1
|
Wang PZ, Ge MH, Su P, Wu PP, Wang L, Zhu W, Li R, Liu H, Wu JJ, Xu Y, Zhao JL, Li SJ, Wang Y, Chen LM, Wu TH, Wu ZX. Sensory plasticity caused by up-down regulation encodes the information of short-term learning and memory. iScience 2025; 28:112215. [PMID: 40224011 PMCID: PMC11987006 DOI: 10.1016/j.isci.2025.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Learning and memory are essential for animals' well-being and survival. The underlying mechanisms are a major task of neuroscience studies. In this study, we identified a circuit consisting of ASER, RIC, RIS, and AIY, is required for short-term salt chemotaxis learning (SCL) in C. elegans. ASER NaCl-sensation possesses are remodeled by salt/food-deprivation pared conditioning. RIC integrates the sensory information of NaCl and food availability. It excites ASER and inhibits AIY by tyramine/TYRA-2 and octopamine/OCTR-1 signaling pathways, respectively. By the salt conditioning, RIC NaCl calcium response to NaCl is depressed, thus, the RIC excitation of ASER and inhibition of AIY are suppressed. ASER excites RIS by FLP-14/FRPR-10 signaling. RIS inhibits ASER via PDF-2/PDFR-1 signaling in negative feedback. ASER sensory plasticity caused by RIC plasticity and RIS negative feedback are required for both learning and memory recall. Thus, the sensation plasticity encodes the information of the short-term SCL that facilitates animal adaptation to dynamic environments.
Collapse
Affiliation(s)
- Ping-Zhou Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Piao-Ping Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Lu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Jia Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Tai-Hong Wu
- Hunan Research Center of the Basic Discipline for Cell Signaling, State Key Laboratory of Chemo and Biosensing, College of Biology, Hunan University, Changsha, China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Institute of Biophysics and Biochemistry, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Rosero M, Bai J. AFD Thermosensory Neurons Mediate Tactile-Dependent Locomotion Modulation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639001. [PMID: 40060420 PMCID: PMC11888201 DOI: 10.1101/2025.02.19.639001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Sensory neurons drive animal behaviors by detecting environmental stimuli and relaying information to downstream circuits. Beyond their primary roles in sensing, these neurons often form additional synaptic connections outside their main sensory modality, suggesting broader contributions to behavior modulation. Here, we uncover an unexpected role for the thermosensory neuron AFD in coupling tactile experience to locomotion modulation in Caenorhabditis elegans. We show that while AFD employs cGMP signaling for both thermotaxis and tactile-dependent modulation, the specific molecular components of the cGMP pathway differ between these two processes. Interestingly, disrupting the dendritic sensory apparatus of AFD, which is essential for thermotaxis, does not impair tactile-based locomotion modulation, indicating that AFD can mediate tactile-dependent behavior independently of its thermosensory apparatus. In contrast, ablating the AFD neuron eliminates tactile-dependent modulation, pointing to an essential role for AFD itself, rather than its sensory dendritic endings. Further, we find tactile-dependent modulation requires the AIB interneuron, which connects AFD to touch circuits via electrical synapses. Removing innexins expressed in AFD and AIB abolishes this modulation, while re-establishing AFD-AIB connections with engineered electrical synapses restores it. Collectively, these findings uncover a previously unrecognized function of AFD beyond thermosensation, highlighting its influence on context-dependent neuroplasticity and behavioral modulation through broader circuit connectivity.
Collapse
Affiliation(s)
- Manuel Rosero
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98109
| |
Collapse
|
3
|
Rentsch D, Bergs A, Shao J, Elvers N, Ruse C, Seidenthal M, Aoki I, Gottschalk A. Tools and methods for cell ablation and cell inhibition in Caenorhabditis elegans. Genetics 2025; 229:1-48. [PMID: 39110015 PMCID: PMC11708922 DOI: 10.1093/genetics/iyae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/16/2024] [Indexed: 01/11/2025] Open
Abstract
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Dennis Rentsch
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Jiajie Shao
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Nora Elvers
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Christiane Ruse
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Strasse 15, D-60438 Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe University, Max-von-Laue Strasse 9, D-60438 Frankfurt, Germany
| |
Collapse
|
4
|
Du X, Crodelle J, Barranca VJ, Li S, Shi Y, Gao S, Zhou D. Biophysical modeling and experimental analysis of the dynamics of C. elegans body-wall muscle cells. PLoS Comput Biol 2025; 21:e1012318. [PMID: 39869659 PMCID: PMC11781704 DOI: 10.1371/journal.pcbi.1012318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/30/2025] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
This study combines experimental techniques and mathematical modeling to investigate the dynamics of C. elegans body-wall muscle cells. Specifically, by conducting voltage clamp and mutant experiments, we identify key ion channels, particularly the L-type voltage-gated calcium channel (EGL-19) and potassium channels (SHK-1, SLO-2), which are crucial for generating action potentials. We develop Hodgkin-Huxley-based models for these channels and integrate them to capture the cells' electrical activity. To ensure the model accurately reflects cellular responses under depolarizing currents, we develop a parallel simulation-based inference method for determining the model's free parameters. This method performs rapid parallel sampling across high-dimensional parameter spaces, fitting the model to the responses of muscle cells to specific stimuli and yielding accurate parameter estimates. We validate our model by comparing its predictions against cellular responses to various current stimuli in experiments and show that our approach effectively determines suitable parameters for accurately modeling the dynamics in mutant cases. Additionally, we discover an optimal response frequency in body-wall muscle cells, which corresponds to a burst firing mode rather than regular firing mode. Our work provides the first experimentally constrained and biophysically detailed muscle cell model of C. elegans, and our analytical framework combined with robust and efficient parametric estimation method can be extended to model construction in other species.
Collapse
Affiliation(s)
- Xuexing Du
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America
| | - Victor James Barranca
- Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Songting Li
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
| | - Yunzhu Shi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Douglas Zhou
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Frontier Science Center of Modern Analysis, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Molina-García L, Colinas-Fischer S, Benavides-Laconcha S, Lin L, Clark E, Treloar NJ, García-Minaur-Ortíz B, Butts M, Barnes CP, Barrios A. Conflict during learning reconfigures the neural representation of positive valence and approach behavior. Curr Biol 2024; 34:5470-5483.e7. [PMID: 39547234 DOI: 10.1016/j.cub.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Punishing and rewarding experiences can change the valence of sensory stimuli and guide animal behavior in opposite directions, resulting in avoidance or approach. Often, however, a stimulus is encountered with both positive and negative experiences. How is such conflicting information represented in the brain and resolved into a behavioral decision? We address this question by dissecting a circuit for sexual conditioning in C. elegans. In this learning paradigm, an odor is conditioned with both a punishment (starvation) and a reward (mates), resulting in odor approach. We find that negative and positive experiences are both encoded by the neuropeptide pigment dispersing factor 1 (PDF-1) being released from, and acting on, different neurons. Each experience creates a distinct memory in the circuit for odor processing. This results in the sensorimotor representation of the odor being different in naive and sexually conditioned animals, despite both displaying approach. Our results reveal that the positive valence of a stimulus is not represented in the activity of any single neuron class but flexibly represented within the circuit according to the experiences and predictions associated with the stimulus.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| | - Susana Colinas-Fischer
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Lucy Lin
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Emma Clark
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Neythen J Treloar
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | - Milly Butts
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
7
|
Aoki I, Golinelli L, Dunkel E, Bhat S, Bassam E, Beets I, Gottschalk A. Hierarchical regulation of functionally antagonistic neuropeptides expressed in a single neuron pair. Nat Commun 2024; 15:9504. [PMID: 39489735 PMCID: PMC11532408 DOI: 10.1038/s41467-024-53899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Neuronal communication involves small-molecule transmitters, gap junctions, and neuropeptides. While neurons often express multiple neuropeptides, our understanding of the coordination of their actions and their mutual interactions remains limited. Here, we demonstrate that two neuropeptides, NLP-10 and FLP-1, released from the same interneuron pair, AVKL/R, exert antagonistic effects on locomotion speed in Caenorhabditis elegans. NLP-10 accelerates locomotion by activating the G protein-coupled receptor NPR-35 on premotor interneurons that promote forward movement. Notably, we establish that NLP-10 is crucial for the aversive response to mechanical and noxious light stimuli. Conversely, AVK-derived FLP-1 slows down locomotion by suppressing the secretion of NLP-10 from AVK, through autocrine feedback via activation of its receptor DMSR-7 in AVK neurons. Our findings suggest that peptidergic autocrine motifs, exemplified by the interaction between NLP-10 and FLP-1, might represent a widespread mechanism in nervous systems across species. These mutual functional interactions among peptidergic co-transmitters could fine-tune brain activity.
