stages of inflammation and that hyper‐SUMOylation of HCN2 channels may also be necessary. Significance Nociceptor HCN2 channels mediate an increase in Ih that is necessary for mechanical hyperalgesia in a CFA model of chronic pain, but the mechanisms producing the increase in nociceptor Ih have not been resolved. The data presented here suggest that the increase in Ih during the early stages of inflammation may be mediated by an increase in HCN2 protein expression and post‐translational SUMOylation.
Collapse
Affiliation(s)
- Lori A Forster
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
38
|
Huang D, Liu H, Zhu A, Zhou Y, Li Y. Forebrain excitatory neuron-specific SENP2 knockout mouse displays hyperactivity, impaired learning and memory, and anxiolytic-like behavior. Mol Brain 2020; 13:59. [PMID: 32290845 PMCID: PMC7155287 DOI: 10.1186/s13041-020-00591-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Sentrin/SUMO-specific protease 2 (SENP2) is a member of SENPs family involved in maturation of SUMO precursors and deSUMOylation of specific target, and is highly expressed in the central nervous system (CNS). Although SENP2 has been shown to modulate embryonic development, fatty acid metabolism, atherosclerosis and epilepsy, the function of SENP2 in the CNS remains poorly understood. To address the role of SENP2 in the CNS and its potential involvement in neuropathology, we generated SENP2 conditional knockout mice by crossing floxed SENP2 mice with CaMKIIα-Cre transgenic mice. Behavioral tests revealed that SENP2 ablation induced hyper-locomotor activity, anxiolytic-like behaviors, spatial working memory impairment and fear-associated learning defect. In line with these observations, our RNA sequencing (RNA-seq) data identified a variety of differential expression genes that are particularly enriched in locomotion, learning and memory related biologic process. Taken together, our results indicated that SENP2 plays a critical role in emotional and cognitive regulation. This SENP2 conditional knockout mice model may help reveal novel mechanisms that underlie a variety of neuropsychiatric disorders associated with anxiety and cognition.
Collapse
Affiliation(s)
- Dehua Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Huiqing Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Aoxue Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
39
|
Zheng Q, Cao Y, Chen Y, Wang J, Fan Q, Huang X, Wang Y, Wang T, Wang X, Ma J, Cheng J. Senp2 regulates adipose lipid storage by de-SUMOylation of Setdb1. J Mol Cell Biol 2019; 10:258-266. [PMID: 29272473 DOI: 10.1093/jmcb/mjx055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
One major function of adipocytes is to store excess energy in the form of triglycerides. Insufficient adipose lipid storage is associated with many pathological conditions including hyperlipidemia, insulin resistance, and type 2 diabetes. In this study, we observed the overexpression of SUMO-specific protease 2 (Senp2) in adipose tissues during obesity. Adipocyte Senp2 deficiency resulted in less adipose lipid storage accompanied by an ectopic fat accumulation and insulin resistance under high-fat diet feeding. We further found that SET domain bifurcated 1 (Setdb1) was a SUMOylated protein and that SUMOylation promoted Setdb1 occupancy on the promoter locus of Pparg and Cebpa genes to suppress their expressions by H3K9me3. Senp2 could suppress Setdb1 function by de-SUMOylation. In adipocyte Senp2-deficiency mice, accumulation of the SUMOylated Setdb1 suppressed the expression of Pparg and Cebpa genes as well as lipid metabolism-related target genes, which would decrease the ability of lipid storage in adipocytes. These results revealed the crucial role of Senp2-Setdb1 axis in controlling adipose lipid storage.
Collapse
Affiliation(s)
- Quan Zheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yalan Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuju Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Wang
- Cancer Metabolism Laboratory, Institutes of Biomedical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuzhi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Wang H, You G. The SUMO-Specific Protease Senp2 Regulates SUMOylation, Expression and Function of Human Organic Anion Transporter 3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1293-1301. [PMID: 31054272 DOI: 10.1016/j.bbamem.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/17/2023]
Abstract
Organic anion transporter 3 (OAT3) plays a vital role in removing a broad array of anionic drugs from kidney, thereby avoiding their possibly toxic side effects in the body. We earlier demonstrated that OAT3 is subjected to a specific type of post-translational modification called SUMOylation. SUMOylation is a dynamic event, where de-SUMOylation is catalyzed by a class of SUMO-specific proteases. In the present investigation, we assessed the role of SUMO-specific protease Senp2 in OAT3 SUMOylation, expression and function. We report here that overexpression of Senp2 in COS-7 cells led to a reduced OAT3 SUMOylation, which correlated well with a decreased OAT3 expression and transport activity. Such phenomenon was not observed in cells overexpressing an inactive mutant of Senp2. Furthermore, transfection of cells with Senp2-specific siRNA to knockdown the endogenous Senp2 resulted in an increased OAT3 SUMOylation, which correlated well with an enhanced OAT3 expression and transport activity. Coimmunoprecipitation experiments showed that Senp2 directly interacted with OAT3 in the kidneys of rats. Together these results provided first demonstration that Senp2 is a significant regulator for OAT3-mediated organic anion/drug transport.
