1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
3
|
Abe K, Kambe Y, Majima K, Hu Z, Ohtake M, Momennezhad A, Izumi H, Tanaka T, Matunis A, Stacy E, Itokazu T, Sato TR, Sato T. Functional diversity of dopamine axons in prefrontal cortex during classical conditioning. eLife 2024; 12:RP91136. [PMID: 38747563 PMCID: PMC11095940 DOI: 10.7554/elife.91136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.
Collapse
Affiliation(s)
- Kenta Abe
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima UniversityKagoshimaJapan
| | - Kei Majima
- Institute for Quantum Life Science, National Institutes for Quantum Science and TechnologyChibaJapan
- Japan Science and Technology PRESTOSaitamaJapan
| | - Zijing Hu
- Department of Physiology, Monash UniversityClaytonAustralia
- Neuroscience Program, Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
| | - Makoto Ohtake
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Ali Momennezhad
- Department of Pharmacology, Kagoshima UniversityKagoshimaJapan
| | - Hideki Izumi
- Faculty of Data Science, Shiga UniversityShigaJapan
| | | | - Ashley Matunis
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Biology, College of CharlestonCharlestonUnited States
- Department of Neuro-Medical Science, Osaka UniversityOsakaJapan
| | - Emma Stacy
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
- Department of Biology, College of CharlestonCharlestonUnited States
| | | | - Takashi R Sato
- Department of Neuroscience, Medical University of South CarolinaCharlestonUnited States
| | - Tatsuo Sato
- Department of Pharmacology, Kagoshima UniversityKagoshimaJapan
- Japan Science and Technology PRESTOSaitamaJapan
- Department of Physiology, Monash UniversityClaytonAustralia
- Neuroscience Program, Biomedicine Discovery Institute, Monash UniversityClaytonAustralia
- Japan Science and Technology FORESTSaitamaJapan
| |
Collapse
|
4
|
Abe K, Kambe Y, Majima K, Hu Z, Ohtake M, Momennezhad A, Izumi H, Tanaka T, Matunis A, Stacy E, Itokazu T, Sato TR, Sato TK. Functional Diversity of Dopamine Axons in Prefrontal Cortex During Classical Conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554475. [PMID: 37662305 PMCID: PMC10473671 DOI: 10.1101/2023.08.23.554475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.
Collapse
|
5
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
6
|
Nieder A. Convergent Circuit Computation for Categorization in the Brains of Primates and Songbirds. Cold Spring Harb Perspect Biol 2023; 15:a041526. [PMID: 38040453 PMCID: PMC10691494 DOI: 10.1101/cshperspect.a041526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Categorization is crucial for behavioral flexibility because it enables animals to group stimuli into meaningful classes that can easily be generalized to new circumstances. A most abstract quantitative category is set size, the number of elements in a set. This review explores how categorical number representations are realized by the operations of excitatory and inhibitory neurons in associative telencephalic microcircuits in primates and songbirds. Despite the independent evolution of the primate prefrontal cortex and the avian nidopallium caudolaterale, the neuronal computations of these associative pallial circuits show surprising correspondence. Comparing cellular functions in distantly related taxa can inform about the evolutionary principles of circuit computations for cognition in distinctly but convergently realized brain structures.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Ott T, Stein AM, Nieder A. Dopamine receptor activation regulates reward expectancy signals during cognitive control in primate prefrontal neurons. Nat Commun 2023; 14:7537. [PMID: 37985776 PMCID: PMC10661983 DOI: 10.1038/s41467-023-43271-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Dopamine neurons respond to reward-predicting cues but also modulate information processing in the prefrontal cortex essential for cognitive control. Whether dopamine controls reward expectation signals in prefrontal cortex that motivate cognitive control is unknown. We trained two male macaques on a working memory task while varying the reward size earned for successful task completion. We recorded neurons in lateral prefrontal cortex while simultaneously stimulating dopamine D1 receptor (D1R) or D2 receptor (D2R) families using micro-iontophoresis. We show that many neurons predict reward size throughout the trial. D1R stimulation showed mixed effects following reward cues but decreased reward expectancy coding during the memory delay. By contrast, D2R stimulation increased reward expectancy coding in multiple task periods, including cueing and memory periods. Stimulation of either dopamine receptors increased the neurons' selective responses to reward size upon reward delivery. The differential modulation of reward expectancy by dopamine receptors suggests that dopamine regulates reward expectancy necessary for successful cognitive control.
Collapse
Affiliation(s)
- Torben Ott
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience and Institute of Biology, Humboldt-University of Berlin, 10099, Berlin, Germany.
| | - Anna Marlina Stein
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Monfort V, Pfeuty M, Masson I, Kop JL, Brissart H, Maillard L. Preserved time but altered numerosity processing in epileptic patients with postoperative lesion in the inferior frontal gyrus. Brain Cogn 2022; 160:105865. [DOI: 10.1016/j.bandc.2022.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
|
9
|
van Kempen J, Brandt C, Distler C, Bellgrove MA, Thiele A. Dopamine influences attentional rate modulation in Macaque posterior parietal cortex. Sci Rep 2022; 12:6914. [PMID: 35484302 PMCID: PMC9050696 DOI: 10.1038/s41598-022-10634-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cognitive neuroscience has made great strides in understanding the neural substrates of attention, but our understanding of its neuropharmacology remains incomplete. Although dopamine has historically been studied in relation to frontal functioning, emerging evidence suggests important dopaminergic influences in parietal cortex. We recorded single- and multi-unit activity whilst iontophoretically administering dopaminergic agonists and antagonists while rhesus macaques performed a spatial attention task. Out of 88 units, 50 revealed activity modulation by drug administration. Dopamine inhibited firing rates according to an inverted-U shaped dose-response curve and increased gain variability. D1 receptor antagonists diminished firing rates according to a monotonic function and interacted with attention modulating gain variability. Finally, both drugs decreased the pupil light reflex. These data show that dopamine shapes neuronal responses and modulates aspects of attentional processing in parietal cortex.
Collapse
Affiliation(s)
- Jochem van Kempen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Christian Brandt
- Research Unit for ORL - Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Claudia Distler
- Allgemeine Zoologie Und Neurobiologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
10
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Furman DJ, Pappas I, White RL, Kayser AS, D'Esposito M. Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT val158met genotype. Neuroimage 2021; 242:118472. [PMID: 34390874 DOI: 10.1016/j.neuroimage.2021.118472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone.
Collapse
Affiliation(s)
- Daniella J Furman
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States.
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States.
