1
|
Yang S, Li C, Wang X, Huang T, Qian C, Li Q, Zhao L, Zhou S, Ding C, Nie R, Saijilafu, Hong Y, Liu C, Zhou F. Roles of Kdm6a and Kdm6b in Regulation of Mammalian Neural Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405537. [PMID: 39951327 PMCID: PMC12021076 DOI: 10.1002/advs.202405537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Epigenetic regulation of neuronal transcriptomic landscape is emerging to be a key coordinator of mammalian neural regeneration. The roles of two histone 3 lysine 27 (H3K27) demethylases, Kdm6a/b, in controlling neuroprotection and axon regeneration are investigated here. Deleting either Kdm6a or Kdm6b leads to enhanced sensory axon regeneration in the peripheral nervous system (PNS), whereas in the central nervous system (CNS), only deleting Kdm6a in retinal ganglion cells (RGCs) significantly enhances optic nerve regeneration. Moreover, both Kdm6a and Kdm6b function to regulate RGC survival but with different mechanisms. Mechanistically, Kdm6a regulates RGC regeneration via distinct pathway from that of Pten, and co-deleting Kdm6a and Pten results in long distance optic nerve regeneration passing the optic chiasm. In addition, RNA-seq profiling reveals that Kdm6a deletion switches the RGC transcriptomics into a developmental-like state and suppresses several known repressors of neural regeneration. Klf4 is identified as a direct downstream target of Kdm6a-H3K27me3 signaling in both sensory neurons and RGCs to regulate axon regeneration. These findings not only reveal different roles of Kdm6a and Kdm6b in regulation of neural regeneration and their underlying mechanisms, but also identify Kdm6a-mediated histone demethylation signaling as a novel epigenetic target for supporting CNS neural regeneration.
Collapse
Affiliation(s)
- Shu‐Guang Yang
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Chang‐Ping Li
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Key Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xue‐Wei Wang
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Byrd Alzheimer's Center and Research InstituteUniversity of South FloridaTampaFL33613USA
- Department of Molecular MedicineUniversity of South Florida Morsani College of MedicineTampaFL33612USA
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Cardiovascular SurgeryGeneral Hospital of Northern Theater CommandShenyangLiaoning110016China
| | - Cheng Qian
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Qiao Li
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ling‐Rui Zhao
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Si‐Yu Zhou
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Chen‐Yun Ding
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Rui Nie
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Saijilafu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiang310015China
| | - Yu‐Cai Hong
- Department of Emergency MedicineSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Chang‐Mei Liu
- Key Laboratory of Organ Regeneration and ReconstructionInstitute of ZoologyChinese Academy of SciencesInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
| | - Feng‐Quan Zhou
- Center for Translational Neural Regeneration ResearchSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
- Department of Orthopedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- The Solomon H. Department of NeuroscienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
2
|
Karova K, Polcanova Z, Knight L, Suchankova S, Nieuwenhuis B, Holota R, Herynek V, Machova Urdzikova L, Turecek R, Kwok JC, van den Herik J, Verhaagen J, Eva R, Fawcett JW, Jendelova P. Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract. Mol Ther 2025; 33:752-770. [PMID: 39748509 PMCID: PMC11852985 DOI: 10.1016/j.ymthe.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/19/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.
Collapse
Affiliation(s)
- Kristyna Karova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Zuzana Polcanova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Lydia Knight
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Stepanka Suchankova
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Radovan Holota
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic; Institute of Biology and Ecology, Faculty of Science, P.J. Safarik University in Kosice, Srobarova 2, Kosice 041 54, Slovak Republic
| | - Vit Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Salmovska 3, 120 00 Prague, Czech Republic
| | - Lucia Machova Urdzikova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rostislav Turecek
- Institute of Experimental Medicine CAS, Department of Auditory Neuroscience, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jessica C Kwok
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Joelle van den Herik
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands
| | - Richard Eva
- Kings College London, Wolfson Sensory Pain and Regeneration Centre (SPaRC), Guy's Campus, London Bridge, London SE1 1UL, UK
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK; Institute of Experimental Medicine CAS, Centre for Reconstructive Neuroscience, Videnska 1083, 14220 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
3
|
Gao T, Luo J, Fan J, Gong G, Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep 2025; 31:28. [PMID: 39540354 PMCID: PMC11579833 DOI: 10.3892/mmr.2024.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.
Collapse
Affiliation(s)
- Tangqing Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jingya Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Juanning Fan
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Haihong Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
4
|
Zhang Y, Peng Z, Guo M, Wang Y, Liu J, Liu Y, Li M, Wei T, Li P, Zhao Y, Wang Y. TET3-facilitated differentiation of human umbilical cord mesenchymal stem cells into oligodendrocyte precursor cells for spinal cord injury recovery. J Transl Med 2024; 22:1118. [PMID: 39707356 DOI: 10.1186/s12967-024-05929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) inflicts a severe burden on patients and lacks effective treatments. Owing to the poor regenerative capabilities of endogenous oligodendrocyte precursor cells (OPCs) following SCI, there is a growing interest in alternative sources, such as human umbilical cord mesenchymal stem cells (HUCMSCs). TET3 is a key DNA demethylase that plays an important role in neural differentiation, but its role in OPC formation is not well understood. This study aimed to explore the TET3-mediated one-step induction of HUCMSCs into OPCs. METHODS In vitro, HUCMSCs were induced into OPCs following TET3 overexpression. Changes of methylation and hydroxymethylation during differentiation were monitored, mechanisms involved in the TET3-driven HUCMSC differentiation into OPCs were identified by RNA sequencing. Methylation levels in NG2 and PDGFRA promoter region were detected using Bisulfite Polymerase Chain Reaction (BSP).In vivo, therapeutic effects of iOPCs were evaluated through a rat Allen's SCI model. RESULTS The in vitro analysis confirmed that TET3 enhances HUCMSC differentiation into OPCs, validitied by specific marker expression. The induced OPCs (iOPCs) exhibited methylation and hydroxymethylation patterns similar to native OPCs. BSP analysis demonstrated that TET3 overexpression significantly reduced CpG island methylation in the NG2 and PDGFRA promoter regions. RNA sequencing revealed that TET3 induces iOPCs to express a series of genes essential for OPC formation while inhibiting the signaling pathways that hinder OPC development. In a rat model of SCI, TET3-overexpressing HUCMSCs appear to have the potential to differentiate into iOPCs in vivo, suppressed secondary injury, and promoted functional recovery. The therapeutic effects of iOPCs on SCI were superior to those of standard mesenchymal stem cell treatments. CONCLUSIONS Our study demonstrated that TET3-mediated demethylation reshapes the methylation patterns of HUCMSCs, enabling their efficient one-step conversion into OPCs and significantly reducing the time required for cell preparation. This approach offers a potential strategy for early intervention in SCI. In an SCI model, TET3-induced OPCs contributed to spinal cord repair, providing novel insights into cell therapy strategies for SCI through the lens of methylation regulation.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Zhibin Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Man Guo
- Department of Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Yangyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Jingsong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yishu Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Mi Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Tianli Wei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Pengfei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yingwei Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China
| | - Yansong Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, 2075 Qunli Seventh Avenue, Daoli District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
5
|
Jang JH, Lee YJ, Ha IH, Park HJ. The analgesic effect of acupuncture in neuropathic pain: regulatory mechanisms of DNA methylation in the brain. Pain Rep 2024; 9:e1200. [PMID: 39450409 PMCID: PMC11500783 DOI: 10.1097/pr9.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 10/26/2024] Open
Abstract
Recent research has demonstrated that chronic pain, resulting from peripheral nerve injury, leads to various symptoms, including not only allodynia and hyperalgesia but also anxiety, depression, and cognitive impairment. These symptoms are believed to arise due to alterations in gene expression and neural function, mediated by epigenetic changes in chromatin structure. Emerging evidence suggests that acupuncture can modulate DNA methylation within the central nervous system, contributing to pain relief and the mitigation of comorbidities. Specifically, acupuncture has been shown to adjust the DNA methylation of genes related to mitochondrial dysfunction, oxidative phosphorylation, and inflammation pathways within cortical regions, such as the prefrontal cortex, anterior cingulate cortex, and primary somatosensory cortex. In addition, it influences the DNA methylation of genes associated with neurogenesis in hippocampal neurons. This evidence indicates that acupuncture, a treatment with fewer side effects compared with conventional medications, could offer an effective strategy for pain management.