Collapse
Affiliation(s)
- Ichiro Aoki
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| | | | - Eva Dunkel
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Shripriya Bhat
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Erschad Bassam
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, D-60438, Frankfurt, Germany.
- Department of Biochemistry, Chemistry and Pharmacy, Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
8
|
Saad MZH, Ryan V WG, Edwards CA, Szymanski BN, Marri AR, Jerow LG, McCullumsmith R, Bamber BA. Olfactory combinatorial coding supports risk-reward decision making in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599745. [PMID: 39484578 PMCID: PMC11526860 DOI: 10.1101/2024.06.19.599745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Olfactory-driven behaviors are essential for animal survival, but mechanisms for decoding olfactory inputs remain poorly understood. We have used whole-network Ca ++ imaging to study olfactory coding in Caenorhabditis elegans. We show that the odorant 1-octanol is encoded combinatorially in the periphery as both an attractant and a repellant. These inputs are integrated centrally, and their relative strengths determine the sensitivity and valence of the behavioral response through modulation of locomotory reversals and speed. The balance of these pathways also dictates the activity of the locomotory command interneurons, which control locomotory reversals. This balance serves as a regulatory node for response modulation, allowing C. elegans to weigh opportunities and hazards in its environment when formulating behavioral responses. Thus, an odorant can be encoded simultaneously as inputs of opposite valence, focusing attention on the integration of these inputs in determining perception, response, and plasticity.
Collapse
|
9
|
Kumar S, Sharma AK, Leifer AM. An inhibitory acetylcholine receptor gates context-dependent mechanosensory processing in C. elegans. iScience 2024; 27:110776. [PMID: 39381742 PMCID: PMC11460506 DOI: 10.1016/j.isci.2024.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/10/2024] Open
Abstract
An animal's current behavior influences its response to sensory stimuli, but the molecular and circuit-level mechanisms of this context-dependent decision-making are not well understood. Caenorhabditis elegans are less likely to respond to a mechanosensory stimulus by reversing if the stimuli is received while the animal turns. Inhibitory feedback from turning associated neurons are needed for this gating. But until now, it has remained unknown precisely where in the circuit gating occurs and which specific neurons and receptors receive inhibition from the turning circuitry. Here, we use genetic manipulations, single-cell rescue experiments, and high-throughput closed-loop optogenetic perturbations during behavior to reveal the specific neuron and receptor responsible for receiving inhibition and altering sensorimotor processing. Our measurements show that an inhibitory acetylcholine-gated chloride channel comprising LGC-47 and ACC-1 expressed in neuron type RIM disrupts mechanosensory evoked reversals during turns, presumably in response to inhibitory signals from turning-associated neuron SAA.
Collapse
Affiliation(s)
- Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Anuj K. Sharma
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Andrew M. Leifer
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Cazalé-Debat L, Scheunemann L, Day M, Fernandez-D V Alquicira T, Dimtsi A, Zhang Y, Blackburn LA, Ballardini C, Greenin-Whitehead K, Reynolds E, Lin AC, Owald D, Rezaval C. Mating proximity blinds threat perception. Nature 2024; 634:635-643. [PMID: 39198656 PMCID: PMC11485238 DOI: 10.1038/s41586-024-07890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
Romantic engagement can bias sensory perception. This 'love blindness' reflects a common behavioural principle across organisms: favouring pursuit of a coveted reward over potential risks1. In the case of animal courtship, such sensory biases may support reproductive success but can also expose individuals to danger, such as predation2,3. However, how neural networks balance the trade-off between risk and reward is unknown. Here we discover a dopamine-governed filter mechanism in male Drosophila that reduces threat perception as courtship progresses. We show that during early courtship stages, threat-activated visual neurons inhibit central courtship nodes via specific serotonergic neurons. This serotonergic inhibition prompts flies to abort courtship when they see imminent danger. However, as flies advance in the courtship process, the dopaminergic filter system reduces visual threat responses, shifting the balance from survival to mating. By recording neural activity from males as they approach mating, we demonstrate that progress in courtship is registered as dopaminergic activity levels ramping up. This dopamine signalling inhibits the visual threat detection pathway via Dop2R receptors, allowing male flies to focus on courtship when they are close to copulation. Thus, dopamine signalling biases sensory perception based on perceived goal proximity, to prioritize between competing behaviours.
Collapse
Affiliation(s)
- Laurie Cazalé-Debat
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Lisa Scheunemann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Megan Day
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Tania Fernandez-D V Alquicira
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Dimtsi
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Youchong Zhang
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Lauren A Blackburn
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
- School of Science and the Environment, University of Worcester, Worcester, UK
| | - Charles Ballardini
- School of Biosciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK
| | - Katie Greenin-Whitehead
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Eric Reynolds
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrew C Lin
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - David Owald
- Institut für Neurophysiologie and NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham, UK.
- Birmingham Centre for Neurogenetics, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Rabinowitch I, Colón-Ramos DA, Krieg M. Understanding neural circuit function through synaptic engineering. Nat Rev Neurosci 2024; 25:131-139. [PMID: 38172626 DOI: 10.1038/s41583-023-00777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Synapses are a key component of neural circuits, facilitating rapid and specific signalling between neurons. Synaptic engineering - the synthetic insertion of new synaptic connections into in vivo neural circuits - is an emerging approach for neural circuit interrogation. This approach is especially powerful for establishing causality in neural circuit structure-function relationships, for emulating synaptic plasticity and for exploring novel patterns of circuit connectivity. Contrary to other approaches for neural circuit manipulation, synaptic engineering targets specific connections between neurons and functions autonomously with no user-controlled external activation. Synaptic engineering has been successfully implemented in several systems and in different forms, including electrical synapses constructed from ectopically expressed connexin gap junction proteins, synthetic optical synapses composed of presynaptic photon-emitting luciferase coupled with postsynaptic light-gated channels, and artificial neuropeptide signalling pathways. This Perspective describes these different methods and how they have been applied, and examines how the field may advance.
Collapse
Affiliation(s)
- Ithai Rabinowitch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Daniel A Colón-Ramos
- Wu Tsai Institute, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krieg
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
12
|
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, Weinreb A, Bentley BL, Hammarlund M, Miller DM, Hobert O, Beets I, Vértes PE, Schafer WR. The neuropeptidergic connectome of C. elegans. Neuron 2023; 111:3570-3589.e5. [PMID: 37935195 PMCID: PMC7615469 DOI: 10.1016/j.neuron.2023.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/02/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023]
Abstract
Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.
Collapse
Affiliation(s)
- Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Psychiatry, Cambridge University, Cambridge, UK
| | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, Belgium
| | - HaoSheng Sun
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Fernandez
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Alexis Weinreb
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Barry L Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
| | - Marc Hammarlund
- Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oliver Hobert
- Department of Biological Sciences/HHMI, Columbia University, New York, NY, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Petra E Vértes
- Department of Psychiatry, Cambridge University, Cambridge, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Bechtel W, Bich L. Using neurons to maintain autonomy: Learning from C. elegans. Biosystems 2023; 232:105017. [PMID: 37666409 DOI: 10.1016/j.biosystems.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Understanding how biological organisms are autonomous-maintain themselves far from equilibrium through their own activities-requires understanding how they regulate those activities. In multicellular animals, such control can be exercised either via endocrine signaling through the vasculature or via neurons. In C. elegans this control is exercised by a well-delineated relatively small but distributed nervous system that relies on both chemical and electric transmission of signals. This system provides resources to integrate information from multiple sources as needed to maintain the organism. Especially important for the exercise of neural control are neuromodulators, which we present as setting agendas for control through more traditional electrical signaling. To illustrate how the C. elegans nervous system integrates multiple sources of information in controlling activities important for autonomy, we focus on feeding behavior and responses to adverse conditions. We conclude by considering how a distributed nervous system without a centralized controller is nonetheless adequate for autonomy.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy; University of California, San Diego; La Jolla, CA 92093-0119, USA.
