1
|
Tian J, Xie Y, Ye S, Hu Y, Feng J, Li Y, Lou Z, Ruan L, Wang Z. S-ketamine ameliorates post-stroke depression in mice via attenuation of neuroinflammation, synaptic restoration, and BDNF pathway activation. Biochem Biophys Res Commun 2025; 769:151965. [PMID: 40367907 DOI: 10.1016/j.bbrc.2025.151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
The available therapeutic options for post-stroke depression patients are limited. Although SSRIs are the most commonly prescribed antidepressants, their slow onset of action and the higher risk of adverse effects or contraindications have led to an urgent need to develop fast-acting and highly specific antidepressants tailored to the needs of PSD patients. Therefore, ketamine has drawn attention. While ketamine has been shown to exert rapid antidepressant effects in numerous studies, whether it can ameliorate PSD remains unclear, and the molecular and cellular mechanisms underlying its therapeutic action in PSD are largely elusive. In this study, we used a PSD preclinical model induced by photothrombosis and chronic restraint stress to investigate the effects of S-ketamine. The present study demonstrates that a single acute intraperitoneal injection of 10 mg/kg S-ketamine on the first day after PSD significantly alleviates depressive-like behaviours in PSD mice. In addition, this improvement was maintained for at least five consecutive days. Mechanistically, S-ketamine reduced pro-inflammatory cytokines in the medial prefrontal cortex (mPFC), mitigated synaptic damage (evidenced by increased dendritic spine density, SYP, and PSD-95 expression). Furthermore, S-ketamine treatment upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin related kinase B (TrkB), phosphorylated serine/threonine-specific protein kinase B (p-Akt), phosphorylated extracellular signal-regulated kinase (p-Erk), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII), and phosphorylated cAMP response element binding protein (p-CREB). Overall, S-ketamine shows promise for PSD treatment through its anti-inflammatory, synaptic enhancing, and BDNF pathway modulating effects. This research enhances our understanding of the pathological mechanisms underlying PSD and provides new therapeutic insights for its treatment.
Collapse
Affiliation(s)
- Jiaxin Tian
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China; School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yanhong Xie
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Sen Ye
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yongfeng Hu
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Jiaxin Feng
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yi Li
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China
| | - Liemin Ruan
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China.
| | - Zhengchun Wang
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
2
|
Lee S, Williams ZM. Role of Prefrontal Cortex Circuitry in Maintaining Social Homeostasis. Biol Psychiatry 2025; 97:953-960. [PMID: 39019390 PMCID: PMC11733069 DOI: 10.1016/j.biopsych.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Homeostasis is a fundamental concept in biology and ensures the stability of life by maintaining the constancy of physiological processes. Recent years have witnessed a surge in research interest in these physiological processes, with a growing focus on understanding the mechanisms underlying social homeostasis. This shift in focus underscores our increasing understanding of the importance of social interactions and their impact on individual well-being. In this review, we explore the interconnected research across 3 primary categories: understanding the neural mechanisms influencing set points, defining contemporary factors that can disrupt social homeostasis, and identifying the potential contributions of social homeostatic failure in the development of psychiatric diseases. We also delve into the role of the prefrontal cortex and its circuitry in regulating social behavior, decision-making processes, and the manifestation of neuropsychiatric disorders, such as depression and anxiety. Finally, we examine the influence of more recent factors such as growing social media exposure and the COVID-19 pandemic on mental health, highlighting their disruptive effects. We also identify gaps in current literature through the analysis of research trends and propose future research directions to advance our understanding of social homeostasis, with implications for mental health interventions.
Collapse
Affiliation(s)
- SeungHyun Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Cao Q, Xu X, Wang X, He F, Lin Y, Guo D, Bai W, Guo B, Zheng X, Liu T. Mesoscale brain-wide fluctuation analysis: revealing ketamine's rapid antidepressant across multiple brain regions. Transl Psychiatry 2025; 15:155. [PMID: 40253356 PMCID: PMC12009331 DOI: 10.1038/s41398-025-03375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Depression has been linked to cortico-limbic brain regions, and ketamine is known for its rapid antidepressant effects. However, how these brain regions encode depression collaboratively and how ketamine regulates these regions to exert its prompt antidepressant effects through mesoscale brain-wide fluctuations remain elusive. In this study, we used a multidisciplinary approach, including multi-region in vivo recordings in mice, chronic social defeat stress (CSDS), and machine learning, to construct a Mesoscale Brain-Wide Fluctuation Analysis platform (MBFA-platform). This platform analyzes the mesoscale brain-wide fluctuations of multiple brain regions from the perspective of local field potential oscillations and network dynamics. The decoder results demonstrate that our MBFA platform can accurately classify the Control/CSDS and ketamine/saline-treated groups based on neural oscillation and network activities among the eight brain regions. We found that multiple-region LFPs patterns are disrupted in CSDS-induced social avoidance, with the basolateral amygdala playing a key role. Ketamine primarily exerts the compensatory effects through network dynamics, contributing to its rapid antidepressant effect. These findings highlight the MBFA platform as an interdisciplinary tool for revealing mesoscale brain-wide fluctuations underlying complex emotional pathologies, providing insights into the etiology of psychiatry. Furthermore, the platform's evaluation capabilities present a novel approach for psychiatric therapeutic interventions.
Collapse
Affiliation(s)
- Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaojun Xu
- Bioland Laboratory, Guangdong Province, Guangzhou, China
| | - Xinyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fengkai He
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yichao Lin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Anderson KR, Rogu PJ, Palumbo TB, Miwa JM. Abnormal response to chronic social defeat stress and fear extinction in a mouse model of Lynx2-based cholinergic dysregulation. Front Neurosci 2025; 19:1466166. [PMID: 40236946 PMCID: PMC11998120 DOI: 10.3389/fnins.2025.1466166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/27/2025] [Indexed: 04/17/2025] Open
Abstract
Nicotinic receptor signaling is influential in modulating appropriate responses to salient stimuli within a complex environment. The cholinergic neurotransmitter system drives attention to salient stimuli such as stressors, and aids in orchestrating the proper neural and behavioral responses. Dysregulation of this system, however, has been implicated in altered anxiety regulation and mood disorders. Among the multiple layers of regulation are protein modulators such as Lynx2/Lypd1, which provides negative nicotinic acetylcholine receptor regulation within anxiety-related circuits, such as the amygdala and medial prefrontal cortex, among other brain regions. Mice null for Lynx2/Lypd1 (Lynx2 KO) show elevated basal anxiety-like behavior in tests such as elevated plus maze, light-dark box and social interaction assays. Here, we queried how a line predisposed to basal anxiety-like behavior would respond to specific stressors, using validated models of experiential-based affective disorders such as fear extinction, acute and chronic social defeat stress assays. We discovered that Lynx2 KO mice demonstrate an inability to extinguish learned fear during fear extinction tests even during milder stress conditions. In social defeat studies, contrary to our predictions, the Lynx2 KO mice switched from a socially avoidant phenotype (which could be considered susceptible) before defeat to a social approach/resilient phenotype after defeat. Consistent with reports of the inverse relationship between resilience and BDNF levels, we observed reduced BDNF levels in the VTA of Lynx2 KO mice. Furthermore, we provide evidence for the functional role of α7 nicotinic receptor subtypes by phenotypic rescue of fear extinction and social defeat phenotypes by MLA antagonism of α7 nicotinic acetylcholine receptors, or by crossing with α7 nicotinic acetylcholine receptor null mutant mice. A stable physical interaction between LYNX2 and α7 nAChRs was observed by co-immunoprecipitation of complexes from mouse amygdalae extracts. Together, these data indicate that responses to specific stressors can become aberrant when baseline genetic factors predispose animals to anxiety dysregulation. These studies underscore the critical nature of well-regulated nicotinic receptor function in the adaptive response to environmental stressors.
Collapse
Affiliation(s)
| | | | | | - Julie M. Miwa
- Department of Biological and Chemical Sciences, Bethlehem, PA, United States
| |
Collapse
|
5
|
Baller EB, Luo AC, Schindler MK, Cooper EC, Pecsok MK, Cieslak MC, Martin ML, Bar-Or A, Elahi A, Perrone CM, Spangler BC, Satterthwaite TD, Shinohara RT. Uncinate Fasciculus Lesion Burden and Anxiety in Multiple Sclerosis. JAMA Netw Open 2025; 8:e254751. [PMID: 40227683 PMCID: PMC11997724 DOI: 10.1001/jamanetworkopen.2025.4751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/02/2025] [Indexed: 04/15/2025] Open
Abstract
Importance Multiple sclerosis (MS) is an immune-mediated neurological disorder that affects 2.4 million people worldwide, and up to 60% experience anxiety. Objective To investigate whether anxiety in MS is associated with white matter lesion burden in the uncinate fasciculus (UF). Design, Setting, and Participants This was a retrospective case-control study of participants aged 18 years or older diagnosed with MS by an MS specialist and identified from the electronic medical record at a single-center academic medical specialty MS clinic in Pennsylvania. Participants received research-quality 3-Tesla magnetic resonance neuroimaging as part of MS clinical care from January 6, 2010, to February 14, 2018. After excluding participants with poor image quality, participants were stratified into 3 groups naturally balanced in age and sex: (1) MS without anxiety, (2) MS with mild anxiety, and (3) MS with severe anxiety. Analyses were performed from June 1 to September 30, 2024. Exposure Anxiety diagnosis and anxiolytic medication. Main Outcomes and Measures Main outcomes were whether patients with severe anxiety had greater lesion burden in the UF than those without anxiety and whether higher anxiety severity was associated with greater UF lesion burden. Generalized additive models were used, with the burden of lesions (eg, proportion of fascicle impacted) within the UF as the outcome measure and sex, spline of age, and total brain volume as covariates. Results Among 372 patients with MS (mean [SD] age, 47.7 [11.4] years; 296 [80%] female), after anxiety phenotype stratification, 99 (27%) had no anxiety (mean [SD] age, 49.4 [11.7] years; 74 [75%] female), 249 (67%) had mild anxiety (mean [SD] age, 47.1 [11.1] years; 203 [82%] female), and 24 (6%) had severe anxiety (mean [SD] age, 47.0 [12.2] years; 19 [79%] female). UF burden was higher in patients with severe anxiety compared with no anxiety (T = 2.01 [P = .047]; Cohen f2, 0.19 [95% CI, 0.08-0.52]). Additionally, higher mean UF burden was associated with higher severity of anxiety (T = 2.09 [P = .04]; Cohen f2, 0.10 [95% CI, 0.05-0.21]). Conclusions and Relevance In this case-control study of UF lesion burden and anxiety in MS, overall lesion burden in the UF was associated with the presence and severity of anxiety. Future studies linking white matter lesion burden in the UF with treatment prognosis are warranted.