Collapse
Affiliation(s)
- Jae-Hwan Jang
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center (AMSRC), College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Tomé D, Almeida RD. The injured axon: intrinsic mechanisms driving axonal regeneration. Trends Neurosci 2024; 47:875-891. [PMID: 39438216 DOI: 10.1016/j.tins.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Injury to the central nervous system (CNS) often results in permanent neurological impairments because axons fail to regenerate and re-establish lost synaptic contacts. By contrast, peripheral neurons can activate a pro-regenerative program and regenerate following a nerve lesion. This relies on an intricate intracellular communication system between the severed axon and the cell body. Locally activated signaling molecules are retrogradely transported to the soma to promote the epigenetic and transcriptional changes required for the injured neuron to regain growth competence. These signaling events rely heavily on intra-axonal translation and mitochondrial trafficking into the severed axon. Here, we discuss the interplay between these mechanisms and the main intrinsic barriers to axonal regeneration. We also examine the potential of manipulating these processes for driving CNS repair.
Collapse
Affiliation(s)
- Diogo Tomé
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Ramiro D Almeida
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
8
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Yang SG, Wang XW, Li CP, Huang T, Qian C, Li Q, Zhao L, Zhou SY, Saijilafu, Liu CM, Zhou FQ. Roles of Kdm6a and Kdm6b in regulation of mammalian neural regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557354. [PMID: 37745499 PMCID: PMC10515817 DOI: 10.1101/2023.09.12.557354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Epigenetic regulation of neuronal transcriptomic landscape is emerging to be a key coordinator of mammalian neural regeneration. Here we investigated roles of two histone 3 lysine 27 (H3K27) demethylases Kdm6a/b in controlling neuroprotection and axon regeneration. Deleting either Kdm6a or Kdm6b led to enhanced sensory axon regeneration in PNS, whereas in the CNS only deleting Kdm6a in retinal ganglion cells (RGCs) significantly enhanced optic nerve regeneration. Moreover, both Kdm6a and Kdm6b functioned to regulate RGC survival but with different mechanisms. Mechanistically, Kdm6a regulates RGC regeneration via distinct pathway from that of Pten and co-deleting Kdm6a and Pten resulted in long distance optic nerve regeneration passing the optic chiasm. In addition, RNA-seq profiling revealed that Kdm6a deletion switched the RGC transcriptomics into a developmental-like state and suppressed several known repressors of neural regeneration. Klf4 was identified as a direct downstream target of Kdm6a-H3K27me3 signaling in both sensory neurons and RGCs to regulate axon regeneration. These findings not only revealed different roles of Kdm6a and Kdm6b in regulation of neural regeneration and their underlying mechanisms, but also identified Kdm6a-mediated histone demethylation signaling as a novel epigenetic target for supporting CNS neural regeneration.
Collapse
|
10
|
Palmisano I, Liu T, Gao W, Zhou L, Merkenschlager M, Mueller F, Chadwick J, Toscano Rivalta R, Kong G, King JWD, Al-jibury E, Yan Y, Carlino A, Collison B, De Vitis E, Gongala S, De Virgiliis F, Wang Z, Di Giovanni S. Three-dimensional chromatin mapping of sensory neurons reveals that promoter-enhancer looping is required for axonal regeneration. Proc Natl Acad Sci U S A 2024; 121:e2402518121. [PMID: 39254997 PMCID: PMC11420198 DOI: 10.1073/pnas.2402518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, FL33124-4245
| | - Wei Gao
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Luming Zhou
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Matthias Merkenschlager
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Franziska Mueller
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Jessica Chadwick
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Rebecca Toscano Rivalta
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Guiping Kong
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - James W. D. King
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Ediem Al-jibury
- The Institute of Clinical Sciences, Medical Research Council, Laboratory of Medical Sciences, Faculty of Medicine, Imperial College London, LondonW12 0NN, United Kingdom
| | - Yuyang Yan
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Alessandro Carlino
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Bryce Collison
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Eleonora De Vitis
- Department of Neuroscience, Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus, OH43210
| | - Sree Gongala
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Francesco De Virgiliis
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, FL33124-4245
| | - Simone Di Giovanni
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, LondonW12 0NN, United Kingdom
| |
Collapse
|
11
|
Halawani D, Wang Y, Estill M, Sefiani A, Ramakrishnan A, Li J, Ni H, Halperin D, Shen L, Geoffroy CG, Friedel RH, Zou H. Aryl hydrocarbon receptor restricts axon regeneration of DRG neurons in response to injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565649. [PMID: 37961567 PMCID: PMC10635160 DOI: 10.1101/2023.11.04.565649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Injured neurons sense environmental cues to balance neural protection and axon regeneration, but the mechanisms are unclear. Here, we unveil aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, as a molecular sensor and key regulator of acute stress response at the expense of axon regeneration. We demonstrate responsiveness of DRG sensory neurons to AhR signaling, which functions to inhibit axon regeneration. Conditional Ahr deletion in neurons accelerates axon regeneration after sciatic nerve injury. Ahr deletion partially mimics the conditioning lesion in priming DRG to initiate axonogenesis gene programs; upon peripheral axotomy, Ahr ablation suppresses inflammation and stress signaling while augmenting pro-growth pathways. Moreover, comparative transcriptomics revealed signaling interactions between AhR and HIF-1α, two structurally related bHLH-PAS α units that share the dimerization partner Arnt/HIF-1β. Functional assays showed that the growth advantage of AhR-deficient DRG neurons requires HIF-1α; but in the absence of Arnt, DRG neurons can still mount a regenerative response. We further unveil a link between bHLH-PAS transcription factors and DNA hydroxymethylation in response to peripheral axotomy, while RNA-seq of DRG neurons and neuronal single cell RNA-seq analysis revealed a link of AhR regulon to RNA regulation and integrated stress response (ISR). Altogether, AhR activation favors stress coping and inflammation at the expense of axon regeneration; targeting AhR has the potential to enhance nerve repair.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Sport Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jiaxi Li
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Haofei Ni
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Daniel Halperin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cédric G. Geoffroy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, USA
| | - Roland H. Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
12
|
Elmalky MI, Alvarez-Bolado G, Younsi A, Skutella T. Axonal Regeneration after Spinal Cord Injury: Molecular Mechanisms, Regulatory Pathways, and Novel Strategies. BIOLOGY 2024; 13:703. [PMID: 39336130 PMCID: PMC11428726 DOI: 10.3390/biology13090703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
Axonal regeneration in the spinal cord after traumatic injuries presents a challenge for researchers, primarily due to the nature of adult neurons and the inhibitory environment that obstructs neuronal regrowth. Here, we review current knowledge of the intricate network of molecular and cellular mechanisms that hinder axonal regeneration, with a focus on myelin-associated inhibitors (MAIs) and other inhibitory guidance molecules, as well as the pivotal pathways implicated in both inhibiting and facilitating axonal regrowth, such as PKA/AMP, PI3K/Akt/mTOR, and Trk, alongside the regulatory roles of neurotrophins and axonal guidance cues. We also examine current insights into gene therapy, tissue engineering, and pharmacological interventions that show promise in overcoming barriers to axonal regrowth.