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States; Division of Neurology, VA Northern California Health Care System, United States
| |
Collapse
|
12
|
Abstract
Working memory (WM) is the ability to maintain and manipulate information in the conscious mind over a timescale of seconds. This ability is thought to be maintained through the persistent discharges of neurons in a network of brain areas centered on the prefrontal cortex, as evidenced by neurophysiological recordings in nonhuman primates, though both the localization and the neural basis of WM has been a matter of debate in recent years. Neural correlates of WM are evident in species other than primates, including rodents and corvids. A specialized network of excitatory and inhibitory neurons, aided by neuromodulatory influences of dopamine, is critical for the maintenance of neuronal activity. Limitations in WM capacity and duration, as well as its enhancement during development, can be attributed to properties of neural activity and circuits. Changes in these factors can be observed through training-induced improvements and in pathological impairments. WM thus provides a prototypical cognitive function whose properties can be tied to the spiking activity of brain neurons. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Russell J Jaffe
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Mishra A, Marzban N, Cohen MX, Englitz B. Dynamics of Neural Microstates in the VTA-Striatal-Prefrontal Loop during Novelty Exploration in the Rat. J Neurosci 2021; 41:6864-6877. [PMID: 34193560 PMCID: PMC8360694 DOI: 10.1523/jneurosci.2256-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Neural activity at the large-scale population level has been suggested to be consistent with a sequence of brief, quasistable spatial patterns. These "microstates" and their temporal dynamics have been linked to myriad cognitive functions and brain diseases. Most of this research has been performed using EEG, leaving many questions, such as the existence, dynamics, and behavioral relevance of microstates at the level of local field potentials (LFPs), unaddressed. Here, we adapted the standard EEG microstate analysis to triple-area LFP recordings from 192 electrodes in rats to investigate the mesoscopic dynamics of neural microstates within and across brain regions during novelty exploration. We performed simultaneous recordings from the prefrontal cortex, striatum, and ventral tegmental area in male rats during awake behavior (object novelty and exploration). We found that the LFP data can be accounted for by multiple, recurring microstates that were stable for ∼60-100 ms. The simultaneous microstate activity across brain regions revealed rhythmic patterns of coactivations, which we interpret as a novel indicator of inter-regional, mesoscale synchronization. Furthermore, these rhythmic coactivation patterns across microstates were modulated by behavioral states such as movement and exploration of a novel object. These results support the existence of a functional mesoscopic organization across multiple brain areas and present a possible link of the origin of macroscopic EEG microstates to zero-lag neuronal synchronization within and between brain areas, which is of particular interest to the human research community.SIGNIFICANCE STATEMENT The coordination of neural activity across the entire brain has remained elusive. Here we combine large-scale neural recordings at fine spatial resolution with the analysis of microstates (i.e., short-lived, recurring spatial patterns of neural activity). We demonstrate that the local activity in different brain areas can be accounted for by only a few microstates per region. These microstates exhibited temporal dynamics that were correlated across regions in rhythmic patterns. We demonstrate that these microstates are linked to behavior and exhibit different properties in the frequency domain during different behavioral states. In summary, LFP microstates provide an insightful approach to studying both mesoscopic and large-scale brain activation within and across regions.
Collapse
Affiliation(s)
- Ashutosh Mishra
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Nader Marzban
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Michael X Cohen
- Synchronisation in Neural Systems Laboratory, Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6500 HB, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Computational Neuroscience Laboratory, Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
14
|
Dasilva M, Brandt C, Alwin Gieselmann M, Distler C, Thiele A. Contribution of Ionotropic Glutamatergic Receptors to Excitability and Attentional Signals in Macaque Frontal Eye Field. Cereb Cortex 2021; 31:3266-3284. [PMID: 33626129 PMCID: PMC8196243 DOI: 10.1093/cercor/bhab007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
Top-down attention, controlled by frontal cortical areas, is a key component of cognitive operations. How different neurotransmitters and neuromodulators flexibly change the cellular and network interactions with attention demands remains poorly understood. While acetylcholine and dopamine are critically involved, glutamatergic receptors have been proposed to play important roles. To understand their contribution to attentional signals, we investigated how ionotropic glutamatergic receptors in the frontal eye field (FEF) of male macaques contribute to neuronal excitability and attentional control signals in different cell types. Broad-spiking and narrow-spiking cells both required N-methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation for normal excitability, thereby affecting ongoing or stimulus-driven activity. However, attentional control signals were not dependent on either glutamatergic receptor type in broad- or narrow-spiking cells. A further subdivision of cell types into different functional types using cluster-analysis based on spike waveforms and spiking characteristics did not change the conclusions. This can be explained by a model where local blockade of specific ionotropic receptors is compensated by cell embedding in large-scale networks. It sets the glutamatergic system apart from the cholinergic system in FEF and demonstrates that a reduction in excitability is not sufficient to induce a reduction in attentional control signals.
Collapse
Affiliation(s)
- Miguel Dasilva
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,College of Medicine and Health, University of Exeter, EX1 2LU, UK
| | - Christian Brandt
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Clinical Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | | | - Claudia Distler
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum 44801 Germany
| | - Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
15
|
Braun U, Harneit A, Pergola G, Menara T, Schäfer A, Betzel RF, Zang Z, Schweiger JI, Zhang X, Schwarz K, Chen J, Blasi G, Bertolino A, Durstewitz D, Pasqualetti F, Schwarz E, Meyer-Lindenberg A, Bassett DS, Tost H. Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat Commun 2021; 12:3478. [PMID: 34108456 PMCID: PMC8190281 DOI: 10.1038/s41467-021-23694-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory performance entails brain-wide switching between activity states using a combination of functional magnetic resonance imaging in healthy controls and individuals with schizophrenia, pharmacological fMRI, genetic analyses and network control theory. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Individuals with schizophrenia show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations. Our results demonstrate the relevance of dopamine signaling for the steering of whole-brain network dynamics during working memory and link these processes to schizophrenia pathophysiology. Working memory requires the brain to switch between cognitive states and activity patterns. Here, the authors show that the steering of these neural network dynamics is influenced by dopamine D1- and D2-receptor function and altered in schizophrenia.
Collapse
Affiliation(s)
- Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. .,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Anais Harneit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Tommaso Menara
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Axel Schäfer
- Bender Institute of Neuroimaging, Justus Liebig University Giessen, Gießen, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Gießen, Germany
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabio Pasqualetti
- Mechanical Engineering Department, University of California at Riverside, Riverside, CA, USA
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania, Philadelphia, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, USA.,Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
16
|
Adams RA, Moutoussis M, Nour MM, Dahoun T, Lewis D, Illingworth B, Veronese M, Mathys C, de Boer L, Guitart-Masip M, Friston KJ, Howes OD, Roiser JP. Variability in Action Selection Relates to Striatal Dopamine 2/3 Receptor Availability in Humans: A PET Neuroimaging Study Using Reinforcement Learning and Active Inference Models. Cereb Cortex 2020; 30:3573-3589. [PMID: 32083297 PMCID: PMC7233027 DOI: 10.1093/cercor/bhz327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Choosing actions that result in advantageous outcomes is a fundamental function of nervous systems. All computational decision-making models contain a mechanism that controls the variability of (or confidence in) action selection, but its neural implementation is unclear-especially in humans. We investigated this mechanism using two influential decision-making frameworks: active inference (AI) and reinforcement learning (RL). In AI, the precision (inverse variance) of beliefs about policies controls action selection variability-similar to decision 'noise' parameters in RL-and is thought to be encoded by striatal dopamine signaling. We tested this hypothesis by administering a 'go/no-go' task to 75 healthy participants, and measuring striatal dopamine 2/3 receptor (D2/3R) availability in a subset (n = 25) using [11C]-(+)-PHNO positron emission tomography. In behavioral model comparison, RL performed best across the whole group but AI performed best in participants performing above chance levels. Limbic striatal D2/3R availability had linear relationships with AI policy precision (P = 0.029) as well as with RL irreducible decision 'noise' (P = 0.020), and this relationship with D2/3R availability was confirmed with a 'decision stochasticity' factor that aggregated across both models (P = 0.0006). These findings are consistent with occupancy of inhibitory striatal D2/3Rs decreasing the variability of action selection in humans.
