1
|
Tordai C, Hathy E, Gyergyák H, Vincze K, Baradits M, Koller J, Póti Á, Jezsó B, Homolya L, Molnár MJ, Nagy L, Szüts D, Apáti Á, Réthelyi JM. Probing the biological consequences of a previously undescribed de novo mutation of ZMYND11 in a schizophrenia patient by CRISPR genome editing and induced pluripotent stem cell based in vitro disease-modeling. Schizophr Res 2024; 273:107-120. [PMID: 38290943 DOI: 10.1016/j.schres.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.
Collapse
Affiliation(s)
- Csongor Tordai
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Edit Hathy
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Hella Gyergyák
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Katalin Vincze
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Máté Baradits
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Júlia Koller
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - Ádám Póti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Bálint Jezsó
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary; Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/c, Budapest, Hungary
| | - László Homolya
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Debrecen, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - Ágota Apáti
- Institute of Molecular Life Sciences, Research Center for Natural Sciences, 1117 Budapest, Magyar tudósok körútja 2, Budapest, Hungary.
| | - János M Réthelyi
- Molecular Psychiatry Research Group, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Budapest, Balassa utca 6, Budapest, Hungary.
| |
Collapse
|
2
|
Son G, Na Y, Kim Y, Son JH, Clemenson GD, Schafer ST, Yoo JY, Parylak SL, Paquola A, Do H, Kim D, Ahn I, Ju M, Kang CS, Ju Y, Jung E, McDonald AH, Park Y, Kim G, Paik SB, Hur J, Kim J, Han YM, Lee SH, Gage FH, Kim JS, Han J. miR-124 coordinates metabolic regulators acting at early stages of human neurogenesis. Commun Biol 2024; 7:1393. [PMID: 39455851 PMCID: PMC11511827 DOI: 10.1038/s42003-024-07089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic dysregulation of neurons is associated with diverse human brain disorders. Metabolic reprogramming occurs during neuronal differentiation, but it is not fully understood which molecules regulate metabolic changes at the early stages of neurogenesis. In this study, we report that miR-124 is a driver of metabolic change at the initiating stage of human neurogenesis. Proteome analysis has shown the oxidative phosphorylation pathway to be the most significantly altered among the differentially expressed proteins (DEPs) in the immature neurons after the knockdown of miR-124. In agreement with these proteomics results, miR-124-depleted neurons display mitochondrial dysfunctions, such as decreased mitochondrial membrane potential and cellular respiration. Moreover, morphological analyses of mitochondria in early differentiated neurons after miR-124 knockdown result in smaller and less mature shapes. Lastly, we show the potential of identified DEPs as novel metabolic regulators in early neuronal development by validating the effects of GSTK1 on cellular respiration. GSTK1, which is upregulated most significantly in miR-124 knockdown neurons, reduces the oxygen consumption rate of neural cells. Collectively, our data highlight the roles of miR-124 in coordinating metabolic maturation at the early stages of neurogenesis and provide insights into potential metabolic regulators associated with human brain disorders characterized by metabolic dysfunctions.
Collapse
Affiliation(s)
- Geurim Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yongsung Kim
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ji-Hoon Son
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Gregory D Clemenson
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Yeon Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Apua Paquola
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hyunsu Do
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dayeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Insook Ahn
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mingyu Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chanhee S Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Younghee Ju
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Sovargen.CO., LTD., Daejeon, Korea
| | - Eunji Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Aidan H McDonald
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Youngjin Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Gilhyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Junho Hur
- College of Medicine, Hanyang University, Seoul, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yong-Mahn Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seung-Hee Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
- Department of Brain and Cognitive Sciences, KAIST, Daejeon, Korea
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jinju Han
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
- BioMedical Research Center, KAIST, Daejeon, Korea.
- KAIST Stem Cell Center, KAIST, Daejeon, Korea.
| |
Collapse
|
3
|
Wang R, Chen L, Zhang Y, Sun B, Liang M. Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis. Life (Basel) 2024; 14:1125. [PMID: 39337908 PMCID: PMC11433357 DOI: 10.3390/life14091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease. Current detection methods can only confirm the diagnosis at the onset of the disease, missing the critical window for early treatment. Recent studies using animal models have found that detecting changes in miRNA sites can predict the onset and severity of the disease in its early stages, facilitating early diagnosis and treatment. miRNAs show expression changes in motor neurons that connect the brain, spinal cord, and brain stem, as well as in the skeletal muscle in mouse models of ALS. Clinically, expression changes in some miRNAs in patients align with those in mouse models, such as the upregulation of miR-29b in the brain and the upregulation of miR-206 in the skeletal muscle. This study provides an overview of some miRNA study findings in humans as well as in animal models, including SOD1, FUS, TDP-43, and C9orf72 transgenic mice and wobbler mice, highlighting the potential of miRNAs as diagnostic markers for ALS. miR-21 and miR-206 are aberrantly expressed in both mouse model and patient samples, positioning them as key potential diagnostic markers in ALS. Additionally, miR-29a, miR-29b, miR-181a, and miR-142-3p have shown aberrant expression in both types of samples and show promise as clinical targets for ALS. Finally, miR-1197 and miR-486b-5p have been recently identified as aberrantly expressed miRNAs in mouse models for ALS, although further studies are needed to determine their viability as diagnostic targets.
Collapse
Affiliation(s)
- Ruili Wang
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | - Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China
| | | | | | | |
Collapse
|
4
|
Vázquez-Ágredos A, Rovira P, Gutiérrez B, Gámiz F, Gallo M. Identification of Differentially Expressed MicroRNAs in the Rat Hippocampus during Adolescence through an Epigenome-Wide Analysis. Dev Neurosci 2024; 46:401-410. [PMID: 38437811 PMCID: PMC11627067 DOI: 10.1159/000538168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
INTRODUCTION Epigenetic mechanisms involving microRNAs (miRNAs) play a fundamental role in many biological processes, particularly during prenatal and early postnatal development. Their role in adolescent brain development, however, has been poorly described. The present study aimed to explore miRNA expression in the hippocampus during adolescence compared to adulthood in rats. METHOD The brains of female and male Wistar rats were extracted, and the hippocampus was freshly dissected at postnatal day 41 (adolescence) and postnatal day 98 (adulthood). An epigenome-wide analysis was conducted to identify the miRNAs significantly expressed in adolescence compared to adulthood. Additionally, target genes of such miRNAs were considered to perform an exploratory Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. RESULTS We identified 16 differentially expressed miRNAs in adolescent male rats compared with adult male rats and 4 differentially expressed miRNAs in adolescent females compared with adult females. Enrichment analysis reinforced that the target genes found are related to neurodevelopmental processes such as cell proliferation, cell migration, and nervous system development. CONCLUSION Our findings suggest a complex pattern of miRNA expression during adolescence, which differs from that in adulthood. The differential expression of miRNA in the hippocampus during adolescence may be associated with the late developmental changes occurring in this brain region. Furthermore, the observed sex differences in miRNA expression patterns indicate potential sexual differentiation in hippocampal development. Further comprehensive investigations are needed to elucidate the roles of miRNA in normal brain development.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Granada, Granada, Spain
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Paula Rovira
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Vicerectorat de Recerca, Universitat de Barcelona, Barcelona, Spain
| | - Blanca Gutiérrez
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Departamento de Psiquiatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | - Fernando Gámiz
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Granada, Granada, Spain
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Milagros Gallo
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Granada, Granada, Spain
- Instituto de Neurociencias, Centro de Investigación Biomédica (CIBM), Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
5
|
Jiang SZ, Shahoha M, Zhang HY, Brancaleone W, Elkahloun A, Tejeda HA, Ashery U, Eiden LE. The guanine nucleotide exchange factor RapGEF2 is required for ERK-dependent immediate-early gene (Egr1) activation during fear memory formation. Cell Mol Life Sci 2024; 81:48. [PMID: 38236296 PMCID: PMC11071968 DOI: 10.1007/s00018-023-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Hai-Ying Zhang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - William Brancaleone
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | | | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, NIMH-IRP, Bethesda, MD, USA
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Lee E Eiden
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Epp S, Chuah SM, Halasz M. Epigenetic Dysregulation in MYCN-Amplified Neuroblastoma. Int J Mol Sci 2023; 24:17085. [PMID: 38069407 PMCID: PMC10707345 DOI: 10.3390/ijms242317085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB), a childhood cancer arising from the neural crest, poses significant clinical challenges, particularly in cases featuring amplification of the MYCN oncogene. Epigenetic factors play a pivotal role in normal neural crest and NB development, influencing gene expression patterns critical for tumorigenesis. This review delves into the multifaceted interplay between MYCN and known epigenetic modifications during NB genesis, shedding light on the intricate regulatory networks underlying the disease. We provide an extensive survey of known epigenetic mechanisms, encompassing DNA methylation, histone modifications, non-coding RNAs, super-enhancers (SEs), bromodomains (BET), and chromatin modifiers in MYCN-amplified (MNA) NB. These epigenetic changes collectively contribute to the dysregulated gene expression landscape observed in MNA NB. Furthermore, we review emerging therapeutic strategies targeting epigenetic regulators, including histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi), and DNA methyltransferase inhibitors (DNMTi). We also discuss and summarize current drugs in preclinical and clinical trials, offering insights into their potential for improving outcomes for MNA NB patients.