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society; Department of Philosophy; University of the Basque Country (UPV/EHU); Avenida de Tolosa 70; Donostia-San Sebastian, 20018; Spain.
| |
Collapse
|
14
|
Kumar S, Sharma AK, Tran A, Liu M, Leifer AM. Inhibitory feedback from the motor circuit gates mechanosensory processing in Caenorhabditis elegans. PLoS Biol 2023; 21:e3002280. [PMID: 37733772 PMCID: PMC10617738 DOI: 10.1371/journal.pbio.3002280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations of Caenorhabditis elegans and discovered that the animal's mechanosensory processing is rapidly modulated by the animal's locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report that C. elegans use inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude that C. elegans rely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas.
Collapse
Affiliation(s)
- Sandeep Kumar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Anuj K. Sharma
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew Tran
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Mochi Liu
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Andrew M. Leifer
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
15
|
Becerra D, Calixto A, Orio P. The Conscious Nematode: Exploring Hallmarks of Minimal Phenomenal Consciousness in Caenorhabditis Elegans. Int J Psychol Res (Medellin) 2023; 16:87-104. [PMID: 38106963 PMCID: PMC10723751 DOI: 10.21500/20112084.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 12/19/2023] Open
Abstract
While subcellular components of cognition and affectivity that involve the interaction between experience, environment, and physiology -such as learning, trauma, or emotion- are being identified, the physical mechanisms of phenomenal consciousness remain more elusive. We are interested in exploring whether ancient, simpler organisms such as nematodes have minimal consciousness. Is there something that feels like to be a worm? Or are worms blind machines? 'Simpler' models allow us to simultaneously extract data from multiple levels such as slow and fast neural dynamics, structural connectivity, molecular dynamics, behavior, decision making, etc., and thus, to test predictions of the current frameworks in dispute. In the present critical review, we summarize the current models of consciousness in order to reassess in light of the new evidence whether Caenorhabditis elegans, a nematode with a nervous system composed of 302 neurons, has minimal consciousness. We also suggest empirical paths to further advance consciousness research using C. elegans.
Collapse
Affiliation(s)
- Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Doctorado en Ciencias, mención Biofísica y Biología Computacional, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Andrea Calixto
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.Universidad de ValparaísoUniversidad de ValparaísoValparaísoChile
| |
Collapse
|
16
|
Liu H, Wu JJ, Li R, Wang PZ, Huang JH, Xu Y, Zhao JL, Wu PP, Li SJ, Wu ZX. Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Front Mol Neurosci 2023; 16:1101628. [PMID: 37008778 PMCID: PMC10050701 DOI: 10.3389/fnmol.2023.1101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Sensations, especially nociception, are tightly controlled and regulated by the central and peripheral nervous systems. Osmotic sensation and related physiological and behavioral reactions are essential for animal well-being and survival. In this study, we find that interaction between secondary nociceptive ADL and primary nociceptive ASH neurons upregulates Caenorhabditis elegans avoidance of the mild and medium hyperosmolality of 0.41 and 0.88 Osm but does not affect avoidance of high osmolality of 1.37 and 2.29 Osm. The interaction between ASH and ADL is actualized through a negative feedback circuit consisting of ASH, ADL, and RIM interneurons. In this circuit, hyperosmolality-sensitive ADL augments the ASH hyperosmotic response and animal hyperosmotic avoidance; RIM inhibits ADL and is excited by ASH; thus, ASH exciting RIM reduces ADL augmenting ASH. The neuronal signal integration modality in the circuit is disexcitation. In addition, ASH promotes hyperosmotic avoidance through ASH/RIC/AIY feedforward circuit. Finally, we find that in addition to ASH and ADL, multiple sensory neurons are involved in hyperosmotic sensation and avoidance behavior.
Collapse
|
17
|
Noyes NC, Davis RL. Innate and learned odor-guided behaviors utilize distinct molecular signaling pathways in a shared dopaminergic circuit. Cell Rep 2023; 42:112026. [PMID: 36701232 PMCID: PMC10366338 DOI: 10.1016/j.celrep.2023.112026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/16/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Odor-based learning and innate odor-driven behavior have been hypothesized to require separate neuronal circuitry. Contrary to this notion, innate behavior and olfactory learning were recently shown to share circuitry that includes the Drosophila mushroom body (MB). But how a single circuit drives two discrete behaviors remains unknown. Here, we define an MB circuit responsible for both olfactory learning and innate odor avoidance and the distinct dDA1 dopamine receptor-dependent signaling pathways that mediate these behaviors. Associative learning and learning-induced MB plasticity require rutabaga-encoded adenylyl cyclase activity in the MB. In contrast, innate odor preferences driven by naive MB neurotransmission are rutabaga independent, requiring the adenylyl cyclase ACXD. Both learning and innate odor preferences converge on PKA and the downstream MBON-γ2α'1. Importantly, the utilization of this shared circuitry for innate behavior only becomes apparent with hunger, indicating that hardwired innate behavior becomes more flexible during states of stress.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, UF Scripps Biomedical Research, 130 Scripps Way #3C2, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, UF Scripps Biomedical Research, 130 Scripps Way #3C2, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Shoenhard H, Jain RA, Granato M. The calcium-sensing receptor (CaSR) regulates zebrafish sensorimotor decision making via a genetically defined cluster of hindbrain neurons. Cell Rep 2022; 41:111790. [PMID: 36476852 PMCID: PMC9813870 DOI: 10.1016/j.celrep.2022.111790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Decision making is a fundamental nervous system function that ranges widely in complexity and speed of execution. We previously established larval zebrafish as a model for sensorimotor decision making and identified the G-protein-coupled calcium-sensing receptor (CaSR) to be critical for this process. Here, we report that CaSR functions in neurons to dynamically regulate the bias between two behavioral outcomes: escapes and reorientations. By employing a computational guided transgenic strategy, we identify a genetically defined neuronal cluster in the hindbrain as a key candidate site for CaSR function. Finally, we demonstrate that transgenic CaSR expression targeting this cluster consisting of a few hundred neurons shifts behavioral bias in wild-type animals and restores decision making deficits in CaSR mutants. Combined, our data provide a rare example of a G-protein-coupled receptor that biases vertebrate sensorimotor decision making via a defined neuronal cluster.
Collapse
Affiliation(s)
- Hannah Shoenhard
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roshan A Jain
- Department of Biology, Haverford College, Haverford, PA 19041, USA
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Yu YV, Xue W, Chen Y. Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sci 2022; 12:brainsci12101368. [PMID: 36291302 PMCID: PMC9599712 DOI: 10.3390/brainsci12101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Multisensory integration refers to sensory inputs from different sensory modalities being processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modalities, animals utilize multisensory integration to form a coherent and robust representation of the complex environment. Even though multisensory integration is fundamentally essential for animal life, our understanding of the underlying mechanisms, especially at the molecular, synaptic and circuit levels, remains poorly understood. The study of sensory perception in Caenorhabditis elegans has begun to fill this gap. We have gained a considerable amount of insight into the general principles of sensory neurobiology owing to C. elegans’ highly sensitive perceptions, relatively simple nervous system, ample genetic tools and completely mapped neural connectome. Many interesting paradigms of multisensory integration have been characterized in C. elegans, for which input convergence occurs at the sensory neuron or the interneuron level. In this narrative review, we describe some representative cases of multisensory integration in C. elegans, summarize the underlying mechanisms and compare them with those in mammalian systems. Despite the differences, we believe C. elegans is able to provide unique insights into how processing and integrating multisensory inputs can generate flexible and adaptive behaviors. With the emergence of whole brain imaging, the ability of C. elegans to monitor nearly the entire nervous system may be crucial for understanding the function of the brain as a whole.