Collapse
Affiliation(s)
- Rick A Adams
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
- Division of Psychiatry, University College London, London W1T 7NF, UK
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
| | - Matthew M Nour
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London SE5 8AF, UK
| | - Tarik Dahoun
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Declan Lewis
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Benjamin Illingworth
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| | - Christoph Mathys
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 8032 Zurich, Switzerland
| | - Lieke de Boer
- Aging Research Center, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Marc Guitart-Masip
- Max Planck-UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
- Aging Research Center, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MRI Unit, MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, London SE5 8AF, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| |
Collapse
|
17
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
18
|
The Contribution of AMPA and NMDA Receptors to Persistent Firing in the Dorsolateral Prefrontal Cortex in Working Memory. J Neurosci 2020; 40:2458-2470. [PMID: 32051326 PMCID: PMC7083532 DOI: 10.1523/jneurosci.2121-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Many tasks demand that information is kept online for a few seconds before it is used to guide behavior. The information is kept in working memory as the persistent firing of neurons encoding the memorized information. The neural mechanisms responsible for persistent activity are not yet well understood. Theories attribute an important role to ionotropic glutamate receptors, and it has been suggested that NMDARs are particularly important for persistent firing because they exhibit long time constants. Ionotropic AMPARs have shorter time constants and have been suggested to play a smaller role in working memory. Here we compared the contribution of AMPARs and NMDARs to persistent firing in the dlPFC of male macaque monkeys performing a delayed saccade to a memorized spatial location. We used iontophoresis to eject small amounts of glutamate receptor antagonists, aiming to perturb, but not abolish, neuronal activity. We found that both AMPARs and NMDARs contributed to persistent activity. Blockers of the NMDARs decreased persistent firing associated with the memory of the neuron's preferred spatial location but had comparatively little effect on the representation of the antipreferred location. They therefore decreased the information conveyed by persistent firing about the memorized location. In contrast, AMPAR blockers decreased activity elicited by the memory of both the preferred and antipreferred location, with a smaller effect on the information conveyed by persistent activity. Our results provide new insights into the contribution of AMPARs and NMDARs to persistent activity during working memory tasks. SIGNIFICANCE STATEMENT Working memory enables us to hold on to information that is no longer available to the senses. It relies on the persistent activity of neurons that code for the memorized information, but the detailed mechanisms are not yet well understood. Here we investigated the role of NMDARs and AMPARs in working memory using iontophoresis of antagonists in the PFC of monkeys remembering the location of a visual stimulus for an eye movement response. AMPARs and NMDARs both contributed to persistent activity. NMDAR blockers mostly decreased persistent firing associated with the memory of the neuron's preferred spatial location, whereas AMPAR blockers caused a more general suppression. These results provide new insight into the contribution of AMPARs and NMDARs to working memory.
Collapse
|
19
|
Mueller A, Krock RM, Shepard S, Moore T. Dopamine Receptor Expression Among Local and Visual Cortex-Projecting Frontal Eye Field Neurons. Cereb Cortex 2020; 30:148-164. [PMID: 31038690 PMCID: PMC7029694 DOI: 10.1093/cercor/bhz078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Dopaminergic modulation of prefrontal cortex plays an important role in numerous cognitive processes, including attention. The frontal eye field (FEF) is modulated by dopamine and has an established role in visual attention, yet the underlying circuitry upon which dopamine acts is not known. We compared the expression of D1 and D2 dopamine receptors (D1Rs and D2Rs) across different classes of FEF neurons, including those projecting to dorsal or ventral extrastriate cortex. First, we found that both D1Rs and D2Rs are more prevalent on pyramidal neurons than on several classes of interneurons and are particularly prevalent on putatively long-range projecting pyramidals. Second, higher proportions of pyramidal neurons express D1Rs than D2Rs. Third, overall a higher proportion of inhibitory neurons expresses D2Rs than D1Rs. Fourth, among inhibitory interneurons, a significantly higher proportion of parvalbumin+ neurons expresses D2Rs than D1Rs, and a significantly higher proportion of calbindin+ neurons expresses D1Rs than D2Rs. Finally, compared with D2Rs, virtually all of the neurons with identified projections to both dorsal and ventral extrastriate visual cortex expressed D1Rs. Our results demonstrate that dopamine tends to act directly on the output of the FEF and that dopaminergic modulation of top-down projections to visual cortex is achieved predominately via D1Rs.
Collapse
Affiliation(s)
- Adrienne Mueller
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M Krock
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven Shepard
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Blockage of NMDA- and GABA(A) Receptors Improves Working Memory Selectivity of Primate Prefrontal Neurons. J Neurosci 2020; 40:1527-1537. [PMID: 31911457 DOI: 10.1523/jneurosci.2009-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
The ongoing activity of prefrontal neurons after a stimulus has disappeared is considered a neuronal correlate of working memory. It depends on the delicate but poorly understood interplay between excitatory glutamatergic and inhibitory GABAergic receptor effects. We administered the NMDA receptor antagonist MK-801 and the GABA(A) receptor antagonist bicuculline methiodide while recording cellular activity in PFC of male rhesus monkeys performing a delayed decision task requiring working memory. The blockade of GABA(A) receptors strongly improved the selectivity of the neurons' delay activity, causing an increase in signal-to-noise ratio during working memory periods as well as an enhancement of the neurons' coding selectivity. The blockade of NMDA receptors resulted in a slight enhancement of selectivity and encoding capacity of the neurons. Our findings emphasize the delicate and more complex than expected interplay of excitatory and inhibitory transmitter systems in modulating working memory coding in prefrontal circuits.SIGNIFICANCE STATEMENT Ongoing delay activity of prefrontal neurons constitutes a neuronal correlate of working memory. However, how this delay activity is generated by the delicate interplay of synaptic excitation and inhibition is unknown. We probed the effects of excitatory neurotransmitter glutamate and inhibitory neurotransmitter GABA in regulating delay activity in rhesus monkeys performing a delayed decision task requiring working memory. Surprisingly, the blockade of both glutamatergic NMDA and GABA(A) receptors improved neuronal selectivity of delay activity, causing an increase in neuronal signal-to-noise ratio. Moreover, individual neurons were similarly affected by blockade of both receptors. This emphasizes the delicate and more complex than expected interplay of excitatory and inhibitory transmitter systems in modulating working memory coding in prefrontal circuits.