Collapse
Affiliation(s)
- Soraya Epp
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Shin Mei Chuah
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
| | - Melinda Halasz
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; (S.E.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
7
|
Barnett MM, Reay WR, Geaghan MP, Kiltschewskij DJ, Green MJ, Weidenhofer J, Glatt SJ, Cairns MJ. miRNA cargo in circulating vesicles from neurons is altered in individuals with schizophrenia and associated with severe disease. SCIENCE ADVANCES 2023; 9:eadi4386. [PMID: 38019909 PMCID: PMC10686555 DOI: 10.1126/sciadv.adi4386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
While RNA expression appears to be altered in several brain disorders, the constraints of postmortem analysis make it impractical for well-powered population studies and biomarker development. Given that the unique molecular composition of neurons are reflected in their extracellular vesicles (EVs), we hypothesized that the fractionation of neuron derived EVs provides an opportunity to specifically profile their encapsulated contents noninvasively from blood. To investigate this hypothesis, we determined miRNA expression in microtubule associated protein 1B (MAP1B)-enriched serum EVs derived from neurons from a large cohort of individuals with schizophrenia and nonpsychiatric comparison participants. We observed dysregulation of miRNA in schizophrenia subjects, in particular those with treatment-resistance and severe cognitive deficits. These data support the hypothesis that schizophrenia is associated with alterations in posttranscriptional regulation of synaptic gene expression and provides an example of the potential utility of tissue-specific EV analysis in brain disorders.
Collapse
Affiliation(s)
- Michelle M. Barnett
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - William R. Reay
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Michael P. Geaghan
- Kinghorn Centre for Clinical Genomics, Garvan Medical Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Melissa J. Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Stephen J. Glatt
- Psychiatric Genetic Epidemiology and Neurobiology Laboratory (PsychGENe lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| |
Collapse
|
8
|
Taylor SR, Kobayashi M, Vilella A, Tiwari D, Zolboot N, Du JX, Spencer KR, Hartzell A, Girgiss C, Abaci YT, Shao Y, De Sanctis C, Bellenchi GC, Darnell RB, Gross C, Zoli M, Berg DK, Lippi G. MicroRNA-218 instructs proper assembly of hippocampal networks. eLife 2023; 12:e82729. [PMID: 37862092 PMCID: PMC10637775 DOI: 10.7554/elife.82729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The assembly of the mammalian brain is orchestrated by temporally coordinated waves of gene expression. Post-transcriptional regulation by microRNAs (miRNAs) is a key aspect of this program. Indeed, deletion of neuron-enriched miRNAs induces strong developmental phenotypes, and miRNA levels are altered in patients with neurodevelopmental disorders. However, the mechanisms used by miRNAs to instruct brain development remain largely unexplored. Here, we identified miR-218 as a critical regulator of hippocampal assembly. MiR-218 is highly expressed in the hippocampus and enriched in both excitatory principal neurons (PNs) and GABAergic inhibitory interneurons (INs). Early life inhibition of miR-218 results in an adult brain with a predisposition to seizures. Changes in gene expression in the absence of miR-218 suggest that network assembly is impaired. Indeed, we find that miR-218 inhibition results in the disruption of early depolarizing GABAergic signaling, structural defects in dendritic spines, and altered intrinsic membrane excitability. Conditional knockout of Mir218-2 in INs, but not PNs, is sufficient to recapitulate long-term instability. Finally, de-repressing Kif21b and Syt13, two miR-218 targets, phenocopies the effects on early synchronous network activity induced by miR-218 inhibition. Taken together, the data suggest that miR-218 orchestrates formative events in PNs and INs to produce stable networks.
Collapse
Affiliation(s)
- Seth R Taylor
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Mariko Kobayashi
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Durgesh Tiwari
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Norjin Zolboot
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Jessica X Du
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Kathryn R Spencer
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Andrea Hartzell
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | - Carol Girgiss
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yusuf T Abaci
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Yufeng Shao
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| | | | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics A Buzzati-TraversoNaplesItaly
- IRCCS Fondazione Santa LuciaRomeItaly
| | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| | - Christina Gross
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Pediatrics, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences; Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio EmiliaModenaItaly
| | - Darwin K Berg
- Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Giordano Lippi
- Department of Neuroscience, Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
9
|
Rashidi SK, Kalirad A, Rafie S, Behzad E, Dezfouli MA. The role of microRNAs in neurobiology and pathophysiology of the hippocampus. Front Mol Neurosci 2023; 16:1226413. [PMID: 37727513 PMCID: PMC10506409 DOI: 10.3389/fnmol.2023.1226413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding and well-conserved RNAs that are linked to many aspects of development and disorders. MicroRNAs control the expression of genes related to different biological processes and play a prominent role in the harmonious expression of many genes. During neural development of the central nervous system, miRNAs are regulated in time and space. In the mature brain, the dynamic expression of miRNAs continues, highlighting their functional importance in neurons. The hippocampus, as one of the crucial brain structures, is a key component of major functional connections in brain. Gene expression abnormalities in the hippocampus lead to disturbance in neurogenesis, neural maturation and synaptic formation. These disturbances are at the root of several neurological disorders and behavioral deficits, including Alzheimer's disease, epilepsy and schizophrenia. There is strong evidence that abnormalities in miRNAs are contributed in neurodegenerative mechanisms in the hippocampus through imbalanced activity of ion channels, neuronal excitability, synaptic plasticity and neuronal apoptosis. Some miRNAs affect oxidative stress, inflammation, neural differentiation, migration and neurogenesis in the hippocampus. Furthermore, major signaling cascades in neurodegeneration, such as NF-Kβ signaling, PI3/Akt signaling and Notch pathway, are closely modulated by miRNAs. These observations, suggest that microRNAs are significant regulators in the complicated network of gene regulation in the hippocampus. In the current review, we focus on the miRNA functional role in the progression of normal development and neurogenesis of the hippocampus. We also consider how miRNAs in the hippocampus are crucial for gene expression mechanisms in pathophysiological pathways.
Collapse
Affiliation(s)
- Seyed Khalil Rashidi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ata Kalirad
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Shahram Rafie
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ebrahim Behzad
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Ansari Dezfouli
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Neuroscience Lab, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Van der Auwera S, Garvert L, Ameling S, Völzke H, Nauck M, Völker U, Grabe HJ. The interplay between micro RNAs and genetic liability to Alzheimer's Disease on memory trajectories in the general population. Psychiatry Res 2023; 323:115141. [PMID: 36905902 DOI: 10.1016/j.psychres.2023.115141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
Deficits in cognitive function and memory are common early symptoms of neurodegenerative disorders, such as Alzheimer's Disease (AD). Several studies have discussed micro RNAs (miRNAs) as potential epigenetic early detection biomarkers. In a longitudinal general population sample (n = 548) from the Study of Health in Pomerania, we analyzed the associations between 167 baseline miRNA levels and changes in verbal memory scores with a mean follow-up time of 7.4 years. We additionally assessed the impact of an individual's genetic liability for AD on verbal memory scores in n = 2,334 subjects and a possible interactions between epigenetic and genetic markers. Results revealed two miRNAs associated with changes in immediate verbal memory over time. In interaction analyses between miRNAs and a polygenic risk score for AD, five miRNAs showed a significant interaction effect on changes in verbal memory. All of these miRNAs have previously been identified in the context of AD, neurodegeneration or cognition. Our study provides candidate miRNAs for a decline in verbal memory as an early symptom of neurodegeneration and AD. Further experimental studies are needed to verify the diagnostic value of these miRNA markers in the prodromal stage of AD.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany.
| | - Linda Garvert
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
12
|
Tan Z, Li W, Cheng X, Zhu Q, Zhang X. Non-Coding RNAs in the Regulation of Hippocampal Neurogenesis and Potential Treatment Targets for Related Disorders. Biomolecules 2022; 13:biom13010018. [PMID: 36671403 PMCID: PMC9855933 DOI: 10.3390/biom13010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, circRNAs, and piRNAs, do not encode proteins. Nonetheless, they have critical roles in a variety of cellular activities-such as development, neurogenesis, degeneration, and the response to injury to the nervous system-via protein translation, RNA splicing, gene activation, silencing, modifications, and editing; thus, they may serve as potential targets for disease treatment. The activity of adult neural stem cells (NSCs) in the subgranular zone of the hippocampal dentate gyrus critically influences hippocampal function, including learning, memory, and emotion. ncRNAs have been shown to be involved in the regulation of hippocampal neurogenesis, including proliferation, differentiation, and migration of NSCs and synapse formation. The interaction among ncRNAs is complex and diverse and has become a major topic within the life science. This review outlines advances in research on the roles of ncRNAs in modulating NSC bioactivity in the hippocampus and discusses their potential applications in the treatment of illnesses affecting the hippocampus.