Collapse
Affiliation(s)
- Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430070, China
- Correspondence: or
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| | - Yuanhua Chen
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| |
Collapse
|
20
|
Positive interaction between ASH and ASK sensory neurons accelerates nociception and inhibits behavioral adaptation. iScience 2022; 25:105287. [PMID: 36304123 PMCID: PMC9593764 DOI: 10.1016/j.isci.2022.105287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/22/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Central and peripheral sensory neurons tightly regulate nociception and avoidance behavior. The peripheral modulation of nociception provides more veridical and instantaneous information for animals to achieve rapid, more fine-tuned and concentrated behavioral responses. In this study, we find that positive interaction between ASH and ASK sensory neurons is essential for the fast-rising phase of ASH Ca2+ responses to noxious copper ions and inhibits the adaption of avoiding Cu2+. We reveal the underlying neuronal circuit mechanism. ASK accelerates the ASH Ca2+ responses by transferring cGMP through gap junctions. ASH excites ASK via a disinhibitory neuronal circuit composed of ASH, AIA, and ASK. Avoidance adaptation depends on the slope rate of the rising phase of ASH Ca2+ responses. Thus, in addition to amplitude, sensory kinetics is significant for sensations and behaviors, especially for sensory and behavioral adaptations.
Collapse
|
21
|
McLachlan IG, Kramer TS, Dua M, DiLoreto EM, Gomes MA, Dag U, Srinivasan J, Flavell SW. Diverse states and stimuli tune olfactory receptor expression levels to modulate food-seeking behavior. eLife 2022; 11:e79557. [PMID: 36044259 PMCID: PMC9433090 DOI: 10.7554/elife.79557] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/19/2022] [Indexed: 12/24/2022] Open
Abstract
Animals must weigh competing needs and states to generate adaptive behavioral responses to the environment. Sensorimotor circuits are thus tasked with integrating diverse external and internal cues relevant to these needs to generate context-appropriate behaviors. However, the mechanisms that underlie this integration are largely unknown. Here, we show that a wide range of states and stimuli converge upon a single Caenorhabditis elegans olfactory neuron to modulate food-seeking behavior. Using an unbiased ribotagging approach, we find that the expression of olfactory receptor genes in the AWA olfactory neuron is influenced by a wide array of states and stimuli, including feeding state, physiological stress, and recent sensory cues. We identify odorants that activate these state-dependent olfactory receptors and show that altered expression of these receptors influences food-seeking and foraging. Further, we dissect the molecular and neural circuit pathways through which external sensory information and internal nutritional state are integrated by AWA. This reveals a modular organization in which sensory and state-related signals arising from different cell types in the body converge on AWA and independently control chemoreceptor expression. The synthesis of these signals by AWA allows animals to generate sensorimotor responses that reflect the animal's overall state. Our findings suggest a general model in which sensory- and state-dependent transcriptional changes at the sensory periphery modulate animals' sensorimotor responses to meet their ongoing needs and states.
Collapse
Affiliation(s)
- Ian G McLachlan
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya S Kramer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- MIT Biology Graduate Program, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Malvika Dua
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Elizabeth M DiLoreto
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Matthew A Gomes
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ugur Dag
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic InstituteWorcesterUnited States
| | - Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
22
|
Tanner D, Carigo D, Sevilla C, Lewis M, Harris G. Sex differences in decision-making: Identifying multisensory behavioral differences in males and hermaphrodites. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000594. [PMID: 35971405 PMCID: PMC9375158 DOI: 10.17912/micropub.biology.000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/05/2022]
Abstract
This present study uses C. elegans as a model to investigate how sex differences can influence sensory behavior and decision-making when encountering conflicting cues. We use a multi-sensory behavioral assay to characterize the differences between hermaphrodites and male worms when escaping from a food lawn during exposure to repulsive odors, such as, 2-nonanone. We find that male worms show a delayed food leaving during exposure to 2-nonanone when compared to hermaphrodite worms, and this is observed across multiple repulsive cues (2-nonanone and undiluted benzaldehyde) and multiple food types ( E. coli (OP50) and Comamonas sp ). Overall, this study provides a platform to further investigate how sensory-dependent decision-making behavior differs between sexes.
Collapse
Affiliation(s)
- Duncan Tanner
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Denise Carigo
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Chane Sevilla
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Madison Lewis
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Gareth Harris
- Biology Program, California State University Channel Islands, Camarillo, CA, USA
,
Correspondence to: Gareth Harris (
)
| |
Collapse
|
23
|
Debnath A, Williams PDE, Bamber BA. Reduced Ca2+ transient amplitudes may signify increased or decreased depolarization depending on the neuromodulatory signaling pathway. Front Neurosci 2022; 16:931328. [PMID: 35937887 PMCID: PMC9354622 DOI: 10.3389/fnins.2022.931328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuromodulators regulate neuronal excitability and bias neural circuit outputs. Optical recording of neuronal Ca2+ transients is a powerful approach to study the impact of neuromodulators on neural circuit dynamics. We are investigating the polymodal nociceptor ASH in Caenorhabditis elegans to better understand the relationship between neuronal excitability and optically recorded Ca2+ transients. ASHs depolarize in response to the aversive olfactory stimulus 1-octanol (1-oct) with a concomitant rise in somal Ca2+, stimulating an aversive locomotory response. Serotonin (5-HT) potentiates 1-oct avoidance through Gαq signaling, which inhibits L-type voltage-gated Ca2+ channels in ASH. Although Ca2+ signals in the ASH soma decrease, depolarization amplitudes increase because Ca2+ mediates inhibitory feedback control of membrane potential in this context. Here, we investigate octopamine (OA) signaling in ASH to assess whether this negative correlation between somal Ca2+ and depolarization amplitudes is a general phenomenon, or characteristic of certain neuromodulatory pathways. Like 5-HT, OA reduces somal Ca2+ transient amplitudes in ASH neurons. However, OA antagonizes 5-HT modulation of 1-oct avoidance behavior, suggesting that OA may signal through a different pathway. We further show that the pathway for OA diminution of ASH somal Ca2+ consists of the OCTR-1 receptor, the Go heterotrimeric G-protein, and the G-protein activated inwardly rectifying channels IRK-2 and IRK-3, and this pathway reduces depolarization amplitudes in parallel with somal Ca2+ transient amplitudes. Therefore, even within a single neuron, somal Ca2+ signal reduction may indicate either increased or decreased depolarization amplitude, depending on which neuromodulatory signaling pathways are activated, underscoring the need for careful interpretation of Ca2+ imaging data in neuromodulatory studies.