Collapse
|
21
|
Furman DJ, White RL, Naskolnakorn J, Ye J, Kayser A, D'Esposito M. Effects of Dopaminergic Drugs on Cognitive Control Processes Vary by Genotype. J Cogn Neurosci 2020; 32:804-821. [PMID: 31905090 DOI: 10.1162/jocn_a_01518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dopamine (DA) has been implicated in modulating multiple cognitive control processes, including the robust maintenance of task sets and memoranda in the face of distractors (cognitive stability) and, conversely, the ability to switch task sets or update the contents of working memory when it is advantageous to do so (cognitive flexibility). In humans, the limited specificity of available pharmacological probes has posed a challenge for understanding the mechanisms by which DA, acting on multiple receptor families across the PFC and striatum, differentially influences these cognitive processes. Using a within-subject, placebo-controlled design, we contrasted the impact of two mechanistically distinct DA drugs, tolcapone (an inhibitor of catechol-O-methyltransferase [COMT], a catecholamine inactivator) and bromocriptine (a DA agonist with preferential affinity for the D2 receptor), on the maintenance and switching of task rules. Given previous work demonstrating that drug effects on behavior are dependent on baseline DA tone, participants were stratified according to genetic polymorphisms associated with cortical (COMT Val158Met) and striatal (Taq1A) DA system function. Our results were partially consistent with an inverted-U-shaped relationship between tolcapone and robust rule maintenance (interaction with COMT genotype) and between bromocriptine and cued rule switching (interaction with Taq1A genotype). However, when task instructions were ambiguous, a third relationship emerged to explain drug effects on spontaneous task switching (interaction of COMT genotype and bromocriptine). Together, this pattern of results suggests that the effects of DA drugs vary not only as a function of the DA system component upon which they act but also on subtle differences in task demands and context.
Collapse
Affiliation(s)
| | - Robert L White
- University of California, Berkeley.,Washington University School of Medicine
| | | | - Jean Ye
- University of California, Berkeley
| | | | | |
Collapse
|
22
|
Stalter M, Westendorff S, Nieder A. Dopamine Gates Visual Signals in Monkey Prefrontal Cortex Neurons. Cell Rep 2020; 30:164-172.e4. [DOI: 10.1016/j.celrep.2019.11.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 11/20/2019] [Indexed: 11/15/2022] Open
|
23
|
Freedberg M, Toader AC, Wassermann EM, Voss JL. Competitive and cooperative interactions between medial temporal and striatal learning systems. Neuropsychologia 2019; 136:107257. [PMID: 31733236 DOI: 10.1016/j.neuropsychologia.2019.107257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2019] [Accepted: 11/06/2019] [Indexed: 01/20/2023]
Abstract
The striatum and medial temporal lobes (MTL) exhibit dissociable roles during learning. Whereas the striatum and its network of thalamic relays and cortical nodes are necessary for nondeclarative learning, the MTL and associated network are required for declarative learning. Several studies have suggested that these networks are functionally competitive during learning. Since these discoveries, however, evidence has accumulated that they can operate in a cooperative fashion. In this review, we discuss evidence for both competition and cooperation between these systems during learning, with the aim of reconciling these seemingly contradictory findings. Examples of cooperation between the striatum and MTL have been provided, especially during consolidation and generalization of knowledge, and do not appear to be precluded by differences in functional specialization. However, whether these systems cooperate or compete does seem to depend on the phase of learning and cognitive or motor aspects of the task. The involvement of other regions, such as midbrain dopaminergic nuclei and the prefrontal cortex, may promote and mediate cooperation between the striatum and the MTL during learning. Building on this body of research, we propose a model for striatum-MTL interactions in learning and memory and attempt to predict, in general terms, when cooperation or competition will occur.
Collapse
Affiliation(s)
- Michael Freedberg
- National Institute of Neurological Disorders and Stroke, 9000 Rockville Pike, 10 Center Drive, Bethesda, MD 20892, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20892, USA.
| | - Andrew C Toader
- National Institute of Neurological Disorders and Stroke, 9000 Rockville Pike, 10 Center Drive, Bethesda, MD 20892, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 20892, USA.
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, 9000 Rockville Pike, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Joel L Voss
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Cell class-specific modulation of attentional signals by acetylcholine in macaque frontal eye field. Proc Natl Acad Sci U S A 2019; 116:20180-20189. [PMID: 31527242 PMCID: PMC6778228 DOI: 10.1073/pnas.1905413116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attention is critical to high-level cognition, and attentional deficits are a hallmark of cognitive dysfunction. A key transmitter for attentional control is acetylcholine, but its cellular actions in attention-controlling areas remain poorly understood. Here we delineate how muscarinic and nicotinic receptors affect basic neuronal excitability and attentional control signals in different cell types in macaque frontal eye field. We found that broad spiking and narrow spiking cells both require muscarinic and nicotinic receptors for normal excitability, thereby affecting ongoing or stimulus-driven activity. Attentional control signals depended on muscarinic, not nicotinic receptors in broad spiking cells, while they depended on both muscarinic and nicotinic receptors in narrow spiking cells. Cluster analysis revealed that muscarinic and nicotinic effects on attentional control signals were highly selective even for different subclasses of narrow spiking cells and of broad spiking cells. These results demonstrate that cholinergic receptors are critical to establish attentional control signals in the frontal eye field in a cell type-specific manner.
Collapse
|
25
|
Wang M, Datta D, Enwright J, Galvin V, Yang ST, Paspalas C, Kozak R, Gray DL, Lewis DA, Arnsten AFT. A novel dopamine D1 receptor agonist excites delay-dependent working memory-related neuronal firing in primate dorsolateral prefrontal cortex. Neuropharmacology 2019; 150:46-58. [PMID: 30858103 PMCID: PMC6475613 DOI: 10.1016/j.neuropharm.2019.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Decades of research have emphasized the importance of dopamine (DA) D1 receptor (D1R) mechanisms to dorsolateral prefrontal cortex (dlPFC) working memory function, and the hope that D1R agonists could be used to treat cognitive disorders. However, existing D1R agonists all have had high affinity for D1R, and engage β-arrestin signaling, and these agonists have suppressed task-related neuronal firing. The current study provides the first physiological characterization of a novel D1R agonist, PF-3628, with low affinity for D1R -more similar to endogenous DA actions- as well as little engagement of β-arrestin signaling. PF-3628 was applied by iontophoresis directly onto dlPFC neurons in aged rhesus monkeys performing a delay-dependent working memory task. Aged monkeys have naturally-occurring loss of DA, and naturally-occurring reductions in dlPFC neuronal firing and working memory performance. We found the first evidence of excitatory actions of a D1R agonist on dlPFC task-related firing, and this PF-3628 beneficial response was blocked by co-application of a D1R antagonist. These D1R actions likely occur on pyramidal cells, based on previous immunoelectron microscopic studies showing expression of D1R on layer III spines, and current microarray experiments showing that D1R are four times more prevalent in pyramidal cells than in parvalbumin-containing interneurons laser-captured from layer III of the human dlPFC. These results encourage the translation of D1R mechanisms from monkey to human, with the hope PF-3628 and related, novel D1R agonists will be more appropriate for enhancing dlPFC cognitive functions in patients with mental disorders.