Collapse
Affiliation(s)
- Mohammed Ibrahim Elmalky
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Gonzalo Alvarez-Bolado
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Group for Regeneration and Reprogramming, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Rahimian S, Najafi H, Webber CA, Jalali H. Advances in Exosome-Based Therapies for the Repair of Peripheral Nerve Injuries. Neurochem Res 2024; 49:1905-1925. [PMID: 38807021 DOI: 10.1007/s11064-024-04157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Peripheral nerve injuries (PNIs) are the term used to describe injuries that occur to the nerve fibers of the peripheral nervous system (PNS). Such injuries may be caused by trauma, infection, or aberrant immunological response. Although the peripheral nervous system has a limited capacity for self-repair, in cases of severe damage, this process is either interrupted entirely or is only partially completed. The evaluation of variables that promote the repair of peripheral nerves has consistently been a focal point. Exosomes are a subtype of extracellular vesicles that originate from cellular sources and possess abundant proteins, lipids, and nucleic acids, play a critical role in facilitating intercellular communication. Due to their modifiable composition, they possess exceptional capabilities as carriers for therapeutic compounds, including but not limited to mRNAs or microRNAs. Exosome-based therapies have gained significant attention in the treatment of several nervous system diseases due to their advantageous properties, such as low toxicity, high stability, and limited immune system activation. The objective of this review article is to provide an overview of exosome-based treatments that have been developed in recent years for a range of PNIs, including nerve trauma, diabetic neuropathy, amyotrophic lateral sclerosis (ALS), glaucoma, and Guillain-Barre syndrome (GBS). It was concluded that exosomes could provide favorable results in the improvement of peripheral PNIs by facilitating the transfer of regenerative factors. The development of bioengineered exosome therapy for PNIs should be given more attention to enhance the efficacy of exosome treatment for PNIs.
Collapse
Affiliation(s)
- Sana Rahimian
- Division of Nanobiotehnology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Najafi
- Division of Nanobiotehnology, Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Christine A Webber
- Division of Anatomy, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hanieh Jalali
- Division of Cell and Developmental Biology, Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, No. 43, South Moffateh Ave, Tehran, 15719-14911, Iran.
| |
Collapse
|
15
|
Fu XQ, Zhan WR, Tian WY, Zeng PM, Luo ZG. Comparative transcriptomic profiling reveals a role for Olig1 in promoting axon regeneration. Cell Rep 2024; 43:114514. [PMID: 39002126 DOI: 10.1016/j.celrep.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/21/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
The regenerative potential of injured axons displays considerable heterogeneity. However, the molecular mechanisms underlying the heterogeneity have not been fully elucidated. Here, we establish a method that can separate spinal motor neurons (spMNs) with low and high regenerative capacities and identify a set of transcripts revealing differential expression between two groups of neurons. Interestingly, oligodendrocyte transcription factor 1 (Olig1), which regulates the differentiation of various neuronal progenitors, exhibits recurrent expression in spMNs with enhanced regenerative capabilities. Furthermore, overexpression of Olig1 (Olig1 OE) facilitates axonal regeneration in various models, and down-regulation or deletion of Olig1 exhibits an opposite effect. By analyzing the overlapped differentially expressed genes after expressing individual Olig factor and functional validation, we find that the role of Olig1 is at least partially through the neurite extension factor 1 (Nrsn1). We therefore identify Olig1 as an intrinsic factor that promotes regenerative capacity of injured axons.
Collapse
Affiliation(s)
- Xiu-Qing Fu
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| | - Wen-Rong Zhan
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Ya Tian
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology and State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Fang S, Ji Y, Shen Y, Yang S, Zhang H, Xin W, Shi W, Chen W. TET3 Contributes to Exercise-Induced Functional Axon Regeneration and Visual Restoration. Adv Biol (Weinh) 2024:e2400145. [PMID: 39007414 DOI: 10.1002/adbi.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Indexed: 07/16/2024]
Abstract
Axons have intrinsically poor regenerative capacity in the mature central nervous system (CNS), leading to permanent neurological impairments in individuals. There is growing evidence that exercise is a powerful physiological intervention that can obviously enhance cell rejuvenate capacity, but its molecular mechanisms that mediate the axonal regenerative benefits remain largely unclear. Using the eye as the CNS model, here it is first indicated that placing mice in an exercise stimulation environment induced DNA methylation patterns and transcriptomes of retinal ganglion cell, promoted axon regeneration after injury, and reversed vision loss in aged mice. These beneficial effects are dependent on the DNA demethylases TET3-mediated epigenetic effects, which increased the expression of genes associated with the regenerative growth programs, such as STAT3, Wnt5a, Klf6. Exercise training also shows with the improved mitochondrial and metabolic dysfunction in retinas and optic nerves via TET3. Collectively, these results suggested that the increased regenerative capacity induced by enhancing physical activity is mediated through epigenetic reprogramming in mouse model of optic nerve injury and in aged mouse. Understanding the molecular mechanism underlying exercise-dependent neuronal plasticity led to the identification of novel targets for ameliorating pathologies associated with etiologically diverse diseases.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yunxiang Ji
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Yilan Shen
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Simin Yang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Hongli Zhang
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wenfeng Xin
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan, 663000, China
| | - Weidong Shi
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems, Department of Integrative Oncology in Fudan University Shanghai Cancer Center, Jingan District Central Hospital of Shanghai, Department of Otorhinolaryngology-Head and Neck Surgery in Huashan Hospital, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Zhao T, Hong Y, Yan B, Huang S, Ming GL, Song H. Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a. Nat Commun 2024; 15:5674. [PMID: 38971831 PMCID: PMC11227589 DOI: 10.1038/s41467-024-50010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024] Open
Abstract
Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philedaphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Palmisano I, Liu T, Gao W, Zhou L, Merkenschlager M, Müller F, Chadwick J, Rivolta RT, Kong G, King JWD, Al-jibury E, Yan Y, Carlino A, Collison B, De Vitis E, Gongala S, De Virgiliis F, Wang Z, Di Giovanni S. Three-dimensional chromatin mapping of sensory neurons reveals that cohesin-dependent genomic domains are required for axonal regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597974. [PMID: 38895406 PMCID: PMC11185766 DOI: 10.1101/2024.06.09.597974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression programme at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C and RNA-seq. We find that cohesin is required for the full induction of the regenerative transcriptional program, by organising 3D genomic domains required for the activation of regenerative genes. Importantly, loss of cohesin results in disruption of chromatin architecture at regenerative genes and severely impaired nerve regeneration. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent chromatin interactions in neuronal regeneration.
