1
|
Ahn SH, Jang Y, Jang BS, Moon J, Lee WJ, Park DK, Yu JS, Son H, Kim H, Han D, Seok H, Kim Y, Shin SY, Lee ST, Park KI, Jung KH, Jeon D, Lee SK, Chu K. Multi-omic insights into molecular mechanism and therapeutic targets in spinocerebellar ataxia type 7. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102414. [PMID: 39817193 PMCID: PMC11733039 DOI: 10.1016/j.omtn.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025]
Abstract
Recent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7266Q/5Q mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed. Results were integrated to identify genes with identical trends in expression across all three analyses. Data from RNA sequencing and methylation analysis revealed 58 significantly hypomethylated-upregulated genes and 62 hypermethylated-downregulated genes, mostly enriched in GO terms of regulation of axonogenesis, channel activity, and monoamine signaling. In the proteomic analysis, 211 upregulated and 281 downregulated DEPs associated mostly with immune response and cellular mobility were identified. Two genes, Fam107b and Tph2, showed differential expressions in both transcriptomic and proteomic analyses. Findings were validated in RT-qPCR as well as open data source analysis. Our study is the first to perform multi-omics analysis in SCA7 mice and will serve as an important reference for future studies.
Collapse
Affiliation(s)
- Soo Hyun Ahn
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Yoonhyuk Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- The National Strategic Technology Research Institute, Seoul 03080, Republic of Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jangsup Moon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam-si 13620, Republic of Korea
| | - Dong-Kyu Park
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Advanced Neural Technologies, Seoul 03087, Republic of Korea
| | - Jung-Suk Yu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Advanced Neural Technologies, Seoul 03087, Republic of Korea
| | - Hyoshin Son
- Department of Neurology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yongmoo Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Seo-Yi Shin
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul 06236, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Daejong Jeon
- Advanced Neural Technologies, Seoul 03087, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| | - Kon Chu
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Center for Medical Innovation, Biomedical Research Institute, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Aliyeva A, Lennon CD, Cleary JD, Shorrock HK, Berglund JA. Dysregulation of alternative splicing is a transcriptomic feature of patient-derived fibroblasts from CAG repeat expansion spinocerebellar ataxias. Hum Mol Genet 2025; 34:239-250. [PMID: 39589088 PMCID: PMC11792238 DOI: 10.1093/hmg/ddae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
The spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of rare dominantly inherited neurodegenerative diseases characterized by progressive ataxia. The most common mutation seen across the SCAs is a CAG repeat expansion, causative for SCA1, 2, 3, 6, 7, 12 and 17. We recently identified dysregulation of alternative splicing as a novel, presymptomatic transcriptomic hallmark in mouse models of SCAs 1, 3 and 7. In order to understand if dysregulation of alternative splicing is a transcriptomic feature of patient-derived cell models of CAG SCAs, we performed RNA sequencing and transcriptomic analysis in patient-derived fibroblast cell lines of SCAs 1, 3 and 7. We identified widespread and robust dysregulation of alternative splicing across all CAG expansion SCA lines investigated, with disease relevant pathways affected, such as microtubule-based processes, transcriptional regulation, and DNA damage and repair. Novel disease-relevant alternative splicing events were validated across patient-derived fibroblast lines from multiple CAG SCAs and CAG containing reporter cell lines. Together this study demonstrates that dysregulation of alternative splicing represents a novel and shared pathogenic process in CAG expansion SCA1, 3 and 7 and can potentially be used as a biomarker across patient models of this group of devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Asmer Aliyeva
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| | - Claudia D Lennon
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - John D Cleary
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Hannah K Shorrock
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| | - J Andrew Berglund
- RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
- Department of Biological Sciences, University at Albany, 1400 Washington Avenue, State University of New York, Albany, NY 12222, United States
| |
Collapse
|
3
|
Widner J, Faust PL, Louis ED, Fujita H. Axonal pathology differentially affects human Purkinje cell subtypes in the essential tremor cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.633063. [PMID: 39974874 PMCID: PMC11838201 DOI: 10.1101/2025.01.26.633063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The cerebellar cortex is organized into discrete regions populated by molecularly distinct Purkinje cells (PCs), the sole cortical output neurons. While studies in animal models have shown that PC subtypes differ in their vulnerability to disease, our understanding of human PC subtype and vulnerability remains limited. Here, we demonstrate that human cerebellar regions specialized for motor vs cognitive functions (lobule HV vs Crus I) contain distinct PC populations characterized by specific molecular and anatomical features, which show selective vulnerability in essential tremor (ET), a cerebellar degenerative disorder. Using a known PC subtype marker, neurofilament heavy chain (NEFH), we found that motor lobule HV contains PCs with high NEFH expression, while cognitive lobule Crus I contains PCs with low NEFH expression in post-mortem samples from healthy controls. In the same cerebella, PC axons in lobule HV were 2.2-fold thicker than those in Crus I. Across lobules, axon caliber positively correlated with NEFH expression. In ET cerebella, we identified motor lobule-specific PC axon pathology with a 1.5-fold reduction in caliber and increased axon variability in lobule HV, while Crus I axons were unaffected. Tremor severity and duration in ET correlated with axon diameter variability selectively in lobule HV PCs. Given that axonal caliber is a major determinant of neural signaling capacity, our results (1) suggest that disrupted cerebellar corticonuclear signaling is occurring in ET, (2) provide evidence of region-specific PC subtypes in the human cerebellum and offer insight into how selective PC vulnerability may contribute to the pathophysiology of cerebellar degeneration.
Collapse
Affiliation(s)
- James Widner
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Elan D. Louis
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hirofumi Fujita
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Fagan KJ, Chillon G, Carrell EM, Waxman EA, Davidson BL. Cas9 editing of ATXN1 in a spinocerebellar ataxia type 1 mice and human iPSC-derived neurons. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102317. [PMID: 39314800 PMCID: PMC11417534 DOI: 10.1016/j.omtn.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease-modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having five copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cell (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Collapse
Affiliation(s)
- Kelly J. Fagan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillem Chillon
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Bioengineering Graduate Program, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa A. Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Shorrock HK, Aliyeva A, Frias JA, DeMeo VA, Lennon CD, DeMeo CC, Mascorro AK, Shaughnessy S, Mazdiyasni H, Cleary JD, Reddy K, Vangaveti S, Shin DS, Berglund JA. CAG repeat-selective compounds reduce abundance of expanded CAG RNAs in patient cell and murine models of SCAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608349. [PMID: 39211226 PMCID: PMC11360937 DOI: 10.1101/2024.08.17.608349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Spinocerebellar ataxias (SCAs) are a genetically heterogenous group of devastating neurodegenerative conditions for which clinical care currently focuses on managing symptoms. Across these diseases there is an unmet need for therapies that address underlying disease mechanisms. We utilised the shared CAG repeat expansion mutation causative for a large subgroup of SCAs, to develop a novel disease-gene independent and mechanism agnostic small molecule screening approach to identify compounds with therapeutic potential across multiple SCAs. Using this approach, we identified the FDA approved microtubule inhibitor Colchicine and a novel CAG-repeat binding compound that reduce expression of disease associated transcripts across SCA1, 3 and 7 patient derived fibroblast lines and the Atxn1 154Q/2Q SCA1 mouse model in a repeat selective manner. Furthermore, our lead candidate rescues dysregulated alternative splicing in Atxn1 154Q/2Q mice. This work provides the first example of small molecules capable of targeting the underlying mechanism of disease across multiple CAG SCAs.