Collapse
Affiliation(s)
- Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - John Enwright
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Veronica Galvin
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Constantinos Paspalas
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Rouba Kozak
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David L Gray
- Pfizer Inc, Internal Medicine Unit, Pfizer Inc., 1 Portland St., Cambridge, MA, 02139, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
26
|
Biased competition in the absence of input bias revealed through corticostriatal computation. Proc Natl Acad Sci U S A 2019; 116:8564-8569. [PMID: 30962383 DOI: 10.1073/pnas.1812535116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Classical accounts of biased competition require an input bias to resolve the competition between neuronal ensembles driving downstream processing. However, flexible and reliable selection of behaviorally relevant ensembles can occur with unbiased stimulation: striatal D1 and D2 spiny projection neurons (SPNs) receive balanced cortical input, yet their activity determines the choice between GO and NO-GO pathways in the basal ganglia. We here present a corticostriatal model identifying three mechanisms that rely on physiological asymmetries to effect rate- and time-coded biased competition in the presence of balanced inputs. First, tonic input strength determines which one of the two SPN phenotypes exhibits a higher mean firing rate. Second, low-strength oscillatory inputs induce higher firing rate in D2 SPNs but higher coherence between D1 SPNs. Third, high-strength inputs oscillating at distinct frequencies can preferentially activate D1 or D2 SPN populations. Of these mechanisms, only the latter accommodates observed rhythmic activity supporting rule-based decision making in prefrontal cortex.
Collapse
|
27
|
Ott T, Nieder A. Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn Sci 2019; 23:213-234. [PMID: 30711326 DOI: 10.1016/j.tics.2018.12.006] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022]
Abstract
Cognitive control, the ability to orchestrate behavior in accord with our goals, depends on the prefrontal cortex. These cognitive functions are heavily influenced by the neuromodulator dopamine. We review here recent insights exploring the influence of dopamine on neuronal response properties in prefrontal cortex (PFC) during ongoing behaviors in primates. This review suggests three major computational roles of dopamine in cognitive control: (i) gating sensory input, (ii) maintaining and manipulating working memory contents, and (iii) relaying motor commands. For each of these roles, we propose a neuronal microcircuit based on known mechanisms of action of dopamine in PFC, which are corroborated by computational network models. This conceptual approach accounts for the various roles of dopamine in prefrontal executive functioning.
Collapse
Affiliation(s)
- Torben Ott
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Present address: Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
28
|
Elston TW, Kalhan S, Bilkey DK. Conflict and adaptation signals in the anterior cingulate cortex and ventral tegmental area. Sci Rep 2018; 8:11732. [PMID: 30082775 PMCID: PMC6079061 DOI: 10.1038/s41598-018-30203-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/25/2018] [Indexed: 12/22/2022] Open
Abstract
The integration and utilization of feedback in order to determine which decision strategy to use in different contexts is the core of executive function. The anterior cingulate cortex (ACC) is central to these processes but how feedback is made available to the ACC is unclear. To address this question, we trained rats with implants in the ACC and the ventral tegmental area (VTA), a dopaminergic brain region implicated in feedback processing, in a spatial decision reversal task with rule switching occurring approximately every 12 trials. Following a rule switch, the rats had to shift and sustain responses to the alternative side in order to obtain reward. Partial directed coherence (PDC) models of signal directionality between the ACC and VTA indicated that VTA → ACC communication (near 4 Hz) increased immediately prior to incorrect choices and during post-error decisions. This increase did not occur during correct choices. These data indicate that the VTA provides a feedback-driven, bottom-up modulating signal to the ACC which may be involved in assessing, and correcting for, decision conflict.
Collapse
Affiliation(s)
- Thomas W Elston
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, 9016, New Zealand. .,Institute for Neurobiology, University of Tübingen, Tübingen, 72076, Germany.
| | - Shivam Kalhan
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, 9016, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin, 9016, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
29
|
Mininni CJ, Caiafa CF, Zanutto BS, Tseng KY, Lew SE. Putative dopamine neurons in the ventral tegmental area enhance information coding in the prefrontal cortex. Sci Rep 2018; 8:11740. [PMID: 30082818 PMCID: PMC6079091 DOI: 10.1038/s41598-018-29979-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 07/04/2018] [Indexed: 11/08/2022] Open
Abstract
It has been proposed that neuronal populations in the prefrontal cortex (PFC) robustly encode task-relevant information through an interplay with the ventral tegmental area (VTA). Yet, the precise computation underlying such functional interaction remains elusive. Here, we conducted simultaneous recordings of single-unit activity in PFC and VTA of rats performing a GO/NoGO task. We found that mutual information between stimuli and neural activity increases in the PFC as soon as stimuli are presented. Notably, it is the activity of putative dopamine neurons in the VTA that contributes critically to enhance information coding in the PFC. The higher the activity of these VTA neurons, the better the conditioned stimuli are encoded in the PFC.
Collapse
Affiliation(s)
- Camilo J Mininni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - César F Caiafa
- Instituto Argentino de Radioastronomía (IAR) - CCT La Plata, CONICET - CICPBA, Villa Elisa, Argentina
| | - B Silvano Zanutto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Buenos Aires, Argentina
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Sergio E Lew
- Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Nieder A. Evolution of cognitive and neural solutions enabling numerosity judgements: lessons from primates and corvids. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0514. [PMID: 29292361 DOI: 10.1098/rstb.2016.0514] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/29/2023] Open
Abstract
Brains that are capable of representing numerosity, the number of items in a set, have arisen repeatedly and independently in different animal taxa. This review compares the cognitive and physiological mechanisms found in a nonhuman primate, the rhesus macaque, and a corvid songbird, the carrion crow, in order to elucidate the evolutionary adaptations underlying numerical competence. Monkeys and corvids are known for their advanced cognitive competence, despite them both having independently and distinctly evolved endbrains that resulted from a long history of parallel evolution. In both species, numerosity is represented as an analogue magnitude by an approximate number system that obeys the Weber-Fechner Law. In addition, the activity of numerosity-selective neurons in the fronto-parietal association cortex of monkeys and the telencephalic associative area nidopallium caudolaterale of crows mirrors the animals' performance. In both species' brains, neuronal activity is tuned to a preferred numerosity, encodes the numerical value in an approximate fashion, and is best represented on a logarithmic scale. Collectively, the data show an impressive correspondence of the cognitive and neuronal mechanisms for numerosity representations across monkeys and crows. This suggests that remotely related vertebrates with distinctly developed endbrains adopted similar physiological solutions to common computational problems in numerosity processing.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Ott T, Nieder A. Dopamine D2 Receptors Enhance Population Dynamics in Primate Prefrontal Working Memory Circuits. Cereb Cortex 2018; 27:4423-4435. [PMID: 27591146 DOI: 10.1093/cercor/bhw244] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/13/2016] [Indexed: 01/05/2023] Open
Abstract
Working memory is associated with persistent activity in the prefrontal cortex (PFC). The neuromodulator dopamine, which is released by midbrain neurons projecting into the frontal lobe, influences PFC neurons and networks via the dopamine D1 (D1R) and the D2 receptor (D2R) families. Although behavioral, clinical and computational evidence suggest an involvement of D2Rs in working memory, a neuronal explanation is missing. We report an enhancement of persistent working memory responses of PFC neurons after iontophoretically stimulating D2Rs in monkeys memorizing the number of items in a display. D2R activation improved working memory representation at the population level and increased population dynamics during the transition from visual to mnemonic representations. Computational modeling suggests that D2Rs act by modulating interneuron-to-pyramidal signaling. By increasing the population's response dynamics, D2Rs might put PFC networks in a more flexible state and enhance the neurons' working memory coding, thereby controlling dynamic cognitive control.