Collapse
Affiliation(s)
- Haoxun Wang
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
41
|
Arichi S, Sasaki-Hamada S, Kadoya Y, Ogata M, Ishibashi H. Excitatory effect of bradykinin on intrinsic neurons of the rat heart. Neuropeptides 2019; 75:65-74. [PMID: 31047706 DOI: 10.1016/j.npep.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
The heart receives sympathetic and parasympathetic innervation through the intrinsic cardiac nervous system. Although bradykinin (BK) has negative inotropic and chronotropic properties of cardiac contraction, the direct effect of BK on the intrinsic neural network of the heart is still unclear. In the present study, the effect of BK on the intracardiac ganglion neurons isolated from rats was investigated using the perforated patch-clamp technique. Under current-clamp conditions, application of 0.1 μM BK depolarized the membrane, accompanied by repetitive firing of action potentials. When BK was applied repeatedly, the second responses were considerably less intense than the first application. The BK action was fully inhibited by the B2 receptor antagonist Hoe-140, but not by the B1 receptor antagonist des-Arg9-[Leu8]-BK. The BK response was mimicked by the B2 agonist [Hyp3]-BK. The BK-induced depolarization was inhibited by the phospholipase C inhibitor U-73122. BK evoked inward currents under voltage-clamp conditions at a holding potential of -60 mV. Removal of extracellular Ca2+ markedly increased the BK-induced currents, suggesting an involvement of Ca2+-permeable non-selective cation channels. The muscarinic agonist oxotremorine-M (OxoM) also elicited the extracellular Ca2+-sensitive cationic currents. The OxoM response did not exhibit rundown with repeated agonist application. The amplitude of current evoked by 1 μM OxoM was comparable to that induced by 0.1 μM BK. Co-application of 0.1 μM BK and 1 μM OxoM elicited the current whose peak amplitude was almost the same as that elicited by OxoM alone, suggesting that BK and OxoM activate same cation channels. BK also reduced the amplitude of M-current, while the M-current inhibitor XE-991 affected neither resting membrane potential nor the BK-induced depolarization. From these results, we suggest that BK regulates excitability of intrinsic cardiac neurons by both an activation of non-selective cation channels and an inhibition of M-type K+ channels through B2 receptors.
Collapse
Affiliation(s)
- Shiho Arichi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Yuichi Kadoya
- Department of Anatomical Science, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan
| | - Masanori Ogata
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara 252-0373, Japan; Department of Brain Science, Kitasato University Graduate School of Medical Sciences, Sagamihara 252-0373, Japan.
| |
Collapse
|
42
|
Welch MA, Forster LA, Atlas SI, Baro DJ. SUMOylating Two Distinct Sites on the A-type Potassium Channel, Kv4.2, Increases Surface Expression and Decreases Current Amplitude. Front Mol Neurosci 2019; 12:144. [PMID: 31213982 PMCID: PMC6554448 DOI: 10.3389/fnmol.2019.00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Post-translational conjugation of Small Ubiquitin-like Modifier (SUMO) peptides to lysine (K) residues on target proteins alters their interactions. SUMOylation of a target protein can either promote its interaction with other proteins that possess SUMO binding domains, or it can prevent target protein interactions that normally occur in the absence of SUMOylation. One subclass of voltage-gated potassium channels that mediates an A-type current, IA, exists as a ternary complex comprising Kv4 pore-forming subunits, Kv channel interacting proteins (KChIP) and transmembrane dipeptidyl peptidase like proteins (DPPL). SUMOylation could potentially regulate intra- and/or intermolecular interactions within the complex. This study began to test this hypothesis and showed that Kv4.2 channels were SUMOylated in the rat brain and in human embryonic kidney (HEK) cells expressing a GFP-tagged mouse Kv4.2 channel (Kv4.2g). Prediction software identified two putative SUMOylation sites in the Kv4.2 C-terminus at K437 and K579. These sites were conserved across mouse, rat, and human Kv4.2 channels and across mouse Kv4 isoforms. Increasing Kv4.2g SUMOylation at each site by ~30% produced a significant ~22%–50% decrease in IA Gmax, and a ~70%–95% increase in channel surface expression. Site-directed mutagenesis of Kv4.2g showed that K437 SUMOylation regulated channel surface expression, while K579 SUMOylation controlled IA Gmax. The K579R mutation mimicked and occluded the SUMOylation-mediated decrease in IA Gmax, suggesting that SUMOylation at K579 blocked an intra- or inter-protein interaction involving K579. The K437R mutation did not obviously alter channel surface expression or biophysical properties, but it did block the SUMOylation-mediated increase in channel surface expression. Interestingly, enhancing K437 SUMOylation in the K579R mutant roughly doubled channel surface expression, but produced no change in IA Gmax, suggesting that the newly inserted channels were electrically silent. This is the first report that Kv4.2 channels are SUMOylated and that SUMOylation can independently regulate Kv4.2 surface expression and IA Gmax in opposing directions. The next step will be to determine if/how SUMOylation affects Kv4 interactions within the ternary complex.