Collapse
|
6
|
Hamel K, Moncada EL, Sheeler C, Rosa JG, Gilliat S, Zhang Y, Cvetanovic M. Cerebellar Heterogeneity and Selective vulnerability in Spinocerebellar Ataxia Type 1 (SCA1). Neurobiol Dis 2024; 197:106530. [PMID: 38750673 PMCID: PMC11184674 DOI: 10.1016/j.nbd.2024.106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Heterogeneity is one of the key features of the healthy brain and selective vulnerability characterizes many, if not all, neurodegenerative diseases. While cerebellum contains majority of brain cells, neither its heterogeneity nor selective vulnerability in disease are well understood. Here we describe molecular, cellular and functional heterogeneity in the context of healthy cerebellum as well as in cerebellar disease Spinocerebellar Ataxia Type 1 (SCA1). We first compared disease pathology in cerebellar vermis and hemispheres across anterior to posterior axis in a knock-in SCA1 mouse model. Using immunohistochemistry, we demonstrated earlier and more severe pathology of PCs and glia in the posterior cerebellar vermis of SCA1 mice. We also demonstrate heterogeneity of Bergmann glia in the unaffected, wild-type mice. Then, using RNA sequencing, we found both shared, as well as, posterior cerebellum-specific molecular mechanisms of pathogenesis that include exacerbated gene dysregulation, increased number of altered signaling pathways, and decreased pathway activity scores in the posterior cerebellum of SCA1 mice. We demonstrated unexpectedly large differences in the gene expression between posterior and anterior cerebellar vermis of wild-type mice, indicative of robust intraregional heterogeneity of gene expression in the healthy cerebellum. Additionally, we found that SCA1 disease profoundly reduces intracerebellar heterogeneity of gene expression. Further, using fiber photometry, we found that population level PC calcium activity was altered in the posterior lobules in SCA1 mice during walking. We also identified regional differences in the population level activity of Purkinje cells (PCs) in unrestrained wild-type mice that were diminished in SCA1 mice.
Collapse
Affiliation(s)
| | | | | | - Juao-Guilherme Rosa
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Graduate Program for Neuroscience, Boston University, 677 Beacon Street, Boston, MA 02215, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, USA; Current affiliation Department of Neuroscience, Yale University, USA
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, USA; Minnesota Supercomputing Institute, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, USA; Institute for Translational Neuroscience, University of Minnesota, 2101 6(th) Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
7
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Homma H, Yoshioka Y, Fujita K, Shirai S, Hama Y, Komano H, Saito Y, Yabe I, Okano H, Sasaki H, Tanaka H, Okazawa H. Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage. Commun Biol 2024; 7:413. [PMID: 38594382 PMCID: PMC11003991 DOI: 10.1038/s42003-024-06066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hajime Komano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
9
|
Jaarsma D, Birkisdóttir MB, van Vossen R, Oomen DWGD, Akhiyat O, Vermeij WP, Koekkoek SKE, De Zeeuw CI, Bosman LWJ. Different Purkinje cell pathologies cause specific patterns of progressive gait ataxia in mice. Neurobiol Dis 2024; 192:106422. [PMID: 38286390 DOI: 10.1016/j.nbd.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| | - Maria B Birkisdóttir
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands
| | - Randy van Vossen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Demi W G D Oomen
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Oussama Akhiyat
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands
| | - Wilbert P Vermeij
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, the Netherlands; Oncode Institute, 3521 AL, Utrecht, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA, Amsterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus MC, 3015 CA, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Gullulu O, Ozcelik E, Tuzlakoglu Ozturk M, Karagoz MS, Tazebay UH. A multi-faceted approach to unravel coding and non-coding gene fusions and target chimeric proteins in ataxia. J Biomol Struct Dyn 2024:1-21. [PMID: 38411012 DOI: 10.1080/07391102.2024.2321510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omer Gullulu
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emrah Ozcelik
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Merve Tuzlakoglu Ozturk
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Mustafa Safa Karagoz
- Institut für Mikrobiologie, Technische Universität Braunschweig, Braunschweig, Germany
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uygar Halis Tazebay
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey
- Central Research Laboratory (GTU-MAR), Gebze Technical University, Gebze, Kocaeli, Turkey
| |
Collapse
|
11
|
Tejwani L, Ravindra NG, Lee C, Cheng Y, Nguyen B, Luttik K, Ni L, Zhang S, Morrison LM, Gionco J, Xiang Y, Yoon J, Ro H, Haidery F, Grijalva RM, Bae E, Kim K, Martuscello RT, Orr HT, Zoghbi HY, McLoughlin HS, Ranum LPW, Shakkottai VG, Faust PL, Wang S, van Dijk D, Lim J. Longitudinal single-cell transcriptional dynamics throughout neurodegeneration in SCA1. Neuron 2024; 112:362-383.e15. [PMID: 38016472 PMCID: PMC10922326 DOI: 10.1016/j.neuron.2023.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/10/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Neurodegeneration is a protracted process involving progressive changes in myriad cell types that ultimately results in the death of vulnerable neuronal populations. To dissect how individual cell types within a heterogeneous tissue contribute to the pathogenesis and progression of a neurodegenerative disorder, we performed longitudinal single-nucleus RNA sequencing of mouse and human spinocerebellar ataxia type 1 (SCA1) cerebellar tissue, establishing continuous dynamic trajectories of each cell population. Importantly, we defined the precise transcriptional changes that precede loss of Purkinje cells and, for the first time, identified robust early transcriptional dysregulation in unipolar brush cells and oligodendroglia. Finally, we applied a deep learning method to predict disease state accurately and identified specific features that enable accurate distinction of wild-type and SCA1 cells. Together, this work reveals new roles for diverse cerebellar cell types in SCA1 and provides a generalizable analysis framework for studying neurodegeneration.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Neal G Ravindra
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA
| | - Changwoo Lee
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yubao Cheng
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Billy Nguyen
- University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Logan M Morrison
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Yangfei Xiang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Hannah Ro
- Yale College, New Haven, CT 06510, USA
| | | | - Rosalie M Grijalva
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Kristen Kim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Laura P W Ranum
- Department of Molecular Genetics and Microbiology, Center for Neurogenetics, College of Medicine, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA.
| | - David van Dijk
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Computer Science, Yale University, New Haven, CT 06510, USA.
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
12
|
Shorrock HK, Lennon CD, Aliyeva A, Davey EE, DeMeo CC, Pritchard CE, Planco L, Velez JM, Mascorro-Huamancaja A, Shin DS, Cleary JD, Berglund JA. Widespread alternative splicing dysregulation occurs presymptomatically in CAG expansion spinocerebellar ataxias. Brain 2024; 147:486-504. [PMID: 37776516 PMCID: PMC10834251 DOI: 10.1093/brain/awad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/02/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are a group of dominantly inherited neurodegenerative diseases, several of which are caused by CAG expansion mutations (SCAs 1, 2, 3, 6, 7 and 12) and more broadly belong to the large family of over 40 microsatellite expansion diseases. While dysregulation of alternative splicing is a well defined driver of disease pathogenesis across several microsatellite diseases, the contribution of alternative splicing in CAG expansion SCAs is poorly understood. Furthermore, despite extensive studies on differential gene expression, there remains a gap in our understanding of presymptomatic transcriptomic drivers of disease. We sought to address these knowledge gaps through a comprehensive study of 29 publicly available RNA-sequencing datasets. We identified that dysregulation of alternative splicing is widespread across CAG expansion mouse models of SCAs 1, 3 and 7. These changes were detected presymptomatically, persisted throughout disease progression, were repeat length-dependent, and were present in brain regions implicated in SCA pathogenesis including the cerebellum, pons and medulla. Across disease progression, changes in alternative splicing occurred in genes that function in pathways and processes known to be impaired in SCAs, such as ion channels, synaptic signalling, transcriptional regulation and the cytoskeleton. We validated several key alternative splicing events with known functional consequences, including Trpc3 exon 9 and Kcnma1 exon 23b, in the Atxn1154Q/2Q mouse model. Finally, we demonstrated that alternative splicing dysregulation is responsive to therapeutic intervention in CAG expansion SCAs with Atxn1 targeting antisense oligonucleotide rescuing key splicing events. Taken together, these data demonstrate that widespread presymptomatic dysregulation of alternative splicing in CAG expansion SCAs may contribute to disease onset, early neuronal dysfunction and may represent novel biomarkers across this devastating group of neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Claudia D Lennon
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Asmer Aliyeva
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | - Emily E Davey
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Cristina C DeMeo
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Lori Planco
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - Jose M Velez
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| | | | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - John D Cleary
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
| | - J Andrew Berglund
- The RNA Institute, University at Albany—SUNY, Albany, NY 12222, USA
- Department of Biology, University at Albany—SUNY, Albany, NY 12222, USA
| |
Collapse
|
13
|
Olmos V, Thompson EN, Gogia N, Luttik K, Veeranki V, Ni L, Sim S, Chen K, Krause DS, Lim J. Dysregulation of alternative splicing in spinocerebellar ataxia type 1. Hum Mol Genet 2024; 33:138-149. [PMID: 37802886 PMCID: PMC10979408 DOI: 10.1093/hmg/ddad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 is caused by an expansion of the polyglutamine tract in ATAXIN-1. Ataxin-1 is broadly expressed throughout the brain and is involved in regulating gene expression. However, it is not yet known if mutant ataxin-1 can impact the regulation of alternative splicing events. We performed RNA sequencing in mouse models of spinocerebellar ataxia type 1 and identified that mutant ataxin-1 expression abnormally leads to diverse splicing events in the mouse cerebellum of spinocerebellar ataxia type 1. We found that the diverse splicing events occurred in a predominantly cell autonomous manner. A majority of the transcripts with misregulated alternative splicing events were previously unknown, thus allowing us to identify overall new biological pathways that are distinctive to those affected by differential gene expression in spinocerebellar ataxia type 1. We also provide evidence that the splicing factor Rbfox1 mediates the effect of mutant ataxin-1 on misregulated alternative splicing and that genetic manipulation of Rbfox1 expression modifies neurodegenerative phenotypes in a Drosophila model of spinocerebellar ataxia type 1 in vivo. Together, this study provides novel molecular mechanistic insight into the pathogenesis of spinocerebellar ataxia type 1 and identifies potential therapeutic strategies for spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Victor Olmos
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Evrett N Thompson
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Neha Gogia
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Vaishnavi Veeranki
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Luhan Ni
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
| | - Serena Sim
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Kelly Chen
- Yale College, 433 Temple Street, New Haven, CT 06510, United States
| | - Diane S Krause
- Department of Cell Biology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Pathology, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Department of Laboratory Medicine, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Yale Stem Cell Center, Yale School of Medicine, 10 Amistad Street, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, United States
- Wu Tsai Institute, Yale School of Medicine, 100 College, New Haven, CT 06510, United States
| |
Collapse
|
14
|
Nanclares C, Noriega-Prieto JA, Labrada-Moncada FE, Cvetanovic M, Araque A, Kofuji P. Altered calcium signaling in Bergmann glia contributes to spinocerebellar ataxia type-1 in a mouse model of SCA1. Neurobiol Dis 2023; 187:106318. [PMID: 37802154 PMCID: PMC10624966 DOI: 10.1016/j.nbd.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 2023; 24:457-473. [PMID: 37336982 DOI: 10.1038/s41583-023-00717-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Alternative splicing generates a myriad of RNA products and protein isoforms of different functions from a single gene. Dysregulated alternative splicing has emerged as a new mechanism broadly implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson disease and repeat expansion diseases. Understanding the mechanisms and functional outcomes of abnormal splicing in neurological disorders is vital in developing effective therapies to treat mis-splicing pathology. In this Review, we discuss emerging research and evidence of the roles of alternative splicing defects in major neurodegenerative diseases and summarize the latest advances in RNA-based therapeutic strategies to target these disorders.