Collapse
Affiliation(s)
- Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, Pennsylvania
| | - Audrey C. Luo
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, Pennsylvania
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania, Philadelphia
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia
| | - Elena C. Cooper
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, Pennsylvania
| | | | - Matthew C. Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, Pennsylvania
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania, Philadelphia
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia
| | - Ameena Elahi
- Department of Information Services, University of Pennsylvania, Philadelphia
| | - Christopher M. Perrone
- Department of Neurology, University of Pennsylvania, Philadelphia
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia
| | - Bailey C. Spangler
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, Pennsylvania
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia
| |
Collapse
|
6
|
Li Q, Xie Y, Lin J, Li M, Gu Z, Xin T, Zhang Y, Lu Q, Guo Y, Xing Y, Wang W. Microglia Sing the Prelude of Neuroinflammation-Associated Depression. Mol Neurobiol 2025; 62:5311-5332. [PMID: 39535682 DOI: 10.1007/s12035-024-04575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric condition characterized by sadness and anhedonia and is closely linked to chronic low-grade neuroinflammation, which is primarily induced by microglia. Nonetheless, the mechanisms by which microglia elicit depressive symptoms remain uncertain. This review focuses on the mechanism linking microglia and depression encompassing the breakdown of the blood-brain barrier, the hypothalamic-pituitary-adrenal axis, the gut-brain axis, the vagus and sympathetic nervous systems, and the susceptibility influenced by epigenetic modifications on microglia. These pathways may lead to the alterations of microglia in cytokine levels, as well as increased oxidative stress. Simultaneously, many antidepressant treatments can alter the immune phenotype of microglia, while anti-inflammatory treatments can also have antidepressant effects. This framework linking microglia, neuroinflammation, and depression could serve as a reference for targeting microglia to treat depression.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ying Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Miaomiao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Ziyan Gu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yihui Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
7
|
Daneshvar S, Mohammadi Bytamar J, Dehbozorgi S, Pourmohammad P, Zeraatpisheh Z, Jobson L. Perseverative cognitions, negative valence systems, positive valence systems, social disconnection, and suicide: testing a mediator model among university students. BMC Psychol 2025; 13:215. [PMID: 40055841 PMCID: PMC11889903 DOI: 10.1186/s40359-025-02550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Various studies have suggested that perseverative cognitions play an important role in the occurrence of suicide. However, the mediating mechanisms underlying the relationship between perseverative cognitions and suicidality remain largely unknown. Accordingly, the present study aimed to investigate whether positive and negative valence systems and social disconnection temporally mediated the association between perseverative cognitions and suicidal behaviors. 256 university students participated in this study. The data were collected using the Perseverative Cognitions Questionnaire (PCQ), Approach-Avoidance Temperament Questionnaire (ATQ), Social Connectedness Scale-Revised (SCS-R), and Suicidal Behaviors Questionnaire-Revised (SBQ-R). The results showed that perseverative cognitions had a direct and significant effect on suicide (p <.001). Positive and negative valence systems and social disconnection significantly mediated the relationship between perseverative cognitions and suicide. Our findings showed that multiple factors including perseverative cognitions, positive and negative valence systems, and social disconnection may have a role in the occurrence of suicide among university students.
Collapse
Affiliation(s)
- Somayeh Daneshvar
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Hafez HospitalShahid Chamran Blvd, Shiraz, Iran.
| | - Jahangir Mohammadi Bytamar
- Department of Clinical Psychology, Faculty of Behavioral Sciences and Mental Health, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sara Dehbozorgi
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Hafez HospitalShahid Chamran Blvd, Shiraz, Iran
| | - Parisa Pourmohammad
- Department of Clinical Psychology, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Zahra Zeraatpisheh
- Research Center for Psychiatry and Behavior Science, Shiraz University of Medical Sciences, Hafez HospitalShahid Chamran Blvd, Shiraz, Iran
| | - Laura Jobson
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Kuga N, Sasaki T. Memory-related neurophysiological mechanisms in the hippocampus underlying stress susceptibility. Neurosci Res 2025; 211:3-9. [PMID: 35931215 DOI: 10.1016/j.neures.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 07/20/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Stress-induced psychiatric symptoms, such as increased anxiety, decreased sociality, and depression, differ considerably across individuals. The cognitive model of depression proposes that biased negative memory is a crucial determinant in the development of mental stress-induced disorders. Accumulating evidence from both clinical and animal studies has demonstrated that such biased memory processing could be triggered by the hippocampus, a region well known to be involved in declarative memories. This review mainly describes how memory-related neurophysiological mechanisms in the hippocampus and their interactions with other related brain regions are involved in the regulation of stress susceptibility and discusses potential interventions to prevent and treat stress-related psychiatric symptoms. Further neurophysiological insights based on memory mechanisms are expected to devise personalized prevention and therapy to confer stress resilience.
Collapse
Affiliation(s)
- Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
9
|
Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, Kasturirangan M, Johnson M, Wyche W, Jimenez A, Velamuri R, Ghumman M, Wickramasinghe H, Christian O, Srivastava S, Hultman R. Transcriptomic Evaluation of a Stress Vulnerability Network Using Single-Cell RNA Sequencing in Mouse Prefrontal Cortex. Biol Psychiatry 2024; 96:886-899. [PMID: 38866174 PMCID: PMC11524784 DOI: 10.1016/j.biopsych.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Maureen Eberle
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ian Hultman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Molly Matkovich
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Micah Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Whitney Wyche
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Alli Jimenez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Radha Velamuri
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Mahnoor Ghumman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Himali Wickramasinghe
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Olivia Christian
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Department of Psychiatry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
10
|
Baller EB, Luo AC, Schindler MK, Cooper EC, Pecsok MK, Cieslak MC, Martin ML, Bar-Or A, Elahi A, Perrone CM, Reid D, Spangler BC, Satterthwaite TD, Shinohara RT. Association of Anxiety with Uncinate Fasciculus Lesion Burden in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24315108. [PMID: 39417125 PMCID: PMC11482984 DOI: 10.1101/2024.10.08.24315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance Multiple sclerosis (MS) is an immune-mediated neurological disorder that affects 2.4 million people world-wide, and up to 60% experience anxiety. Objective We investigated how anxiety in MS is associated with white matter lesion burden in the uncinate fasciculus (UF). Design Retrospective case-control study of participants who received research-quality 3-tesla (3T) neuroimaging as part of MS clinical care from 2010-2018. Analyses were performed from June 1st to September 30th, 2024. Setting Single-center academic medical specialty MS clinic. Participants Participants were identified from the electronic medical record. All participants were diagnosed by an MS specialist and completed research-quality MRI at 3T. After excluding participants with poor image quality, 372 were stratified into three groups which were balanced for age and sex: 1) MS without anxiety (MS+noA, n=99); 2) MS with mild anxiety (MS+mildA, n=249); and 3) MS with severe anxiety (MS+severeA, n=24). Exposure Anxiety diagnosis and anxiolytic medication. Main Outcome and Measure We first evaluated whether MS+severeA patients had greater lesion burden in the UF than MS+noA. Next, we examined whether increasing anxiety severity was associated with greater UF lesion burden. Generalized additive models were employed, with the burden of lesions (e.g. proportion of fascicle impacted) within the UF as the outcome measure and sex and spline of age as covariates. Results UF burden was higher in MS+severeA as compared to MS+noA (T=2.02, P=0.045, Cohen's f 2=0.19). A dose-response effect was also found, where higher mean UF burden was associated with higher anxiety severity (T=2.08, P=0.038, Cohen's f 2=0.10). Conclusions and Relevance We demonstrate that overall lesion burden in UF was associated with the presence and severity of anxiety in patients with MS. Future studies linking white matter lesion burden in UF with treatment prognosis are warranted.