Collapse
Affiliation(s)
- Zhengye Tan
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wen Li
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiang Cheng
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
- Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong 226001, China
| | - Xinhua Zhang
- Department of Anatomy, Institute of Neurobiology, Medical School, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Central Lab, Yancheng Third People’s Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng 224001, China
- Correspondence:
| |
Collapse
|
13
|
Dubonyte U, Asenjo-Martinez A, Werge T, Lage K, Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol Commun 2022; 10:183. [PMID: 36527106 PMCID: PMC9756764 DOI: 10.1186/s40478-022-01460-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SZ) is a severe psychiatric disorder, with a prevalence of 1-2% world-wide and substantial health- and social care costs. The pathology is influenced by both genetic and environmental factors, however the underlying cause still remains elusive. SZ has symptoms including delusions, hallucinations, confused thoughts, diminished emotional responses, social withdrawal and anhedonia. The onset of psychosis is usually in late adolescence or early adulthood. Multiple genome-wide association and whole exome sequencing studies have provided extraordinary insights into the genetic variants underlying familial as well as polygenic forms of the disease. Nonetheless, a major limitation in schizophrenia research remains the lack of clinically relevant animal models, which in turn hampers the development of novel effective therapies for the patients. The emergence of human induced pluripotent stem cell (hiPSC) technology has allowed researchers to work with SZ patient-derived neuronal and glial cell types in vitro and to investigate the molecular basis of the disorder in a human neuronal context. In this review, we summarise findings from available studies using hiPSC-based neural models and discuss how these have provided new insights into molecular and cellular pathways of SZ. Further, we highlight different examples of how these models have shown alterations in neurogenesis, neuronal maturation, neuronal connectivity and synaptic impairment as well as mitochondrial dysfunction and dysregulation of miRNAs in SZ patient-derived cultures compared to controls. We discuss the pros and cons of these models and describe the potential of using such models for deciphering the contribution of specific human neural cell types to the development of the disease.
Collapse
Affiliation(s)
- Ugne Dubonyte
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine and Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Stanley Center for Psychiatric Research and The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Agnete Kirkeby
- Department of Neuroscience and Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:1366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
15
|
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, Emregul E. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Adv Biol (Weinh) 2022; 6:e2101317. [PMID: 35347890 DOI: 10.1002/adbi.202101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
Collapse
Affiliation(s)
- Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara University, Ankara, 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Melis Isik
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Turkey
| | - Can Berk Camci
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Sila Bilgin
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Fadime Kiran
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Babatunde O Okesola
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Emel Emregul
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
16
|
Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14:219-230. [PMID: 35432739 PMCID: PMC8968214 DOI: 10.4252/wjsc.v14.i3.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accompanied by variable positive and negative symptoms and cognitive deficits. Although many genetic risk factors have been identified, SCZ is also considered as a neurodevelopmental disorder. Elucidation of the pathogenesis and the development of treatment is challenging because complex interactions occur between these genetic risk factors and environment in essential neurodevelopmental processes. Adult neural stem cells share a lot of similarities with embryonic neural stem cells and provide a promising model for studying neuronal development in adulthood. These adult neural stem cells also play an important role in cognitive functions including temporal and spatial memory encoding and context discrimination, which have been shown to be closely linked with many psychiatric disorders, such as SCZ. Here in this review, we focus on the SCZ risk genes and the key components in related signaling pathways in adult hippocampal neural stem cells and summarize their roles in adult neurogenesis and animal behaviors. We hope that this would be helpful for the understanding of the contribution of dysregulated adult neural stem cells in the pathogenesis of SCZ and for the identification of potential therapeutic targets, which could facilitate the development of novel medication and treatment.
Collapse
Affiliation(s)
- Ling Hu
- Department of Laboratory Animal Science and Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
17
|
Expression Profile of miRs in Mesial Temporal Lobe Epilepsy: Systematic Review. Int J Mol Sci 2022; 23:ijms23020951. [PMID: 35055144 PMCID: PMC8781102 DOI: 10.3390/ijms23020951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy in children and adults. TLE is characterized by variable onset and seizures. Moreover, this form of epilepsy is often resistant to pharmacotherapy. The search for new mechanisms for the development of TLE may provide us with a key to the development of new diagnostic methods and a personalized approach to the treatment. In recent years, the role of non-coding ribonucleic acids (RNA) has been actively studied, among which microRNA (miR) is of the greatest interest. (1) Background: The purpose of the systematic review is to analyze the studies carried out on the role of miRs in the development of mesial TLE (mTLE) and update the existing knowledge about the biomarkers of this disease. (2) Methods: The search for publications was carried out in the databases PubMed, Springer, Web of Science, Clinicalkeys, Scopus, OxfordPress, Cochrane. The search was carried out using keywords and combinations. We analyzed publications for 2016–2021, including original studies in an animal model of TLE and with the participation of patients with TLE, thematic and systemic reviews, and Cochrane reviews. (3) Results: this thematic review showed that miR‒155, miR‒153, miR‒361‒5p, miR‒4668‒5p, miR‒8071, miR‒197‒5p, miR‒145, miR‒181, miR‒199a, miR‒1183, miR‒129‒2‒3p, miR‒143‒3p (upregulation), miR–134, miR‒0067835, and miR‒153 (downregulation) can be considered as biomarkers of mTLE. However, the roles of miR‒146a, miR‒142, miR‒106b, and miR‒223 are questionable and need further study. (4) Conclusion: In the future, it will be possible to consider previously studied miRs, which have high specificity and sensitivity in mTLE, as prognostic biomarkers (predictors) of the risk of developing this disease in patients with potentially epileptogenic structural damage to the mesial regions of the temporal lobe of the brain (congenital disorders of the neuronal migration and neurogenesis, brain injury, neuro-inflammation, tumor, impaired blood supply, neurodegeneration, etc.).
Collapse
|
18
|
Chen J, Liu C, Xu M, Zhu J, Xia Z. Upregulation of miR-19b-3p exacerbates chronic stress-induced changes in synaptic plasticity and cognition by targeting Drebrin. Neuropharmacology 2022; 207:108951. [PMID: 35041806 DOI: 10.1016/j.neuropharm.2022.108951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Chronic stress is associate with impairment of synapse plasticity in hippocampus and cognitive dysfunction in rodent and human. Notably, corticosterone (CORT) is believed to take responsible for dendritic atrophy and reduction of spine number induced by chronic stress in hippocampus. But little is known about the molecular mechanisms underlying CORT induced abnormal synapse plasticity and cognitive dysfunction. Drebrin is an F-actin binding protein that modulates memory formation and maintenance by controlling the genesis and morphology of dendritic spines. In addition, miRNAs have been reported to participate in the negative regulation of protein-coding genes. In this study, five miRNAs capable of targeting Drebrin were selected by searching miRNA databases. One of these miRNAs, miR-19b-3p, was found to be upregulated in the hippocampal neurons of mice with chronic restraint stress (CRS). Luciferase reporter assay and Fluorescence in situ hybridization (FISH) were employed to identified the interaction between miR-19b-3p and Drebrin. In addition, silencing miR-19b-3p expression in vivo using an antagomir or in vitro using an inhibitor increased Drebrin expression, ameliorated the abnormal dendritic structure and upregulated the spine density in hippocampal CA1 pyramidal neurons of CRS mice and primary hippocampal neurons cultured under CORT stimulation, respectively. Electrophysiological analysis revealed that inhibition of miR-19b-3p rescued the limited synaptic transmission and synaptic plasticity in hippocampal neurons. Moreover, blocking miR-19b-3p drastically protected against cognitive deficits in CRS mice. These in vivo and in vitro findings indicate that the upregulation of miR-19b-3p exacerbates CRS-induced abnormal synaptic plasticity and cognitive impairment by targeting Drebrin.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chang Liu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Mu Xu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Jiaxi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
19
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
20
|
Liang C, Han M, Zhou Z, Liu Y, He X, Jiang Y, Ouyang Y, Hong Q, Chu M. Hypothalamic Transcriptome Analysis Reveals the Crucial MicroRNAs and mRNAs Affecting Litter Size in Goats. Front Vet Sci 2021; 8:747100. [PMID: 34790713 PMCID: PMC8591166 DOI: 10.3389/fvets.2021.747100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022] Open
Abstract
The hypothalamus was the coordination center of the endocrine system, which played an important role in goat reproduction. However, the molecular mechanism of hypothalamus regulating litter size in goats was still poorly understood. This study aims to investigate the key functional genes associated with prolificacy by hypothalamus transcriptome analysis of goats. In this research, an integrated analysis of microRNAs (miRNAs)-mRNA was conducted using the hypothalamic tissue of Yunshang black goats in the follicular stage. A total of 72,220 transcripts were detected in RNA-seq. Besides, 1,836 differentially expressed genes (DEGs) were identified between high fecundity goats at the follicular phase (FP-HY) and low fecundity goats at the follicular phase (FP-LY). DEGs were significantly enriched in 71 Gene Ontology (GO) terms and 8 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome data suggested that DEGs such as BMPR1B, FGFR1, IGF1 and CREB1 are directly or indirectly involved in many processes like hypothalamic gonadal hormone secretion. The miRNA-seq identified 1,837 miRNAs, of which 28 differentially expressed miRNAs (DEMs). These DEMs may affect the nerve cells survival of goat hypothalamic regulating the function of target genes and further affect the hormone secretion activities related to reproduction. They were enriched in prolactin signaling pathway, Jak-STAT signaling pathway and GnRH signaling pathway, as well as various metabolic pathways. Integrated analysis of DEMs and DEGs showed that 87 DEGs were potential target genes of 28 DEMs. After constructing a miRNA-mRNA pathway network, we identified several mRNA-miRNAs pairs by functional enrichment analysis, which was involved in hypothalamic nerve apoptosis. For example, NTRK3 was co-regulated by Novel-1187 and Novel-566, as well as another target PPP1R13L regulated by Novel-566. These results indicated that these key genes and miRNAs may play an important role in the development of goat hypothalamus and represent candidate targets for further research. This study provides a basis for further explanation of the basic molecular mechanism of hypothalamus, but also provides a new idea for a comprehensive understanding of prolificacy characteristics in Yunshang black goats.