Collapse
Affiliation(s)
- David Nikom
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA
| | - Sika Zheng
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
16
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
17
|
Handler HP, Duvick L, Mitchell JS, Cvetanovic M, Reighard M, Soles A, Mather KB, Rainwater O, Serres S, Nichols-Meade T, Coffin SL, You Y, Ruis BL, O'Callaghan B, Henzler C, Zoghbi HY, Orr HT. Decreasing mutant ATXN1 nuclear localization improves a spectrum of SCA1-like phenotypes and brain region transcriptomic profiles. Neuron 2023; 111:493-507.e6. [PMID: 36577403 PMCID: PMC9957934 DOI: 10.1016/j.neuron.2022.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominant trinucleotide repeat neurodegenerative disease characterized by motor dysfunction, cognitive impairment, and premature death. Degeneration of cerebellar Purkinje cells is a frequent and prominent pathological feature of SCA1. We previously showed that transport of ATXN1 to Purkinje cell nuclei is required for pathology, where mutant ATXN1 alters transcription. To examine the role of ATXN1 nuclear localization broadly in SCA1-like disease pathogenesis, CRISPR-Cas9 was used to develop a mouse with an amino acid alteration (K772T) in the nuclear localization sequence of the expanded ATXN1 protein. Characterization of these mice indicates that proper nuclear localization of mutant ATXN1 contributes to many disease-like phenotypes including motor dysfunction, cognitive deficits, and premature lethality. RNA sequencing analysis of genes with expression corrected to WT levels in Atxn1175QK772T/2Q mice indicates that transcriptomic aspects of SCA1 pathogenesis differ between the cerebellum, brainstem, cerebral cortex, hippocampus, and striatum.
Collapse
Affiliation(s)
- Hillary P Handler
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa Duvick
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason S Mitchell
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Molly Reighard
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alyssa Soles
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathleen B Mather
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Orion Rainwater
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shannah Serres
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tessa Nichols-Meade
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L Coffin
- Program in Genetics & Genomics and Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Yun You
- Mouse Genetics Laboratory, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian L Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brennon O'Callaghan
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine Henzler
- RISS Bioinformatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huda Y Zoghbi
- Departments of Molecular and Human Genetics, Pediatrics, and Howard Hughes Medical Institute, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Borgenheimer E, Hamel K, Sheeler C, Moncada FL, Sbrocco K, Zhang Y, Cvetanovic M. Single nuclei RNA sequencing investigation of the Purkinje cell and glial changes in the cerebellum of transgenic Spinocerebellar ataxia type 1 mice. Front Cell Neurosci 2022; 16:998408. [PMID: 36457352 PMCID: PMC9706545 DOI: 10.3389/fncel.2022.998408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glial cells constitute half the population of the human brain and are essential for normal brain function. Most, if not all, brain diseases are characterized by reactive gliosis, a process by which glial cells respond and contribute to neuronal pathology. Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease characterized by a severe degeneration of cerebellar Purkinje cells (PCs) and cerebellar gliosis. SCA1 is caused by an abnormal expansion of CAG repeats in the gene Ataxin1 (ATXN1). While several studies reported the effects of mutant ATXN1 in Purkinje cells, it remains unclear how cerebellar glia respond to dysfunctional Purkinje cells in SCA1. To address this question, we performed single nuclei RNA sequencing (snRNA seq) on cerebella of early stage Pcp2-ATXN1[82Q] mice, a transgenic SCA1 mouse model expressing mutant ATXN1 only in Purkinje cells. We found no changes in neuronal and glial proportions in the SCA1 cerebellum at this early disease stage compared to wild-type controls. Importantly, we observed profound non-cell autonomous and potentially neuroprotective reactive gene and pathway alterations in Bergmann glia, velate astrocytes, and oligodendrocytes in response to Purkinje cell dysfunction.
Collapse
Affiliation(s)
- Ella Borgenheimer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | | | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ying Zhang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Luttik K, Olmos V, Owens A, Khan A, Yun J, Driessen T, Lim J. Identifying Disease Signatures in the Spinocerebellar Ataxia Type 1 Mouse Cortex. Cells 2022; 11:2632. [PMID: 36078042 PMCID: PMC9454518 DOI: 10.3390/cells11172632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is known to lead to the progressive degeneration of specific neuronal populations, including cerebellar Purkinje cells (PCs), brainstem cranial nerve nuclei and inferior olive nuclei, and spinocerebellar tracts. The disease-causing protein ataxin-1 is fairly ubiquitously expressed throughout the brain and spinal cord, but most studies have primarily focused on the role of ataxin-1 in the cerebellum and brainstem. Therefore, the functions of ataxin-1 and the effects of SCA1 mutations in other brain regions including the cortex are not well-known. Here, we characterized pathology in the motor cortex of a SCA1 mouse model and performed RNA sequencing in this brain region to investigate the impact of mutant ataxin-1 towards transcriptomic alterations. We identified progressive cortical pathology and significant transcriptomic changes in the motor cortex of a SCA1 mouse model. We also identified progressive, region-specific, colocalization of p62 protein with mutant ataxin-1 aggregates in broad brain regions, but not the cerebellum or brainstem. A cross-regional comparison of the SCA1 cortical and cerebellar transcriptomic changes identified both common and unique gene expression changes between the two regions, including shared synaptic dysfunction and region-specific kinase regulation. These findings suggest that the cortex is progressively impacted via both shared and region-specific mechanisms in SCA1.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Victor Olmos
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashley Owens
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Joy Yun
- Yale College, New Haven, CT 06510, USA
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Luttik K, Tejwani L, Ju H, Driessen T, Smeets CJLM, Edamakanti CR, Khan A, Yun J, Opal P, Lim J. Differential effects of Wnt-β-catenin signaling in Purkinje cells and Bergmann glia in spinocerebellar ataxia type 1. Proc Natl Acad Sci U S A 2022; 119:e2208513119. [PMID: 35969780 PMCID: PMC9407543 DOI: 10.1073/pnas.2208513119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/25/2022] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia and degeneration of specific neuronal populations, including Purkinje cells (PCs) in the cerebellum. Previous studies have demonstrated a critical role for various evolutionarily conserved signaling pathways in cerebellar patterning, such as the Wnt-β-catenin pathway; however, the roles of these pathways in adult cerebellar function and cerebellar neurodegeneration are largely unknown. In this study, we found that Wnt-β-catenin signaling activity was progressively enhanced in multiple cell types in the adult SCA1 mouse cerebellum, and that activation of this signaling occurs in an ataxin-1 polyglutamine (polyQ) expansion-dependent manner. Genetic manipulation of the Wnt-β-catenin signaling pathway in specific cerebellar cell populations revealed that activation of Wnt-β-catenin signaling in PCs alone was not sufficient to induce SCA1-like phenotypes, while its activation in astrocytes, including Bergmann glia (BG), resulted in gliosis and disrupted BG localization, which was replicated in SCA1 mouse models. Our studies identify a mechanism in which polyQ-expanded ataxin-1 positively regulates Wnt-β-catenin signaling and demonstrate that different cell types have distinct responses to the enhanced Wnt-β-catenin signaling in the SCA1 cerebellum, underscoring an important role of BG in SCA1 pathogenesis.