Collapse
Affiliation(s)
- Ilaria Palmisano
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Tong Liu
- Department of Computer Science, University of Miami, 330M Ungar Building, 1365 Memorial Drive, Coral Gables, FL 33124-4245 Miami, FL, USA
| | - Wei Gao
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Luming Zhou
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | | | - Franziska Müller
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Jessica Chadwick
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Rebecca Toscano Rivolta
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Guiping Kong
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - James WD King
- MRC LMS, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ediem Al-jibury
- MRC LMS, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Yuyang Yan
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Alessandro Carlino
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Bryce Collison
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Eleonora De Vitis
- Department of Neuroscience, The Ohio State University, Columbus, 43210, OH, USA
| | - Sree Gongala
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Francesco De Virgiliis
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| | - Zheng Wang
- Department of Computer Science, University of Miami, 330M Ungar Building, 1365 Memorial Drive, Coral Gables, FL 33124-4245 Miami, FL, USA
| | - Simone Di Giovanni
- Department of Medicine, Division of Brain Sciences, Centre for Restorative Neuroscience, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
19
|
Tran H, Le L, Singh BN, Kramer J, Steward R. Tet controls axon guidance in early brain development through glutamatergic signaling. iScience 2024; 27:109634. [PMID: 38655199 PMCID: PMC11035372 DOI: 10.1016/j.isci.2024.109634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in ten-eleven translocation (TET) proteins are associated with human neurodevelopmental disorders. We find a function of Tet in regulating Drosophila early brain development. The Tet DNA-binding domain (TetAXXC) is required for axon guidance in the mushroom body (MB). Glutamine synthetase 2 (Gs2), a key enzyme in glutamatergic signaling, is significantly down-regulated in the TetAXXC brains. Loss of Gs2 recapitulates the TetAXXC phenotype. Surprisingly, Tet and Gs2 act in the insulin-producing cells (IPCs) to control MB axon guidance, and overexpression of Gs2 in IPCs rescues the defects of TetAXXC. Feeding TetAXXC with metabotropic glutamate receptor antagonist MPEP rescues the phenotype while glutamate enhances it. Mutants in Tet and Drosophila Fmr1, the homolog of human FMR1, have similar defects, and overexpression of Gs2 in IPCs also rescues the Fmr1 phenotype. We provide the first evidence that Tet controls the guidance of developing brain axons by modulating glutamatergic signaling.
Collapse
Affiliation(s)
- Hiep Tran
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Le Le
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Badri Nath Singh
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
- Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Kvistad CE, Kråkenes T, Gavasso S, Bø L. Neural regeneration in the human central nervous system-from understanding the underlying mechanisms to developing treatments. Where do we stand today? Front Neurol 2024; 15:1398089. [PMID: 38803647 PMCID: PMC11129638 DOI: 10.3389/fneur.2024.1398089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Mature neurons in the human central nervous system (CNS) fail to regenerate after injuries. This is a common denominator across different aetiologies, including multiple sclerosis, spinal cord injury and ischemic stroke. The lack of regeneration leads to permanent functional deficits with a substantial impact on patient quality of life, representing a significant socioeconomic burden worldwide. Great efforts have been made to decipher the responsible mechanisms and we now know that potent intra- and extracellular barriers prevent axonal repair. This knowledge has resulted in numerous clinical trials, aiming to promote neuroregeneration through different approaches. Here, we summarize the current understanding of the causes to the poor regeneration within the human CNS. We also review the results of the treatment attempts that have been translated into clinical trials so far.
Collapse
Affiliation(s)
| | - Torbjørn Kråkenes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Bø
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Brar HK, Dey S, Singh P, Pande D, Ghosh-Roy A. Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of Caenorhabditis elegans. eNeuro 2024; 11:ENEURO.0292-23.2024. [PMID: 38548333 PMCID: PMC7615967 DOI: 10.1523/eneuro.0292-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/18/2024] [Accepted: 03/03/2024] [Indexed: 05/02/2024] Open
Abstract
PVD neuron of Caenorhabditis elegans is a highly polarized cell with well-defined axonal, and dendritic compartments. PVD neuron operates in multiple sensory modalities including the control of both nociceptive touch sensation and body posture. Although both the axon and dendrites of this neuron show a regeneration response following laser-assisted injury, it is rather unclear how the behavior associated with this neuron is affected by the loss of these structures. It is also unclear whether neurite regrowth would lead to functional restoration in these neurons. Upon axotomy, using a femtosecond laser, we saw that harsh touch response was specifically affected leaving the body posture unperturbed. Subsequently, recovery in the touch response is highly correlated to the axon regrowth, which was dependent on DLK-1/MLK-1 MAP Kinase. Dendrotomy of both major and minor primary dendrites affected the wavelength and amplitude of sinusoidal movement without any apparent effect on harsh touch response. We further correlated the recovery in posture behavior to the type of dendrite regeneration events. We found that dendrite regeneration through the fusion and reconnection between the proximal and distal branches of the injured dendrite corresponded to improved recovery in posture. Our data revealed that the axons and dendrites of PVD neurons regulate the nociception and proprioception in worms, respectively. It also revealed that dendrite and axon regeneration lead to the restoration of these differential sensory modalities.
Collapse
Affiliation(s)
- Harjot Kaur Brar
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Pallavi Singh
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Devashish Pande
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar 122052, Haryana, India
| |
Collapse
|
22
|
Schmitd LB, Hafner H, Ward A, Asghari Adib E, Biscola NP, Kohen R, Patel M, Williamson RE, Desai E, Bennett J, Saxman G, Athaiya M, Wilborn D, Shumpert J, Zhao XF, Kawaguchi R, Geschwind DH, Hoke A, Shrager P, Collins CA, Havton LA, Kalinski AL, Giger RJ. Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583374. [PMID: 38496662 PMCID: PMC10942360 DOI: 10.1101/2024.03.04.583374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that Sarm1 is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve, Sarm1 is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In Sarm1-/- mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of Sarm1-/- distal nerve tissue was demonstrated by grafting of Sarm1-/- nerve into WT recipients. SC lineage tracing in injured WT and Sarm1-/- mice revealed morphological differences. In the Sarm1-/- distal nerve, the appearance of p75NTR+, c-Jun+ SCs is significantly delayed. Ex vivo, p75NTR and c-Jun upregulation in Sarm1-/- nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that Sarm1 is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Ayobami Ward
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor MI, USA
| | - Elham Asghari Adib
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Natalia P. Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Manav Patel
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Emily Desai
- Department of Biology, Ball State University, Muncie IN, USA
| | | | - Grace Saxman
- Department of Biology, Ball State University, Muncie IN, USA
| | - Mitre Athaiya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - David Wilborn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jaisha Shumpert
- Department of Biology, Ball State University, Muncie IN, USA
| | - Xiao-Feng Zhao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Daniel H. Geschwind
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ahmet Hoke
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leif A. Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J Peters VA Medical Center, Bronx, NY, USA
| | - Ashley L. Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Biology, Ball State University, Muncie IN, USA
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor MI, USA
| |
Collapse
|
23
|
Zhang J, Yang SG, Zhou FQ. Glycogen synthase kinase 3 signaling in neural regeneration in vivo. J Mol Cell Biol 2024; 15:mjad075. [PMID: 38059848 PMCID: PMC11063957 DOI: 10.1093/jmcb/mjad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) signaling plays important and broad roles in regulating neural development in vitro and in vivo. Here, we reviewed recent findings of GSK3-regulated axon regeneration in vivo in both the peripheral and central nervous systems and discussed a few controversial findings in the field. Overall, current evidence indicates that GSK3β signaling serves as an important downstream mediator of the PI3K-AKT pathway to regulate axon regeneration in parallel with the mTORC1 pathway. Specifically, the mTORC1 pathway supports axon regeneration mainly through its role in regulating cap-dependent protein translation, whereas GSK3β signaling might be involved in regulating N6-methyladenosine mRNA methylation-mediated, cap-independent protein translation. In addition, GSK3 signaling also plays a key role in reshaping the neuronal transcriptomic landscape during neural regeneration. Finally, we proposed some research directions to further elucidate the molecular mechanisms underlying the regulatory function of GSK3 signaling and discover novel GSK3 signaling-related therapeutic targets. Together, we hope to provide an updated and insightful overview of how GSK3 signaling regulates neural regeneration in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Shu-Guang Yang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Feng-Quan Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
24
|
Xue C, Zhu H, Wang H, Wang Y, Xu X, Zhou S, Liu D, Zhao Y, Qian T, Guo Q, He J, Zhang K, Gu Y, Gong L, Yang J, Yi S, Yu B, Wang Y, Liu Y, Yang Y, Ding F, Gu X. Skin derived precursors induced Schwann cells mediated tissue engineering-aided neuroregeneration across sciatic nerve defect. Bioact Mater 2024; 33:572-590. [PMID: 38111651 PMCID: PMC10726219 DOI: 10.1016/j.bioactmat.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.