Collapse
Affiliation(s)
- Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Taigu, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
21
|
Ye L, Morse LR, Falci SP, Olson JK, Shrivastava M, Nguyen N, Linnman C, Troy KL, Battaglino RA. hsa-MiR-19a-3p and hsa-MiR-19b-3p Are Associated with Spinal Cord Injury-Induced Neuropathic Pain: Findings from a Genome-Wide MicroRNA Expression Profiling Screen. Neurotrauma Rep 2021; 2:424-439. [PMID: 34755149 PMCID: PMC8570675 DOI: 10.1089/neur.2021.0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain in spinal cord injury (SCI) is associated with inflammation in both the peripheral and central nervous system (CNS), which may contribute to the initiation and maintenance of persistent pain. An understanding of factors contributing to neuroinflammation may lead to new therapeutic targets for neuropathic pain. Moreover, novel circulating biomarkers of neuropathic pain may facilitate earlier and more effective treatment. MicroRNAs (miRNAs) are short, non-coding single-stranded RNA that have emerged as important biomarkers and molecular mediators in physiological and pathological conditions. Using a genome-wide miRNA screening approach, we studied differential miRNA expression in plasma from 68 healthy, community-dwelling adults with and without SCI enrolled in ongoing clinical studies. We detected 2367 distinct miRNAs. Of these, 383 miRNAs were differentially expressed in acute SCI or chronic SCI versus no SCI and 71 were differentially expressed in chronic neuropathic pain versus no neuropathic pain. We selected homo sapiens (hsa)-miR-19a-3p and hsa-miR-19b-3p for additional analysis based on p-value, fold change, and their known role as regulators of neuropathic pain and neuroinflammation. Both hsa-miR-19a-3p and hsa-miR-19b-3p levels were significantly higher in those with chronic SCI and severe neuropathic pain versus those with chronic SCI and no neuropathic pain. In confirmatory studies, both hsa-miR-19a-3p and hsa-miR-19b-3p have moderate to strong discriminative ability to distinguish between those with and without pain. After adjusting for opioid use, hsa-miR-19b-3p levels were positively associated with pain interference with mood. Because hsa-miR-19 levels have been shown to change in response to exercise, folic acid, and resveratrol, these studies suggest that miRNAs are potential targets of therapeutic interventions.
Collapse
Affiliation(s)
- Liang Ye
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Scott P Falci
- Department of Neurological Surgery, Swedish Medical Center, Englewood, Colorado, USA
| | - Julie K Olson
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Mayank Shrivastava
- Department of Diagnostics and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, USA
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Clas Linnman
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
22
|
Tomaskovic-Crook E, Guerrieri-Cortesi K, Crook JM. Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Res Bull 2021; 175:48-62. [PMID: 34273422 DOI: 10.1016/j.brainresbull.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology. We posit that by enabling better understanding of biological causality, these evolving strategies will yield novel therapeutic targets and accordingly, drug candidates.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia.
| | - Kyle Guerrieri-Cortesi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia; Chris O'Brien Lifehouse Hospital, Camperdown, NSW, 2050, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, 3065, Fitzroy, Australia.
| |
Collapse
|
23
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
24
|
Fndc5 knockdown significantly decreased the expression of neurotrophins and their respective receptors during neural differentiation of mouse embryonic stem cells. Hum Cell 2021; 34:847-861. [PMID: 33683654 DOI: 10.1007/s13577-021-00517-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/05/2021] [Indexed: 10/22/2022]
Abstract
Fibronectin type III domain-containing-5 (Fndc5) is a trans-membrane protein which is involved in a variety of cellular events including neural differentiation of mouse embryonic stem cells (mESCs) as its knockdown and overexpression diminishes and facilitates this process, respectively. However, downstream targets of Fndc5 in neurogenesis are still unclear. Neurotrophins including NGF, BDNF, NT-3, and NT-4 are the primary regulators of neuronal survival, growth, differentiation, and repair. These biomolecules exert their actions through binding to two different receptor families, Trk and p75NTR. In this study, considering the fact that neurotrophins and their receptors play crucial roles in neural differentiation of ESCs, we sought to evaluate whether knockdown of Fndc5 decreased neural differentiation of mESCs by affecting the neurotrophins and their receptors expression. Results showed that at neural progenitor stage, the mRNA and protein levels of BDNF, Trk, and p75NTR receptors decreased following the Fndc5 knockdown. In mature neural cells, still, the expression of Trk and p75NTR receptors at mRNA and protein levels and BDNF and NGF expression only at protein levels showed a significant decrease in Fndc5 knockdown cells compared to control groups. Taken together, our results suggest that decreased efficiency of neural differentiation following the reduction of Fndc5 expression could be attributed to decreased levels of NGF and BDNF proteins in addition to their cognate receptors.
Collapse
|
25
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
26
|
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph‐Moore L, Namba T, Gage FH, Toda T. Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 2021; 40:e105819. [PMID: 33300615 PMCID: PMC7849303 DOI: 10.15252/embj.2020105819] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis in the adult hippocampus declines with age, a process that has been implicated in cognitive and emotional impairments. However, the mechanisms underlying this decline have remained elusive. Here, we show that the age-dependent downregulation of lamin B1, one of the nuclear lamins in adult neural stem/progenitor cells (ANSPCs), underlies age-related alterations in adult hippocampal neurogenesis. Our results indicate that higher levels of lamin B1 in ANSPCs safeguard against premature differentiation and regulate the maintenance of ANSPCs. However, the level of lamin B1 in ANSPCs declines during aging. Precocious loss of lamin B1 in ANSPCs transiently promotes neurogenesis but eventually depletes it. Furthermore, the reduction of lamin B1 in ANSPCs recapitulates age-related anxiety-like behavior in mice. Our results indicate that the decline in lamin B1 underlies stem cell aging and impacts the homeostasis of adult neurogenesis and mood regulation.