Collapse
Affiliation(s)
- Arunima Debnath
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
| | - Paul D. E. Williams
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Bruce A. Bamber
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Bruce A. Bamber,
| |
Collapse
|
24
|
The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotox Res 2022; 40:1235-1247. [PMID: 35838907 DOI: 10.1007/s12640-022-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Methylmercury (MeHg) neurotoxicity exhibits age-dependent effects with a latent and/or persistent neurotoxic effect on aged animals. Individual susceptibility to MeHg neurotoxicity is governed by both exposure duration and genetic factors that can magnify or mitigate the pathologic processes associated with this exposure. We previously showed the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) modulates the response of worms to high levels of MeHg, mitigating its effect on neuronal morphology in pre-vesicles in cephalic (CEP) dopaminergic neurons. Here we sought to better understand the long-term effects of MeHg exposure at low levels (100-fold lower than that in our previous report) and the modulatory role of the LRRK2 mutation. Worms exposed to MeHg (10 or 50 nM) at the larval stage (L1 stage) were compared at adult stages (young age: day 1 adult; middle age: day 5 adult; old age: day 10 adult) for the swimming speeds in M9 buffer, moving speeds during locomotion on an OP50-seeded plate, and the numbers of CEP dopaminergic pre-vesicles, vesicular structures originating from the dendrites of CEP for exportation of cellular content. In addition, the expression levels of Caenorhabditis elegans homologs of dopamine transporter (dat-1) and tyrosine hydroxylase (cat-2) were also analyzed at these adult stages. Our data showed that swimming speeds were reduced in wild-type worms at the day 10 adult stage at 50 nM MeHg level; yet, reduced swimming speeds were noted in the G2019S LRRK2 transgenic line upon MeHg exposures as low as 10 nM. Compared to locomotor speeds, swimming speeds appear to be more sensitive to the behavioral effects of developmental MeHg exposures, as the locomotor speeds were largely intact and indistinguishable from controls following MeHg exposures. Furthermore, we showed an age-dependent modulation of dat-1 and cat-2 expressions, which could also be modified by the LRRK2 mutation. Although MeHg exposures did not change the number of pre-vesicles, the LRRK2 mutation was associated with increased numbers of pre-vesicles in aged worms. Our data suggest that the latent behavioral effects of MeHg are sensitized by the G2019S LRRK2 mutation, and the underlying mechanism likely involves age-dependent changes in dopaminergic signaling.
Collapse
|
25
|
Khan M, Hartmann AH, O’Donnell MP, Piccione M, Pandey A, Chao PH, Dwyer ND, Bargmann CI, Sengupta P. Context-dependent reversal of odorant preference is driven by inversion of the response in a single sensory neuron type. PLoS Biol 2022; 20:e3001677. [PMID: 35696430 PMCID: PMC9232122 DOI: 10.1371/journal.pbio.3001677] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/24/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The valence and salience of individual odorants are modulated by an animal’s innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.
Collapse
Affiliation(s)
- Munzareen Khan
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anna H. Hartmann
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael P. O’Donnell
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Madeline Piccione
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Anjali Pandey
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Noelle D. Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Riedl J, Fieseler C, Zimmer M. Tyraminergic corollary discharge filters reafferent perception in a chemosensory neuron. Curr Biol 2022; 32:3048-3058.e6. [PMID: 35690069 DOI: 10.1016/j.cub.2022.05.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022]
Abstract
Interpreting sensory information requires its integration with the current behavior of the animal. However, how motor-related circuits influence sensory information processing is incompletely understood. Here, we report that current locomotor state directly modulates the activity of BAG CO2 sensory neurons in Caenorhabditis elegans. By recording neuronal activity in animals freely navigating CO2 landscapes, we found that during reverse crawling states, BAG activity is suppressed by tyraminergic corollary discharge signaling. We provide genetic evidence that tyramine released from the RIM reversal interneurons extrasynaptically activates the inhibitory chloride channel LGC-55 in BAG. Disrupting this pathway genetically leads to excessive behavioral responses to CO2 stimuli. Moreover, we find that LGC-55 signaling cancels out perception of self-produced CO2 and O2 stimuli when animals reverse into their own gas plume in ethologically relevant aqueous environments. Our results show that sensorimotor integration involves corollary discharge signals directly modulating chemosensory neurons.
Collapse
Affiliation(s)
- Julia Riedl
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Charles Fieseler
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna BioCenter (VBC), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|
27
|
Pribic MR, Black AH, Beale AD, Gauvin JA, Chiang LN, Rose JK. Association of Two Opposing Responses Results in the Emergence of a Novel Conditioned Response. Front Behav Neurosci 2022; 16:852266. [PMID: 35571277 PMCID: PMC9102977 DOI: 10.3389/fnbeh.2022.852266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies examining association of opposing responses, contrasting emotional valences, or counter motivational states have begun to elucidate how learning and memory processes can translate to clinical therapies for trauma or addiction. In the current study, association of opposing responses is tested in C. elegans. Due to its relatively simple and well-described nervous system, it was hypothesized that association of two oppositional stimuli presented in a delayed conditioning protocol would strengthen the behavioral response to the first stimulus (alpha conditioning). To test this, C. elegans were exposed to a tone vibration stimulus (to activate a mechanosensory-driven locomotor reversal response) paired with a blue light (to activate a forward locomotor response) at a 2-s delay. After five pairings, behavior was measured following a tone-alone stimulus. Worms that received stimulus pairing did not show an enhanced response to the first presented stimulus (tone vibration) but rather showed a marked increase in time spent in pause (cessation of movement), a new behavioral response (beta conditioning). This increase in pause behavior was accompanied by changes in measures of both backward and forward locomotion. Understanding the dynamics of conditioned behavior resulting from pairing of oppositional responses could provide further insight into how learning processes occur and may be applied.
Collapse
Affiliation(s)
- Micaela R. Pribic
- Biology Department, Western Washington University, Bellingham, WA, United States
| | - Aristide H. Black
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Asia D. Beale
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Jessica A. Gauvin
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Lisa N. Chiang
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| | - Jacqueline K. Rose
- Department of Psychology, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
28
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
29
|
A serotonergic circuit regulates aversive associative learning under mitochondrial stress in
C. elegans. Proc Natl Acad Sci U S A 2022; 119:e2115533119. [PMID: 35254908 PMCID: PMC8931235 DOI: 10.1073/pnas.2115533119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance
Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode
Caenorhabditis elegans
to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Collapse
|
30
|
Salim C, Kan AK, Batsaikhan E, Patterson EC, Jee C. Neuropeptidergic regulation of compulsive ethanol seeking in C. elegans. Sci Rep 2022; 12:1804. [PMID: 35110557 PMCID: PMC8810865 DOI: 10.1038/s41598-022-05256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the catastrophic consequences of alcohol abuse, alcohol use disorders (AUD) and comorbidities continue to strain the healthcare system, largely due to the effects of alcohol-seeking behavior. An improved understanding of the molecular basis of alcohol seeking will lead to enriched treatments for these disorders. Compulsive alcohol seeking is characterized by an imbalance between the superior drive to consume alcohol and the disruption or erosion in control of alcohol use. To model the development of compulsive engagement in alcohol seeking, we simultaneously exploited two distinct and conflicting Caenorhabditis elegans behavioral programs, ethanol preference and avoidance of aversive stimulus. We demonstrate that the C. elegans model recapitulated the pivotal features of compulsive alcohol seeking in mammals, specifically repeated attempts, endurance, and finally aversion-resistant alcohol seeking. We found that neuropeptide signaling via SEB-3, a CRF receptor-like GPCR, facilitates the development of ethanol preference and compels animals to seek ethanol compulsively. Furthermore, our functional genomic approach and behavioral elucidation suggest that the SEB-3 regulates another neuropeptidergic signaling, the neurokinin receptor orthologue TKR-1, to facilitate compulsive ethanol-seeking behavior.
Collapse
Affiliation(s)
- Chinnu Salim
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Ann Ke Kan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Enkhzul Batsaikhan
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - E Clare Patterson
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA
| | - Changhoon Jee
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee Health Science Center (UTHSC), 71 S. Manassas St., Suite 217, Memphis, TN, 38103, USA.
| |
Collapse
|
31
|
Zjacic N, Scholz M. The role of food odor in invertebrate foraging. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12793. [PMID: 34978135 PMCID: PMC9744530 DOI: 10.1111/gbb.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 11/30/2022]
Abstract
Foraging for food is an integral part of animal survival. In small insects and invertebrates, multisensory information and optimized locomotion strategies are used to effectively forage in patchy and complex environments. Here, the importance of olfactory cues for effective invertebrate foraging is discussed in detail. We review how odors are used by foragers to move toward a likely food source and the recent models that describe this sensory-driven behavior. We argue that smell serves a second function by priming an organism for the efficient exploitation of food. By appraising food odors, invertebrates can establish preferences and better adapt to their ecological niches, thereby promoting survival. The smell of food pre-prepares the gastrointestinal system and primes feeding motor programs for more effective ingestion as well. Optimizing resource utilization affects longevity and reproduction as a result, leading to drastic changes in survival. We propose that models of foraging behavior should include odor priming, and illustrate this with a simple toy model based on the marginal value theorem. Lastly, we discuss the novel techniques and assays in invertebrate research that could investigate the interactions between odor sensing and food intake. Overall, the sense of smell is indispensable for efficient foraging and influences not only locomotion, but also organismal physiology, which should be reflected in behavioral modeling.