Collapse
Affiliation(s)
- Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
| | - Hyoungseok Ju
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | - Terri Driessen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
| | | | | | | | - Joy Yun
- Yale College, New Haven, CT 06510
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
21
|
Orr HT. Cholecystokinin Activation of Cholecystokinin 1 Receptors: a Purkinje Cell Neuroprotective Pathway. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01428-x. [PMID: 35733029 DOI: 10.1007/s12311-022-01428-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
This is a summary of the virtual presentation given at the 2021 meeting of the Society for Research on the Cerebellum and Ataxias, https://www.meetings.be/SRCA2021/ , where the therapeutic potential of the CCK-CCK1R pathway for treating diseases involving Purkinje cell degeneration was presented. Spinocerebellar ataxia type 1 (SCA1) is one of a group of almost 50 genetic diseases characterized by the degeneration of cerebellar Purkinje cells. The SCA1 Pcp2-ATXN1[30Q]D776 mouse model displays ataxia, i.e. Purkinje cell dysfunction, but lacks progressive Purkinje cell degeneration. RNA-seq revealed increased expression of cholecystokinin (CCK) in cerebella of Pcp2-ATXN1[30Q]D776 mice. Importantly, the absence of Cck1 receptor (CCK1R) in Pcp2-ATXN1[30Q]D776 mice conferred a progressive degenerative disease with Purkinje cell loss. Administration of a CCK1R agonist to Pcp2-AXTN1[82Q] mice reduced Purkinje cell pathology and associated deficits in motor performance. In addition, administration of the CCK1R agonist improved motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Furthermore, CCK1R activation corrected mTORC1 signaling and improved the expression of calbindin in the cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results support the Cck-Cck1R pathway is a potential therapeutic target for the treatment of diseases involving Purkinje neuron degeneration.
Collapse
Affiliation(s)
- Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
22
|
Carrell EM, Keiser MS, Robbins AB, Davidson BL. Combined overexpression of ATXN1L and mutant ATXN1 knockdown by AAV rescue motor phenotypes and gene signatures in SCA1 mice. Mol Ther Methods Clin Dev 2022; 25:333-343. [PMID: 35573049 PMCID: PMC9062622 DOI: 10.1016/j.omtm.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease caused by a (CAG) repeat expansion in the coding sequence of ATXN1. The primary mechanism of disease in SCA1 is toxic gain of function by polyglutamine-expanded mutant ATXN1 and is compounded by partial loss of wild-type function. Addressing both disease mechanisms, we have shown that virally expressed RNA interference targeting ATXN1 can both prevent and reverse disease phenotypes in SCA1 mice, and that overexpression of the ATXN1 homolog, ataxin 1-like (ATXN1L), improves disease readouts when delivered pre-symptomatically. Here, we combined these therapeutic approaches into two, dual component recombinant adeno-associated virus (rAAV) vectors and tested their ability to reverse disease in symptomatic SCA1 mice using behavior, pathological, and next-generation sequencing assays. Mice treated with vectors expressing human ATXN1L (hATXN1L) alone showed motor improvements and changes in gene expression that reflected increases in pro-development pathways. When hATN1L was combined with miS1, a previously validated microRNA targeting h ATXN1, there was added normalization of disease allele-induced changes in gene expression along with motor improvements. Our data show the additive nature of this two-component approach for a more effective SCA1 therapy.
Collapse
Affiliation(s)
- Ellie M. Carrell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, 6400 Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Megan S. Keiser
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, 6400 Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ashley B. Robbins
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, 6400 Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Neuroscience, Biomedical Graduate Studies Program, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, 6400 Colket Translational Research Building, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
23
|
Store-operated Ca2+ entry regulates neuronal gene expression and function. Curr Opin Neurobiol 2022; 73:102520. [DOI: 10.1016/j.conb.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022]
|
24
|
Kakouri AC, Votsi C, Oulas A, Nicolaou P, Aureli M, Lunghi G, Samarani M, Compagnoni GM, Salani S, Di Fonzo A, Christophides T, Tanteles GA, Zamba-Papanicolaou E, Pantzaris M, Spyrou GM, Christodoulou K. Transcriptomic characterization of tissues from patients and subsequent pathway analyses reveal biological pathways that are implicated in spastic ataxia. Cell Biosci 2022; 12:29. [PMID: 35277195 PMCID: PMC8917697 DOI: 10.1186/s13578-022-00754-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal β-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Andrea C. Kakouri
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Christina Votsi
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Paschalis Nicolaou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Maura Samarani
- Unité de Trafic Membranaire ét PathogénèseDépartement de Biologie Cellulaire et Infection, Institut Pasteur, 75015 Paris, France
| | - Giacomo M. Compagnoni
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Milan Italy
| | - Sabrina Salani
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - George A. Tanteles
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Eleni Zamba-Papanicolaou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Marios Pantzaris
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Kyproula Christodoulou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| |
Collapse
|
25
|
Aslam N, Alvi F. TRPC3 Channel Activity and Viability of Purkinje Neurons can be Regulated by a Local Signalosome. Front Mol Biosci 2022; 9:818682. [PMID: 35265671 PMCID: PMC8899209 DOI: 10.3389/fmolb.2022.818682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Canonical transient receptor potential channels (TRPC3) may play a pivotal role in the development and viability of dendritic arbor in Purkinje neurons. This is a novel postsynaptic channel for glutamatergic synaptic transmission. In the cerebellum, TRPC3 appears to regulate functions relating to motor coordination in a highly specific manner. Gain of TRPC3 function is linked to significant alterations in the density and connectivity of dendritic arbor in Purkinje neurons. TRPC3 signals downstream of class I metabotropic glutamate receptors (mGluR1). Moreover, diacylglycerol (DAG) can directly bind and activate TRPC3 molecules. Here, we investigate a key question: How can the activity of the TRPC3 channel be regulated in Purkinje neurons? We also explore how mGluR1 activation, Ca2+ influx, and DAG homeostasis in Purkinje neurons can be linked to TRPC3 activity modulation. Through systems biology approach, we show that TRPC3 activity can be modulated by a Purkinje cell (PC)–specific local signalosome. The assembly of this signalosome is coordinated by DAG generation after mGluR1 activation. Our results also suggest that purinergic receptor activation leads to the spatial and temporal organization of the TRPC3 signaling module and integration of its key effector molecules such as DAG, PKCγ, DGKγ, and Ca2+ into an organized local signalosome. This signaling machine can regulate the TRPC3 cycling between active, inactive, and desensitized states. Precise activity of the TRPC3 channel is essential for tightly regulating the Ca2+ entry into PCs and thus the balance of lipid and Ca2+ signaling in Purkinje neurons and hence their viability. Cell-type–specific understanding of mechanisms regulating TRPC3 channel activity could be key in identifying therapeutic targeting opportunities.