Collapse
Affiliation(s)
- Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Audrey C. Luo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Matthew K. Schindler
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Elena C. Cooper
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Margaret K. Pecsok
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
| | - Matthew C. Cieslak
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
| | - Melissa Lynne Martin
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Ameena Elahi
- Department of Information Services, University of Pennsylvania, Philadelphia, PA USA
| | - Christopher M. Perrone
- Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
- Center for Neuroinflammation and Neurotherapeutics, University of Pennsylvania, Philadelphia, PA USA
| | - Donovan Reid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| | - Bailey C. Spangler
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Philadelphia, PA USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
11
|
Li P, Zhao J, Wei X, Luo L, Chu Y, Zhang T, Zhu A, Yan J. Acupuncture may play a key role in anti-depression through various mechanisms in depression. Chin Med 2024; 19:135. [PMID: 39367470 PMCID: PMC11451062 DOI: 10.1186/s13020-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024] Open
Abstract
Depression has emerged as a significant global health concern, exerting a profound impact on individuals, as evidenced by its high prevalence and associated suicide rates. Considering its pervasive nature, the absence of optimal treatment modalities remains a challenge. Acupuncture has garnered substantial clinical and experimental validation for its efficacy in addressing diverse forms of depression, including postpartum, post-stroke, and adolescent depression. This article endeavors to elucidate the distinctive attributes and underlying mechanisms of acupuncture in the contemporary treatment of depression. Research has demonstrated that acupuncture exerts diverse physiological effects in animal models of depression, encompassing modulation of the brain, serum, and brain-gut axis. These effects are attributed to various mechanisms, including anti-inflammatory and anti-oxidative actions, promotion of neuronal plasticity, neuroprotection, neurotrophic effects, modulation of neurotransmitters, regulation of endocrine and immune functions, and modulation of cell signal pathways. Currently, the therapeutic mechanism of acupuncture involves the engagement of multiple targets, pathways, and bidirectional regulation. Hence, acupuncture emerges as a promising alternative medical modality, exhibiting substantial research prospects and meriting comprehensive worth further study and dissemination.
Collapse
Affiliation(s)
- Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of clinical medicine, Xiamen medical college, xiamen, China
| | - Jiangna Zhao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiuxiang Wei
- Rehabilitation Medicine Department, Shenzhen Hospital of Traditional Chinese and Western Medicine , Shenzhen, China
| | - Longfei Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuzhou Chu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tao Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Anning Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Juntao Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
12
|
Cocco C, Noli B, Manconi B, Contini C, Manca E, Pisanu C, Meloni A, Manchia M, Paribello P, Chillotti C, Ardau R, Severino G, Squassina A. Lower Plasma Levels of Selective VGF (Non-Acronymic) Peptides in Bipolar Disorder: Comparative Analysis Reveals Distinct Patterns across Mood Disorders and Healthy Controls. Neuropsychobiology 2024; 83:160-169. [PMID: 39245034 PMCID: PMC11548102 DOI: 10.1159/000540673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Discriminating bipolar disorder (BD) from major depressive disorder (MDD) remains a challenging clinical task. Identifying specific peripheral biosignatures that can differentiate between BD and MDD would significantly increase diagnostic accuracy. Dysregulated neuroplasticity is implicated in BD and MDD, and psychotropic medications restore specific disrupted processes by increasing neurotrophic signalling. The nerve growth factor inducible vgf gene (non-acronymic) encodes a precursor protein named proVGF, which undergoes proteolytic processing to produce several VGF peptides, some of which were suggested to be implicated in mood disorders and have antidepressant effects. Since the presence of VGF peptides in humans has been exclusively investigated in brain and cerebrospinal fluid, we aimed to identify which VGF peptides are present in the plasma and to investigate whether their levels could differentiate BD from MDD as well as responders from non-responders to pharmacological interventions. METHODS VGF peptides were investigated in plasma from patients diagnosed with MDD (n = 37) or BD (n = 40 under lithium plus n = 29 never exposed to lithium), as well as healthy controls (HC; n = 36). RESULTS Three VGF peptides (TLQP-11, AQEE-14, and NAPP-19) were identified using spectrometry analysis of plasma from HC. These peptides were then measured in the entire sample using ELISA, which showed significantly lower levels of AQEE and NAPP in BD than in HC and MDD (p = 5.0 × 10-5, p = 0.001, respectively). CONCLUSION Our findings suggest that lower plasma levels of NAPP and AQEE are specifically associated with BD, thus possibly representing a diagnostic biomarker in mood disorders.
Collapse
Affiliation(s)
- Cristina Cocco
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Cristina Contini
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Elias Manca
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Clinical Psychiatry Unit, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Pasquale Paribello
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Clinical Psychiatry Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Clinical Pharmacology Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Clinical Pharmacology Unit, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Bremshey S, Groß J, Renken K, Masseck OA. The role of serotonin in depression-A historical roundup and future directions. J Neurochem 2024; 168:1751-1779. [PMID: 38477031 DOI: 10.1111/jnc.16097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Depression is one of the most common psychiatric disorders worldwide, affecting approximately 280 million people, with probably much higher unrecorded cases. Depression is associated with symptoms such as anhedonia, feelings of hopelessness, sleep disturbances, and even suicidal thoughts. Tragically, more than 700 000 people commit suicide each year. Although depression has been studied for many decades, the exact mechanisms that lead to depression are still unknown, and available treatments only help a fraction of patients. In the late 1960s, the serotonin hypothesis was published, suggesting that serotonin is the key player in depressive disorders. However, this hypothesis is being increasingly doubted as there is evidence for the influence of other neurotransmitters, such as noradrenaline, glutamate, and dopamine, as well as larger systemic causes such as altered activity in the limbic network or inflammatory processes. In this narrative review, we aim to contribute to the ongoing debate on the involvement of serotonin in depression. We will review the evolution of antidepressant treatments, systemic research on depression over the years, and future research applications that will help to bridge the gap between systemic research and neurotransmitter dynamics using biosensors. These new tools in combination with systemic applications, will in the future provide a deeper understanding of the serotonergic dynamics in depression.
Collapse
Affiliation(s)
- Svenja Bremshey
- Synthetic Biology, University of Bremen, Bremen, Germany
- Neuropharmacology, University of Bremen, Bremen, Germany
| | - Juliana Groß
- Synthetic Biology, University of Bremen, Bremen, Germany
| | - Kim Renken
- Synthetic Biology, University of Bremen, Bremen, Germany
| | | |
Collapse
|
14
|
Hughes DN, Klein MH, Walder-Christensen KK, Thomas GE, Grossman Y, Waters D, Matthews AE, Carson WE, Filali Y, Tsyglakova M, Fink A, Gallagher NM, Perez-Balaguer M, McClung CA, Zarate JM, Hultman RC, Mague SD, Carlson DE, Dzirasa K. A widespread electrical brain network encodes anxiety in health and depressive states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600900. [PMID: 38979139 PMCID: PMC11230447 DOI: 10.1101/2024.06.26.600900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In rodents, anxiety is charactered by heightened vigilance during low-threat and uncertain situations. Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state, the underlying network architecture that integrates activity across brain regions to encode anxiety across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a multi-region network that encodes the anxious brain-state. The network is composed of circuits widely implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also principally altered in two mouse models of depression. Thus, we establish a network-level process whereby the brain encodes anxiety in health and disease.
Collapse
Affiliation(s)
- Dalton N Hughes
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael Hunter Klein
- Dept. of Electrical and Computer Engineering, Duke University, Durham North Carolina 27708, USA
| | | | - Gwenaëlle E Thomas
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yael Grossman
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Diana Waters
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anna E Matthews
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - William E Carson
- Dept. of Biomedical Engineering, Duke University, Durham North Carolina 27708, USA
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, Department of Psychiatry, University of Iowa, Iowa City, IA, 52242 USA
| | - Mariya Tsyglakova
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Alexandra Fink
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Neil M Gallagher
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Masiel Perez-Balaguer
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15213
| | - Jean Mary Zarate
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Rainbo C Hultman
- Department of Molecular Physiology and Biophysics, Department of Psychiatry, University of Iowa, Iowa City, IA, 52242 USA
| | - Stephen D Mague
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David E Carlson
- Dept. of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Electrical and Computer Engineering, Duke University, Durham North Carolina 27708, USA
- Dept. of Civil and Environmental Engineering, Duke University, Durham North Carolina 27708, USA
- Dept. of Biomedical Engineering, Duke University, Durham North Carolina 27708, USA
| | - Kafui Dzirasa
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
- Dept. of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Dept. of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
15
|
Xiao J, Adkinson JA, Allawala AB, Banks G, Bartoli E, Fan X, Mocchi M, Pascuzzi B, Pulapaka S, Franch MC, Mathew SJ, Mathura RK, Myers J, Pirtle V, Provenza NR, Shofty B, Watrous AJ, Pitkow X, Goodman WK, Pouratian N, Sheth S, Bijanki KR, Hayden BY. Insula uses overlapping codes for emotion in self and others. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596966. [PMID: 38895233 PMCID: PMC11185604 DOI: 10.1101/2024.06.04.596966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In daily life, we must recognize others' emotions so we can respond appropriately. This ability may rely, at least in part, on neural responses similar to those associated with our own emotions. We hypothesized that the insula, a cortical region near the junction of the temporal, parietal, and frontal lobes, may play a key role in this process. We recorded local field potential (LFP) activity in human neurosurgical patients performing two tasks, one focused on identifying their own emotional response and one on identifying facial emotional responses in others. We found matching patterns of gamma- and high-gamma band activity for the two tasks in the insula. Three other regions (MTL, ACC, and OFC) clearly encoded both self- and other-emotions, but used orthogonal activity patterns to do so. These results support the hypothesis that the insula plays a particularly important role in mediating between experienced vs. observed emotions.
Collapse
Affiliation(s)
- Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Joshua A. Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | | | - Garrett Banks
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Xiaoxu Fan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Madaline Mocchi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Bailey Pascuzzi
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Suhruthaa Pulapaka
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Melissa C. Franch
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Sanjay J. Mathew
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, 77030
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Andrew J. Watrous
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Xaq Pitkow
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Wayne K. Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, TX, 77030
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390
| | - Sameer Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| | - Benjamin Y. Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
16
|
Kong F, Xu Z, Yang G, Jia Q, Mo F, Jing L, Luo J, Jin H, Cai X. Microelectrode Arrays for Detection of Neural Activity in Depressed Rats: Enhanced Theta Activity in the Basolateral Amygdala. CYBORG AND BIONIC SYSTEMS 2024; 5:0125. [PMID: 38841725 PMCID: PMC11151173 DOI: 10.34133/cbsystems.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.