Collapse
Affiliation(s)
- Meghyn A Welch
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Lori A Forster
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Selin I Atlas
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Deborah J Baro
- Department of Biology, Georgia State University, Atlanta, GA, United States.,Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
43
|
Modulator-Gated, SUMOylation-Mediated, Activity-Dependent Regulation of Ionic Current Densities Contributes to Short-Term Activity Homeostasis. J Neurosci 2018; 39:596-611. [PMID: 30504282 DOI: 10.1523/jneurosci.1379-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023] Open
Abstract
Neurons operate within defined activity limits, and feedback control mechanisms dynamically tune ionic currents to maintain this optimal range. This study describes a novel, rapid feedback mechanism that uses SUMOylation to continuously adjust ionic current densities according to changes in activity. Small ubiquitin-like modifier (SUMO) is a peptide that can be post-translationally conjugated to ion channels to influence their surface expression and biophysical properties. Neuronal activity can regulate the extent of protein SUMOylation. This study on the single, unambiguously identifiable lateral pyloric neuron (LP), a component of the pyloric network in the stomatogastric nervous system of male and female spiny lobsters (Panulirus interruptus), focused on dynamic SUMOylation in the context of activity homeostasis. There were four major findings: First, neuronal activity adjusted the balance between SUMO conjugation and deconjugation to continuously and bidirectionally fine-tune the densities of two opposing conductances: the hyperpolarization activated current (Ih) and the transient potassium current (IA). Second, tonic 5 nm dopamine (DA) gated activity-dependent SUMOylation to permit and prevent activity-dependent regulation of Ih and IA, respectively. Third, DA-gated, activity-dependent SUMOylation contributed to a feedback mechanism that restored the timing and duration of LP activity during prolonged modulation by 5 μm DA, which initially altered these and other activity features. Fourth, DA modulatory and metamoduatory (gating) effects were tailored to simultaneously alter and stabilize neuronal output. Our findings suggest that modulatory tone may select a subset of rapid activity-dependent mechanisms from a larger menu to achieve homeostasis under varying conditions.SIGNIFICANCE STATEMENT Post-translational SUMOylation of ion channel subunits controls their interactions. When subunit SUMOylation is dysregulated, conductance densities mediated by the channels are distorted, leading to nervous system disorders, such as seizures and chronic pain. Regulation of ion channel SUMOylation is poorly understood. This study demonstrated that neuronal activity can regulate SUMOylation to reconfigure ionic current densities over minutes, and this regulation was gated by tonic nanomolar dopamine. Dynamic SUMOylation was necessary to maintain specific aspects of neuronal output while the neuron was being modulated by high (5 μm) concentrations of dopamine, suggesting that the gating function may ensure neuronal homeostasis during extrinsic modulation of a circuit.
Collapse
|
44
|
SUMO1/sentrin/SMT3 specific peptidase 2 modulates target molecules and its corresponding functions. Biochimie 2018; 152:6-13. [PMID: 29908207 DOI: 10.1016/j.biochi.2018.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Small ubiquitin-like modifier (SUMOylation) is a reversible post-translational modification, which plays important roles in numerous biological processes. SUMO could be covalently attached to target proteins in an isopeptide bond manner that occurs via a lysine ε-amino group on the target proteins and the glycine on SUMO C-terminus. This covalent binding could affect the subcellular localization and stability of target proteins. SUMO modification can be reversed by members of the Sentrin/SUMO-specific proteases (SENPs) family, which are highly evolutionarily conserved from yeast to human. SENP2, a member of the SENPs family, mainly plays a physiological function in the nucleus. SENP2 can promote maturity of the SUMO and deSUMOylate for single-SUMO modified or poly-SUMO modified proteins. SENP2 can affect the related biological processes through its peptidase activity or the amino terminal transcriptional repression domain. It plays important roles by inhibiting or activating some molecular functions. Therefore, the research achievements of SENP2 are reviewed in order to understand its related functions and the underlying molecular mechanisms and provide a clue for future research on SENP2.