Collapse
Affiliation(s)
- Naveed Aslam
- BioSystOmics, Houston, TX, United States
- *Correspondence: Naveed Aslam,
| | - Farah Alvi
- BioSystOmics, Houston, TX, United States
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
26
|
Bunting EL, Hamilton J, Tabrizi SJ. Polyglutamine diseases. Curr Opin Neurobiol 2022; 72:39-47. [PMID: 34488036 DOI: 10.1016/j.conb.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Polyglutamine diseases are a collection of nine CAG trinucleotide expansion disorders, presenting with a spectrum of neurological and clinical phenotypes. Recent human, mouse and cell studies of Huntington's disease have highlighted the role of DNA repair genes in somatic expansion of the CAG repeat region, modifying disease pathogenesis. Incomplete splicing of the HTT gene has also been shown to occur in humans, with the resulting exon 1 fragment most probably contributing to the Huntington's disease phenotype. In the spinocerebellar ataxias, studies have converged on transcriptional dysregulation of ion channels as a key disease modifier. In addition, advances have been made in understanding how increased levels of toxic, polyglutamine-expanded proteins can arise in the spinocerebellar ataxias through post-transcriptional and -translational modifications and autophagic mechanisms. Recent studies in spinal and bulbar muscular atrophy implicate similar pathogenic pathways to the more common polyglutamine diseases, highlighting autophagy stimulation as a potential therapeutic target. Finally, the therapeutic use of antisense oligonucleotides in several polyglutamine diseases has shown preclinical benefits and serves as potential future therapies in humans.
Collapse
Affiliation(s)
- Emma L Bunting
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK; UK Dementia Research Institute, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
27
|
Wozniak EAL, Chen Z, Paul S, Yang P, Figueroa KP, Friedrich J, Tschumperlin T, Berken M, Ingram M, Henzler C, Pulst SM, Orr HT. Cholecystokinin 1 receptor activation restores normal mTORC1 signaling and is protective to Purkinje cells of SCA mice. Cell Rep 2021; 37:109831. [PMID: 34644575 PMCID: PMC8916043 DOI: 10.1016/j.celrep.2021.109831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of genetic diseases characterized by progressive ataxia and neurodegeneration, often in cerebellar Purkinje neurons. A SCA1 mouse model, Pcp2-ATXN1[30Q]D776, has severe ataxia in absence of progressive Purkinje neuron degeneration and death. Previous RNA-seq analyses identify cerebellar upregulation of the peptide hormone cholecystokinin (Cck) in Pcp2-ATXN1[30Q]D776 mice. Importantly, absence of Cck1 receptor (Cck1R) in Pcp2-ATXN1[30Q]D776 mice confers a progressive disease with Purkinje neuron death. Administration of a Cck1R agonist, A71623, to Pcp2-ATXN1[30Q]D776;Cck-/- and Pcp2-AXTN1[82Q] mice dampens Purkinje neuron pathology and associated deficits in motor performance. In addition, A71623 administration improves motor performance of Pcp2-ATXN2[127Q] SCA2 mice. Moreover, the Cck1R agonist A71623 corrects mTORC1 signaling and improves expression of calbindin in cerebella of AXTN1[82Q] and ATXN2[127Q] mice. These results indicate that manipulation of the Cck-Cck1R pathway is a potential therapeutic target for treatment of diseases involving Purkinje neuron degeneration.
Collapse
Affiliation(s)
- Emily A L Wozniak
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhao Chen
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Praseuth Yang
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jill Friedrich
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler Tschumperlin
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Berken
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Melissa Ingram
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine Henzler
- RISS Bioinformatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Harry T Orr
- Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Niewiadomska-Cimicka A, Doussau F, Perot JB, Roux MJ, Keime C, Hache A, Piguet F, Novati A, Weber C, Yalcin B, Meziane H, Champy MF, Grandgirard E, Karam A, Messaddeq N, Eisenmann A, Brouillet E, Nguyen HHP, Flament J, Isope P, Trottier Y. SCA7 Mouse Cerebellar Pathology Reveals Preferential Downregulation of Key Purkinje Cell-Identity Genes and Shared Disease Signature with SCA1 and SCA2. J Neurosci 2021; 41:4910-4936. [PMID: 33888607 PMCID: PMC8260160 DOI: 10.1523/jneurosci.1882-20.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Frédéric Doussau
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Jean-Baptiste Perot
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Celine Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Françoise Piguet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Ariana Novati
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Chantal Weber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Hamid Meziane
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Marie-France Champy
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
- Celphedia, Phenomin, Institut Clinique de la Souris, Illkirch 67404, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Alice Karam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Aurélie Eisenmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Hoa Huu Phuc Nguyen
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen 72076, Germany
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Julien Flament
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Direction de la Recherche Fondamentale, Institut de biologie François Jacob, Molecular Imaging Research Center, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses 92260, France
| | - Philippe Isope
- Université de Strasbourg, Illkirch 67404, France
- Centre National de la Recherche Scientifique UPR3212, Strasbourg 67000, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch 67404, U964, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
29
|
van’t Sant LJ, White JJ, Hoeijmakers JHJ, Vermeij WP, Jaarsma D. In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathol Commun 2021; 9:94. [PMID: 34020718 PMCID: PMC8139001 DOI: 10.1186/s40478-021-01200-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent staining of newly transcribed RNA via metabolic labelling with 5-ethynyluridine (EU) and click chemistry enables visualisation of changes in transcription, such as in conditions of cellular stress. Here, we tested whether EU labelling can be used to examine transcription in vivo in mouse models of nervous system disorders. We show that injection of EU directly into the cerebellum results in reproducible labelling of newly transcribed RNA in cerebellar neurons and glia, with cell type-specific differences in relative labelling intensities, such as Purkinje cells exhibiting the highest levels. We also observed EU-labelling accumulating into cytoplasmic inclusions, indicating that EU, like other modified uridines, may introduce non-physiological properties in labelled RNAs. Additionally, we found that EU induces Purkinje cell degeneration nine days after EU injection, suggesting that EU incorporation not only results in abnormal RNA transcripts, but also eventually becomes neurotoxic in highly transcriptionally-active neurons. However, short post-injection intervals of EU labelling in both a Purkinje cell-specific DNA repair-deficient mouse model and a mouse model of spinocerebellar ataxia 1 revealed reduced transcription in Purkinje cells compared to controls. We combined EU labelling with immunohistology to correlate altered EU staining with pathological markers, such as genotoxic signalling factors. These data indicate that the EU-labelling method provided here can be used to identify changes in transcription in vivo in nervous system disease models.
Collapse
|
30
|
Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. J Neurosci 2021; 41:3777-3798. [PMID: 33737457 DOI: 10.1523/jneurosci.2401-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The stromal interaction molecule 1 (STIM1) is an ER-Ca2+ sensor and an essential component of ER-Ca2+ store operated Ca2+ entry. Loss of STIM1 affects metabotropic glutamate receptor 1 (mGluR1)-mediated synaptic transmission, neuronal Ca2+ homeostasis, and intrinsic plasticity in Purkinje neurons (PNs). Long-term changes of intracellular Ca2+ signaling in PNs led to neurodegenerative conditions, as evident in individuals with mutations of the ER-Ca2+ channel, the inositol 1,4,5-triphosphate receptor. Here, we asked whether changes in such intrinsic neuronal properties, because of loss of STIM1, have an age-dependent impact on PNs. Consequently, we analyzed mRNA expression profiles and cerebellar morphology in PN-specific STIM1 KO mice (STIM1PKO ) of both sexes across ages. Our study identified a requirement for STIM1-mediated Ca2+ signaling in maintaining the expression of genes belonging to key biological networks of synaptic function and neurite development among others. Gene expression changes correlated with altered patterns of dendritic morphology and greater innervation of PN dendrites by climbing fibers, in aging STIM1PKO mice. Together, our data identify STIM1 as an important regulator of Ca2+ homeostasis and neuronal excitability in turn required for maintaining the optimal transcriptional profile of PNs with age. Our findings are significant in the context of understanding how dysregulated calcium signals impact cellular mechanisms in multiple neurodegenerative disorders.SIGNIFICANCE STATEMENT In Purkinje neurons (PNs), the stromal interaction molecule 1 (STIM1) is required for mGluR1-dependent synaptic transmission, refilling of ER Ca2+ stores, regulation of spike frequency, and cerebellar memory consolidation. Here, we provide evidence for a novel role of STIM1 in maintaining the gene expression profile and optimal synaptic connectivity of PNs. Expression of genes related to neurite development and synaptic organization networks is altered in PNs with persistent loss of STIM1. In agreement with these findings the dendritic morphology of PNs and climbing fiber innervations on PNs also undergo significant changes with age. These findings identify a new role for dysregulated intracellular calcium signaling in neurodegenerative disorders and provide novel therapeutic insights.