Collapse
Affiliation(s)
- Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gucheng Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Mo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department,
Peking University First Hospital, Beijing 100034, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Kumar M, Bhatt B, Gusain C, Mahajan N, Bishnoi M. Sex-specific effects of ketogenic diet on anxiety-like behavior and neuroimmune response in C57Bl/6J mice. J Nutr Biochem 2024; 127:109591. [PMID: 38311044 DOI: 10.1016/j.jnutbio.2024.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The ketogenic diet (KD) has been shown to reduce anxiety and enhance cognitive functions in neurological diseases. However, the sex-specific effects of KD on anxiety-like behavior in healthy individuals and the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are unelucidated. This study investigated the sex-specific effects of KD on anxiety-like behavior and the neuroimmune response in the prefrontal cortex (PFC) and hippocampus of healthy C57BL/6J male and female mice. Animals were fed either a control diet (CD- 17% fat, 65% carb, 18% protein) or a KD (80% fat, 5% carb, 15% protein) for 4 weeks. KD increased the levels of circulating β-hydroxybutyrate (BHB) both in males and females. However, PFC BHB levels were found to be elevated only in KD males. Moreover, KD did not affect the behavior of females but improved motor abilities and reduced anxiety levels in males. KD suppressed the mRNA expression of the pan microglial markers (Cd68, P2ry12) and induced morphological changes in the male PFC microglia. A sex-specific decrease in IL1β and an increase in IL-10 levels was found in the PFC of KD males. A similar trend was observed in the hippocampus of males where KD reduced the mRNA expression of P2ry12, Il1β, and cFos. Additionally, BHB increased the production of IL-10 whereas it decreased the production of IL1β from human microglia in in-vitro conditions. In summary, these results demonstrate that the anxiolytic and motor function enhancement abilities of KD are male-specific. Reduced pro-inflammatory and improved anti-inflammatory factors in the male PFC and hippocampus may underlie these effects.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India; Adjunct faculty, Regional Centre for Biotechnology, Faridabad, Haryana, India.
| | - Babita Bhatt
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Chitralekha Gusain
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Nayan Mahajan
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Sector 81 (Knowledge City), Punjab, India
| |
Collapse
|
18
|
Li H, Kawatake-Kuno A, Inaba H, Miyake Y, Itoh Y, Ueki T, Oishi N, Murai T, Suzuki T, Uchida S. Discrete prefrontal neuronal circuits determine repeated stress-induced behavioral phenotypes in male mice. Neuron 2024; 112:786-804.e8. [PMID: 38228137 DOI: 10.1016/j.neuron.2023.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders, including depression. Although depression is a highly heterogeneous syndrome, it remains unclear how chronic stress drives individual differences in behavioral responses. In this study, we developed a subtyping-based approach wherein stressed male mice were divided into four subtypes based on their behavioral patterns of social interaction deficits and anhedonia, the core symptoms of psychiatric disorders. We identified three prefrontal cortical neuronal projections that regulate repeated stress-induced behavioral phenotypes. Among them, the medial prefrontal cortex (mPFC)→anterior paraventricular thalamus (aPVT) pathway determines the specific behavioral subtype that exhibits both social deficits and anhedonia. Additionally, we identified the circuit-level molecular mechanism underlying this subtype: KDM5C-mediated epigenetic repression of Shisa2 transcription in aPVT projectors in the mPFC led to social deficits and anhedonia. Thus, we provide a set of biological aspects at the cellular, molecular, and epigenetic levels that determine distinctive stress-induced behavioral phenotypes.
Collapse
Affiliation(s)
- Haiyan Li
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiromichi Inaba
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuka Miyake
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Yukihiro Itoh
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Naoya Oishi
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan; Kyoto University Medical Science and Business Liaison Organization, Medical Innovation Center, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| |
Collapse
|
19
|
Fetcho RN, Parekh PK, Chou J, Kenwood M, Chalençon L, Estrin DJ, Johnson M, Liston C. A stress-sensitive frontostriatal circuit supporting effortful reward-seeking behavior. Neuron 2024; 112:473-487.e4. [PMID: 37963470 PMCID: PMC11533377 DOI: 10.1016/j.neuron.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/06/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
Effort valuation-a process for selecting actions based on the anticipated value of rewarding outcomes and expectations about the work required to obtain them-plays a fundamental role in decision-making. Effort valuation is disrupted in chronic stress states and is supported by the anterior cingulate cortex (ACC), but the circuit-level mechanisms by which the ACC regulates effort-based decision-making are unclear. Here, we show that ACC neurons projecting to the nucleus accumbens (ACC-NAc) play a critical role in effort valuation behavior in mice. Activity in ACC-NAc cells integrates both reward- and effort-related information, encoding a reward-related signal that scales with effort requirements and is necessary for supporting future effortful decisions. Chronic corticosterone exposure reduces motivation, suppresses effortful reward-seeking, and disrupts ACC-NAc signals. Together, our results delineate a stress-sensitive ACC-NAc circuit that supports effortful reward-seeking behavior by integrating reward and effort signals and reinforcing effort allocation in the service of maximizing reward.
Collapse
Affiliation(s)
- Robert N Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Puja K Parekh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Margaux Kenwood
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Chalençon
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Estrin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
20
|
Cardoner N, Andero R, Cano M, Marin-Blasco I, Porta-Casteràs D, Serra-Blasco M, Via E, Vicent-Gil M, Portella MJ. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders. Curr Neuropharmacol 2024; 22:935-962. [PMID: 37403395 PMCID: PMC10845094 DOI: 10.2174/1570159x21666230703091435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 07/06/2023] Open
Abstract
Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.
Collapse
Affiliation(s)
- Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raül Andero
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marta Cano
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Muriel Vicent-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria J. Portella
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Antonoudiou P, Stone B, Colmers PLW, Evans-Strong A, Walton N, Maguire J. Influence of chronic stress on network states governing valence processing: Potential relevance to the risk for psychiatric illnesses. J Neuroendocrinol 2023; 35:e13274. [PMID: 37186481 PMCID: PMC11025365 DOI: 10.1111/jne.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Stress is a major risk factor for psychiatric illnesses and understanding the mechanisms through which stress disrupts behavioral states is imperative to understanding the underlying pathophysiology of mood disorders. Both chronic stress and early life stress alter valence processing, the process of assigning value to sensory inputs and experiences (positive or negative), which determines subsequent behavior and is essential for emotional processing and ultimately survival. Stress disrupts valence processing in both humans and preclinical models, favoring negative valence processing and impairing positive valence processing. Valence assignment involves neural computations performed in emotional processing hubs, including the amygdala, prefrontal cortex, and ventral hippocampus, which can be influenced by neuroendocrine mediators. Oscillations within and between these regions are critical for the neural computations necessary to perform valence processing functions. Major advances in the field have demonstrated a role for oscillatory states in valence processing under physiological conditions and emerging studies are exploring how these network states are altered under pathophysiological conditions and impacted by neuroendocrine factors. The current review highlights what is currently known regarding the impact of stress and the role of neuroendocrine mediators on network states and valence processing. Further, we propose a model in which chronic stress alters information routing through emotional processing hubs, resulting in a facilitation of negative valence processing and a suppression of positive valence processing.
Collapse
Affiliation(s)
| | - Bradly Stone
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - Najah Walton
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jamie Maguire
- Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Zhang W, Zhao C, Tang F, Luo W. Automatic Positive and Negative Emotion Regulation in Adolescents with Major Depressive Disorder. Psychopathology 2023; 57:111-122. [PMID: 37647878 DOI: 10.1159/000533334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
INTRODUCTION Adolescents with major depressive disorder (MDD) exhibit hypoactivity to positive stimuli and hyperactivity to negative stimuli in terms of neural responses. Automatic emotion regulation (AER) activates triple networks (i.e., the central control network, default mode network, and salience network). Based on previous studies, we hypothesized that adolescents with MDD exhibit dissociable spatiotemporal deficits during positive and negative AER. METHODS We first collected EEG data from 32 adolescents with MDD and 35 healthy adolescents while they performed an implicit emotional Go/NoGo task. Then, we characterized the spatiotemporal dynamics of cortical activity during AER. RESULTS In Go trials, MDD adolescents exhibited reduced N2 amplitudes, enhanced theta power for positive pictures, and stronger bottom-up information flow from the left orbitofrontal cortex (OFC) to the right superior frontal gyrus compared to top-down information flow than the controls. In contrast, in NoGo trials, MDD adolescents exhibited elevated P3 amplitudes, enhanced theta power, and stronger top-down information flows from the right middle frontal gyrus to the right OFC and the left insula than the controls. CONCLUSION Overall, adolescents with MDD exhibited impaired automatic attention to positive emotions and impaired automatic response inhibition. These findings have potential implications for the clinical treatment of adolescents with MDD.