Collapse
Affiliation(s)
- Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hongkui Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yaxian Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Songlin Zhou
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Dong Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yahong Zhao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Tianmei Qian
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Qi Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Jin He
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Kairong Zhang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yun Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Leilei Gong
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Sheng Yi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Bin Yu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yongjun Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yan Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yumin Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Fei Ding
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
25
|
Au NPB, Wu T, Chen X, Gao F, Li YTY, Tam WY, Yu KN, Geschwind DH, Coppola G, Wang X, Ma CHE. Genome-wide study reveals novel roles for formin-2 in axon regeneration as a microtubule dynamics regulator and therapeutic target for nerve repair. Neuron 2023; 111:3970-3987.e8. [PMID: 38086376 DOI: 10.1016/j.neuron.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/02/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Peripheral nerves regenerate successfully; however, clinical outcome after injury is poor. We demonstrated that low-dose ionizing radiation (LDIR) promoted axon regeneration and function recovery after peripheral nerve injury (PNI). Genome-wide CpG methylation profiling identified LDIR-induced hypermethylation of the Fmn2 promoter, exhibiting injury-induced Fmn2 downregulation in dorsal root ganglia (DRGs). Constitutive knockout or neuronal Fmn2 knockdown accelerated nerve repair and function recovery. Mechanistically, increased microtubule dynamics at growth cones was observed in time-lapse imaging of Fmn2-deficient DRG neurons. Increased HDAC5 phosphorylation and rapid tubulin deacetylation were found in regenerating axons of neuronal Fmn2-knockdown mice after injury. Growth-promoting effect of neuronal Fmn2 knockdown was eliminated by pharmaceutical blockade of HDAC5 or neuronal Hdac5 knockdown, suggesting that Fmn2deletion promotes axon regeneration via microtubule post-translational modification. In silico screening of FDA-approved drugs identified metaxalone, administered either immediately or 24-h post-injury, accelerating function recovery. This work uncovers a novel axon regeneration function of Fmn2 and a small-molecule strategy for PNI.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xinyu Chen
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Feng Gao
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Wing Yip Tam
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Milton AJ, Kwok JC, McClellan J, Randall SG, Lathia JD, Warren PM, Silver DJ, Silver J. Recovery of Forearm and Fine Digit Function After Chronic Spinal Cord Injury by Simultaneous Blockade of Inhibitory Matrix Chondroitin Sulfate Proteoglycan Production and the Receptor PTPσ. J Neurotrauma 2023; 40:2500-2521. [PMID: 37606910 PMCID: PMC10698859 DOI: 10.1089/neu.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
Spinal cord injuries (SCI), for which there are limited effective treatments, result in enduring paralysis and hypoesthesia, in part because of the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic removal of the inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) rapidly restored robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited improvements in gross upper arm function. In the present study, we focused on arm and hand function, seeking to highlight and optimize crude as well as fine motor control of the forearm and digits at lengthy chronic stages post-injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic combinatorial treatment strategy designed to simultaneously reduce and overcome inhibitory CSPGs. Following a 3-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment had a profound effect on functional recovery of the chronically paralyzed forelimb and paw, as well as on precision movements of the digits. The regenerative and immune system related events that we describe deepen our basic understanding of the crucial role of CSPG-mediated inhibition via the PTPσ receptor in constraining functional synaptic plasticity at lengthy time points following SCI, hopefully leading to clinically relevant translational benefits.
Collapse
Affiliation(s)
- Adrianna J. Milton
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jessica C.F. Kwok
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
| | - Jacob McClellan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabre G. Randall
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Philippa M. Warren
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Daniel J. Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Chen Q, Zhang XY, Wang YP, Fu YJ, Cao F, Xu YN, Kong JG, Tian NX, Xu Y, Wang Y. Unveiling adcyap1 as a protective factor linking pain and nerve regeneration through single-cell RNA sequencing of rat dorsal root ganglion neurons. BMC Biol 2023; 21:235. [PMID: 37880634 PMCID: PMC10601282 DOI: 10.1186/s12915-023-01742-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Severe peripheral nerve injury (PNI) often leads to significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain is crucial for the clinical treatment of PNI patients. However, established animal models for peripheral neuropathy fail to accurately recapitulate the clinical features of PNI. Additionally, researchers usually investigate neuropathic pain and axonal regeneration separately, leaving the intrinsic relationship between the development of neuropathic pain and nerve regeneration after PNI unclear. To explore the underlying connections between pain and regeneration after PNI and provide potential molecular targets, we performed single-cell RNA sequencing and functional verification in an established rat model, allowing simultaneous study of the neuropathic pain and axonal regeneration after PNI. RESULTS First, a novel rat model named spared nerve crush (SNC) was created. In this model, two branches of the sciatic nerve were crushed, but the epineurium remained unsevered. This model successfully recapitulated both neuropathic pain and axonal regeneration after PNI, allowing for the study of the intrinsic link between these two crucial biological processes. Dorsal root ganglions (DRGs) from SNC and naïve rats at various time points after SNC were collected for single-cell RNA sequencing (scRNA-seq). After matching all scRNA-seq data to the 7 known DRG types, we discovered that the PEP1 and PEP3 DRG neuron subtypes increased in crushed and uncrushed DRG separately after SNC. Using experimental design scRNA-seq processing (EDSSP), we identified Adcyap1 as a potential gene contributing to both pain and nerve regeneration. Indeed, repeated intrathecal administration of PACAP38 mitigated pain and facilitated axonal regeneration, while Adcyap1 siRNA or PACAP6-38, an antagonist of PAC1R (a receptor of PACAP38) led to both mechanical hyperalgesia and delayed DRG axon regeneration in SNC rats. Moreover, these effects can be reversed by repeated intrathecal administration of PACAP38 in the acute phase but not the late phase after PNI, resulting in alleviated pain and promoted axonal regeneration. CONCLUSIONS Our study reveals that Adcyap1 is an intrinsic protective factor linking neuropathic pain and axonal regeneration following PNI. This finding provides new potential targets and strategies for early therapeutic intervention of PNI.