Collapse
|
45
|
Odeh HM, Coyaud E, Raught B, Matunis MJ. The SUMO-specific isopeptidase SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix. Mol Biol Cell 2018; 29:1878-1890. [PMID: 29874116 PMCID: PMC6085828 DOI: 10.1091/mbc.e17-07-0445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sumoylation regulates a wide range of essential cellular functions, many of which are associated with activities in the nucleus. Although there is also emerging evidence for the involvement of the small ubiquitin-related modifier (SUMO) at intracellular membranes, the mechanisms by which sumoylation is regulated at membranes is largely unexplored. In this study, we report that the SUMO-specific isopeptidase, SENP2, uniquely associates with intracellular membranes. Using in vivo analyses and in vitro binding assays, we show that SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix that promotes direct membrane binding. Furthermore, we demonstrate that SENP2 binding to intracellular membranes is regulated by interactions with the nuclear import receptor karyopherin-α. Consistent with membrane association, biotin identification (BioID) revealed interactions between SENP2 and endoplasmic reticulum, Golgi, and inner nuclear membrane-associated proteins. Collectively, our findings indicate that SENP2 binds to intracellular membranes where it interacts with membrane-associated proteins and has the potential to regulate their sumoylation and membrane-associated functions.
Collapse
Affiliation(s)
- Hana M Odeh
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
46
|
Kunz K, Piller T, Müller S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci 2018; 131:131/6/jcs211904. [DOI: 10.1242/jcs.211904] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
The ubiquitin-related SUMO system controls many cellular signaling networks. In mammalian cells, three SUMO forms (SUMO1, SUMO2 and SUMO3) act as covalent modifiers of up to thousands of cellular proteins. SUMO conjugation affects cell function mainly by regulating the plasticity of protein networks. Importantly, the modification is reversible and highly dynamic. Cysteine proteases of the sentrin-specific protease (SENP) family reverse SUMO conjugation in mammalian cells. In this Cell Science at a Glance article and the accompanying poster, we will summarize how the six members of the mammalian SENP family orchestrate multifaceted deconjugation events to coordinate cell processes, such as gene expression, the DNA damage response and inflammation.
Collapse
Affiliation(s)
- Kathrin Kunz
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Tanja Piller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Goethe University, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
47
|
Abstract
Post-translational modification of substrate proteins by SUMO conjugation regulates a diverse array of cellular processes. While predominantly a nuclear protein modification, there is a growing appreciation that SUMOylation of proteins outside the nucleus plays direct roles in controlling synaptic transmission, neuronal excitability, and adaptive responses to cell stress. Furthermore, alterations in protein SUMOylation are observed in a wide range of neurological and neurodegenerative diseases, and several extranuclear disease-associated proteins have been shown to be directly SUMOylated. Here, focusing mainly on SUMOylation of synaptic and mitochondrial proteins, we outline recent developments and discoveries, and present our opinion as to the most exciting avenues for future research to define how SUMOylation of extranuclear proteins regulates neuronal and synaptic function.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Ruth E Carmichael
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
48
|
Steffensen AB, Andersen MN, Mutsaers N, Mujezinovic A, Schmitt N. SUMO co-expression modifies K V 11.1 channel activity. Acta Physiol (Oxf) 2018; 222. [PMID: 28888063 DOI: 10.1111/apha.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 11/27/2022]
Abstract
AIM The voltage-gated potassium channel KV 11.1 is the molecular basis for the IKr current, which plays an important role in cardiac physiology. Its malfunction is associated with both inherited and acquired cardiac arrhythmias. Native currents differ from those in experimental models, suggesting additional regulatory mechanisms. We hypothesized that the post-translational modification sumoylation fine-tunes channel activity. METHODS The functional effects of sumoylation on KV 11.1 were addressed by employing two-electrode voltage-clamp (TEVC) experiments in Xenopus laevis oocytes. Site-directed mutagenesis enabled a further analysis of the SUMO-target amino acids. We assessed protein expression levels and used confocal imaging for localization studies. RESULTS Co-expression with Ubc9 and SUMO alters the electrophysiological properties of KV 11.1 leading to a decrease in steady-state current amplitude largely due to faster inactivation and alteration of deactivation kinetics. We identified three lysines (K21, K93 and K116) in the PAS domain as the putative SUMO-targets. CONCLUSION This study indicates KV 11.1 as a sumoylation target and offers three main targets: K21, K93, and K116. Furthermore, it proposes an underlying mechanism for the observed kinetic impact of the PAS domain.