Collapse
Affiliation(s)
- Wenhai Zhang
- Mental Health Center, Yancheng Institute of Technology, Yancheng, China
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang, China
| | - Cancan Zhao
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
- School of Psychology, Shandong Normal University, Jinan, China
| | - Fanggui Tang
- The Big Data Centre for Neuroscience and AI, Hengyang Normal University, Hengyang, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| |
Collapse
|
23
|
Hing B, Mitchell SB, Eberle M, Filali Y, Hultman I, Matkovich M, Kasturirangan M, Wyche W, Jimenez A, Velamuri R, Johnson M, Srivastava S, Hultman R. Single Cell Transcriptome of Stress Vulnerability Network in mouse Prefrontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540705. [PMID: 37662266 PMCID: PMC10473598 DOI: 10.1101/2023.05.14.540705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Increased vulnerability to stress is a major risk factor for the manifestation of several mood disorders, including major depressive disorder (MDD). Despite the status of MDD as a significant donor to global disability, the complex integration of genetic and environmental factors that contribute to the behavioral display of such disorders has made a thorough understanding of related etiology elusive. Recent developments suggest that a brain-wide network approach is needed, taking into account the complex interplay of cell types spanning multiple brain regions. Single cell RNA-sequencing technologies can provide transcriptomic profiling at the single-cell level across heterogenous samples. Furthermore, we have previously used local field potential oscillations and machine learning to identify an electrical brain network that is indicative of a predisposed vulnerability state. Thus, this study combined single cell RNA-sequencing (scRNA-Seq) with electrical brain network measures of the stress-vulnerable state, providing a unique opportunity to access the relationship between stress network activity and transcriptomic changes within individual cell types. We found especially high numbers of differentially expressed genes between animals with high and low stress vulnerability brain network activity in astrocytes and glutamatergic neurons but we estimated that vulnerability network activity depends most on GABAergic neurons. High vulnerability network activity included upregulation of microglia and mitochondrial and metabolic pathways, while lower vulnerability involved synaptic regulation. Genes that were differentially regulated with vulnerability network activity significantly overlapped with genes identified as having significant SNPs by human GWAS for depression. Taken together, these data provide the gene expression architecture of a previously uncharacterized stress vulnerability brain state, enabling new understanding and intervention of predisposition to stress susceptibility.
Collapse
|
24
|
Talbot A, Dunson D, Dzirasa K, Carlson D. Estimating a brain network predictive of stress and genotype with supervised autoencoders. J R Stat Soc Ser C Appl Stat 2023; 72:912-936. [PMID: 37662555 PMCID: PMC10474874 DOI: 10.1093/jrsssc/qlad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 09/05/2023]
Abstract
Targeted brain stimulation has the potential to treat mental illnesses. We develop an approach to help design protocols by identifying relevant multi-region electrical dynamics. Our approach models these dynamics as a superposition of latent networks, where the latent variables predict a relevant outcome. We use supervised autoencoders (SAEs) to improve predictive performance in this context, describe the conditions where SAEs improve predictions, and provide modelling constraints to ensure biological relevance. We experimentally validate our approach by finding a network associated with stress that aligns with a previous stimulation protocol and characterizing a genotype associated with bipolar disorder.
Collapse
Affiliation(s)
| | - David Dunson
- Department of Statistical Science, Duke University, Durham, NC, USA
| | - Kafui Dzirasa
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Carlson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Li Q, Takeuchi Y, Wang J, Gellért L, Barcsai L, Pedraza LK, Nagy AJ, Kozák G, Nakai S, Kato S, Kobayashi K, Ohsawa M, Horváth G, Kékesi G, Lőrincz ML, Devinsky O, Buzsáki G, Berényi A. Reinstating olfactory bulb-derived limbic gamma oscillations alleviates depression-like behavioral deficits in rodents. Neuron 2023; 111:2065-2075.e5. [PMID: 37164008 PMCID: PMC10321244 DOI: 10.1016/j.neuron.2023.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 05/12/2023]
Abstract
Although the etiology of major depressive disorder remains poorly understood, reduced gamma oscillations is an emerging biomarker. Olfactory bulbectomy, an established model of depression that reduces limbic gamma oscillations, suffers from non-specific effects of structural damage. Here, we show that transient functional suppression of olfactory bulb neurons or their piriform cortex efferents decreased gamma oscillation power in limbic areas and induced depression-like behaviors in rodents. Enhancing transmission of gamma oscillations from olfactory bulb to limbic structures by closed-loop electrical neuromodulation alleviated these behaviors. By contrast, silencing gamma transmission by anti-phase closed-loop stimulation strengthened depression-like behaviors in naive animals. These induced behaviors were neutralized by ketamine treatment that restored limbic gamma power. Taken together, our results reveal a causal link between limbic gamma oscillations and depression-like behaviors in rodents. Interfering with these endogenous rhythms can affect behaviors in rodent models of depression, suggesting that restoring gamma oscillations may alleviate depressive symptoms.
Collapse
Affiliation(s)
- Qun Li
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged 6720, Hungary
| | - Yuichi Takeuchi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Department of Physiology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan; Department of Biopharmaceutical Sciences and Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Jiale Wang
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; Faculty of Agriculture, University of Szeged, Szeged 6720, Hungary
| | - Levente Gellért
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged 6720, Hungary
| | - Livia Barcsai
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged 6720, Hungary; Neunos Inc, Boston, MA 02108, USA
| | - Lizeth K Pedraza
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Anett J Nagy
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged 6720, Hungary; Neunos Inc, Boston, MA 02108, USA
| | - Gábor Kozák
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Shinya Nakai
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masahiro Ohsawa
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Gyöngyi Horváth
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Gabriella Kékesi
- Department of Physiology, University of Szeged, Szeged 6720, Hungary
| | - Magor L Lőrincz
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; Department of Physiology, Anatomy and Neuroscience, Faculty of Sciences University of Szeged, Szeged 6726, Hungary; Neuroscience Division, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Langone Comprehensive Epilepsy Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - György Buzsáki
- Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Antal Berényi
- MTA-SZTE "Momentum" Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged 6720, Hungary; Neunos Inc, Boston, MA 02108, USA; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
26
|
LeDuke DO, Borio M, Miranda R, Tye KM. Anxiety and depression: A top-down, bottom-up model of circuit function. Ann N Y Acad Sci 2023; 1525:70-87. [PMID: 37129246 PMCID: PMC10695657 DOI: 10.1111/nyas.14997] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A functional interplay of bottom-up and top-down processing allows an individual to appropriately respond to the dynamic environment around them. These processing modalities can be represented as attractor states using a dynamical systems model of the brain. The transition probability to move from one attractor state to another is dependent on the stability, depth, neuromodulatory tone, and tonic changes in plasticity. However, how does the relationship between these states change in disease states, such as anxiety or depression? We describe bottom-up and top-down processing from Marr's computational-algorithmic-implementation perspective to understand depressive and anxious disease states. We illustrate examples of bottom-up processing as basolateral amygdala signaling and projections and top-down processing as medial prefrontal cortex internal signaling and projections. Understanding these internal processing dynamics can help us better model the multifaceted elements of anxiety and depression.
Collapse
Affiliation(s)
- Deryn O. LeDuke
- Salk Institute for Biological Studies, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Matilde Borio
- Salk Institute for Biological Studies, La Jolla, California, USA
| | - Raymundo Miranda
- Salk Institute for Biological Studies, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kay M. Tye
- Salk Institute for Biological Studies, La Jolla, California, USA
- Howard Hughes Medical Institute, La Jolla, California, USA
- Kavli Institute for the Brain and Mind, La Jolla, California, USA
| |
Collapse
|
27
|
Li P, Huang W, Chen Y, Aslam MS, Cheng W, Huang Y, Chen W, Huang Y, Wu X, Yan Y, Shen J, Tong T, Huang S, Meng X. Acupuncture Alleviates CUMS-Induced Depression-Like Behaviors by Restoring Prefrontal Cortex Neuroplasticity. Neural Plast 2023; 2023:1474841. [PMID: 37179843 PMCID: PMC10169246 DOI: 10.1155/2023/1474841] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
PURPOSE To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression. METHODS Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR. RESULTS Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (P < 0.05). CONCLUSION Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.
Collapse
Affiliation(s)
- Peng Li
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenya Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Institute of TCM-Related Comorbid Depression, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiping Chen
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | | | - Wenjing Cheng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenjie Chen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yanxun Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinnan Wu
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yining Yan
- Department of Traditional Chinese Medicine, School of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Junliang Shen
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Shuqiong Huang
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
28
|
Kuga N, Nakayama R, Morikawa S, Yagishita H, Konno D, Shiozaki H, Honjoya N, Ikegaya Y, Sasaki T. Hippocampal sharp wave ripples underlie stress susceptibility in male mice. Nat Commun 2023; 14:2105. [PMID: 37080967 PMCID: PMC10119298 DOI: 10.1038/s41467-023-37736-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The ventral hippocampus (vHC) is a core brain region for emotional memory. Here, we examined how the vHC regulates stress susceptibility from the level of gene expression to neuronal population dynamics in male mice. Transcriptome analysis of samples from stress-naïve mice revealed that intrinsic calbindin (Calb1) expression in the vHC is associated with susceptibility to social defeat stress. Mice with Calb1 gene knockdown in the vHC exhibited increased stress resilience and failed to show the increase in the poststress ventral hippocampal sharp wave ripple (SWR) rate. Poststress vHC SWRs triggered synchronous reactivation of stress memory-encoding neuronal ensembles and facilitated information transfer to the amygdala. Suppression of poststress vHC SWRs by real-time feedback stimulation or walking prevented social behavior deficits. Taken together, our results demonstrate that internal reactivation of memories of negative stressful episodes supported by ventral hippocampal SWRs serves as a crucial neurophysiological substrate for determining stress susceptibility.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Ryota Nakayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Morikawa
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Haruya Yagishita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Daichi Konno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Laboratory of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiromi Shiozaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Natsumi Honjoya
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka, 565-0871, Japan
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
29
|
Zhou Y, He Y, Jin Y, Zeidman P, Gao L, Rong B, Huang H, Feng Y, Cui J, Zhang S, Wang Y, Wang G, Xiang YT, Wang H. Amygdala connectivity related to subsequent stress responses during the COVID-19 outbreak. Front Psychiatry 2023; 14:999934. [PMID: 36911118 PMCID: PMC9996006 DOI: 10.3389/fpsyt.2023.999934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The amygdala plays an important role in stress responses and stress-related psychiatric disorders. It is possible that amygdala connectivity may be a neurobiological vulnerability marker for stress responses or stress-related psychiatric disorders and will be useful to precisely identify the vulnerable individuals before stress happens. However, little is known about the relationship between amygdala connectivity and subsequent stress responses. The current study investigated whether amygdala connectivity measured before experiencing stress is a predisposing neural feature of subsequent stress responses while individuals face an emergent and unexpected event like the COVID-19 outbreak. Methods Data collected before the COVID-19 pandemic from an established fMRI cohort who lived in the pandemic center in China (Hubei) during the COVID-19 outbreak were used to investigate the relationship between amygdala connectivity and stress responses during and after the pandemic in 2020. The amygdala connectivity was measured with resting-state functional connectivity (rsFC) and effective connectivity. Results We found the rsFC of the right amygdala with the dorsomedial prefrontal cortex (dmPFC) was negatively correlated with the stress responses at the first survey during the COVID-19 outbreak, and the rsFC between the right amygdala and bilateral superior frontal gyri (partially overlapped with the dmPFC) was correlated with SBSC at the second survey. Dynamic causal modeling suggested that the self-connection of the right amygdala was negatively correlated with stress responses during the pandemic. Discussion Our findings expand our understanding about the role of amygdala in stress responses and stress-related psychiatric disorders and suggest that amygdala connectivity is a predisposing neural feature of subsequent stress responses.