Collapse
|
31
|
White JJ, Bosman LWJ, Blot FGC, Osório C, Kuppens BW, Krijnen WHJJ, Andriessen C, De Zeeuw CI, Jaarsma D, Schonewille M. Region-specific preservation of Purkinje cell morphology and motor behavior in the ATXN1[82Q] mouse model of spinocerebellar ataxia 1. Brain Pathol 2021; 31:e12946. [PMID: 33724582 PMCID: PMC8412070 DOI: 10.1111/bpa.12946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023] Open
Abstract
Purkinje cells are the primary processing units of the cerebellar cortex and display molecular heterogeneity that aligns with differences in physiological properties, projection patterns, and susceptibility to disease. In particular, multiple mouse models that feature Purkinje cell degeneration are characterized by incomplete and patterned Purkinje cell degeneration, suggestive of relative sparing of Purkinje cell subpopulations, such as those expressing Aldolase C/zebrinII (AldoC) or residing in the vestibulo‐cerebellum. Here, we investigated a well‐characterized Purkinje cell‐specific mouse model for spinocerebellar ataxia type 1 (SCA1) that expresses human ATXN1 with a polyQ expansion (82Q). Our pathological analysis confirms previous findings that Purkinje cells of the vestibulo‐cerebellum, i.e., the flocculonodular lobes, and crus I are relatively spared from key pathological hallmarks: somatodendritic atrophy, and the appearance of p62/SQSTM1‐positive inclusions. However, immunohistological analysis of transgene expression revealed that spared Purkinje cells do not express mutant ATXN1 protein, indicating the sparing of Purkinje cells can be explained by an absence of transgene expression. Additionally, we found that Purkinje cells in other cerebellar lobules that typically express AldoC, not only display severe pathology but also show loss of AldoC expression. The relatively preserved flocculonodular lobes and crus I showed a substantial fraction of Purkinje cells that expressed the mutant protein and displayed pathology as well as loss of AldoC expression. Despite considerable pathology in these lobules, behavioral analyses demonstrated a relative sparing of related functions, suggestive of sufficient functional cerebellar reserve. Together, the data indicate that mutant ATXN1 affects both AldoC‐positive and AldoC‐negative Purkinje cells and disrupts normal parasagittal AldoC expression in Purkinje cells. Our results show that, in a mouse model otherwise characterized by widespread Purkinje cell degeneration, sparing of specific subpopulations is sufficient to maintain normal performance of specific behaviors within the context of the functional, modular map of the cerebellum.
Collapse
Affiliation(s)
- Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Bram W Kuppens
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
32
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
33
|
Wu QW, Kapfhammer JP. Modulation of Increased mGluR1 Signaling by RGS8 Protects Purkinje Cells From Dendritic Reduction and Could Be a Common Mechanism in Diverse Forms of Spinocerebellar Ataxia. Front Cell Dev Biol 2021; 8:569889. [PMID: 33553137 PMCID: PMC7858651 DOI: 10.3389/fcell.2020.569889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are a group of hereditary neurodegenerative diseases which are caused by diverse genetic mutations in a variety of different genes. We have identified RGS8, a regulator of G-protein signaling, as one of the genes which are dysregulated in different mouse models of SCA (e.g., SCA1, SCA2, SCA7, and SCA14). In the moment, little is known about the role of RGS8 for pathogenesis of spinocerebellar ataxia. We have studied the expression of RGS8 in the cerebellum in more detail and show that it is specifically expressed in mouse cerebellar Purkinje cells. In a mouse model of SCA14 with increased PKCγ activity, RGS8 expression was also increased. RGS8 overexpression could partially counteract the negative effects of DHPG-induced mGluR1 signaling for the expansion of Purkinje cell dendrites. Our results suggest that the increased expression of RGS8 is an important mediator of mGluR1 pathway dysregulation in Purkinje cells. These findings provide new insights in the role of RGS8 and mGluR1 signaling in Purkinje cells and for the pathology of SCAs.
Collapse
Affiliation(s)
- Qin-Wei Wu
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- Institute of Anatomy, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Kim N, Kim KH, Lim WJ, Kim J, Kim SA, Yoo HJ. Whole Exome Sequencing Identifies Novel De Novo Variants Interacting with Six Gene Networks in Autism Spectrum Disorder. Genes (Basel) 2020; 12:genes12010001. [PMID: 33374967 PMCID: PMC7822011 DOI: 10.3390/genes12010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable condition caused by a combination of environmental and genetic factors such as de novo and inherited variants, as well as rare or common variants among hundreds of related genes. Previous genome-wide association studies have identified susceptibility genes; however, most ASD-associated genes remain undiscovered. This study aimed to examine rare de novo variants to identify genetic risk factors of ASD using whole exome sequencing (WES), functional characterization, and genetic network analyses of identified variants using Korean familial dataset. We recruited children with ASD and their biological parents. The clinical best estimate diagnosis of ASD was made according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-5TM), using comprehensive diagnostic instruments. The final analyses included a total of 151 individuals from 51 families. Variants were identified and filtered using the GATK Best Practices for bioinformatics analysis, followed by genome alignments and annotation to the reference genome assembly GRCh37 (liftover to GRCh38), and further annotated using dbSNP 154 build databases. To evaluate allele frequencies of de novo variants, we used the dbSNP, gnomAD exome v2.1.1, and genome v3.0. We used Ingenuity Pathway Analysis (IPA, Qiagen) software to construct networks using all identified de novo variants with known autism-related genes to find probable relationships. We identified 36 de novo variants with potential relations to ASD; 27 missense, two silent, one nonsense, one splice region, one splice site, one 5′ UTR, and one intronic SNV and two frameshift deletions. We identified six networks with functional relationships. Among the interactions between de novo variants, the IPA assay found that the NF-κB signaling pathway and its interacting genes were commonly observed at two networks. The relatively small cohort size may affect the results of novel ASD genes with de novo variants described in our findings. We did not conduct functional experiments in this study. Because of the diversity and heterogeneity of ASD, the primary purpose of this study was to investigate probable causative relationships between novel de novo variants and known autism genes. Additionally, we based functional relationships with known genes on network analysis rather than on statistical analysis. We identified new variants that may underlie genetic factors contributing to ASD in Korean families using WES and genetic network analyses. We observed novel de novo variants that might be functionally linked to ASD, of which the variants interact with six genetic networks.
Collapse
Affiliation(s)
- Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (N.K.); (K.H.K.); (W.-J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (N.K.); (K.H.K.); (W.-J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (N.K.); (K.H.K.); (W.-J.L.)
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Korea
- Correspondence: (S.A.K.); (H.J.Y.); Tel.: +82-42-259-1672 (S.A.K.); +82-31-787-7436 (H.J.Y.)
| | - Hee Jeong Yoo
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Psychiatry, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea
- Correspondence: (S.A.K.); (H.J.Y.); Tel.: +82-42-259-1672 (S.A.K.); +82-31-787-7436 (H.J.Y.)
| |
Collapse
|
35
|
Abstract
Cerebellum plays an important role in several key functions including control of movement, balance, cognition, reward, and affect. Imaging studies indicate that distinct cerebellar regions contribute to these different functions. Molecular studies examining regional cerebellar differences are lagging as they are mostly done on whole cerebellar extracts thereby masking any distinctions across specific cerebellar regions. Here we describe a technique to reproducibly and quickly dissect four different cerebellar regions: the deep cerebellar nuclei (DCN), anterior and posterior vermal cerebellar cortex, and the cerebellar cortex of the hemispheres. Dissecting out these distinct regions allows for the exploration of molecular mechanisms that may underlie their unique contributions to balance, movement, affect and cognition. This technique may also be used to explore differences in pathological susceptibility of these specific regions across various mouse disease models.