Collapse
Affiliation(s)
- Tracy A Bedrosian
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Institute for Genomic MedicineNationwide Children's HospitalColumbusOHUSA
| | - Judith Houtman
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Juan Sebastian Eguiguren
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Saeed Ghassemzadeh
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Nicole Rund
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
| | - Nicole M Novaresi
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Lauren Hu
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Sarah L. Parylak
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Ahmet M Denli
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - Takashi Namba
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Neuroscience Center, HiLIFE‐Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Fred H Gage
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Tomohisa Toda
- Laboratory of GeneticsThe Salk Institute for Biological StudiesLa JollaCAUSA
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE)DresdenGermany
- Paul F. Glenn Center for Biology of Aging Research at the Salk InstituteLa JollaCAUSA
| |
Collapse
|
27
|
MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain 2021; 161:47-60. [PMID: 31569141 DOI: 10.1097/j.pain.0000000000001709] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent comorbid sequelae of trauma that occur at different rates in women and men. We sought to identify microRNA (miRNA) that may contribute to sex-dependent differences in vulnerability to these outcomes. Monte Carlo simulations (x10,000) identified miRNA in which predicted targeting of PTWP or PTSS genes was most enriched. Expression of the leading candidate miRNA to target PTWP/PTSS-related genes, miR-19b, has been shown to be influenced by estrogen and stress exposure. We evaluated whether peritraumatic miR-19b blood expression levels predicted PTWP and PTSS development in women and men experiencing trauma of motor vehicle collision (n = 179) and in women experiencing sexual assault trauma (n = 74). A sex-dependent relationship was observed between miR-19b expression levels and both PTWP (β = -2.41, P = 0.034) and PTSS (β = -3.01, P = 0.008) development 6 months after motor vehicle collision. The relationship between miR-19b and PTSS (but not PTWP) was validated in sexual assault survivors (β = -0.91, P = 0.013). Sex-dependent expression of miR-19b was also observed in blood and nervous tissue from 2 relevant animal models. Furthermore, in support of increasing evidence indicating a role for the circadian rhythm (CR) in PTWP and PTSS pathogenesis, miR-19b targets were enriched in CR gene transcripts. Human cohort and in vitro analyses assessing miR-19b regulation of key CR transcripts, CLOCK and RORA, supported the potential importance of miR-19b to regulating the CR pathway. Together, these results highlight the potential role that sex-dependent expression of miR-19b might play in PTWP and PTSS development after trauma/stress exposure.
Collapse
|
28
|
miR-351-5p/Miro2 axis contributes to hippocampal neural progenitor cell death via unbalanced mitochondrial fission. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:643-656. [PMID: 33575111 PMCID: PMC7848773 DOI: 10.1016/j.omtn.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Adult hippocampal neurogenesis supports the structural and functional plasticity of the brain, while its decline is associated with neurodegeneration common in Alzheimer’s disease (AD). Although the dysregulation of certain microRNAs (miRNAs) in AD have been observed, the effects of miRNAs on hippocampal neurogenesis are largely unknown. In this study, we demonstrated miR-351-5p as a causative factor in hippocampal neural progenitor cell death through modulation of the mitochondrial guanosine triphosphatase (GTPase), Miro2. Downregulation of Miro2 by siMiro2 induced cell death, similar to miR-351-5p, whereas ectopic Miro2 expression using an adenovirus abolished these effects. Excessively fragmented mitochondria and dysfunctional mitochondria were indexed by decreased mitochondrial potential, and increased reactive oxygen species were identified in miR-351-5p-induced cell death. Moreover, subsequent induction of mitophagy via Pink1 and Parkin was observed in the presence of miR-351-5p and siMiro2. The suppression of mitochondrial fission by Mdivi-1 completely inhibited cell death by miR-351-5p. miR-351-5p expression increased whereas the level of Miro2 decreased in the hippocampus of AD model mice, emulating expression in AD patients. Collectively, the data indicate the mitochondrial fission and accompanying mitophagy by miR-351-5p/Miro2 axis as critical in hippocampal neural progenitor cell death, and a potential therapeutic target in AD.
Collapse
|
29
|
Saw G, Tang FR. Epigenetic Regulation of the Hippocampus, with Special Reference to Radiation Exposure. Int J Mol Sci 2020; 21:ijms21249514. [PMID: 33327654 PMCID: PMC7765140 DOI: 10.3390/ijms21249514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
The hippocampus is crucial in learning, memory and emotion processing, and is involved in the development of different neurological and neuropsychological disorders. Several epigenetic factors, including DNA methylation, histone modifications and non-coding RNAs, have been shown to regulate the development and function of the hippocampus, and the alteration of epigenetic regulation may play important roles in the development of neurocognitive and neurodegenerative diseases. This review summarizes the epigenetic modifications of various cell types and processes within the hippocampus and their resulting effects on cognition, memory and overall hippocampal function. In addition, the effects of exposure to radiation that may induce a myriad of epigenetic changes in the hippocampus are reviewed. By assessing and evaluating the current literature, we hope to prompt a more thorough understanding of the molecular mechanisms that underlie radiation-induced epigenetic changes, an area which can be further explored.
Collapse
|
30
|
miR-19b is elevated in peripheral blood of schizophrenic patients and attenuates proliferation of hippocampal neural progenitor cells. J Psychiatr Res 2020; 131:102-107. [PMID: 32950706 DOI: 10.1016/j.jpsychires.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) have been investigated in neurodevelopmental and psychiatric disorders including schizophrenia (SZ). Previous studies showed miRNAs dysregulation in postmortem brain tissues and peripheral blood of SZ patients. These suggest that miRNAs may play a role in the pathophysiology of SZ and be a potential biomarker of SZ. Previous studies also showed that miRNAs regulated neurogenesis and that neurogenesis was involved in the pathophysiology of SZ. In addition, a recent study showed that miR-19a and 19b, enriched in neural progenitor cells (NPC) in adult hippocampus, were increased in human NPC derived from induced pluripotent stem cell derived from SZ patients. However, it remains unclear whether the levels of miR-19a and 19b are altered in peripheral blood of SZ patients and how miR-19a and 19b affects neurogenesis. To elucidate them, first we examined the levels of miR-19a and 19b in peripheral blood of SZ patients with quantitative RT-PCR and showed that the level of miR-19b, but not miR-19a, was significantly higher (miR-19a: p = 0.5733, miR-19b: p = 0.0038) in peripheral blood of SZ patients (N = 22) than that of healthy controls (N = 19). Next, we examined the involvement of miR-19b in proliferation and survival of mouse neonatal mice hippocampus-derived NPC with BrdU assay and TUNEL assay. The silencing of miR-19b significantly increased proliferation (N = 5, p = 0.0139), but not survival (N = 5, p = 0.9571), of neonatal mice hippocampus-derived NPC. These results suggest that the level of miR-19b in peripheral blood is a potential biomarker of schizophrenia and that the higher level of miR-19b may increase the vulnerability of SZ via attenuating proliferation of hippocampal NPC.
Collapse
|
31
|
Xia X, Wang Y, Zheng JC. The microRNA-17 ~ 92 Family as a Key Regulator of Neurogenesis and Potential Regenerative Therapeutics of Neurological Disorders. Stem Cell Rev Rep 2020; 18:401-411. [PMID: 33030674 PMCID: PMC8930872 DOI: 10.1007/s12015-020-10050-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
AbstractmiR-17 ~ 92, an miRNA family containing three paralogous polycistronic clusters, was initially considered as an oncogene and was later demonstrated to trigger various physiological and pathological processes. Emerging evidence has implicated miR-17 ~ 92 family as a master regulator of neurogenesis. Through targeting numerous genes that affect cell cycle arrest, stemness deprivation, and lineage commitment, miR-17 ~ 92 family controls the proliferation and neuronal differentiation of neural stem/progenitor cells in both developmental and adult brains. Due to the essential roles of miR-17 ~ 92 family, its misexpression is widely associated with acute and chronic neurological disorders by attenuating neurogenesis and facilitating neuronal apoptosis. The promising neurogenic potential of miR-17 ~ 92 family also makes it a promising “medicine” to activate the endogenous and exogenous regenerative machinery, thus enhance tissue repair and function recovery after brain injury. In this review, we focus on the recent progress made toward understanding the involvement of miR-17 ~ 92 family in regulating both developmental and adult neurogenesis, and discuss the regenerative potential of miR-17 ~ 92 family in treating neurological disorders.
Collapse
|
32
|
Musaelyan K, Yildizoglu S, Bozeman J, Du Preez A, Egeland M, Zunszain PA, Pariante CM, Fernandes C, Thuret S. Chronic stress induces significant gene expression changes in the prefrontal cortex alongside alterations in adult hippocampal neurogenesis. Brain Commun 2020; 2:fcaa153. [PMID: 33543135 PMCID: PMC7850288 DOI: 10.1093/braincomms/fcaa153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Adult hippocampal neurogenesis is involved in stress-related disorders such as depression, posttraumatic stress disorders, as well as in the mechanism of antidepressant effects. However, the molecular mechanisms involved in these associations remain to be fully explored. In this study, unpredictable chronic mild stress in mice resulted in a deficit in neuronal dendritic tree development and neuroblast migration in the hippocampal neurogenic niche. To investigate molecular pathways underlying neurogenesis alteration, genome-wide gene expression changes were assessed in the prefrontal cortex, hippocampus and the hypothalamus alongside neurogenesis changes. Cluster analysis showed that the transcriptomic signature of chronic stress is much more prominent in the prefrontal cortex compared to the hippocampus and the hypothalamus. Pathway analyses suggested huntingtin, leptin, myelin regulatory factor, methyl-CpG binding protein and brain-derived neurotrophic factor as the top predicted upstream regulators of transcriptomic changes in the prefrontal cortex. Involvement of the satiety regulating pathways (leptin) was corroborated by behavioural data showing increased food reward motivation in stressed mice. Behavioural and gene expression data also suggested circadian rhythm disruption and activation of circadian clock genes such as Period 2. Interestingly, most of these pathways have been previously shown to be involved in the regulation of adult hippocampal neurogenesis. It is possible that activation of these pathways in the prefrontal cortex by chronic stress indirectly affects neuronal differentiation and migration in the hippocampal neurogenic niche via reciprocal connections between the two brain areas.