Collapse
Affiliation(s)
- Nicolina Zjacic
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information FlowCenter of Advanced European Studies and Research (Caesar)BonnGermany
| |
Collapse
|
32
|
Yang W, Wu T, Tu S, Qin Y, Shen C, Li J, Choi MK, Duan F, Zhang Y. Redundant neural circuits regulate olfactory integration. PLoS Genet 2022; 18:e1010029. [PMID: 35100258 PMCID: PMC8830790 DOI: 10.1371/journal.pgen.1010029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 02/10/2022] [Accepted: 01/11/2022] [Indexed: 11/18/2022] Open
Abstract
Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task. In their natural environment, animals, including humans, encounter complex olfactory stimuli. Thus, how the brain processes multiple sensory cues to generate a coherent behavioral output is critical for the survival of the animal. In the present study, we combined molecular cellular genetics, optical physiology and behavioral analysis to study a common olfactory phenomenon in which the presence of one odorant blocks the response to another. Our results show that the integrated response is regulated by redundant neuronal circuits that engage several interneurons essential for olfactory sensorimotor responses, a mechanism that likely ensures a robust behavioral response to sensory cues representing information critical for survival.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (WY); (YZ)
| | - Taihong Wu
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Shasha Tu
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuang Qin
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chengchen Shen
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiangyun Li
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Myung-Kyu Choi
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Fengyun Duan
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Yun Zhang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (WY); (YZ)
| |
Collapse
|
33
|
Sakelaris BG, Li Z, Sun J, Banerjee S, Booth V, Gourgou E. Modelling learning in C. elegans chemosensory and locomotive circuitry for T-maze navigation. Eur J Neurosci 2021; 55:354-376. [PMID: 34894022 PMCID: PMC9269982 DOI: 10.1111/ejn.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T‐maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T‐maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food‐released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food‐baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom‐made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.
Collapse
Affiliation(s)
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Jiawei Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Shurjo Banerjee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor.,Department of Anesthesiology, University of Michigan, Ann Arbor
| | - Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor.,Institute of Gerontology, Medical School, University of Michigan, Ann Arbor
| |
Collapse
|
34
|
Bhat US, Shahi N, Surendran S, Babu K. Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Front Mol Neurosci 2021; 14:786471. [PMID: 34924955 PMCID: PMC8674661 DOI: 10.3389/fnmol.2021.786471] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
One of the reasons that most multicellular animals survive and thrive is because of the adaptable and plastic nature of their nervous systems. For an organism to survive, it is essential for the animal to respond and adapt to environmental changes. This is achieved by sensing external cues and translating them into behaviors through changes in synaptic activity. The nervous system plays a crucial role in constantly evaluating environmental cues and allowing for behavioral plasticity in the organism. Multiple neurotransmitters and neuropeptides have been implicated as key players for integrating sensory information to produce the desired output. Because of its simple nervous system and well-established neuronal connectome, C. elegans acts as an excellent model to understand the mechanisms underlying behavioral plasticity. Here, we critically review how neuropeptides modulate a wide range of behaviors by allowing for changes in neuronal and synaptic signaling. This review will have a specific focus on feeding, mating, sleep, addiction, learning and locomotory behaviors in C. elegans. With a view to understand evolutionary relationships, we explore the functions and associated pathophysiology of C. elegans neuropeptides that are conserved across different phyla. Further, we discuss the mechanisms of neuropeptidergic signaling and how these signals are regulated in different behaviors. Finally, we attempt to provide insight into developing potential therapeutics for neuropeptide-related disorders.
Collapse
Affiliation(s)
- Umer Saleem Bhat
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Siju Surendran
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
35
|
Sordillo A, Bargmann CI. Behavioral control by depolarized and hyperpolarized states of an integrating neuron. eLife 2021; 10:e67723. [PMID: 34738904 PMCID: PMC8570696 DOI: 10.7554/elife.67723] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Coordinated transitions between mutually exclusive motor states are central to behavioral decisions. During locomotion, the nematode Caenorhabditis elegans spontaneously cycles between forward runs, reversals, and turns with complex but predictable dynamics. Here, we provide insight into these dynamics by demonstrating how RIM interneurons, which are active during reversals, act in two modes to stabilize both forward runs and reversals. By systematically quantifying the roles of RIM outputs during spontaneous behavior, we show that RIM lengthens reversals when depolarized through glutamate and tyramine neurotransmitters and lengthens forward runs when hyperpolarized through its gap junctions. RIM is not merely silent upon hyperpolarization: RIM gap junctions actively reinforce a hyperpolarized state of the reversal circuit. Additionally, the combined outputs of chemical synapses and gap junctions from RIM regulate forward-to-reversal transitions. Our results indicate that multiple classes of RIM synapses create behavioral inertia during spontaneous locomotion.
Collapse
Affiliation(s)
- Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller UniversityNew YorkUnited States
- Chan Zuckerberg InitiativeRedwood CityUnited States
| |
Collapse
|
36
|
Cheriyamkunnel SJ, Rose S, Jacob PF, Blackburn LA, Glasgow S, Moorse J, Winstanley M, Moynihan PJ, Waddell S, Rezaval C. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr Biol 2021; 31:4231-4245.e4. [PMID: 34358444 PMCID: PMC8538064 DOI: 10.1016/j.cub.2021.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 01/28/2023]
Abstract
Animals must express the appropriate behavior that meets their most pressing physiological needs and their environmental context. However, it is currently unclear how alternative behavioral options are evaluated and appropriate actions are prioritized. Here, we describe how fruit flies choose between feeding and courtship; two behaviors necessary for survival and reproduction. We show that sex- and food-deprived male flies prioritize feeding over courtship initiation, and manipulation of food quality or the animal's internal state fine-tunes this decision. We identify the tyramine signaling pathway as an essential mediator of this decision. Tyramine biosynthesis is regulated by the fly's nutritional state and acts as a satiety signal, favoring courtship over feeding. Tyramine inhibits a subset of feeding-promoting tyramine receptor (TyrR)-expressing neurons and activates P1 neurons, a known command center for courtship. Conversely, the perception of a nutritious food source activates TyrR neurons and inhibits P1 neurons. Therefore, TyrR and P1 neurons are oppositely modulated by starvation, via tyramine levels, and food availability. We propose that antagonistic co-regulation of neurons controlling alternative actions is key to prioritizing competing drives in a context- dependent manner.
Collapse
Affiliation(s)
| | - Saloni Rose
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pedro F Jacob
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | | | - Shaleen Glasgow
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jacob Moorse
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mike Winstanley
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, UK
| | - Carolina Rezaval
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
37
|
Plasticity in gustatory and nociceptive neurons controls decision making in C. elegans salt navigation. Commun Biol 2021; 4:1053. [PMID: 34504291 PMCID: PMC8429449 DOI: 10.1038/s42003-021-02561-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
A conventional understanding of perception assigns sensory organs the role of capturing the environment. Better sensors result in more accurate encoding of stimuli, allowing for cognitive processing downstream. Here we show that plasticity in sensory neurons mediates a behavioral switch in C. elegans between attraction to NaCl in naïve animals and avoidance of NaCl in preconditioned animals, called gustatory plasticity. Ca2+ imaging in ASE and ASH NaCl sensing neurons reveals multiple cell-autonomous and distributed circuit adaptation mechanisms. A computational model quantitatively accounts for observed behaviors and reveals roles for sensory neurons in the control and modulation of motor behaviors, decision making and navigational strategy. Sensory adaptation dynamically alters the encoding of the environment. Rather than encoding the stimulus directly, therefore, we propose that these C. elegans sensors dynamically encode a context-dependent value of the stimulus. Our results demonstrate how adaptive sensory computation can directly control an animal’s behavioral state. Martijn Dekkers and Felix Salfelder et al. combine experimental approaches and mathematical modeling to determine the contribution of the two main NaCl sensory neurons (termed ASEL and ASER) and the nociceptive neurons (termed ASH) in C. elegans to the context-dependent switching between NaCl attraction and avoidance. Their results show that regulated sensitivity of these sensory neurons to NaCl allows the animal to dynamically modulate its behavioral response and suggest a role for sensory modulation in balancing exploration and exploitation during foraging.