Collapse
Affiliation(s)
- Qi Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Xi-Yin Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yu-Pu Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun-Jie Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Feng Cao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yi-Nuo Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Jin-Ge Kong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Na-Xi Tian
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yu Xu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Ashok A, Tai WL, Lennikov A, Chang K, Chen J, Li B, Cho KS, Utheim TP, Chen DF. Electrical stimulation alters DNA methylation and promotes neurite outgrowth. J Cell Biochem 2023; 124:1530-1545. [PMID: 37642194 DOI: 10.1002/jcb.30462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Electrical stimulation (ES) influences neural regeneration and functionality. We here investigate whether ES regulates DNA demethylation, a critical epigenetic event known to influence nerve regeneration. Retinal ganglion cells (RGCs) have long served as a standard model for central nervous system neurons, whose growth and disease development are reportedly affected by DNA methylation. The current study focuses on the ability of ES to rescue RGCs and preserve vision by modulating DNA demethylation. To evaluate DNA demethylation pattern during development, RGCs from mice at different stages of development, were analyzed using qPCR for ten-eleven translocation (TETs) and immunostained for 5 hydroxymethylcytosine (5hmc) and 5 methylcytosine (5mc). To understand the effect of ES on neurite outgrowth and DNA demethylation, cells were subjected to ES at 75 µAmp biphasic ramp for 20 min and cultured for 5 days. ES increased TETs mediated neurite outgrowth, DNA demethylation, TET1 and growth associated protein 43 levels significantly. Immunostaining of PC12 cells following ES for histone 3 lysine 9 trimethylation showed cells attained an antiheterochromatin configuration. Cultured mouse and human retinal explants stained with β-III tubulin exhibited increased neurite growth following ES. Finally, mice subjected to optic nerve crush injury followed by ES exhibited improved RGCs function and phenotype as validated using electroretinogram and immunohistochemistry. Our results point to a possible therapeutic regulation of DNA demethylation by ES in neurons.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Karen Chang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Boyuan Li
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor Paaske Utheim
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury. Protein Cell 2023; 14:635-652. [PMID: 36856750 PMCID: PMC10501188 DOI: 10.1093/procel/pwad003] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/29/2022] [Indexed: 02/12/2023] Open
Abstract
Spinal cord injury (SCI) disrupts the structural and functional connectivity between the higher center and the spinal cord, resulting in severe motor, sensory, and autonomic dysfunction with a variety of complications. The pathophysiology of SCI is complicated and multifaceted, and thus individual treatments acting on a specific aspect or process are inadequate to elicit neuronal regeneration and functional recovery after SCI. Combinatory strategies targeting multiple aspects of SCI pathology have achieved greater beneficial effects than individual therapy alone. Although many problems and challenges remain, the encouraging outcomes that have been achieved in preclinical models offer a promising foothold for the development of novel clinical strategies to treat SCI. In this review, we characterize the mechanisms underlying axon regeneration of adult neurons and summarize recent advances in facilitating functional recovery following SCI at both the acute and chronic stages. In addition, we analyze the current status, remaining problems, and realistic challenges towards clinical translation. Finally, we consider the future of SCI treatment and provide insights into how to narrow the translational gap that currently exists between preclinical studies and clinical practice. Going forward, clinical trials should emphasize multidisciplinary conversation and cooperation to identify optimal combinatorial approaches to maximize therapeutic benefit in humans with SCI.
Collapse
Affiliation(s)
- Ting Tian
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
30
|
Halawani D, Wang Y, Ramakrishnan A, Estill M, He X, Shen L, Friedel RH, Zou H. Circadian clock regulator Bmal1 gates axon regeneration via Tet3 epigenetics in mouse sensory neurons. Nat Commun 2023; 14:5165. [PMID: 37620297 PMCID: PMC10449865 DOI: 10.1038/s41467-023-40816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.
Collapse
Affiliation(s)
- Dalia Halawani
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiqun Wang
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, China
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
32
|
Cheng Y, Song H, Ming GL, Weng YL. Epigenetic and epitranscriptomic regulation of axon regeneration. Mol Psychiatry 2023; 28:1440-1450. [PMID: 36922674 PMCID: PMC10650481 DOI: 10.1038/s41380-023-02028-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.
Collapse
Affiliation(s)
- Yating Cheng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yi-Lan Weng
- Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX, 77030, USA.
- Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
34
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
35
|
Zheng B, Tuszynski MH. Regulation of axonal regeneration after mammalian spinal cord injury. Nat Rev Mol Cell Biol 2023; 24:396-413. [PMID: 36604586 DOI: 10.1038/s41580-022-00562-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 01/06/2023]
Abstract
One hundred years ago, Ramón y Cajal, considered by many as the founder of modern neuroscience, stated that neurons of the adult central nervous system (CNS) are incapable of regenerating. Yet, recent years have seen a tremendous expansion of knowledge in the molecular control of axon regeneration after CNS injury. We now understand that regeneration in the adult CNS is limited by (1) a failure to form cellular or molecular substrates for axon attachment and elongation through the lesion site; (2) environmental factors, including inhibitors of axon growth associated with myelin and the extracellular matrix; (3) astrocyte responses, which can both limit and support axon growth; and (4) intraneuronal mechanisms controlling the establishment of an active cellular growth programme. We discuss these topics together with newly emerging hypotheses, including the surprising finding from transcriptomic analyses of the corticospinal system in mice that neurons revert to an embryonic state after spinal cord injury, which can be sustained to promote regeneration with neural stem cell transplantation. These gains in knowledge are steadily advancing efforts to develop effective treatment strategies for spinal cord injury in humans.
Collapse
Affiliation(s)
- Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| | - Mark H Tuszynski
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
36
|
Zeng CW, Zhang CL. Neuronal regeneration after injury: a new perspective on gene therapy. Front Neurosci 2023; 17:1181816. [PMID: 37152598 PMCID: PMC10160438 DOI: 10.3389/fnins.2023.1181816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Chih-Wei Zeng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chih-Wei Zeng
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Chun-Li Zhang
| |
Collapse
|
37
|
Chen W, Wang X, Sun Q, Zhang Y, Liu J, Hu T, Wu W, Wei C, Liu M, Ding Y, Liu D, Chong Y, Wang P, Zhu H, Cui W, Zhang J, Li Q, Yang F. The upregulation of NLRP3 inflammasome in dorsal root ganglion by ten-eleven translocation methylcytosine dioxygenase 2 (TET2) contributed to diabetic neuropathic pain in mice. J Neuroinflammation 2022; 19:302. [PMID: 36527131 PMCID: PMC9756585 DOI: 10.1186/s12974-022-02669-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The nucleotide oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) in dorsal root ganglion (DRG) contributes to pain hypersensitivity in multiple neuropathic pain models, but the function of the NLRP3 in diabetic neuropathic pain (DNP) and the regulation mechanism are still largely unknown. Epigenetic regulation plays a vital role in the controlling of gene expression. Ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is a DNA demethylase that contributes to transcriptional activation. TET2 is also involved in high glucose (HG)-induced pathology. METHODS DNP was induced in mice via the intraperitoneal injection of streptozotocin (STZ) for five consecutive days and the mechanical threshold was evaluated in STZ-diabetic mice by using von Frey hairs. The expression level of the NLRP3 pathway and TET2 in DRG were determined through molecular biology experiments. The regulation of the NLRP3 pathway by TET2 was examined in in vitro and in vivo conditions. RESULTS In the present research, we first established the DNP model and found that NLRP3 pathway was activated in DRG. The treatment of NLRP3 inhibitor MCC950 alleviated the mechanical allodynia of DNP mice. Then we revealed that in STZ-diabetic mice DRG, the genomic DNA was demethylated, and the expression of DNA demethylase TET2 was increased evidently. Using RNA-sequencing analysis, we found that the expression of Txnip, a gene that encodes a thioredoxin-interacting protein (TXNIP) which mediates NLRP3 activation, was elevated in the DRG after STZ treatment. In addition, knocking down of TET2 expression in DRG using TET2-siRNA suppressed the mRNA expression of Txnip and subsequently inhibited the expression/activation of NLRP3 inflammasome in vitro and in vivo as well as relieved the pain sensitivity of DNP animals. CONCLUSION The results suggested that the upregulation of the TXNIP/NLRP3 pathway by TET2 in DRG was involved in the pain hypersensitivity of the DNP model.
Collapse
Affiliation(s)
- Wen Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24695.3c0000 0001 1431 9176International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaotong Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Qingyu Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yurui Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Tingting Hu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Weihua Wu
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Chao Wei
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Meng Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yumeng Ding
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dianxin Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yingzi Chong
- grid.24696.3f0000 0004 0369 153XDepartment of Anesthesiology Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070 China
| | - Peipei Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Hongwei Zhu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Weihua Cui
- grid.24696.3f0000 0004 0369 153XDepartment of Anesthesiology Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070 China
| | - Jiannan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Qian Li
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XKey Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Fei Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
38
|
Wang D, Wu W, Callen E, Pavani R, Zolnerowich N, Kodali S, Zong D, Wong N, Noriega S, Nathan WJ, Matos-Rodrigues G, Chari R, Kruhlak MJ, Livak F, Ward M, Caldecott K, Di Stefano B, Nussenzweig A. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022; 378:983-989. [PMID: 36454826 PMCID: PMC10196940 DOI: 10.1126/science.add9838] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.