Collapse
Affiliation(s)
- A. B. Steffensen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - M. N. Andersen
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - N. Mutsaers
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - A. Mujezinovic
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - N. Schmitt
- Department of Biomedical Sciences; Faculty of Health and Medical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
49
|
Chen X, Zhang S, Huang J, Dong W, Xiao H, Shao H, Cheng J, Wu H, Qi Y. Hyper-SUMOylation of K + Channels in Sudden Unexplained Death in Epilepsy: Isolation and Primary Culture of Dissociated Hippocampal Neurons from Newborn Mice for Subcellular Localization. Methods Mol Biol 2018; 1684:63-71. [PMID: 29058184 DOI: 10.1007/978-1-4939-7362-0_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The physiological characteristics of rat and murine hippocampal neurons are widely studied, especially because of the involvement of the hippocampus in learning, memory, and neurological functions. Primary cultures of hippocampal neurons are commonly used to discover cellular and molecular mechanisms in neurobiology. By isolating and culturing individual hippocampal neurons, neuroscientists are able to investigate the activity of neurons at the individual cell and single synapse level, and to analyze properties related to cellular structure, cellular trafficking, and individual protein subcellular localization or protein-protein interaction using a variety of biochemical techniques. Conclusions addressed from such research are critical for testing theories related to memory, learning, and neurological functions. Here, we will describe how to isolate and culture primary hippocampal cells from newborn mice. The hippocampus may be isolated from newborn mice in as short as 2 min, and the cell cultures can be maintained for up to 2 weeks, and then ready for investigation of subcellular localization of K+ channel proteins and interaction with SUMO-specific protease 2 (SENP2). The protocol provides a fast and efficient technique for the culture of neuronal cells from mouce hippocampal tissue, and will ensure the immunocytochemistry detection of subcellular localization or protein-protein interactions in neurological research.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shanshan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jifang Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Wanying Dong
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Huanjie Shao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.
| |
Collapse
|
50
|
Vanhoof-Villalba SL, Gautier NM, Mishra V, Glasscock E. Pharmacogenetics of KCNQ channel activation in 2 potassium channelopathy mouse models of epilepsy. Epilepsia 2017; 59:358-368. [PMID: 29265344 DOI: 10.1111/epi.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Antiseizure drugs are the leading therapeutic choice for treatment of epilepsy, but their efficacy is limited by pharmacoresistance and the occurrence of unwanted side effects. Here, we examined the therapeutic efficacy of KCNQ channel activation by retigabine in preventing seizures and neurocardiac dysfunction in 2 potassium channelopathy mouse models of epilepsy with differing severity that have been associated with increased risk of sudden unexpected death in epilepsy (SUDEP): the Kcna1-/- model of severe epilepsy and the Kcnq1A340E/A340E model of mild epilepsy. METHODS A combination of behavioral, seizure threshold, electrophysiologic, and gene expression analyses was used to determine the effects of KCNQ activation in mice. RESULTS Behaviorally, Kcna1-/- mice exhibited unexpected hyperexcitability instead of the expected sedative-like response. In flurothyl-induced seizure tests, KCNQ activation decreased seizure latency by ≥50% in Kcnq1 strain mice but had no effect in the Kcna1 strain, suggesting the influence of genetic background. However, in simultaneous electroencephalography and electrocardiography recordings, KCNQ activation significantly reduced spontaneous seizure frequency in Kcna1-/- mice by ~60%. In Kcnq1A340E/A340E mice, KCNQ activation produced adverse cardiac effects including profound bradycardia and abnormal increases in heart rate variability and atrioventricular conduction blocks. Analyses of Kcnq2 and Kcnq3 mRNA levels revealed significantly elevated Kcnq2 expression in Kcna1-/- brains, suggesting that drug target alterations may contribute to the altered drug responses. SIGNIFICANCE This study shows that treatment strategies in channelopathy may have unexpected outcomes and that effective rebalancing of channel defects requires improved understanding of channel interactions at the circuit and tissue levels. The efficacy of KCNQ channel activation and manifestation of adverse effects were greatly affected by genetic background, potentially limiting KCNQ modulation as a way to prevent neurocardiac dysfunction in epilepsy and thereby SUDEP risk. Our data also uncover a potential role for KCNQ2-5 channels in autonomic control of chronotropy.
Collapse
Affiliation(s)
- Stephanie L Vanhoof-Villalba
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Nicole M Gautier
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Vikas Mishra
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|