Collapse
Affiliation(s)
- Torben Ott
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, Auf der Morgenstelle 28, University of Tübingen, 72076Tübingen, Germany
| |
Collapse
|
33
|
Bhandari A, Gagne C, Badre D. Just above Chance: Is It Harder to Decode Information from Prefrontal Cortex Hemodynamic Activity Patterns? J Cogn Neurosci 2018; 30:1473-1498. [PMID: 29877764 DOI: 10.1162/jocn_a_01291] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC) is central to flexible, goal-directed cognition, and understanding its representational code is an important problem in cognitive neuroscience. In humans, multivariate pattern analysis (MVPA) of fMRI blood oxygenation level-dependent (BOLD) measurements has emerged as an important approach for studying neural representations. Many previous studies have implicitly assumed that MVPA of fMRI BOLD is just as effective in decoding information encoded in PFC neural activity as it is in visual cortex. However, MVPA studies of PFC have had mixed success. Here we estimate the base rate of decoding information from PFC BOLD activity patterns from a meta-analysis of published MVPA studies. We show that PFC has a significantly lower base rate (55.4%) than visual areas in occipital (66.6%) and temporal (71.0%) cortices and one that is close to chance levels. Our results have implications for the design and interpretation of MVPA studies of PFC and raise important questions about its functional organization.
Collapse
Affiliation(s)
| | | | - David Badre
- Brown University.,Carney Institute for Brain Science, Providence, RI
| |
Collapse
|
34
|
Choi SJ, Mukai J, Kvajo M, Xu B, Diamantopoulou A, Pitychoutis PM, Gou B, Gogos JA, Zhang H. A Schizophrenia-Related Deletion Leads to KCNQ2-Dependent Abnormal Dopaminergic Modulation of Prefrontal Cortical Interneuron Activity. Cereb Cortex 2018; 28:2175-2191. [PMID: 28525574 PMCID: PMC6018968 DOI: 10.1093/cercor/bhx123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/25/2017] [Indexed: 02/06/2023] Open
Abstract
Altered prefrontal cortex function is implicated in schizophrenia (SCZ) pathophysiology and could arise from imbalance between excitation and inhibition (E/I) in local circuits. It remains unclear whether and how such imbalances relate to genetic etiologies. We used a mouse model of the SCZ-predisposing 22q11.2 deletion (Df(16)A+/- mice) to evaluate how this genetic lesion affects the excitability of layer V prefrontal pyramidal neurons and its modulation by dopamine (DA). Df(16)A+/- mice have normal balance between E/I at baseline but are unable to maintain it upon dopaminergic challenge. Specifically, in wild-type mice, D1 receptor (D1R) activation enhances excitability of layer V prefrontal pyramidal neurons and D2 receptor (D2R) activation reduces it. Whereas the excitatory effect upon D1R activation is enhanced in Df(16)A+/- mice, the inhibitory effect upon D2R activation is reduced. The latter is partly due to the inability of mutant mice to activate GABAergic parvalbumin (PV)+ interneurons through D2Rs. We further demonstrate that reduced KCNQ2 channel function in PV+ interneurons in Df(16)A+/- mice renders them less capable of inhibiting pyramidal neurons upon D2 modulation. Thus, DA modulation of PV+ interneurons and control of E/I are altered in Df(16)A+/- mice with a higher excitation and lower inhibition during dopaminergic modulation.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Neurology, Columbia University, New York, NY10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Mirna Kvajo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Pothitos M Pitychoutis
- Department of Biology, Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469, USA
| | - Bin Gou
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hui Zhang
- Department of Neurology, Columbia University, New York, NY10032, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Fazio L, Pergola G, Papalino M, Di Carlo P, Monda A, Gelao B, Amoroso N, Tangaro S, Rampino A, Popolizio T, Bertolino A, Blasi G. Transcriptomic context of DRD1 is associated with prefrontal activity and behavior during working memory. Proc Natl Acad Sci U S A 2018; 115:5582-5587. [PMID: 29735686 PMCID: PMC6003490 DOI: 10.1073/pnas.1717135115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dopamine D1 receptor (D1R) signaling shapes prefrontal cortex (PFC) activity during working memory (WM). Previous reports found higher WM performance associated with alleles linked to greater expression of the gene coding for D1Rs (DRD1). However, there is no evidence on the relationship between genetic modulation of DRD1 expression in PFC and patterns of prefrontal activity during WM. Furthermore, previous studies have not considered that D1Rs are part of a coregulated molecular environment, which may contribute to D1R-related prefrontal WM processing. Thus, we hypothesized a reciprocal link between a coregulated (i.e., coexpressed) molecular network including DRD1 and PFC activity. To explore this relationship, we used three independent postmortem prefrontal mRNA datasets (total n = 404) to characterize a coexpression network including DRD1 Then, we indexed network coexpression using a measure (polygenic coexpression index-DRD1-PCI) combining the effect of single nucleotide polymorphisms (SNPs) on coexpression. Finally, we associated the DRD1-PCI with WM performance and related brain activity in independent samples of healthy participants (total n = 371). We identified and replicated a coexpression network including DRD1, whose coexpression was correlated with DRD1-PCI. We also found that DRD1-PCI was associated with lower PFC activity and higher WM performance. Behavioral and imaging results were replicated in independent samples. These findings suggest that genetically predicted expression of DRD1 and of its coexpression partners stratifies healthy individuals in terms of WM performance and related prefrontal activity. They also highlight genes and SNPs potentially relevant to pharmacological trials aimed to test cognitive enhancers modulating DRD1 signaling.