Collapse
Affiliation(s)
- Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yuwen He
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
| | - Yuening Jin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Lianlu Gao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bei Rong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Cui
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Shudong Zhang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yu-Tao Xiang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau, Macao SAR, China
- Unit of Psychiatry, Faculty of Health Sciences, Department of Public Health and Medicinal Administration, Institute of Translational Medicine, University of Macau, Macao, Macao SAR, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
30
|
Anderson KR, Rogu PJ, Palumbo TB, Miwa JM. Abnormal response to chronic social defeat stress and fear extinction in a mouse model of cholinergic dysregulation. RESEARCH SQUARE 2023:rs.3.rs-2492514. [PMID: 36778356 PMCID: PMC9915767 DOI: 10.21203/rs.3.rs-2492514/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cholinergic signaling is critical for an individual to react appropriately and adaptably to salient stimuli while navigating a complex environment. The cholinergic neurotransmitter system drives attention to salient stimuli, such as stressors, and aids in orchestrating the proper neural and behavioral response. Fine-tuned regulation of the cholinergic system has been linked to appropriate stress responses and subsequent mood regulation while dysregulation has been implicated in mood disorders. Among the multiple layers of regulation are cholinergic protein modulators. Here, we use validated models of experiential-based affective disorders to investigate differences in responses to stress in a genetic mouse model of cholinergic dysregulation based on the loss of protein modulator. The lynx2 nicotinic receptor modulatory protein provides negative cholinergic regulation within the amygdala, medial prefrontal cortex, and other brain regions. We discovered here that lynx2 knockout (KO) mice demonstrate an inability to update behavior with an inability to extinguish learned fear during a fear extinction test. We also observed, under an increased stress load following exposure to chronic social defeat stress (CSDS) paradigm, there was a unified resilience phenotype in lynx2KO mice, as opposed to the wild-type cohort which was split between resilience and susceptible phenotypes. Furthermore, we provide evidence for the functional role of α7 nicotinic receptor subtypes by phenotypic rescue with MLA or crossing with an α7 null mutant mouse (e.g. lynx2/α7 double KO mice). We demonstrate a direct physical interaction between lynx2 and α7 nAChR by co-immunoprecipitation of complexes from mouse BLA extracts. The genetic predisposition to heightened basal anxiety-like behavior and altered cholinergic signaling impairs individual behavior responses stressors. Together, these data indicate that the effects of social stress can be influenced by baseline genetic factors involved in anxiety regulation.
Collapse
|
31
|
Bush BJ, Donnay C, Andrews EJA, Lewis-Sanders D, Gray CL, Qiao Z, Brager AJ, Johnson H, Brewer HCS, Sood S, Saafir T, Benveniste M, Paul KN, Ehlen JC. Non-rapid eye movement sleep determines resilience to social stress. eLife 2022; 11:e80206. [PMID: 36149059 PMCID: PMC9586557 DOI: 10.7554/elife.80206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Resilience, the ability to overcome stressful conditions, is found in most mammals and varies significantly among individuals. A lack of resilience can lead to the development of neuropsychiatric and sleep disorders, often within the same individual. Despite extensive research into the brain mechanisms causing maladaptive behavioral-responses to stress, it is not clear why some individuals exhibit resilience. To examine if sleep has a determinative role in maladaptive behavioral-response to social stress, we investigated individual variations in resilience using a social-defeat model for male mice. Our results reveal a direct, causal relationship between sleep amount and resilience-demonstrating that sleep increases after social-defeat stress only occur in resilient mice. Further, we found that within the prefrontal cortex, a regulator of maladaptive responses to stress, pre-existing differences in sleep regulation predict resilience. Overall, these results demonstrate that increased NREM sleep, mediated cortically, is an active response to social-defeat stress that plays a determinative role in promoting resilience. They also show that differences in resilience are strongly correlated with inter-individual variability in sleep regulation.
Collapse
Affiliation(s)
- Brittany J Bush
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Caroline Donnay
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | | | | | - Cloe L Gray
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Zhimei Qiao
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Allison J Brager
- Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of ResearchSilver SpringUnited States
| | - Hadiya Johnson
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Hamadi CS Brewer
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Sahil Sood
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of MedicineAtlantaUnited States
| | - Ketema N Paul
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | | |
Collapse
|
32
|
Liu T, Qi C, Bai W, Tian X, Zheng X. Behavioral state-dependent oscillatory activity in prefrontal cortex induced by chronic social defeat stress. Front Neurosci 2022; 16:885432. [PMID: 36033616 PMCID: PMC9403768 DOI: 10.3389/fnins.2022.885432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic stress contributes to the onset and exacerbation of major depressive disorder (MDD) through the oscillatory activity in the prefrontal cortex (PFC). However, the oscillations on which chronic social stress converges to yield the behavioral state of social avoidance are largely unknown. Here, we use a chronic social defeat stress model and in vivo electrophysiological recordings to uncover a novel neurophysiological measure that predicts the social behavioral state in stressed animals. First, in this study, we find that chronic social defeat stress model induces depression-like behaviors (anhedonia and social avoidance). Second, we find statistically significant differences in PFC oscillatory activity across different frequency ranges in social behavioral state, and the oscillatory activity correlates with stress-induced behavioral state. Finally, we show that the social behavioral states are accurately decoded from the oscillatory activity based on machine learning. Together, these results demonstrate that naturally occurring differences in PFC oscillation underlie the social behavioral state that accompanies the emergence of stress-induced behavioral dysfunction.
Collapse
|
33
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
34
|
Glucocorticoid Receptor-Dependent Astrocytes Mediate Stress Vulnerability. Biol Psychiatry 2022; 92:204-215. [PMID: 35151464 DOI: 10.1016/j.biopsych.2021.11.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/04/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Major depressive disorder is a devastating psychiatric illness that affects approximately 17% of the population worldwide. Astrocyte dysfunction has been implicated in its pathophysiology. Traumatic experiences and stress contribute to the onset of major depressive disorder, but how astrocytes respond to stress is poorly understood. METHODS Using Western blotting analysis, we identified that stress vulnerability was associated with reduced astrocytic glucocorticoid receptor (GR) expression in mouse models of depression. We further investigated the functions of astrocytic GRs in regulating depression and the underlying mechanisms by using a combination of behavioral studies, fiber photometry, biochemical experiments, and RNA sequencing methods. RESULTS GRs in astrocytes were more sensitive to stress than those in neurons. GR absence in astrocytes induced depressive-like behaviors, whereas restoring astrocytic GR expression in the medial prefrontal cortex prevented the depressive-like phenotype. Furthermore, we found that GRs in the medial prefrontal cortex affected astrocytic Ca2+ activity and dynamic ATP (adenosine 5'-triphosphate) release in response to stress. RNA sequencing of astrocytes isolated from GR deletion mice identified the PI3K-Akt (phosphoinositide 3-kinase-Akt) signaling pathway, which was required for astrocytic GR-mediated ATP release. CONCLUSIONS These findings reveal that astrocytic GRs play an important role in stress response and that reduced astrocytic GR expression in the stressed subject decreases ATP release to mediate stress vulnerability.
Collapse
|
35
|
Kühnel A, Czisch M, Sämann PG, Binder EB, Kroemer NB. Spatiotemporal Dynamics of Stress-Induced Network Reconfigurations Reflect Negative Affectivity. Biol Psychiatry 2022; 92:158-169. [PMID: 35260225 DOI: 10.1016/j.biopsych.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Maladaptive stress responses are important risk factors in the etiology of mood and anxiety disorders, but exact pathomechanisms remain to be understood. Mapping individual differences of acute stress-induced neurophysiological changes, especially on the level of neural activation and functional connectivity (FC), could provide important insights in how variation in the individual stress response is linked to disease risk. METHODS Using an established psychosocial stress task flanked by two resting states, we measured subjective, physiological, and brain responses to acute stress and recovery in 217 participants with and without mood and anxiety disorders. To estimate blockwise changes in stress-induced activation and FC, we used hierarchical mixed-effects models based on denoised time series within predefined stress-related regions. We predicted inter- and intraindividual differences in stress phases (anticipation vs. stress vs. recovery) and transdiagnostic dimensions of stress reactivity using elastic net and support vector machines. RESULTS We identified four subnetworks showing distinct changes in FC over time. FC but not activation trajectories predicted the stress phase (accuracy = 70%, pperm < .001) and increases in heart rate (R2 = 0.075, pperm < .001). Critically, individual spatiotemporal trajectories of changes across networks also predicted negative affectivity (ΔR2 = 0.075, pperm = .030) but not the presence or absence of a mood and anxiety disorder. CONCLUSIONS Spatiotemporal dynamics of brain network reconfiguration induced by stress reflect individual differences in the psychopathology dimension of negative affectivity. These results support the idea that vulnerability for mood and anxiety disorders can be conceptualized best at the level of network dynamics, which may pave the way for improved prediction of individual risk.