Collapse
Affiliation(s)
- Ksenia Musaelyan
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Selin Yildizoglu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - James Bozeman
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Martin Egeland
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Cathy Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| |
Collapse
|
33
|
Kerloch T, Clavreul S, Goron A, Abrous DN, Pacary E. Dentate Granule Neurons Generated During Perinatal Life Display Distinct Morphological Features Compared With Later-Born Neurons in the Mouse Hippocampus. Cereb Cortex 2020; 29:3527-3539. [PMID: 30215686 DOI: 10.1093/cercor/bhy224] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
In nonhuman mammals and in particular in rodents, most granule neurons of the dentate gyrus (DG) are generated during development and yet little is known about their properties compared with adult-born neurons. Although it is generally admitted that these populations are morphologically indistinguishable once mature, a detailed analysis of developmentally born neurons is lacking. Here, we used in vivo electroporation to label dentate granule cells (DGCs) generated in mouse embryos (E14.5) or in neonates (P0) and followed their morphological development up to 6 months after birth. By comparison with mature retrovirus-labeled DGCs born at weaning (P21) or young adult (P84) stages, we provide the evidence that perinatally born neurons, especially embryonically born cells, are morphologically distinct from later-born neurons and are thus easily distinguishable. In addition, our data indicate that semilunar and hilar GCs, 2 populations in ectopic location, are generated during the embryonic and the neonatal periods, respectively. Thus, our findings provide new insights into the development of the different populations of GCs in the DG and open new questions regarding their function in the brain.
Collapse
Affiliation(s)
- Thomas Kerloch
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Solène Clavreul
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Adeline Goron
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Djoher Nora Abrous
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Emilie Pacary
- INSERM U1215, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| |
Collapse
|
34
|
Powell SK, O'Shea CP, Shannon SR, Akbarian S, Brennand KJ. Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. ADVANCES IN NEUROBIOLOGY 2020; 25:155-206. [PMID: 32578147 DOI: 10.1007/978-3-030-45493-7_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is a chronic and severe neuropsychiatric condition manifested by cognitive, emotional, affective, perceptual, and behavioral abnormalities. Despite decades of research, the biological substrates driving the signs and symptoms of the disorder remain elusive, thus hampering progress in the development of treatments aimed at disease etiologies. The recent emergence of human induced pluripotent stem cell (hiPSC)-based models has provided the field with a highly innovative approach to generate, study, and manipulate living neural tissue derived from patients, making possible the exploration of fundamental roles of genes and early-life stressors in disease-relevant cell types. Here, we begin with a brief overview of the clinical, epidemiological, and genetic aspects of the condition, with a focus on schizophrenia as a neurodevelopmental disorder. We then highlight relevant technical advancements in hiPSC models and assess novel findings attained using hiPSC-based approaches and their implications for disease biology and treatment innovation. We close with a critical appraisal of the developments necessary for both further expanding knowledge of schizophrenia and the translation of new insights into therapeutic innovations.
Collapse
Affiliation(s)
- Samuel K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Callan P O'Shea
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Rose Shannon
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
36
|
Mak HK, Yung JSY, Weinreb RN, Ng SH, Cao X, Ho TYC, Ng TK, Chu WK, Yung WH, Choy KW, Wang CC, Lee TL, Leung CKS. MicroRNA-19a-PTEN Axis Is Involved in the Developmental Decline of Axon Regenerative Capacity in Retinal Ganglion Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:251-263. [PMID: 32599451 PMCID: PMC7327411 DOI: 10.1016/j.omtn.2020.05.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 05/28/2020] [Indexed: 11/23/2022]
Abstract
Irreversible blindness from glaucoma and optic neuropathies is attributed to retinal ganglion cells (RGCs) losing the ability to regenerate axons. While several transcription factors and proteins have demonstrated enhancement of axon regeneration after optic nerve injury, mechanisms contributing to the age-related decline in axon regenerative capacity remain elusive. In this study, we show that microRNAs are differentially expressed during RGC development and identify microRNA-19a (miR-19a) as a heterochronic marker; developmental decline of miR-19a relieves suppression of phosphatase and tensin homolog (PTEN), a key regulator of axon regeneration, and serves as a temporal indicator of decreasing axon regenerative capacity. Intravitreal injection of miR-19a promotes axon regeneration after optic nerve crush in adult mice, and it increases axon extension in RGCs isolated from aged human donors. This study uncovers a previously unrecognized involvement of the miR-19a-PTEN axis in RGC axon regeneration, and it demonstrates therapeutic potential of microRNA-mediated restoration of axon regenerative capacity in optic neuropathies.
Collapse
Affiliation(s)
- Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Jasmine S Y Yung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Robert N Weinreb
- Hamilton Glaucoma Center, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA; Department of Ophthalmology, University of California, San Diego, La Jolla, CA, USA
| | - Shuk Han Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Xu Cao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tracy Y C Ho
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tsz Kin Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Kwong Wai Choy
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, PRC
| | - Tin Lap Lee
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PRC
| | | |
Collapse
|
37
|
Mazzelli M, Maj C, Mariani N, Mora C, Begni V, Pariante CM, Riva MA, Cattaneo A, Cattane N. The Long-Term Effects of Early Life Stress on the Modulation of miR-19 Levels. Front Psychiatry 2020; 11:389. [PMID: 32499725 PMCID: PMC7243913 DOI: 10.3389/fpsyt.2020.00389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs), one of the major small non-coding RNA classes, have been proposed as regulatory molecules in neurodevelopment and stress response. Although alterations in miRNAs profiles have been implicated in several psychiatric and neurodevelopmental disorders, the contribution of individual miRNAs in brain development and function is still unknown. Recent studies have identified miR-19 as a key regulator of brain trajectories, since it drives the differentiation of neural stem cells into mature neurons. However, no findings are available on how vulnerability factors for these disorders, such as early life stress (ELS), can modulate the expression of miR-19 and its target genes. To reach our aim, we investigated miR-19 modulation in human hippocampal progenitor stem cells (HPCs) treated with cortisol during 3 days of proliferation and harvested immediately after the end of the treatment or after 20 days of differentiation into mature neurons. We also analyzed the long-term expression changes of miR-19 and of its validated target genes, involved in neurodevelopment and inflammation, in the hippocampus of adult rats exposed or not to prenatal stress (PNS). Interestingly, we observed a significant downregulation of miR-19 levels both in proliferating (FC = −1.59, p-value = 0.022 for miR-19a; FC = −1.79, p-value = 0.016 for miR-19b) as well as differentiated HPCs (FC = −1.28, p-value = 0.065 for miR-19a; FC = −1.75, p-value = 0.047 for miR-19b) treated with cortisol. Similarly, we found a long-term decrease of miR-19 levels in the hippocampus of adult PNS rats (FC = −1.35, p-value = 0.025 for miR-19a; FC = −1.43, p-value = 0.032 for miR-19b). Among all the validated target genes, we observed a significant increase of NRCAM (FC = 1.20, p-value = 0.027), IL4R (FC = 1.26, p-value = 0.046), and RAPGEF2 (FC = 1.23, p-value = 0.020).We suggest that ELS can cause a long-term downregulation of miR-19 levels, which may be responsible of alterations in neurodevelopmental pathways and in immune/inflammatory processes, leading to an enhanced risk for mental disorders later in life. Intervention strategies targeting miR-19 may prevent alterations in these pathways, reducing the ELS-related effects.
Collapse
Affiliation(s)
- Monica Mazzelli
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Nicole Mariani
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cristina Mora
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
38
|
Littlejohn EL, Scott D, Saatman KE. Insulin-like growth factor-1 overexpression increases long-term survival of posttrauma-born hippocampal neurons while inhibiting ectopic migration following traumatic brain injury. Acta Neuropathol Commun 2020; 8:46. [PMID: 32276671 PMCID: PMC7147070 DOI: 10.1186/s40478-020-00925-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/29/2020] [Indexed: 01/29/2023] Open
Abstract
Cellular damage associated with traumatic brain injury (TBI) manifests in motor and cognitive dysfunction following injury. Experimental models of TBI reveal cell death in the granule cell layer (GCL) of the hippocampal dentate gyrus acutely after injury. Adult-born neurons residing in the neurogenic niche of the GCL, the subgranular zone, are particularly vulnerable. Injury-induced proliferation of neural progenitors in the subgranular zone supports recovery of the immature neuron population, but their development and localization may be altered, potentially affecting long-term survival. Here we show that increasing hippocampal levels of insulin-like growth factor-1 (IGF1) is sufficient to promote end-stage maturity of posttrauma-born neurons and improve cognition following TBI. Mice with conditional overexpression of astrocyte-specific IGF1 and wild-type mice received controlled cortical impact or sham injury and bromo-2'-deoxyuridine injections for 7d after injury to label proliferating cells. IGF1 overexpression increased the number of GCL neurons born acutely after trauma that survived 6 weeks to maturity (NeuN+BrdU+), and enhanced their outward migration into the GCL while significantly reducing the proportion localized ectopically to the hilus and molecular layer. IGF1 selectively affected neurons, without increasing the persistence of posttrauma-proliferated glia in the dentate gyrus. IGF1 overexpressing animals performed better during radial arm water maze reversal testing, a neurogenesis-dependent cognitive test. These findings demonstrate the ability of IGF1 to promote the long-term survival and appropriate localization of granule neurons born acutely after a TBI, and suggest these new neurons contribute to improved cognitive function.