Collapse
Affiliation(s)
- Leonardo Fazio
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Sezione di Neuroradiologia, Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," 71013 San Giovanni Rotondo, Italy
- Contributed Equally
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Contributed Equally
| | - Marco Papalino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Pasquale Di Carlo
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Monda
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Barbara Gelao
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Nicola Amoroso
- Dipartimento Interateneo di Fisica "M. Merlin," Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
- Sezione di Bari, Istituto Nazionale di Fisica Nucleare, 70125 Bari, Italy
| | - Sabina Tangaro
- Sezione di Bari, Istituto Nazionale di Fisica Nucleare, 70125 Bari, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
| | - Teresa Popolizio
- Sezione di Neuroradiologia, Istituto di Ricovero e Cura a Carattere Scientifico "Casa Sollievo della Sofferenza," 71013 San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
| | - Giuseppe Blasi
- Institute of Psychiatry, Bari University Hospital, 70124 Bari, Italy
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|
36
|
Liu S, Fan Y, Chen A, Jalali A, Minami K, Ogawa K, Nakshatri H, Li BY, Yokota H. Osteocyte-Driven Downregulation of Snail Restrains Effects of Drd2 Inhibitors on Mammary Tumor Cells. Cancer Res 2018; 78:3865-3876. [PMID: 29769195 DOI: 10.1158/0008-5472.can-18-0056] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/26/2018] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
While bone is a frequent target of breast cancer-associated metastasis, little is known about the effects of tumor-bone interactions on the efficacy of tumor-suppressing agents. Here we examined the effect of two FDA-approved dopamine modulators, fluphenazine and trifluoperazine, on mammary tumor cells, osteoclasts, osteoblasts, and osteocytes. These agents suppressed proliferation and migration of mammary tumor cells chiefly by antagonizing dopamine receptor D2 and reduced bone resorption by downregulating nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1). Three-dimensional spheroid formation assays revealed that tumor cells have high affinity to osteocytes and type I collagen, and interactions with osteocytes as well as administration of fluphenazine and trifluoperazine downregulated Snail and suppressed migratory behaviors. Unlike the inhibitory action of fluphenazine and trifluoperazine on tumor growth, tumor-osteocyte interactions stimulated tumor proliferation by upregulating NFκB and Akt. In the bone microenvironment, osteocytes downregulated Snail and acted as an attractant as well as a stimulant to mammary tumor cells. These results demonstrate that tumor-osteocyte interactions strengthen dopamine receptor-mediated suppression of tumor migration but weaken its inhibition of tumor proliferation in the osteocyte-rich bone microenvironment.Significance: These findings provide novel insight into the cellular cross-talk in the bone microevironment and the effects of dopamine modulators on mammary tumor cells and osteocytes. Cancer Res; 78(14); 3865-76. ©2018 AACR.
Collapse
Affiliation(s)
- Shengzhi Liu
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Yao Fan
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Andy Chen
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Aydin Jalali
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| | - Kazumasa Minami
- Department of Radiation Oncology, Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | - Harikrishna Nakshatri
- Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China.
| | - Hiroki Yokota
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, China. .,Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
37
|
Ott T, Westendorff S, Nieder A. Dopamine Receptors Influence Internally Generated Oscillations during Rule Processing in Primate Prefrontal Cortex. J Cogn Neurosci 2018; 30:770-784. [DOI: 10.1162/jocn_a_01248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neural oscillations in distinct frequency bands in the prefrontal cortex (pFC) are associated with specialized roles during cognitive control. How dopamine modulates oscillations to structure pFC functions remains unknown. We trained macaques to switch between two numerical rules and recorded local field potentials from pFC while applying dopamine receptor targeting drugs using microiontophoresis. We show that the D1 and D2 family receptors (D1Rs and D2Rs, respectively) specifically altered internally generated prefrontal oscillations, whereas sensory-evoked potentials remained unchanged. Blocking D1Rs or stimulating D2Rs increased low-frequency theta and alpha oscillations known to be involved in learning and memory. In contrast, only D1R inhibition enhanced high-frequency beta oscillations, whereas only D2R stimulation increased gamma oscillations linked to top–down and bottom–up attentional processing. These findings suggest that dopamine alters neural oscillations relevant for executive functioning through dissociable actions at the receptor level.
Collapse
|
38
|
Veit L, Hartmann K, Nieder A. Spatially Tuned Neurons in Corvid Nidopallium Caudolaterale Signal Target Position During Visual Search. Cereb Cortex 2018; 27:1103-1112. [PMID: 26656724 DOI: 10.1093/cercor/bhv299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The avian pallial endbrain area nidopallium caudolaterale (NCL) shows important similarities to mammalian prefrontal cortex in connectivity, dopamine neurochemistry, and function. Neuronal processing in NCL has been studied with respect to sensory, cognitive, and reward information, but little is known about its role in more direct control of motor behavior. We investigated NCL activity during the choice period of a delayed match-to-sample task, as 2 trained crows searched and selected a previously remembered visual target among an array of 4 pictures. The crows exhibited behavioral response patterns consistent with serial visual search. Many single NCL neurons were spatially tuned to specific target positions during visual search and directed motor behavior. Moreover, single NCL neurons dynamically changed their tuning properties to represent different behaviorally relevant task variables across the trial. In consecutive task periods, single neurons responded to visual stimuli, stored stimulus information in working memory, guided goal-directed behavior depending on the remembered target picture, and encoded trial outcomes. This flexible encoding of all task-relevant aspects in the executive control of goal-directed behavior represents a striking convergence to neuronal encoding in primate prefrontal cortex. These data highlight key properties of associative endbrain areas underlying flexible cognitive behavior in corvids and primates.
Collapse
Affiliation(s)
- Lena Veit
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Konstantin Hartmann
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
39
|
Vijayraghavan S, Major AJ, Everling S. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control. Front Neural Circuits 2017; 11:91. [PMID: 29259545 PMCID: PMC5723345 DOI: 10.3389/fncir.2017.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Alex J Major
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
40
|
Viswanathan P, Nieder A. Comparison of visual receptive fields in the dorsolateral prefrontal cortex and ventral intraparietal area in macaques. Eur J Neurosci 2017; 46:2702-2712. [DOI: 10.1111/ejn.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology; Institute of Neurobiology; University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Andreas Nieder
- Animal Physiology; Institute of Neurobiology; University of Tübingen; Auf der Morgenstelle 28 72076 Tübingen Germany
| |
Collapse
|
41
|
Shepard R, Beckett E, Coutellier L. Assessment of the acquisition of executive function during the transition from adolescence to adulthood in male and female mice. Dev Cogn Neurosci 2017; 28:29-40. [PMID: 29102727 PMCID: PMC6987909 DOI: 10.1016/j.dcn.2017.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Executive functions (EF) reached full maturity during the transition from adolescence to adulthood. Human studies provide important information about adolescent developmental trajectories; however, little remains known about the neural circuits underlying the acquisition of mature EF. Ethical and technical considerations with human subjects limit opportunities to design experimental studies that allows for an in-depth understanding of developmental changes in neural circuits that regulate cognitive maturation. Preclinical models can offer solutions to this problem. Unfortunately, current rodent models of adolescent development have inherent flaws that limit their translational value. For instance, females are often omitted from studies, preventing the assessment of potential sex-specific developmental trajectories. Furthermore, it remains unclear whether cognitive developmental changes in rodents are similar to those observed in humans. Here, we tested adolescent and adult male and female mice in a neurocognitive battery of assays. Based on this approach, we assessed mice performances within distinct subdomains of EF, and observed similarities with human developmental trajectories. Furthermore, the sex-specific cognitive changes we observed were paralleled by molecular and neural activity changes demonstrating that our approach can be used in future research to assess the contribution of precise neural circuits to adolescent cognitive maturation.
Collapse
Affiliation(s)
- Ryan Shepard
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Emily Beckett
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
42
|
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1. J Neurosci 2017; 37:11390-11405. [PMID: 29042433 PMCID: PMC5700422 DOI: 10.1523/jneurosci.1339-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 11/21/2022] Open
Abstract
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms.SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state.
Collapse
|
43
|
Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain. J Neurosci 2017; 36:12044-12052. [PMID: 27881787 DOI: 10.1523/jneurosci.1521-16.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. SIGNIFICANCE STATEMENT Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several characteristics that are surprisingly similar to the ones found in primates. Our data suggest a common code for number in two different vertebrate taxa that has evolved based on convergent evolution.