Collapse
Affiliation(s)
- Dongpeng Wang
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Nicholas Zolnerowich
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Srikanth Kodali
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Santiago Noriega
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - William J. Nathan
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | | | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ferenc Livak
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| | - Michael Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Keith Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer Brighton, UK
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine, Center for Cell and Gene Therapy, Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
A small molecule M1 promotes optic nerve regeneration to restore target-specific neural activity and visual function. Proc Natl Acad Sci U S A 2022; 119:e2121273119. [PMID: 36306327 PMCID: PMC9636930 DOI: 10.1073/pnas.2121273119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes,
Opa1
or
Mfn2
, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.
Collapse
|
40
|
Zhang Y, Xu L, Li X, Chen Z, Chen J, Zhang T, Gu X, Yang J. Deciphering the dynamic niches and regeneration-associated transcriptional program of motoneurons following peripheral nerve injury. iScience 2022; 25:104917. [PMID: 36051182 PMCID: PMC9424597 DOI: 10.1016/j.isci.2022.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Robust axon regeneration of motoneurons (MNs) occurs in rodent models upon peripheral nerve injury (PNI). However, genome-wide dynamic molecules and permissive microenvironment following insult in MNs remain largely unknown. Here, we firstly tackled by high-coverage and massive sequencing of laser-dissected individual ChAT+ cells to uncover molecules and pro-regenerative programs of MNs from injury to the regenerating phase after PNI. "Injured" populations at 1d∼7d were well distinguished and three response phases were well defined by elucidating with several clues (Gap43, etc). We found remarkable changes of genes expressed by injured motoneurons to activate and enhance intrinsic axon regrowth or crosstalk with other cellular or non-cellular counterpart in the activated regenerative microenvironment, specifically microglia/macrophage. We also identified an injury and regeneration-associated module and critical regulators including core transcription factors (Atf3, Arid5a, Klf6, Klf7, Jun, Stat3, and Myc). This study provides a vital resource and critical molecules for studying neural repair of axotomized motoneurons.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Xiaodi Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Tao Zhang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Xiaosong Gu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, China
| |
Collapse
|
41
|
The Role of DNA Methylation in Stroke Recovery. Int J Mol Sci 2022; 23:ijms231810373. [PMID: 36142283 PMCID: PMC9499691 DOI: 10.3390/ijms231810373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations affect the onset of ischemic stroke, brain injury after stroke, and mechanisms of poststroke recovery. In particular, DNA methylation can be dynamically altered by maintaining normal brain function or inducing abnormal brain damage. DNA methylation is regulated by DNA methyltransferase (DNMT), which promotes methylation, DNA demethylase, which removes methyl groups, and methyl-cytosine–phosphate–guanine-binding domain (MBD) protein, which binds methylated DNA and inhibits gene expression. Investigating the effects of modulating DNMT, TET, and MBD protein expression on neuronal cell death and neurorepair in ischemic stroke and elucidating the underlying mechanisms can facilitate the formulation of therapeutic strategies for neuroprotection and promotion of neuronal recovery after stroke. In this review, we summarize the role of DNA methylation in neuroprotection and neuronal recovery after stroke according to the current knowledge regarding the effects of DNA methylation on excitotoxicity, oxidative stress, apoptosis, neuroinflammation, and recovery after ischemic stroke. This review of the literature regarding the role of DNA methylation in neuroprotection and functional recovery after stroke may contribute to the development and application of novel therapeutic strategies for stroke.
Collapse
|
42
|
Wieland B, Fleddermann MT, Zentgraf K. Acute effects of real and imagined endurance exercise on sustained attention performance. Front Psychol 2022; 13:905772. [PMID: 36110286 PMCID: PMC9468902 DOI: 10.3389/fpsyg.2022.905772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
This study investigated acute effects of real and imagined endurance exercise on sustained attention performance in healthy young adults in order to shed light on the action mechanisms underlying changes in cognitive functioning. The neural similarities between both imagined and physically performed movements reveal that imagery induces transient hypofrontality, whereas real exercise reflects both transient hypofrontality effects and the global release of signaling factors (e.g., BDNF or serotonin) due to muscle contraction and the accompanying sensory feedback. We hypothesized improved cognitive functioning after both interventions (imagery and physical endurance exercise) with greater improvements for real exercise because it targets both mechanisms. Fifty-three sport science students completed two 25-min sessions of moderate endurance exercise in either a motor imagery modality or an executed bodily activity within the framework of an order-balanced crossover study. Assessments for sustained attention performance (d2-R) were performed before and after each endurance exercise condition. Statistical results showed improvements for both groups over time, which can mostly be explained by retest effects. However, we observed a significant interaction effect between group and time, F(1.6, 81.9) = 3.64, p = 0.04, η2 = 0.07, with higher increases in the first session in case physical endurance exercise was performed compared to motor imagery exercise, t(51) = −2.71, p = 0.09, d = 0.75. This might suggest that the release of signaling factors due to muscle contractions with sensory feedback processing is an additional mediating mechanism alongside motor-related transient hypofrontality that improves cognitive performance.
Collapse
|
43
|
Kwon MJ, Seo Y, Cho H, Kim HS, Oh YJ, Genişcan S, Kim M, Park HH, Joe EH, Kwon MH, Kang HC, Kim BG. Nanogel-mediated delivery of oncomodulin secreted from regeneration-associated macrophages promotes sensory axon regeneration in the spinal cord. Theranostics 2022; 12:5856-5876. [PMID: 35966584 PMCID: PMC9373827 DOI: 10.7150/thno.73386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 11/06/2022] Open
Abstract
Preconditioning nerve injury enhances axonal regeneration of dorsal root ganglia (DRG) neurons in part by driving pro-regenerative perineuronal macrophage activation. How these macrophages influence the neuronal capacity of axon regeneration remains elusive. We report that oncomodulin (ONCM) is produced from the regeneration-associated macrophages and strongly influences regeneration of DRG sensory axons. We also attempted to promote sensory axon regeneration by nanogel-mediated delivery of ONCM to DRGs. Methods:In vitro neuron-macrophage interaction model and preconditioning sciatic nerve injury were used to verify the necessity of ONCM in preconditioning injury-induced neurite outgrowth. We developed a nanogel-mediated delivery system in which electrostatic encapsulation of ONCM by a reducible epsilon-poly(L-lysine)-nanogel (REPL-NG) enabled a controlled release of ONCM. Results: Sciatic nerve injury upregulated ONCM in DRG macrophages. ONCM in macrophages was necessary to produce pro-regenerative macrophages in the in vitro model of neuron-macrophage interaction and played an essential role in preconditioning-induced neurite outgrowth. ONCM increased neurite outgrowth in cultured DRG neurons by activating a distinct gene set, particularly neuropeptide-related genes. Increasing extracellularly secreted ONCM in DRGs sufficiently enhanced the capacity of neurite outgrowth. Intraganglionic injection of REPL-NG/ONCM complex allowed sustained ONCM activity in DRG tissue and achieved a remarkable long-range regeneration of dorsal column sensory axons beyond spinal cord lesion. Conclusion: NG-mediated ONCM delivery could be exploited as a therapeutic strategy for promoting sensory axon regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| | - Yeojin Seo
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Hyung Soon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Young Joo Oh
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Simay Genişcan
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hee Hwan Park
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea
| | - Eun-Hye Joe