Collapse
Affiliation(s)
- Erica L. Littlejohn
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, B473 Biomedical & Biological Sciences Research Building (BBSRB), 741 South Limestone St, Lexington, KY 40536-0509 USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3901 USA
| | - Danielle Scott
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, B473 Biomedical & Biological Sciences Research Building (BBSRB), 741 South Limestone St, Lexington, KY 40536-0509 USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, B473 Biomedical & Biological Sciences Research Building (BBSRB), 741 South Limestone St, Lexington, KY 40536-0509 USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
39
|
New insights into the regulatory roles of microRNAs in adult neurogenesis. Curr Opin Pharmacol 2020; 50:38-45. [DOI: 10.1016/j.coph.2019.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
|
40
|
Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, Marchetto MC, Alt FW, Gage FH. Increased Neural Progenitor Proliferation in a hiPSC Model of Autism Induces Replication Stress-Associated Genome Instability. Cell Stem Cell 2020; 26:221-233.e6. [PMID: 32004479 DOI: 10.1016/j.stem.2019.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
The association between macrocephaly and autism spectrum disorder (ASD) suggests that the mechanisms underlying excessive neural growth could contribute to ASD pathogenesis. Consistently, neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) of ASD individuals with early developmental brain enlargement are inherently more proliferative than control NPCs. Here, we show that hiPSC-derived NPCs from ASD individuals with macrocephaly display an altered DNA replication program and increased DNA damage. When compared with the control NPCs, high-throughput genome-wide translocation sequencing (HTGTS) demonstrates that ASD-derived NPCs harbored elevated DNA double-strand breaks in replication stress-susceptible genes, some of which are associated with ASD pathogenesis. Our results provide a mechanism linking hyperproliferation of NPCs with the pathogenesis of ASD by disrupting long neural genes involved in cell-cell adhesion and migration.
Collapse
Affiliation(s)
- Meiyan Wang
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Pei-Chi Wei
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Departments of Genetics and Pediatrics, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Christina K Lim
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Iryna S Gallina
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Sara Marshall
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA; Neurobiology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
MicroRNA-22 exerts its neuroprotective and angiogenic functions via regulating PI3K/Akt signaling pathway in cerebral ischemia-reperfusion rats. J Neural Transm (Vienna) 2019; 127:35-44. [PMID: 31883035 DOI: 10.1007/s00702-019-02124-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
The aims of this study were to study the effects of miR-2 on cerebral ischemia-reperfusion rats and to explore its further mechanism. Rats were assigned into sham, model, miR-22 control and miR-22 groups. Observation of neurological behaviors at 24 h after operation found that neurological functions were severely damaged in the model and miR-22 control groups and these damages were improved by miR-22. RT-PCR indicated that miR-22 mRNA level in the brain tissue was significantly decreased in the model and miR-22 control groups, but increased in the miR-22 group. TTC staining showed increased percentage of cerebral infarction volume in the model and miR-22 control groups and this increase was reduced by miR-22. Immunohistochemistry showed increased densities of CD34+ and VEGF+ microvessels in the cortex in the model and miR-22 control groups, which were further increased in the miR-22 group. ELISA showed increased serum VEGF and Ang-1 levels in the model and miR-22 control groups, which were also further increased in the miR-22 group. Western blot analysis showed increased phosphorylation level of PI3K and Akt in brain tissue in the model and miR-22 control groups, which were further increased in the miR-22 group. Administration of LY294002, a specific PI3K pathway inhibitor, significantly reversed all the effects of miR-22 on rats in the model group. miR-22 exerts its neuroprotective and angiogenic functions via the PI3K/Akt signaling pathway, at least partly, in rats under cerebral ischemia-reperfusion.
Collapse
|
42
|
Su ZJ, Wang XY, Zhou C, Chai Z. Down-regulation of miR-3068-3p enhances kcnip4-regulated A-type potassium current to protect against glutamate-induced excitotoxicity. J Neurochem 2019; 153:617-630. [PMID: 31792968 DOI: 10.1111/jnc.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The main cause of excitotoxic neuronal death in ischemic stroke is the massive release of glutamate. Recently, microRNAs (miRNAs) have been found to play an essential role in stroke pathology, although the molecular mechanisms remain to be investigated. Here, to identify potential candidate miRNAs involved in excitotoxicity, we treated rat primary cortical neurons with glutamate and found that miR-3068-3p, a novel miRNA, was up-regulated. We hypothesized that restoring miR-3068-3p expression might influence the neuronal injury outcomes. The inhibition of miR-3068-3p, using tough decoy lentiviruses, significantly attenuated the effects of glutamate on neuronal viability and intracellular calcium overload. To unravel the mechanisms, we employed bioinformatics analysis and RNA sequencing to identify downstream target genes. Additional luciferase assays and western blots validated kcnip4, a Kv4-mediated A-type potassium current (IA ) regulator, as a direct target of miR-3068-3p. The inhibition of miR-3068-3p increased kcnip4 expression and vice versa. In addition, the knockdown of kcnip4 by shRNA abolished the protective effect of miR-3068-3p, and over-expressing kcnip4 alone was sufficient to play a neuroprotective role in excitotoxicity. Moreover the inhibition of miR-3068-3p enhanced the IA density, and the pharmacological inhibition of IA abrogated the protective role of miR-3068-3p inhibition and kcnip4 over-expression. Therefore, we conclude that inhibition of miR-3068-3p protects against excitotoxicity via its target gene, kcnip4, and kcnip4-regulated IA . Our data suggest that the miR-3068-3p/kcnip4 axis may serve as a novel target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zi-Jun Su
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xu-Yi Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chen Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Zhen Chai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
43
|
Balan S, Toyoshima M, Yoshikawa T. Contribution of induced pluripotent stem cell technologies to the understanding of cellular phenotypes in schizophrenia. Neurobiol Dis 2019; 131:104162. [DOI: 10.1016/j.nbd.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/23/2018] [Accepted: 04/28/2018] [Indexed: 02/07/2023] Open
|
44
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
45
|
Tan W, Zhang Y, Li M, Zhu X, Yang X, Wang J, Zhang S, Zhu W, Cao J, Yang H, Zhang L. miR-27a-containing Exosomes Secreted by Irradiated Skin Keratinocytes Delayed the Migration of Unirradiated Skin Fibroblasts. Int J Biol Sci 2019; 15:2240-2255. [PMID: 31592237 PMCID: PMC6775295 DOI: 10.7150/ijbs.35356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Radiation-induced bystander effect (RIBE), e.g. the biological response occurring in unirradiated cells when their neighboring cells are irradiated, is the consequence of intercellular communication between irradiated and unirradiated cells and intracellular signal transduction of these two cell populations. Although several miRNAs have been found to play an important role in RIBEs, the evidence for the regulatory effects of miRNAs on RIBEs is still limited. In this study, by using a two cell-line co-culture system, we first found that the migration of unirradiated bystander WS1 skin fibroblasts was inhibited after co-culture with irradiated HaCaT skin keratinocytes. Further study revealed that HaCaT cells exposed to α-particles and X-rays quickly showed an elevated miR-27a expression, which was essential for the induction of the bystander effect, resulting in the secretion of miR-27a-containing exosomes as a major RIBE signaling factor. Upon uptake of these exosomes, the recipient unirradiated WS1 cells displayed oxidative stress and increased miR-27a levels. Elevated levels of miR-27a that targets MMP2 in the recipient WS1 cells then led to slowed cell migration, which was dependent upon the redox status of WS1 cells. To summarize, the present study has revealed a critical role of miR-27a in every step of the induction of bystander migration inhibition of unirradiated WS1 fibroblasts co-cultured with irradiated HaCaT keratinocytes, confirming the important regulatory effects of miRNAs in RIBEs. Additionally, we provided direct evidence that RIBEs could affect wound healing.