Collapse
|
44
|
Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices. J Neurosci 2017; 37:8919-8928. [PMID: 28821662 DOI: 10.1523/jneurosci.0829-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022] Open
Abstract
The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1.SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas.
Collapse
|
45
|
Holca-Lamarre R, Lücke J, Obermayer K. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations. Front Comput Neurosci 2017; 11:54. [PMID: 28690509 PMCID: PMC5479899 DOI: 10.3389/fncom.2017.00054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/07/2017] [Indexed: 11/17/2022] Open
Abstract
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates.
Collapse
Affiliation(s)
- Raphaël Holca-Lamarre
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Jörg Lücke
- Cluster of Excellence Hearing4all and Research Center Neurosensory Science, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Machine Learning Lab, Department of Medical Physics and Acoustics, Carl von Ossietzky Universität OldenburgOldenburg, Germany
| | - Klaus Obermayer
- Neural Information Processing Group, Fakultät IV, Technische Universität BerlinBerlin, Germany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| |
Collapse
|
46
|
Inhibitory Effects of Dopamine Receptor D 1 Agonist on Mammary Tumor and Bone Metastasis. Sci Rep 2017; 7:45686. [PMID: 28374823 PMCID: PMC5379485 DOI: 10.1038/srep45686] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/02/2017] [Indexed: 01/01/2023] Open
Abstract
Dopaminergic signaling plays a critical role in the nervous system, but little is known about its potential role in breast cancer and bone metabolism. A screening of ~1,000 biologically active compounds revealed that a selective agonist of dopamine receptor D1 (DRD1), A77636, inhibited proliferation of 4T1.2 mammary tumor cells as well as MDA-MB-231 breast cancer cells. Herein, we examined the effect of A77636 on bone quality using a mouse model of bone metastasis from mammary tumor. A77636 inhibited migration of cancer cells in a DRD1-dependent fashion and suppressed development of bone-resorbing osteoclasts by downregulating NFATc1 through the elevation of phosphorylation of eIF2α. In the mouse model of bone metastasis, A77636 reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Collectively, we expect that dopaminergic signaling might provide a novel therapeutic target for breast cancer and bone metastasis.
Collapse
|
47
|
Kaller S, Rullmann M, Patt M, Becker GA, Luthardt J, Girbardt J, Meyer PM, Werner P, Barthel H, Bresch A, Fritz TH, Hesse S, Sabri O. Test-retest measurements of dopamine D 1-type receptors using simultaneous PET/MRI imaging. Eur J Nucl Med Mol Imaging 2017; 44:1025-1032. [PMID: 28197685 DOI: 10.1007/s00259-017-3645-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE The role of dopamine D1-type receptor (D1R)-expressing neurons in the regulation of motivated behavior and reward prediction has not yet been fully established. As a prerequisite for future research assessing D1-mediated neuronal network regulation using simultaneous PET/MRI and D1R-selective [11C]SCH23390, this study investigated the stability of central D1R measurements between two independent PET/MRI sessions under baseline conditions. METHODS Thirteen healthy volunteers (7 female, age 33 ± 13 yrs) underwent 90-min emission scans, each after 90-s bolus injection of 486 ± 16 MBq [11C]SCH23390, on two separate days within 2-4 weeks using a PET/MRI system. Parametric images of D1R distribution volume ratio (DVR) and binding potential (BPND) were generated by a multi-linear reference tissue model with two parameters and the cerebellar cortex as receptor-free reference region. Volume-of-interest (VOI) analysis was performed with manual VOIs drawn on consecutive transverse MRI slices for brain regions with high and low D1R density. RESULTS The DVR varied from 2.5 ± 0.3 to 2.9 ± 0.5 in regions with high D1R density (e.g. the head of the caudate) and from 1.2 ± 0.1 to 1.6 ± 0.2 in regions with low D1R density (e.g. the prefrontal cortex). The absolute variability of the DVR ranged from 2.4% ± 1.3% to 5.1% ± 5.3%, while Bland-Altman analyses revealed very low differences in mean DVR (e.g. 0.013 ± 0.17 for the nucleus accumbens). Intraclass correlation (one-way, random) indicated very high agreement (0.93 in average) for both DVR and BPND values. Accordingly, the absolute variability of BPND ranged from 7.0% ± 4.7% to 12.5% ± 10.6%; however, there were regions with very low D1R content, such as the occipital cortex, with higher mean variability. CONCLUSION The test-retest reliability of D1R measurements in this study was very high. This was the case not only for D1R-rich brain areas, but also for regions with low D1R density. These results will provide a solid base for future joint PET/MRI data analyses in stimulation-dependent mapping of D1R-containing neurons and their effects on projections in neuronal circuits that determine behavior.
Collapse
Affiliation(s)
- Simon Kaller
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Julia Luthardt
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Johanna Girbardt
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Peter Werner
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Anke Bresch
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| | - Thomas H Fritz
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute for Psychoacoustics and Electronic Music (IPEM), University of Gent, Technicum Blok 2, Sint-Pietersnieuwstraat 41, 9000, Ghent, Belgium
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany. .,Integrated Research and Treatment Centre (IFB) Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany.
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103, Leipzig, Germany
| |
Collapse
|
48
|
Voulalas PJ, Ji Y, Jiang L, Asgar J, Ro JY, Masri R. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion. Neuroscience 2016; 343:94-105. [PMID: 27932310 DOI: 10.1016/j.neuroscience.2016.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptations resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL.
Collapse
Affiliation(s)
- Pamela J Voulalas
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Yadong Ji
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Li Jiang
- University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD 21201, USA
| | - Jamila Asgar
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jin Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, Seoul, Republic of Korea
| | - Radi Masri
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
49
|
Nieder A. Representing Something Out of Nothing: The Dawning of Zero. Trends Cogn Sci 2016; 20:830-842. [DOI: 10.1016/j.tics.2016.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/14/2016] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
|
50
|
Cell-type-specific modulation of targets and distractors by dopamine D1 receptors in primate prefrontal cortex. Nat Commun 2016; 7:13218. [PMID: 27807366 PMCID: PMC5095292 DOI: 10.1038/ncomms13218] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/13/2016] [Indexed: 01/23/2023] Open
Abstract
The prefrontal cortex (PFC) is crucial for maintaining relevant information in working memory and resisting interference. PFC neurons are strongly regulated by dopamine, but it is unknown whether dopamine receptors are involved in protecting target memories from distracting stimuli. We investigated the prefrontal circuit dynamics and dopaminergic modulation of targets and distractors in monkeys trained to ignore interfering stimuli in a delayed-match-to-numerosity task. We found that dopamine D1 receptors (D1Rs) modulate the recovery of task-relevant information following a distracting stimulus. The direction of modulation is cell-type-specific: in putative pyramidal neurons, D1R inhibition enhances and D1R stimulation attenuates coding of the target stimulus after the interference, while the opposite pattern is observed in putative interneurons. Our results suggest that dopaminergic neuromodulation of PFC circuits regulates mental representations of behaviourally relevant stimuli that compete with task-irrelevant input and could play a central role for cognitive functioning in health and disease.
Collapse
|