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Republic of Korea.,Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,Department of Neurology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.,AI-Superconvergence KIURI Translational Research Center, Suwon, 16499, Republic of Korea
| |
Collapse
|
44
|
Ashok A, Pooranawattanakul S, Tai WL, Cho KS, Utheim TP, Cestari DM, Chen DF. Epigenetic Regulation of Optic Nerve Development, Protection, and Repair. Int J Mol Sci 2022; 23:8927. [PMID: 36012190 PMCID: PMC9408916 DOI: 10.3390/ijms23168927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic factors are known to influence tissue development, functionality, and their response to pathophysiology. This review will focus on different types of epigenetic regulators and their associated molecular apparatus that affect the optic nerve. A comprehensive understanding of epigenetic regulation in optic nerve development and homeostasis will help us unravel novel molecular pathways and pave the way to design blueprints for effective therapeutics to address optic nerve protection, repair, and regeneration.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sarita Pooranawattanakul
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tor P. Utheim
- Department of Medical Biochemistry, Oslo University Hospital, 0372 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0372 Oslo, Norway
| | - Dean M. Cestari
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
45
|
Han X, Xu J, Chen Z, Li P, Zhao L, Tao J, Shen Y, Zhu S, Yu B, Zhu J, Cao Q, Zhou S. Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system. Exp Neurol 2022; 356:114157. [PMID: 35779613 DOI: 10.1016/j.expneurol.2022.114157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/04/2022]
Abstract
Neurons in the peripheral nervous system (PNS) have robust regenerative capacity after axon injury, but the regenerative capacity is generally absent in the neurons of the central nervous system (CNS) in mammals. Increasing evidence highlighted the pivotal roles of long-noncoding RNAs (lncRNAs) in development and disease, but the role of LncRNA in triggering the regenerative capacity in CNS and PNS is not well studied. Here, we reported that lncRNA Gas5 is a suppressor for axon regeneration. Bioinformatics analysis shows that Gas5 is age-dependent up-regulated during DRG neurons development and down-regulated after sciatic nerve injury. In vitro, inhibiting the expression of Gas5 promotes the neurite growth of DRG neurons both in mice and rats. Consistently, Gas5 overexpression inhibits axon growth of mice DRG neurons. In vivo, Gas5 knockout(Gas5-/-) mice display enhanced nerve regeneration ability after sciatic nerve injury. RNA pull-down analysis indicates that Gas5 can interacts with soluble Vimentin, which is essential for peripheral nerve development and regeneration. Vimentin knockdown reverses the Gas5 silence-regulated axon pro-regeneration demonstrating that the function of Gas5 depending on Vimentin. Besides, inhibition of Gas5 expression can also enhance optic nerve regeneration indicating a potential pro-regenerative ability of Gas5 silence in CNS. Our study for the first time provides direct evidence in vivo that lncRNA plays a role in regulating central axon regrowth and Gas5 might be a novel therapeutic target for axon regeneration in both PNS and CNS.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiacheng Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zixin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ping Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jincheng Tao
- Medical College, Nantong University, Nantong 226001, China
| | - Yu Shen
- Medical College, Nantong University, Nantong 226001, China
| | - Shengze Zhu
- Medical College, Nantong University, Nantong 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
46
|
RSK1 promotes mammalian axon regeneration by inducing the synthesis of regeneration-related proteins. PLoS Biol 2022; 20:e3001653. [PMID: 35648763 PMCID: PMC9159620 DOI: 10.1371/journal.pbio.3001653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
In contrast to the adult mammalian central nervous system (CNS), the neurons in the peripheral nervous system (PNS) can regenerate their axons. However, the underlying mechanism dictating the regeneration program after PNS injuries remains poorly understood. Combining chemical inhibitor screening with gain- and loss-of-function analyses, we identified p90 ribosomal S6 kinase 1 (RSK1) as a crucial regulator of axon regeneration in dorsal root ganglion (DRG) neurons after sciatic nerve injury (SNI). Mechanistically, RSK1 was found to preferentially regulate the synthesis of regeneration-related proteins using ribosomal profiling. Interestingly, RSK1 expression was up-regulated in injured DRG neurons, but not retinal ganglion cells (RGCs). Additionally, RSK1 overexpression enhanced phosphatase and tensin homolog (PTEN) deletion-induced axon regeneration in RGCs in the adult CNS. Our findings reveal a critical mechanism in inducing protein synthesis that promotes axon regeneration and further suggest RSK1 as a possible therapeutic target for neuronal injury repair. This study shows that p90 ribosomal S6 kinase 1 (RSK1) responds differentially to nerve injury in the peripheral and central nervous systems, and identifies it as a crucial regulator of axonal regeneration; mechanistically, RSK1 preferentially induces the synthesis of regeneration-related proteins via the RSK1-eEF2K-eEF2 axis.
Collapse
|
47
|
New Insights into TETs in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094909. [PMID: 35563298 PMCID: PMC9103987 DOI: 10.3390/ijms23094909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.
Collapse
|
48
|
Zhang J, Jiang C, Liu X, Jiang CX, Cao Q, Yu B, Ni Y, Mao S. The metabolomic profiling identifies N, N-dimethylglycine as a facilitator of dorsal root ganglia neuron axon regeneration after injury. FASEB J 2022; 36:e22305. [PMID: 35394692 DOI: 10.1096/fj.202101698r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 11/11/2022]
Abstract
Identifying novel molecules involved in axon regeneration of neurons in the peripheral nervous system (PNS) will be of benefit in obtaining a therapeutic strategy for repairing axon damage both in the PNS and the central nervous system (CNS). Metabolism and axon regeneration are tightly connected. However, the overall metabolic processes and the landscape of the metabolites in axon regeneration of PNS neurons are uncovered. Here, we used an ultra high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS)-based untargeted metabolomics to analyze dorsal root ganglia (DRG) metabolic characteristics at different time points post sciatic nerve injury and acquired hundreds of differentially changed metabolites. In addition, the results reveal that several metabolic pathways were significantly altered, such as 'Histidine metabolism', 'Glycine serine and threonine metabolism', 'Arginine and proline metabolism', 'taurine and hypotaurine metabolism' and so on. Given metabolite could alter a cell's or an organism's phenotype, further investigation demonstrated that N, N-dimethylglycine (DMG) has a promoting effect on the regenerative ability post injury. Overall, our data may serve as a resource useful for further understanding how metabolites contribute to axon regeneration in DRG during sciatic nerve regeneration and suggest DMG may be a candidate drug to repair nerve injury.
Collapse
Affiliation(s)
- Junjie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaohong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | | | - Qianqian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
49
|
Glutamate in primary afferents is required for itch transmission. Neuron 2022; 110:809-823.e5. [PMID: 34986325 PMCID: PMC8898340 DOI: 10.1016/j.neuron.2021.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/21/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022]
Abstract
Whether glutamate or itch-selective neurotransmitters are used to confer itch specificity is still under debate. We focused on an itch-selective population of primary afferents expressing MRGPRA3, which highly expresses Vglut2 and the neuropeptide neuromedin B (Nmb), to investigate this question. Optogenetic stimulation of MRGPRA3+ afferents triggers scratching and other itch-related avoidance behaviors. Using a combination of optogenetics, spinal cord slice recordings, Vglut2 conditional knockout mice, and behavior assays, we showed that glutamate is essential for MRGPRA3+ afferents to transmit itch. We further demonstrated that MRGPRA3+ afferents form monosynaptic connections with both NMBR+ and NMBR- neurons and that NMB and glutamate together can enhance the activity of NMBR+ spinal DH neurons. Moreover, Nmb in MRGPRA3+ afferents and NMBR+ DH neurons are required for chloroquine-induced scratching. Together, our results establish a new model in which glutamate is an essential neurotransmitter in primary afferents for itch transmission, whereas NMB signaling enhances its activities.
Collapse
|
50
|
Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Exp Neurol 2022; 352:114025. [DOI: 10.1016/j.expneurol.2022.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
|