Collapse
Affiliation(s)
- Wen Tan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Mengting Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Xueting Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| | - Xuejiao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jingdong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Shuyu Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, P. R. China
| | - Liyuan Zhang
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu Province, 215004, P. R. China
| |
Collapse
|
46
|
Leiter O, Bernas SN, Seidemann S, Overall RW, Horenburg C, Kowal S, Kempermann G, Walker TL. The systemic exercise-released chemokine lymphotactin/XCL1 modulates in vitro adult hippocampal precursor cell proliferation and neuronal differentiation. Sci Rep 2019; 9:11831. [PMID: 31413355 PMCID: PMC6694144 DOI: 10.1038/s41598-019-48360-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022] Open
Abstract
Physical exercise has well-established anti-inflammatory effects, with neuro-immunological crosstalk being proposed as a mechanism underlying the beneficial effects of exercise on brain health. Here, we used physical exercise, a strong positive modulator of adult hippocampal neurogenesis, as a model to identify immune molecules that are secreted into the blood stream, which could potentially mediate this process. Proteomic profiling of mouse plasma showed that levels of the chemokine lymphotactin (XCL1) were elevated after four days of running. We found that XCL1 treatment of primary cells isolated from both the dentate gyrus and the subventricular zone of the adult mice led to an increase in the number of neurospheres and neuronal differentiation in neurospheres derived from the dentate gyrus. In contrast, primary dentate gyrus cells isolated from XCL1 knockout mice formed fewer neurospheres and exhibited a reduced neuronal differentiation potential. XCL1 supplementation in a dentate gyrus-derived neural precursor cell line promoted neuronal differentiation and resulted in lower cell motility and a reduced number of cells in the S phase of the cell cycle. This work suggests an additional function of the chemokine XCL1 in the brain and underpins the complexity of neuro-immune interactions that contribute to the regulation of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Odette Leiter
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia
| | - Stefanie N Bernas
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
| | - Rupert W Overall
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - Cindy Horenburg
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
| | - Susann Kowal
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
| | - Gerd Kempermann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany
| | - Tara L Walker
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307, Dresden, Germany.
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
47
|
Choi C, Kim T, Chang KT, Min K. DSCR1-mediated TET1 splicing regulates miR-124 expression to control adult hippocampal neurogenesis. EMBO J 2019; 38:e101293. [PMID: 31304631 PMCID: PMC6627232 DOI: 10.15252/embj.2018101293] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/09/2022] Open
Abstract
Whether epigenetic factors such as DNA methylation and microRNAs interact to control adult hippocampal neurogenesis is not fully understood. Here, we show that Down syndrome critical region 1 (DSCR1) protein plays a key role in adult hippocampal neurogenesis by modulating two epigenetic factors: TET1 and miR-124. We find that DSCR1 mutant mice have impaired adult hippocampal neurogenesis. DSCR1 binds to TET1 introns to regulate splicing of TET1, thereby modulating TET1 level. Furthermore, TET1 controls the demethylation of the miRNA-124 promoter to modulate miR-124 expression. Correcting the level of TET1 in DSCR1 knockout mice is sufficient to prevent defective adult neurogenesis. Importantly, restoring DSCR1 level in a Down syndrome mouse model effectively rescued adult neurogenesis and learning and memory deficits. Our study reveals that DSCR1 plays a critical upstream role in epigenetic regulation of adult neurogenesis and provides insights into potential therapeutic strategy for treating cognitive defects in Down syndrome.
Collapse
Affiliation(s)
- Chiyeol Choi
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Taehoon Kim
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| | - Karen T Chang
- Zilkha Neurogenetic InstituteKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Kyung‐Tai Min
- Department of Biological SciencesSchool of Life SciencesUlsan National Institute of Science and TechnologyUlsanKorea
- National Creative Research Initiative Center for ProteostasisUlsan National Institute of Science and TechnologyUlsanKorea
| |
Collapse
|
48
|
miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons. Life Sci 2019; 232:116651. [PMID: 31302195 DOI: 10.1016/j.lfs.2019.116651] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/06/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022]
Abstract
The miR-19 family, including miR-19a, miR-19b-1 and miR-19b-2, arises from two different paralogous clusters miR-17-92 and miR-106a-363. Although it is identified as oncogenic miRNA, the miR-19 family has also been found to play important roles in regulating normal tissue development. The precise control of miR-19 family level is essential for keeping tissue homeostasis and normal development of organisms. Its dysregulation leads to dysplasia, disease and even cancer. Therefore, this review focuses on the roles of miR-19 family in the development and disease of heart, vessels and neurons to estimate the potential value of miR-19 family as diagnostic biomarker or therapeutic target of cardiac, neurological, and vascular diseases.
Collapse
|
49
|
Ramos Costa AP, Levone BR, Gururajan A, Moloney G, Hoeller AA, Lino-de-Oliveira C, Dinan TG, O'Leary OF, Monteiro de Lima TC, Cryan JF. Enduring effects of muscarinic receptor activation on adult hippocampal neurogenesis, microRNA expression and behaviour. Behav Brain Res 2019; 362:188-198. [PMID: 30650342 DOI: 10.1016/j.bbr.2018.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/22/2018] [Indexed: 12/27/2022]
Abstract
The cholinergic system is one of the most important neurotransmitter systems in the brain with key roles in autonomic control and the regulation of cognitive and emotional responses. However, the precise mechanism by which the cholinergic system influences behaviour is unclear. Adult hippocampal neurogenesis (AHN) is a potential mediator in this context based on evidence, which has identified this process as putative mechanism of antidepressant action. More recently, post-transcriptional regulation by microRNAs is another candidate mechanism based on its involvement in the regulation of AHN and neurotransmission. Taking into account this background, we evaluated the behavioural effects of a non-convulsant dose of pilocarpine - a non-selective muscarinic receptor (mAChR) agonist - in adult Wistar rats. Furthermore, we quantified the expression of different microRNAs implicated in the regulation of AHN. Our results suggests that pilocarpine treatment increases AHN in the granular cell layer but also induced ectopic neurogenesis. Pilocarpine treatment reduced immobility time in forced swimming test but did not affect fear conditioning response, sucrose preference or novelty supressed feeding behaviour. In addition, treatment with pilocarpine down-regulated the expression of 6 microRNAs implicated in the regulation of neurotrophin signalling and axon guidance pathways. Therefore, we suggest that the low-dose stimulation of the cholinergic system is sufficient to alter AHN of rats through post-transcriptional mechanisms, which might contribute to long-lasting behavioural effects.
Collapse
Affiliation(s)
- Ana Paula Ramos Costa
- APC Microbiome Ireland, University College Cork, Ireland; Graduate Program in Medical Sciences, Federal University of Santa Catarina, Brazil
| | | | - Anand Gururajan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Alexandre A Hoeller
- Graduate Program in Medical Sciences, Federal University of Santa Catarina, Brazil
| | | | | | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland.
| |
Collapse
|
50
|
Asimes A, Kim CK, Rao YS, Bartelt K, Pak TR. microRNA Expression Profiles in the Ventral Hippocampus during Pubertal Development and the Impact of Peri-Pubertal Binge Alcohol Exposure. Noncoding RNA 2019; 5:ncrna5010021. [PMID: 30841593 PMCID: PMC6468757 DOI: 10.3390/ncrna5010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Adolescence is hallmarked by two parallel processes of sexual maturation and adult patterning of the brain. Therefore, adolescence represents a vulnerable postnatal period for neurodevelopment where exogenous factors can negatively impact adult brain function. For example, alcohol exposure during pubertal development can lead to long-term and widespread neurobiological dysfunction and these effects have been shown to persist even in the absence of future alcohol exposure. However, the molecular mechanisms mediating the persistent effects of alcohol are unclear. We propose that dysregulation of microRNAs (miR) could be a unifying epigenetic mechanism underlying these widespread long-term changes. We tested the hypothesis that repeated alcohol exposure during pubertal development would cause disruption of normal miR expression profiles during puberty and, subsequently, their downstream mRNA target genes in the ventral hippocampus using an established rat model of adolescent binge drinking. We found 6 alcohol-sensitive miRs that were all downregulated following alcohol exposure and we also investigated the normal age-dependent changes in those miRs throughout the pubertal period. Interestingly, these miRs were normally decreased throughout the process of puberty, but alcohol prematurely exacerbated the normal decline in miR expression levels. The work presented herein provides foundational knowledge about the expression patterns of miRs during this critical period of neurodevelopment. Further, this regulation of miR and mRNA expression by alcohol exposure presents a complex regulatory mechanism by which perturbation in this time-sensitive period could lead to long-term neurological consequences.
Collapse
Affiliation(s)
- AnnaDorothea Asimes
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Chun K Kim
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Yathindar S Rao
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Kyle Bartelt
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| | - Toni R Pak
- Loyola University Chicago Stritch School of Medicine, Department of Cell and Molecular Physiology, Maywood, IL 60153, USA.
| |
Collapse
|