Collapse
Affiliation(s)
- Anne Kühnel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany.
| | | | | | -
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Nils B Kroemer
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Kim S, Kim YE, Song I, Ujihara Y, Kim N, Jiang YH, Yin HH, Lee TH, Kim IH. Neural circuit pathology driven by Shank3 mutation disrupts social behaviors. Cell Rep 2022; 39:110906. [PMID: 35675770 PMCID: PMC9210496 DOI: 10.1016/j.celrep.2022.110906] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Dysfunctional sociability is a core symptom in autism spectrum disorder (ASD) that may arise from neural-network dysconnectivity between multiple brain regions. However, pathogenic neural-network mechanisms underlying social dysfunction are largely unknown. Here, we demonstrate that circuit-selective mutation (ctMUT) of ASD-risk Shank3 gene within a unidirectional projection from the prefrontal cortex to the basolateral amygdala alters spine morphology and excitatory-inhibitory balance of the circuit. Shank3 ctMUT mice show reduced sociability as well as elevated neural activity and its amplitude variability, which is consistent with the neuroimaging results from human ASD patients. Moreover, the circuit hyper-activity disrupts the temporal correlation of socially tuned neurons to the events of social interactions. Finally, optogenetic circuit activation in wild-type mice partially recapitulates the reduced sociability of Shank3 ctMUT mice, while circuit inhibition in Shank3 ctMUT mice partially rescues social behavior. Collectively, these results highlight a circuit-level pathogenic mechanism of Shank3 mutation that drives social dysfunction.
Collapse
Affiliation(s)
- Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Eun Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Inuk Song
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Namsoo Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yong-Hui Jiang
- Department of Genetics, Pediatrics and Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
37
|
Mague SD, Talbot A, Blount C, Walder-Christensen KK, Duffney LJ, Adamson E, Bey AL, Ndubuizu N, Thomas GE, Hughes DN, Grossman Y, Hultman R, Sinha S, Fink AM, Gallagher NM, Fisher RL, Jiang YH, Carlson DE, Dzirasa K. Brain-wide electrical dynamics encode individual appetitive social behavior. Neuron 2022; 110:1728-1741.e7. [PMID: 35294900 PMCID: PMC9126093 DOI: 10.1016/j.neuron.2022.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 07/29/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
The architecture whereby activity across many brain regions integrates to encode individual appetitive social behavior remains unknown. Here we measure electrical activity from eight brain regions as mice engage in a social preference assay. We then use machine learning to discover a network that encodes the extent to which individual mice engage another mouse. This network is organized by theta oscillations leading from prelimbic cortex and amygdala that converge on the ventral tegmental area. Network activity is synchronized with cellular firing, and frequency-specific activation of a circuit within this network increases social behavior. Finally, the network generalizes, on a mouse-by-mouse basis, to encode individual differences in social behavior in healthy animals but fails to encode individual behavior in a 'high confidence' genetic model of autism. Thus, our findings reveal the architecture whereby the brain integrates distributed activity across timescales to encode an appetitive brain state underlying individual differences in social behavior.
Collapse
Affiliation(s)
- Stephen D Mague
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Austin Talbot
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Cameron Blount
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathryn K Walder-Christensen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lara J Duffney
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Elise Adamson
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Alexandra L Bey
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Nkemdilim Ndubuizu
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Gwenaëlle E Thomas
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dalton N Hughes
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yael Grossman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Saurabh Sinha
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra M Fink
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Neil M Gallagher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rachel L Fisher
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - David E Carlson
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| | - Kafui Dzirasa
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
38
|
Kuga N, Abe R, Takano K, Ikegaya Y, Sasaki T. Prefrontal-amygdalar oscillations related to social behavior in mice. eLife 2022; 11:78428. [PMID: 35580019 PMCID: PMC9113747 DOI: 10.7554/elife.78428] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 12/22/2022] Open
Abstract
The medial prefrontal cortex and amygdala are involved in the regulation of social behavior and associated with psychiatric diseases but their detailed neurophysiological mechanisms at a network level remain unclear. We recorded local field potentials (LFPs) from the dorsal medial prefrontal cortex (dmPFC) and basolateral amygdala (BLA) while male mice engaged on social behavior. We found that in wild-type mice, both the dmPFC and BLA increased 4–7 Hz oscillation power and decreased 30–60 Hz power when they needed to attend to another target mouse. In mouse models with reduced social interactions, dmPFC 4–7 Hz power further increased especially when they exhibited social avoidance behavior. In contrast, dmPFC and BLA decreased 4–7 Hz power when wild-type mice socially approached a target mouse. Frequency-specific optogenetic manipulations replicating social approach-related LFP patterns restored social interaction behavior in socially deficient mice. These results demonstrate a neurophysiological substrate of the prefrontal cortex and amygdala related to social behavior and provide a unified pathophysiological understanding of neuronal population dynamics underlying social behavioral deficits.
Collapse
Affiliation(s)
- Nahoko Kuga
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Reimi Abe
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kotomi Takano
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Wilke SA, Lavi K, Byeon S, Donohue KC, Sohal VS. Convergence of Clinically Relevant Manipulations on Dopamine-Regulated Prefrontal Activity Underlying Stress Coping Responses. Biol Psychiatry 2022; 91:810-820. [PMID: 35090617 PMCID: PMC11182612 DOI: 10.1016/j.biopsych.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Depression is pleiotropic and influenced by diverse genetic, environmental, and pharmacological factors. Identifying patterns of circuit activity on which many of these factors converge would be important, because studying these patterns could reveal underlying pathophysiological processes and/or novel therapies. Depression is commonly assumed to involve changes within prefrontal circuits, and dopamine D2 receptor (D2R) agonists are increasingly used as adjunctive antidepressants. Nevertheless, how D2Rs influence disease-relevant patterns of prefrontal circuit activity remains unknown. METHODS We used brain slice calcium imaging to measure how patterns of prefrontal activity are modulated by D2Rs, antidepressants, and manipulations that increase depression susceptibility. To validate the idea that prefrontal D2Rs might contribute to antidepressant responses, we used optogenetic and genetic manipulations to test how dopamine, D2Rs, and D2R+ neurons contribute to stress-coping behavior. RESULTS Patterns of positively correlated activity in prefrontal microcircuits are specifically enhanced by D2R stimulation as well as by two mechanistically distinct antidepressants, ketamine and fluoxetine. Conversely, this D2R-driven effect was disrupted in two etiologically distinct depression models, a genetic susceptibility model and mice that are susceptible to chronic social defeat. Phasic stimulation of dopaminergic afferents to the prefrontal cortex and closed-loop stimulation of D2R+ neurons increased effortful responses to tail suspension stress, whereas prefrontal D2R deletion reduced the duration of individual struggling episodes. CONCLUSIONS Correlated prefrontal microcircuit activity represents a point of convergence for multiple depression-related manipulations. Prefrontal D2Rs enhance this activity. Through this mechanism, prefrontal D2Rs may promote network states associated with antidepressant actions and effortful responses to stress.
Collapse
Affiliation(s)
- Scott A Wilke
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Karen Lavi
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Sujin Byeon
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Kevin C Donohue
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California
| | - Vikaas S Sohal
- Department of Psychiatry and Behavior Sciences, University of California, San Francisco, San Francisco, California; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
40
|
Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2022; 30:990-1005. [PMID: 34861415 PMCID: PMC8899595 DOI: 10.1016/j.ymthe.2021.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Chemogenetics enables precise, non-invasive, and reversible modulation of neural activity via the activation of engineered receptors that are pharmacologically selective to endogenous or exogenous ligands. With recent advances in therapeutic gene delivery, chemogenetics is poised to support novel interventions against neuropsychiatric diseases and disorders. To evaluate its translational potential, we performed a scoping review of applications of chemogenetics that led to the reversal of molecular and behavioral deficits in studies relevant to neuropsychiatric diseases and disorders. In this review, we present these findings and discuss the potential and challenges for using chemogenetics as a precision medicine-based neuromodulation strategy.
Collapse
|
41
|
Grossman YS, Fillinger C, Manganaro A, Voren G, Waldman R, Zou T, Janssen WG, Kenny PJ, Dumitriu D. Structure and function differences in the prelimbic cortex to basolateral amygdala circuit mediate trait vulnerability in a novel model of acute social defeat stress in male mice. Neuropsychopharmacology 2022; 47:788-799. [PMID: 34799681 PMCID: PMC8782864 DOI: 10.1038/s41386-021-01229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 10/30/2021] [Indexed: 02/03/2023]
Abstract
Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.
Collapse
Affiliation(s)
- Yael S Grossman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Clementine Fillinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessia Manganaro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - George Voren
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Waldman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tiffany Zou
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dani Dumitriu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, Columbia University, New York, NY, USA.
- Sackler Institute, Columbia University, New York, NY, USA.