Collapse
|
36
|
Chopra R, Bushart DD, Cooper JP, Yellajoshyula D, Morrison LM, Huang H, Handler HP, Man LJ, Dansithong W, Scoles DR, Pulst SM, Orr HT, Shakkottai VG. Altered Capicua expression drives regional Purkinje neuron vulnerability through ion channel gene dysregulation in spinocerebellar ataxia type 1. Hum Mol Genet 2020; 29:3249-3265. [PMID: 32964235 PMCID: PMC7689299 DOI: 10.1093/hmg/ddaa212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Selective neuronal vulnerability in neurodegenerative disease is poorly understood. Using the ATXN1[82Q] model of spinocerebellar ataxia type 1 (SCA1), we explored the hypothesis that regional differences in Purkinje neuron degeneration could provide novel insights into selective vulnerability. ATXN1[82Q] Purkinje neurons from the anterior cerebellum were found to degenerate earlier than those from the nodular zone, and this early degeneration was associated with selective dysregulation of ion channel transcripts and altered Purkinje neuron spiking. Efforts to understand the basis for selective dysregulation of channel transcripts revealed modestly increased expression of the ATXN1 co-repressor Capicua (Cic) in anterior cerebellar Purkinje neurons. Importantly, disrupting the association between ATXN1 and Cic rescued the levels of these ion channel transcripts, and lentiviral overexpression of Cic in the nodular zone accelerated both aberrant Purkinje neuron spiking and neurodegeneration. These findings reinforce the central role for Cic in SCA1 cerebellar pathophysiology and suggest that only modest reductions in Cic are needed to have profound therapeutic impact in SCA1.
Collapse
Affiliation(s)
- Ravi Chopra
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
- Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John P Cooper
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Logan M Morrison
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Haoran Huang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hillary P Handler
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke J Man
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci 2020; 77:4015-4029. [PMID: 32306062 PMCID: PMC7541529 DOI: 10.1007/s00018-020-03520-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
38
|
Dynamics of a Protein Interaction Network Associated to the Aggregation of polyQ-Expanded Ataxin-1. Genes (Basel) 2020; 11:genes11101129. [PMID: 32992839 PMCID: PMC7600199 DOI: 10.3390/genes11101129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Several experimental models of polyglutamine (polyQ) diseases have been previously developed that are useful for studying disease progression in the primarily affected central nervous system. However, there is a missing link between cellular and animal models that would indicate the molecular defects occurring in neurons and are responsible for the disease phenotype in vivo. Methods: Here, we used a computational approach to identify dysregulated pathways shared by an in vitro and an in vivo model of ATXN1(Q82) protein aggregation, the mutant protein that causes the neurodegenerative polyQ disease spinocerebellar ataxia type-1 (SCA1). Results: A set of common dysregulated pathways were identified, which were utilized to construct cerebellum-specific protein-protein interaction (PPI) networks at various time-points of protein aggregation. Analysis of a SCA1 network indicated important nodes which regulate its function and might represent potential pharmacological targets. Furthermore, a set of drugs interacting with these nodes and predicted to enter the blood–brain barrier (BBB) was identified. Conclusions: Our study points to molecular mechanisms of SCA1 linked from both cellular and animal models and suggests drugs that could be tested to determine whether they affect the aggregation of pathogenic ATXN1 and SCA1 disease progression.
Collapse
|
39
|
Analyzing Gene Expression Profiles from Ataxia and Spasticity Phenotypes to Reveal Spastic Ataxia Related Pathways. Int J Mol Sci 2020; 21:ijms21186722. [PMID: 32937819 PMCID: PMC7555177 DOI: 10.3390/ijms21186722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Spastic ataxia (SA) is a group of rare neurodegenerative diseases, characterized by mixed features of generalized ataxia and spasticity. The pathogenetic mechanisms that drive the development of the majority of these diseases remain unclear, although a number of studies have highlighted the involvement of mitochondrial and lipid metabolism, as well as calcium signaling. Our group has previously published the GBA2 c.1780G > C (p.Asp594His) missense variant as the cause of spastic ataxia in a Cypriot consanguineous family, and more recently the biochemical characterization of this variant in patients’ lymphoblastoid cell lines. GBA2 is a crucial enzyme of sphingolipid metabolism. However, it is unknown if GBA2 has additional functions and therefore additional pathways may be involved in the disease development. The current study introduces bioinformatics approaches to better understand the pathogenetic mechanisms of the disease. We analyzed publicly available human gene expression datasets of diseases presented with ‘ataxia’ or ‘spasticity’ in their clinical phenotype and we performed pathway analysis in order to: (a) search for candidate perturbed pathways of SA; and (b) evaluate the role of sphingolipid signaling pathway and sphingolipid metabolism in the disease development, through the identification of differentially expressed genes in patients compared to controls. Our results demonstrate consistent differential expression of genes that participate in the sphingolipid pathways and highlight alterations in the pathway level that might be associated with the disease phenotype. Through enrichment analysis, we discuss additional pathways that are connected to sphingolipid pathways, such as PI3K-Akt signaling, MAPK signaling, calcium signaling, and lipid and carbohydrate metabolism as the most enriched for ataxia and spasticity phenotypes.
Collapse
|
40
|
Niewiadomska-Cimicka A, Hache A, Trottier Y. Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Front Neurosci 2020; 14:571. [PMID: 32581696 PMCID: PMC7296114 DOI: 10.3389/fnins.2020.00571] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (polyQ SCAs) include SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17 and constitute a group of adult onset neurodegenerative disorders caused by the expansion of a CAG repeat sequence located within the coding region of specific genes, which translates into polyglutamine tract in the corresponding proteins. PolyQ SCAs are characterized by degeneration of the cerebellum and its associated structures and lead to progressive ataxia and other diverse symptoms. In recent years, gene and epigenetic deregulations have been shown to play a critical role in the pathogenesis of polyQ SCAs. Here, we provide an overview of the functions of wild type and pathogenic polyQ SCA proteins in gene regulation, describe the extent and nature of gene expression changes and their pathological consequences in diseases, and discuss potential avenues to further investigate converging and distinct disease pathways and to develop therapeutic strategies.
Collapse
Affiliation(s)
- Anna Niewiadomska-Cimicka
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Antoine Hache
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Yvon Trottier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Strasbourg, France
| |
Collapse
|
41
|
Prestori F, Moccia F, D’Angelo E. Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA). Int J Mol Sci 2019; 21:ijms21010216. [PMID: 31892274 PMCID: PMC6981692 DOI: 10.3390/ijms21010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
42
|
Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7. Neuron 2019; 105:630-644.e9. [PMID: 31859031 DOI: 10.1016/j.neuron.2019.11.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/18/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Sirtuin 1 (Sirt1) is a NAD+-dependent deacetylase capable of countering age-related neurodegeneration, but the basis of Sirt1 neuroprotection remains elusive. Spinocerebellar ataxia type 7 (SCA7) is an inherited CAG-polyglutamine repeat disorder. Transcriptome analysis of SCA7 mice revealed downregulation of calcium flux genes accompanied by abnormal calcium-dependent cerebellar membrane excitability. Transcription-factor binding-site analysis of downregulated genes yielded Sirt1 target sites, and we observed reduced Sirt1 activity in the SCA7 mouse cerebellum with NAD+ depletion. SCA7 patients displayed increased poly(ADP-ribose) in cerebellar neurons, supporting poly(ADP-ribose) polymerase-1 upregulation. We crossed Sirt1-overexpressing mice with SCA7 mice and noted rescue of neurodegeneration and calcium flux defects. NAD+ repletion via nicotinamide riboside ameliorated disease phenotypes in SCA7 mice and patient stem cell-derived neurons. Sirt1 thus achieves neuroprotection by promoting calcium regulation, and NAD+ dysregulation underlies Sirt1 dysfunction in SCA7, indicating that cerebellar ataxias exhibit altered calcium homeostasis because of metabolic dysregulation, suggesting shared therapy targets.
Collapse
|
43
|
Wang H, Sawai A, Toji N, Sugioka R, Shibata Y, Suzuki Y, Ji Y, Hayase S, Akama S, Sese J, Wada K. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds. PLoS Biol 2019; 17:e3000476. [PMID: 31721761 PMCID: PMC6853299 DOI: 10.1371/journal.pbio.3000476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.
Collapse
Affiliation(s)
- Hongdi Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Azusa Sawai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Rintaro Sugioka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuika Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yu Ji
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Satoru Akama
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Humanome Lab Inc., Tokyo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
44
|
Sugihara Y, Onoue S, Tashiro K, Sato M, Hasegawa T, Katakura Y. Carnosine induces intestinal cells to secrete exosomes that activate neuronal cells. PLoS One 2019; 14:e0217394. [PMID: 31136600 PMCID: PMC6538158 DOI: 10.1371/journal.pone.0217394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recently, we showed that imidazole dipeptide such as carnosine contained abundantly in chicken breast meat improves brain function in a double-blind randomized controlled trial. However, the underlying molecular mechanisms remain unknown. Here, we investigated whether carnosine activates intestinal epithelial cells and induces the secretion of factors that activate brain function. We focused on exosomes derived from intestinal epithelial cells as mediators of brain-gut interaction. Results showed that exosomes derived from Caco-2 cells treated with carnosine significantly induced neurite growth in SH-SY5Y cells. To clarify the molecular basis of this finding, we performed integrated analysis of microRNAs (miRNAs) with altered expression in exosomes in response to carnosine treatment and mRNAs with altered expression in target cells in response to exosome treatment to identify related miRNAs and their target genes. The combination of miR-6769-5p and its target gene ATXN1 was found to be involved in the exosome-induced activation of neuronal cells.