Collapse
|
38
|
Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021; 4:1018. [PMID: 34465863 PMCID: PMC8408276 DOI: 10.1038/s42003-021-02547-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Dioecious species are a hallmark of the animal kingdom, with opposing sexes responding differently to identical sensory cues. Here, we study the response of C. elegans to the small-molecule pheromone, ascr#8, which elicits opposing behavioral valences in each sex. We identify a novel neuropeptide-neuropeptide receptor (NP/NPR) module that is active in males, but not in hermaphrodites. Using a novel paradigm of neuropeptide rescue that we established, we leverage bacterial expression of individual peptides to rescue the sex-specific response to ascr#8. Concurrent biochemical studies confirmed individual FLP-3 peptides differentially activate two divergent receptors, NPR-10 and FRPR-16. Interestingly, the two of the peptides that rescued behavior in our feeding paradigm are related through a conserved threonine, suggesting that a specific NP/NPR combination sets a male state, driving the correct behavioral valence of the ascr#8 response. Receptor expression within pre-motor neurons reveals novel coordination of male-specific and core locomotory circuitries.
Collapse
Affiliation(s)
- Douglas K. Reilly
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.429997.80000 0004 1936 7531Present Address: Tufts University, Medford, MA USA
| | - Emily J. McGlame
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,Present Address: AbbVie Foundational Neuroscience Center, Cambridge, MA USA
| | - Elke Vandewyer
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Annalise N. Robidoux
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Caroline S. Muirhead
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| | - Haylea T. Northcott
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA ,grid.423532.10000 0004 0516 8515Present Address: Optum, Hartford, CT USA
| | - William Joyce
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Mark J. Alkema
- grid.168645.80000 0001 0742 0364Neurobiology Department, University of Massachusetts Medical School, Worcester, MA USA
| | - Robert J. Gegear
- grid.266686.a0000000102217463Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA USA
| | - Isabel Beets
- grid.5596.f0000 0001 0668 7884Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jagan Srinivasan
- grid.268323.e0000 0001 1957 0327Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA USA
| |
Collapse
|
39
|
Gourgou E, Adiga K, Goettemoeller A, Chen C, Hsu AL. Caenorhabditis elegans learning in a structured maze is a multisensory behavior. iScience 2021; 24:102284. [PMID: 33889812 PMCID: PMC8050377 DOI: 10.1016/j.isci.2021.102284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
We show that C. elegans nematodes learn to associate food with a combination of proprioceptive cues and information on the structure of their surroundings (maze), perceived through mechanosensation. By using the custom-made Worm-Maze platform, we demonstrate that C. elegans young adults can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues. We provide evidence that the observed learning is a food-triggered multisensory behavior, which requires mechanosensory and proprioceptive input, and utilizes cues about the structural features of nematodes' environment and their body actions. The CREB-like transcription factor and dopamine signaling are also involved in maze performance. Lastly, we show that the observed aging-driven decline of C. elegans learning ability in the maze can be reversed by starvation.
Collapse
Affiliation(s)
- Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Kavya Adiga
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Anne Goettemoeller
- Neuroscience Program, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 41809, USA
| | - Chieh Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
- Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
40
|
Klappenbach M, Medina C, Freudenthal R. Learning a non-neutral conditioned stimulus: place preference in the crab Neohelice granulata. J Exp Biol 2021; 224:237791. [PMID: 33914030 DOI: 10.1242/jeb.242157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022]
Abstract
In the wild, being able to recognize and remember specific locations related to food sources and the associated attributes of landmarks is a cognitive trait important for survival. In the present work, we show that the crab Neohelice granulata can be trained to associate a specific environment with an appetitive reward in a conditioned place preference task. After a single training trial, when the crabs were presented with a food pellet in the target quadrant of the training arena, they were able to form a long-term memory related to the event. This memory was evident at least 24 h after training and was protein synthesis dependent. Importantly, the target area of the arena proved to be a non-neutral environment, given that animals initially avoided the target quadrant. In the present work, we introduce for the first time an associative one-trial memory paradigm including a conditioned stimulus with a clear valence performed in a crustacean.
Collapse
Affiliation(s)
- Martín Klappenbach
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Ciudad autónoma de Buenos Aires, Argentina
| | - Candela Medina
- Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires - CONICET, Ciudad autónoma de Buenos Aires, Argentina
| | - Ramiro Freudenthal
- Laboratory of Neural Plasticity and Memory, Institute of Biosciences, Biotechnology and translational Biology (iB3), Department of Physiology, Molecular and Cellular Biology, University of Buenos Aires - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
Smith NK, Grueter BA. Hunger-driven adaptive prioritization of behavior. FEBS J 2021; 289:922-936. [PMID: 33630426 DOI: 10.1111/febs.15791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/11/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
In order to survive, an animal must adapt its behavioral priorities to accommodate changing internal and external conditions. Hunger, a universally recognized interoceptive signal, promotes food intake though increasingly well-understood neural circuits. Less understood, is how hunger is integrated into the neural computations that guide nonfeeding behaviors. Within the brain, agouti-related peptide neurons in the arcuate nucleus of the hypothalamus have been found to powerfully stimulate feeding in addition to mediating other hunger-driven behavioral phenotypes. In this review, we compile the behavioral plasticity downstream of hunger and present identified or potential molecular and neural circuit mechanisms. We catalogue hunger's ability to increase exploration, decrease anxiety, and alter social behavior, among other phenotypes. Finally, we suggest paths forward for understanding hunger-driven behavioral adaptation and discuss the benefits of understanding state-dependent modulation of neural circuits controlling behavior.
Collapse
Affiliation(s)
- Nicholas K Smith
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Brad A Grueter
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Reed DR, Alhadeff AL, Beauchamp GK, Chaudhari N, Duffy VB, Dus M, Fontanini A, Glendinning JI, Green BG, Joseph PV, Kyriazis GA, Lyte M, Maruvada P, McGann JP, McLaughlin JT, Moran TH, Murphy C, Noble EE, Pepino MY, Pluznick JL, Rother KI, Saez E, Spector AC, Sternini C, Mattes RD. NIH Workshop Report: sensory nutrition and disease. Am J Clin Nutr 2021; 113:232-245. [PMID: 33300030 PMCID: PMC7779223 DOI: 10.1093/ajcn/nqaa302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
In November 2019, the NIH held the "Sensory Nutrition and Disease" workshop to challenge multidisciplinary researchers working at the interface of sensory science, food science, psychology, neuroscience, nutrition, and health sciences to explore how chemosensation influences dietary choice and health. This report summarizes deliberations of the workshop, as well as follow-up discussion in the wake of the current pandemic. Three topics were addressed: A) the need to optimize human chemosensory testing and assessment, B) the plasticity of chemosensory systems, and C) the interplay of chemosensory signals, cognitive signals, dietary intake, and metabolism. Several ways to advance sensory nutrition research emerged from the workshop: 1) refining methods to measure chemosensation in large cohort studies and validating measures that reflect perception of complex chemosensations relevant to dietary choice; 2) characterizing interindividual differences in chemosensory function and how they affect ingestive behaviors, health, and disease risk; 3) defining circuit-level organization and function that link and interact with gustatory, olfactory, homeostatic, visceral, and cognitive systems; and 4) discovering new ligands for chemosensory receptors (e.g., those produced by the microbiome) and cataloging cell types expressing these receptors. Several of these priorities were made more urgent by the current pandemic because infection with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease of 2019 has direct short- and perhaps long-term effects on flavor perception. There is increasing evidence of functional interactions between the chemosensory and nutritional sciences. Better characterization of this interface is expected to yield insights to promote health, mitigate disease risk, and guide nutrition policy.