- Columbia Population Research Center, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
42
|
Liu J, Zhu Q, Zhu L, Yang Y, Zhang Y, Liu X, Zhang L, Jia Y, Peng Q, Wang J, Sun P, Fan W, Wang J. Altered brain network in first-episode, drug-naive patients with major depressive disorder. J Affect Disord 2022; 297:1-7. [PMID: 34656674 DOI: 10.1016/j.jad.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging has been widely used for the assessment of brain functional network, yet with inconsistent results. The present study aimed to investigate intranetwork and internetwork connectivity differences between patients with major depressive disorder (MDD) and healthy controls at the integrity, network and edge levels of 8 well-defined resting state networks. METHODS Thirty patients with MDD and sixty-three healthy control subjects were recruited in this study. RESULTS Compared with healthy controls, patients with MDD showed increased node degree in the right amygdala and putamen, increased connectivity strength in the deep gray matter network (DGN) and increased functional connectivity in intranetwork and internetwork. Meanwhile, MDD showed decreased connectivity strength in visual network-DGN pair. LIMITATIONS The sample size was small, and all patients in this study were of Asian ethnicity, especially Han individuals. CONCLUSIONS These findings demonstrate that MDD cases and healthy controls may have divergent intranetwork and internetwork connectivity at an early stage without confounding influence of medication. These differences may underlie cognitive and behavioral alterations in patients with MDD. And these differences may help with the discrimination of patients and healthy people at an early stage of MDD. More studies in the future are warranted to assist in the diagnosis of this burdensome disease.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yun Yang
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China; Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, China
| | - Yiran Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxi Jia
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qinmu Peng
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Wang
- MSC Clinical and Technical Solutions, Philips Healthcare, Beijing, China
| | - Peng Sun
- MSC Clinical and Technical Solutions, Philips Healthcare, Wuhan, China
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
43
|
Wang Z, Cao Q, Bai W, Zheng X, Liu T. Decreased Phase-Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats. Front Behav Neurosci 2022; 15:799556. [PMID: 34975430 PMCID: PMC8716490 DOI: 10.3389/fnbeh.2021.799556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase-amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel in vivo recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4-12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70-120 Hz) in the BLA. Compared to the control group, this theta-gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.
Collapse
Affiliation(s)
- Zihe Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Li SW, Williams ZM, Báez-Mendoza R. Investigating the Neurobiology of Abnormal Social Behaviors. Front Neural Circuits 2021; 15:769314. [PMID: 34916912 PMCID: PMC8670406 DOI: 10.3389/fncir.2021.769314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- S William Li
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Harvard-MIT Division of Health Sciences and Technology, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Raymundo Báez-Mendoza
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Watanabe N, Takeda M. Neurophysiological dynamics for psychological resilience: A view from the temporal axis. Neurosci Res 2021; 175:53-61. [PMID: 34801599 DOI: 10.1016/j.neures.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
When an individual is faced with adversity, the brain and body work cooperatively to adapt to it. This adaptive process is termed psychological resilience, and recent studies have identified several neurophysiological factors ("neurophysiological resilience"), such as monoamines, oscillatory brain activity, hemodynamics, autonomic activity, stress hormones, and immune systems. Each factor is activated in an interactive manner during specific time windows after exposure to stress. Thus, the differences in psychological resilience levels among individuals can be characterized by differences in the temporal dynamics of neurophysiological resilience. In this review, after briefly introducing the frequently used approaches in this research field and the well-known factors of neurophysiological resilience, we summarize the temporal dynamics of neurophysiological resilience. This viewpoint clarifies an important time window, the more-than-one-hour scale, but the neurophysiological dynamics during this window remain elusive. To address this issue, we propose exploring brain-wide oscillatory activities using concurrent functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) techniques.
Collapse
Affiliation(s)
- Noriya Watanabe
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.
| | - Masaki Takeda
- Research Center for Brain Communication, Research Institute, Kochi University of Technology, Kochi, Japan
| |
Collapse
|
46
|
Lee EH, Park JY, Kwon HJ, Han PL. Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice. Nat Commun 2021; 12:6682. [PMID: 34795225 PMCID: PMC8602389 DOI: 10.1038/s41467-021-26968-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces adaptive changes in the brain via the cumulative action of glucocorticoids, which is associated with mood disorders. Here we show that repeated daily five-minute restraint resolves pre-existing stress-induced depressive-like behavior in mice. Repeated injection of glucocorticoids in low doses mimics the anti-depressive effects of short-term stress. Repeated exposure to short-term stress and injection of glucocorticoids activate neurons in largely overlapping regions of the brain, as shown by c-Fos staining, and reverse distinct stress-induced gene expression profiles. Chemogenetic inhibition of neurons in the prelimbic cortex projecting to the nucleus accumbens, basolateral amygdala, or bed nucleus of the stria terminalis results in anti-depressive effects similarly to short-term stress exposure, while only inhibition of neurons in the prelimbic cortex projecting to the bed nucleus of the stria terminalis rescues defective glucocorticoid release. In summary, we show that short-term stress can reverse adaptively altered stress gains and resolve stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
47
|
Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci 2021; 15:699592. [PMID: 34234655 PMCID: PMC8257081 DOI: 10.3389/fnbeh.2021.699592] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Despite decades of research on the neurobiology of major depressive disorder (MDD), the mechanisms underlying its expression remain unknown. The medial prefrontal cortex (mPFC), a hub region involved in emotional processing and stress response elaboration, is highly impacted in MDD patients and animal models of chronic stress. Recent advances showed alterations in the morphology and activity of mPFC neurons along with profound changes in their transcriptional programs. Studies at the circuitry level highlighted the relevance of deciphering the contributions of the distinct prefrontal circuits in the elaboration of adapted and maladapted behavioral responses in the context of chronic stress. Interestingly, MDD presents a sexual dimorphism, a feature recognized in the molecular field but understudied on the circuit level. This review examines the recent literature and summarizes the contribution of the mPFC circuitry in the expression of MDD in males and females along with the morphological and functional alterations that change the activity of these neuronal circuits in human MDD and animal models of depressive-like behaviors.
Collapse
Affiliation(s)
- Thibault P. Bittar
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
48
|
Liu Q, Zhang Z, Zhang W. Optogenetic Dissection of Neural Circuits Underlying Stress-Induced Mood Disorders. Front Psychol 2021; 12:600999. [PMID: 34220601 PMCID: PMC8249197 DOI: 10.3389/fpsyg.2021.600999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: This review aims to (i) summarize the literature on optogenetic applications of different stress-induced mood disorder models of the medial prefrontal cortex (mPFC) and its projection circuits, and (ii) examine methodological variability across the literature and how such variations may influence the underlying circuits of stress-induced mood disorders. Methods: A variety of databases (PubMed, Web of Science, Elsevier, Springer, and Wiley) were systematically searched to identify optogenetic studies that applied to mood disorders in the context of stress. Results: Eleven studies on optogenetic stimulation of the mPFC and the effect of its efferent circuitry on anxiety- and depression-like behaviors in different rodent models were selected. The results showed that the optogenetics (i) can provide insights into the underlying circuits of mood disorders in the context of stress (ii) and also points out new therapeutic strategies for treating mood disorders. Conclusions: These findings indicate a clear role for the mPFC in social avoidance, and highlight the central role of stress reactivity circuitry that may be targeted for the treatment of stress-induced mood disorders.
Collapse
Affiliation(s)
- Qing Liu
- College of Education and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhinuo Zhang
- College of Education and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Wenjuan Zhang
- Mental Health Education Center, Xidian University, Xi'an, China
| |
Collapse
|
49
|
Okonogi T, Sasaki T. Theta-Range Oscillations in Stress-Induced Mental Disorders as an Oscillotherapeutic Target. Front Behav Neurosci 2021; 15:698753. [PMID: 34177486 PMCID: PMC8219864 DOI: 10.3389/fnbeh.2021.698753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Emotional behavior and psychological disorders are expressed through coordinated interactions across multiple brain regions. Brain electrophysiological signals are composed of diverse neuronal oscillations, representing cell-level to region-level neuronal activity patterns, and serve as a biomarker of mental disorders. Here, we review recent observations from rodents demonstrating how neuronal oscillations in the hippocampus, amygdala, and prefrontal cortex are engaged in emotional behavior and altered by psychiatric changes such as anxiety and depression. In particular, we focus mainly on theta-range (4–12 Hz) oscillations, including several distinct oscillations in this frequency range. We then discuss therapeutic possibilities related to controlling such mental disease-related neuronal oscillations to ameliorate psychiatric symptoms and disorders in rodents and humans.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Kim IH, Kim N, Kim S, Toda K, Catavero CM, Courtland JL, Yin HH, Soderling SH. Dysregulation of the Synaptic Cytoskeleton in the PFC Drives Neural Circuit Pathology, Leading to Social Dysfunction. Cell Rep 2021; 32:107965. [PMID: 32726629 DOI: 10.1016/j.celrep.2020.107965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
Psychiatric disorders are highly heritable pathologies of altered neural circuit functioning. How genetic mutations lead to specific neural circuit abnormalities underlying behavioral disruptions, however, remains unclear. Using circuit-selective transgenic tools and a mouse model of maladaptive social behavior (ArpC3 mutant), we identify a neural circuit mechanism driving dysfunctional social behavior. We demonstrate that circuit-selective knockout (ctKO) of the ArpC3 gene within prefrontal cortical neurons that project to the basolateral amygdala elevates the excitability of the circuit neurons, leading to disruption of socially evoked neural activity and resulting in abnormal social behavior. Optogenetic activation of this circuit in wild-type mice recapitulates the social dysfunction observed in ArpC3 mutant mice. Finally, the maladaptive sociability of ctKO mice is rescued by optogenetically silencing neurons within this circuit. These results highlight a mechanism of how a gene-to-neural circuit interaction drives altered social behavior, a common phenotype of several psychiatric disorders.
Collapse
Affiliation(s)
- Il Hwan Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Psychiatry and Behavioral Sciences, Duke University Medical School, Durham, NC, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Sunwhi Kim
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Koji Toda
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Jamie L Courtland
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University Medical School, Durham, NC, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Neurobiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|