Collapse
Affiliation(s)
- Yuka Sugihara
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Shiori Onoue
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Mikako Sato
- R&D Center, NH Foods, Ltd., Tsukuba, Ibaraki, Japan
| | | | - Yoshinori Katakura
- Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
- Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
45
|
Du X, Wei C, Hejazi Pastor DP, Rao ER, Li Y, Grasselli G, Godfrey J, Palmenberg AC, Andrade J, Hansel C, Gomez CM. α1ACT Is Essential for Survival and Early Cerebellar Programming in a Critical Neonatal Window. Neuron 2019; 102:770-785.e7. [PMID: 30922876 DOI: 10.1016/j.neuron.2019.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/17/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Postnatal cerebellar development is a precisely regulated process involving well-orchestrated expression of neural genes. Neurological phenotypes associated with CACNA1A gene defects have been increasingly recognized, yet the molecular principles underlying this association remain elusive. By characterizing a dose-dependent CACNA1A gene deficiency mouse model, we discovered that α1ACT, as a transcription factor and secondary protein of CACNA1A mRNA, drives dynamic gene expression networks within cerebellar Purkinje cells and is indispensable for neonatal survival. Perinatal loss of α1ACT leads to motor dysfunction through disruption of neurogenesis and synaptic regulatory networks. However, its elimination in adulthood has minimal effect on the cerebellum. These findings shed light on the critical role of α1ACT in facilitating neuronal development in both mice and humans and support a rationale for gene therapies for calcium-channel-associated cerebellar disorders. Finally, we show that bicistronic expression may be common to the voltage-gated calcium channel (VGCC) gene family and may help explain complex genetic syndromes.
Collapse
Affiliation(s)
- Xiaofei Du
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Cenfu Wei
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | | | - Eshaan R Rao
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yan Li
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Grasselli
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Center for Synaptic Neuroscience and Technology, Italian Institute of Technology (IIT), L.go R. Benzi 10, 16132 Genova, Italy
| | - Jack Godfrey
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
46
|
Mellesmoen A, Sheeler C, Ferro A, Rainwater O, Cvetanovic M. Brain Derived Neurotrophic Factor (BDNF) Delays Onset of Pathogenesis in Transgenic Mouse Model of Spinocerebellar Ataxia Type 1 (SCA1). Front Cell Neurosci 2019; 12:509. [PMID: 30718999 PMCID: PMC6348256 DOI: 10.3389/fncel.2018.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a fatal neurodegenerative disease caused by an abnormal expansion of CAG repeats in the Ataxin-1 (ATXN1) gene and characterized by motor deficits and cerebellar neurodegeneration. Even though mutant ATXN1 is expressed from an early age, disease onset usually occurs in patient’s mid-thirties, indicating the presence of compensatory factors that limit the toxic effects of mutant ATXN1 early in disease. Brain derived neurotrophic factor (BDNF) is a growth factor known to be important for the survival and function of cerebellar neurons. Using gene expression analysis, we observed altered BDNF expression in the cerebella of Purkinje neuron specific transgenic mouse model of SCA1, ATXN1[82Q] mice, with increased expression during the early stage and decreased expression in the late stage of disease. We therefore investigated the potentially protective role of BDNF in early stage SCA1 through intraventricular delivery of BDNF via ALZET osmotic pumps. Extrinsic BDNF delivery delayed onset of motor deficits and Purkinje neuron pathology in ATXN1[82Q] mice supporting its use as a novel therapeutic for SCA1.
Collapse
Affiliation(s)
- Aaron Mellesmoen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Carrie Sheeler
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Austin Ferro
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Orion Rainwater
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
47
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|
48
|
Driessen TM, Lee PJ, Lim J. Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. eLife 2018; 7:39981. [PMID: 30507379 PMCID: PMC6292693 DOI: 10.7554/elife.39981] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
The neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1) affects the cerebellum and inferior olive, though previous research has focused primarily on the cerebellum. As a result, it is unknown what molecular alterations are present in the inferior olive, and whether these changes are found in other affected tissues. This study addresses these questions for the first time using two different SCA1 mouse models. We found that differentially regulated genes in the inferior olive segregated into several biological pathways. Comparison of the inferior olive and cerebellum demonstrates that vulnerable tissues in SCA1 are not uniform in their gene expression changes, and express largely discrete but some commonly enriched biological pathways. Importantly, we also found that brain-region-specific differences occur early in disease initiation and progression, and they are shared across the two mouse models of SCA1. This suggests different mechanisms of degeneration at work in the inferior olive and cerebellum.
Collapse
Affiliation(s)
- Terri M Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Paul J Lee
- Department of Genetics, Yale School of Medicine, New Haven, Unites States
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Unites States.,Department of Neuroscience, Yale School of Medicine, New Haven, Unites States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Unites States
| |
Collapse
|
49
|
Friedrich J, Kordasiewicz HB, O'Callaghan B, Handler HP, Wagener C, Duvick L, Swayze EE, Rainwater O, Hofstra B, Benneyworth M, Nichols-Meade T, Yang P, Chen Z, Ortiz JP, Clark HB, Öz G, Larson S, Zoghbi HY, Henzler C, Orr HT. Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight 2018; 3:123193. [PMID: 30385727 PMCID: PMC6238731 DOI: 10.1172/jci.insight.123193] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited ataxia caused by expansion of a translated CAG repeat encoding a glutamine tract in the ataxin-1 (ATXN1) protein. Despite advances in understanding the pathogenesis of SCA1, there are still no therapies to alter its progressive fatal course. RNA-targeting approaches have improved disease symptoms in preclinical rodent models of several neurological diseases. Here, we investigated the therapeutic capability of an antisense oligonucleotide (ASO) targeting mouse Atxn1 in Atxn1154Q/2Q-knockin mice that manifest motor deficits and premature lethality. Following a single ASO treatment at 5 weeks of age, mice demonstrated rescue of these disease-associated phenotypes. RNA-sequencing analysis of genes with expression restored to WT levels in ASO-treated Atxn1154Q/2Q mice was used to demonstrate molecular differences between SCA1 pathogenesis in the cerebellum and disease in the medulla. Finally, select neurochemical abnormalities detected by magnetic resonance spectroscopy in vehicle-treated Atxn1154Q/2Q mice were reversed in the cerebellum and brainstem (a region containing the pons and the medulla) of ASO-treated Atxn1154Q/2Q mice. Together, these findings support the efficacy and therapeutic importance of directly targeting ATXN1 RNA expression as a strategy for treating both motor deficits and lethality in SCA1.
Collapse
Affiliation(s)
- Jillian Friedrich
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Brennon O'Callaghan
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hillary P Handler
- Institute for Translational Neuroscience and.,Graduate Program in Neuroscience
| | - Carmen Wagener
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lisa Duvick
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Orion Rainwater
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bente Hofstra
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Praseuth Yang
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zhao Chen
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Judit Perez Ortiz
- Institute for Translational Neuroscience and.,Graduate Program in Neuroscience
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Larson
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Christine Henzler
- Research Informatics Support Systems Bioinformatics, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harry T Orr
- Institute for Translational Neuroscience and.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
50
|
Xu X, Stoyanova EI, Lemiesz AE, Xing J, Mash DC, Heintz N. Species and cell-type properties of classically defined human and rodent neurons and glia. eLife 2018; 7:e37551. [PMID: 30320555 PMCID: PMC6188473 DOI: 10.7554/elife.37551] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression and epigenetic events in specific cell types in a range of species, including postmortem human brain. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping and immunofluorescence localization. Studies of sixteen human postmortem brains revealed gender specific transcriptional differences, cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event evident in three donor samples. Our data establish a comprehensive approach for analysis of molecular events associated with specific circuits and cell types in a wide variety of human conditions.
Collapse
Affiliation(s)
- Xiao Xu
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elitsa I Stoyanova
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Agata E Lemiesz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Jie Xing
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Deborah C Mash
- Miller School of MedicineUniversity of MiamiMiamiUnited States
| | - Nathaniel Heintz
- Laboratory of Molecular BiologyHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|