Collapse
Affiliation(s)
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, USA
| | - Barry G Green
- The John B Pierce Laboratory, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Paule V Joseph
- National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- National Institute of Nursing, NIH, Bethesda, MD, USA
| | - George A Kyriazis
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark Lyte
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - John T McLaughlin
- Division of Diabetes, Endocrinology, & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
- Department of Gastroenterology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claire Murphy
- Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - M Yanina Pepino
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristina I Rother
- Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Catia Sternini
- Digestive Disease Division, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
43
|
Özbey NP, Imanikia S, Krueger C, Hardege I, Morud J, Sheng M, Schafer WR, Casanueva MO, Taylor RC. Tyramine Acts Downstream of Neuronal XBP-1s to Coordinate Inter-tissue UPR ER Activation and Behavior in C. elegans. Dev Cell 2020; 55:754-770.e6. [PMID: 33232669 PMCID: PMC7758879 DOI: 10.1016/j.devcel.2020.10.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/17/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
In C. elegans, expression of the UPRER transcription factor xbp-1s in neurons cell non-autonomously activates the UPRER in the intestine, leading to enhanced proteostasis and lifespan. To better understand this signaling pathway, we isolated neurons from animals expressing neuronal xbp-1s for transcriptomic analysis, revealing a striking remodeling of transcripts involved in neuronal signaling. We then identified signaling molecules required for cell non-autonomous intestinal UPRER activation, including the biogenic amine tyramine. Expression of xbp-1s in just two pairs of neurons that synthesize tyramine, the RIM and RIC interneurons, induced intestinal UPRER activation and extended longevity, and exposure to stress led to splicing and activation of xbp-1 in these neurons. In addition, we found that neuronal xbp-1s modulates feeding behavior and reproduction, dependent upon tyramine synthesis. XBP-1s therefore remodels neuronal signaling to coordinately modulate intestinal physiology and stress-responsive behavior, functioning as a global regulator of organismal responses to stress.
Collapse
Affiliation(s)
- Neşem P Özbey
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Soudabeh Imanikia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Christel Krueger
- Epigenetics Programme, The Babraham Institute, Babraham CB22 3AT, UK
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julia Morud
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ming Sheng
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Rebecca C Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
44
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
45
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
46
|
GABAergic motor neurons bias locomotor decision-making in C. elegans. Nat Commun 2020; 11:5076. [PMID: 33033264 PMCID: PMC7544903 DOI: 10.1038/s41467-020-18893-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Proper threat-reward decision-making is critical to animal survival. Emerging evidence indicates that the motor system may participate in decision-making but the neural circuit and molecular bases for these functions are little known. We found in C. elegans that GABAergic motor neurons (D-MNs) bias toward the reward behavior in threat-reward decision-making by retrogradely inhibiting a pair of premotor command interneurons, AVA, that control cholinergic motor neurons in the avoidance neural circuit. This function of D-MNs is mediated by a specific ionotropic GABA receptor (UNC-49) in AVA, and depends on electrical coupling between the two AVA interneurons. Our results suggest that AVA are hub neurons where sensory inputs from threat and reward sensory modalities and motor information from D-MNs are integrated. This study demonstrates at single-neuron resolution how motor neurons may help shape threat-reward choice behaviors through interacting with other neurons.
Collapse
|
47
|
Abstract
Caenorhabditis elegans' behavioral states, like those of other animals, are shaped by its immediate environment, its past experiences, and by internal factors. We here review the literature on C. elegans behavioral states and their regulation. We discuss dwelling and roaming, local and global search, mate finding, sleep, and the interaction between internal metabolic states and behavior.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - David M Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Young-Jai You
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602, Japan
| |
Collapse
|
48
|
Brown H, Proulx MJ, Stanton Fraser D. Hunger Bias or Gut Instinct? Responses to Judgments of Harm Depending on Visceral State Versus Intuitive Decision-Making. Front Psychol 2020; 11:2261. [PMID: 33041900 PMCID: PMC7530233 DOI: 10.3389/fpsyg.2020.02261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Empirical investigation into the emotional and physiological processes that shape moral decision-making is vast and growing. Yet, relatively less attention has been paid to measures of interoception in morality research despite its centrality in both emotional and physiological processes. Hunger and thirst represent two everyday interoceptive states, and hunger, in particular, has been shown to be influential for moral decision-making in numerous studies. It is possible that a tendency to focus on internal sensations interoceptive sensibility (IS), as well as the emotional and physiological states associated with visceral states, could be important in the relationships between hunger, thirst, and moral judgments. This cross-sectional online research (n = 154) explored whether IS, hunger, thirst, and emotional state influenced appropriateness and acceptability judgments of harm. The moral dilemma stimuli used allowed the independent calculation of (1) people's tendency to avoid harmful action at all costs and (2) people's tendency to maximize outcomes that benefit the greater good. The Cognitive Reflection Task (CRT) was implemented to determine whether an ability to override intuitive responses to counterintuitive problems predicted harm-based moral judgments, as found previously. Hunger bias, independent of IS and emotional state, was influential for non-profitable acceptability judgments of harmful actions. Contrary to dual-process perspectives, a novel finding was that more intuitive responses on the CRT predicted a reduced aversion to harmful actions that was indirectly associated with IS. We suggest that IS may indicate people's vulnerability to cognitive miserliness on the CRT task and reduced deliberation of moral dilemma stimuli. The framing of moral dilemmatic questions to encourage allocentric (acceptability questions) versus egocentric perspectives (appropriateness questions) could explain the divergence between hunger bias and intuitive decision-making for predicting these judgments, respectively. The findings are discussed in relation to dual-process accounts of harm-based moral judgments and evidence linking visceral experiences to harm aversion and moral decision-making.
Collapse
Affiliation(s)
- Helen Brown
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Danaë Stanton Fraser
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, United Kingdom
- CREATE Lab, University of Bath, Bath, United Kingdom
| |
Collapse
|
49
|
Iliff AJ, Xu XZS. C. elegans: a sensible model for sensory biology. J Neurogenet 2020; 34:347-350. [PMID: 33191820 PMCID: PMC7856205 DOI: 10.1080/01677063.2020.1823386] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
From Sydney Brenner's backyard to hundreds of labs across the globe, inspiring six Nobel Prize winners along the way, Caenorhabditis elegans research has come far in the past half century. The journey is not over. The virtues of C. elegans research are numerous and have been recounted extensively. Here, we focus on the remarkable progress made in sensory neurobiology research in C. elegans. This nematode continues to amaze researchers as we are still adding new discoveries to the already rich repertoire of sensory capabilities of this deceptively simple animal. Worms possess the sense of taste, smell, touch, light, temperature and proprioception, each of which is being studied in genetic, molecular, cellular and systems-level detail. This impressive organism can even detect less commonly recognized sensory cues such as magnetic fields and humidity.
Collapse
Affiliation(s)
- Adam J Iliff
- Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - X Z Shawn Xu
- Department of Molecular and Integrative Physiology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Alcedo J, Prahlad V. Neuromodulators: an essential part of survival. J Neurogenet 2020; 34:475-481. [PMID: 33170042 PMCID: PMC7811185 DOI: 10.1080/01677063.2020.1839066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
The coordination between the animal's external environment and internal state requires constant modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, Caenorhabditiselegans has grown into a powerful model organism that allows the elucidation of the mechanisms of action of neuromodulators that are conserved across species. In this perspective, we highlight a collection of articles in this issue that describe how neuromodulators optimize C. elegans survival.
Collapse
Affiliation(s)
- Joy Alcedo
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|