1
|
Boschin EA, Ainsworth M, Galeazzi JM, Buckley MJ. Memories or decisions? Bridging accounts of frontopolar function. Neuropsychologia 2025; 211:109119. [PMID: 40058578 DOI: 10.1016/j.neuropsychologia.2025.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Frontopolar cortex (FPC), for a long time elusive to functional description, is now associated with a wide range of cognitive processes. Prominent accounts of FPC function emerged from studies of memory (e.g., episodic and prospective memory; EM and PM, respectively) and of executive function (e.g., planning, multi-tasking, relational reasoning, cognitive branching, etc). In recent years, FPC function has begun to be described within the context of value-based decision making in terms of monitoring the value of alternatives and optimizing cognitive resources to balance the explore/exploit dilemma in the face of volatile environments. In this perspective, we propose that the broad counterfactual inference and behavioural flexibility account can help re-interpret findings from EM and PM studies and offer an explanatory bridge between the memory and executive function accounts. More specifically, we propose that counterfactual value monitoring in FPC modulates the reallocation of cognitive resources between present and past information and contributes to efficient episodic and prospective retrieval by concurrently assessing the value of competing memories in relation to the decision at hand and proactively evaluating future potential scenarios to anticipate optimal engagement of intentions.
Collapse
Affiliation(s)
- Erica A Boschin
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK.
| | - Matthew Ainsworth
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Juan M Galeazzi
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| | - Mark J Buckley
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, OX1 3SR, UK
| |
Collapse
|
2
|
Lee D, Pruitt J, Zhou T, Du J, Odegaard B. Metacognitive sensitivity: The key to calibrating trust and optimal decision making with AI. PNAS NEXUS 2025; 4:pgaf133. [PMID: 40417078 PMCID: PMC12103939 DOI: 10.1093/pnasnexus/pgaf133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/04/2025] [Indexed: 05/27/2025]
Abstract
Knowing when to trust and incorporate the advice from artificially intelligent (AI) systems is of increasing importance in the modern world. Research indicates that when AI provides high confidence ratings, human users often correspondingly increase their trust in such judgments, but these increases in trust can occur even when AI fails to provide accurate information on a given task. In this piece, we argue that measures of metacognitive sensitivity provided by AI systems will likely play a critical role in (1) helping individuals to calibrate their level of trust in these systems and (2) optimally incorporating advice from AI into human-AI hybrid decision making. We draw upon a seminal finding in the perceptual decision-making literature that demonstrates the importance of metacognitive ratings for optimal joint decisions and outline a framework to test how different types of information provided by AI systems can guide decision making.
Collapse
Affiliation(s)
- Doyeon Lee
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL 32611, USA
| | - Joseph Pruitt
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL 32611, USA
| | - Tianyu Zhou
- Department of Civil and Coastal Engineering, University of Florida, Weil Hall 360, 1949 Stadium Road, Gainesville, FL 32611, USA
| | - Jing Du
- Department of Civil and Coastal Engineering, University of Florida, Weil Hall 360, 1949 Stadium Road, Gainesville, FL 32611, USA
| | - Brian Odegaard
- Department of Psychology, University of Florida, 945 Center Dr., P.O. Box 112250, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Yin J, Xu H, Pan Y, Hu Y. Effects of different AI-driven Chatbot feedback on learning outcomes and brain activity. NPJ SCIENCE OF LEARNING 2025; 10:17. [PMID: 40234444 PMCID: PMC12000334 DOI: 10.1038/s41539-025-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Artificial intelligence (AI) driven chatbots provide instant feedback to support learning. Yet, the impacts of different feedback types on behavior and brain activation remain underexplored. We investigated how metacognitive, affective, and neutral feedback from an educational chatbot affected learning outcomes and brain activity using functional near-infrared spectroscopy. Students receiving metacognitive feedback showed higher transfer scores, greater metacognitive sensitivity, and increased brain activation in the frontopolar area and middle temporal gyrus compared to other feedback types. Such activation correlated with metacognitive sensitivity. Students receiving affective feedback showed better retention scores than those receiving neutral feedback, along with higher activation in the supramarginal gyrus. Students receiving neutral feedback exhibited higher activation in the dorsolateral prefrontal cortex than other feedback types. The machine learning model identified key brain regions that predicted transfer scores. These findings underscore the potential of diverse feedback types in enhancing learning via human-chatbot interaction, and provide neurophysiological signatures.
Collapse
Affiliation(s)
- Jiaqi Yin
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Haoxin Xu
- Shanghai Institute of Artificial Intelligence for Education, East China Normal University, Shanghai, 200062, China
- School of Computer Science and Technology, East China Normal University, Shanghai, 200062, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
4
|
Tian LY, Garzón KU, Rouse AG, Eldridge MAG, Schieber MH, Wang XJ, Tenenbaum JB, Freiwald WA. Neural representation of action symbols in primate frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.641276. [PMID: 40093053 PMCID: PMC11908170 DOI: 10.1101/2025.03.03.641276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
At the core of intelligence is proficiency in solving new problems, including those that differ dramatically from problems seen before. Problem-solving, in turn, depends on goal-directed generation of novel thoughts and behaviors1, which has been proposed to rely on internal representations of discrete units, or symbols, and processes that can recombine them into a large set of possible composite representations1-11. Although this view has been influential in formulating cognitive-level explanations of behavior, definitive evidence for a neuronal substrate of symbols has remained elusive. Here, we identify a neural population encoding action symbols-internal, recombinable representations of discrete units of motor behavior-localized to a specific area of frontal cortex. In macaque monkeys performing a drawing-like task designed to assess recombination of learned action symbols into novel sequences, we found behavioral evidence for three critical features that indicate actions have an underlying symbolic representation: (i) invariance over low-level motor parameters; (ii) categorical structure, reflecting discrete classes of action; and (iii) recombination into novel sequences. In simultaneous neural recordings across motor, premotor, and prefrontal cortex, we found that planning-related population activity in ventral premotor cortex encodes actions in a manner that, like behavior, reflects motor invariance, categorical structure, and recombination, three properties indicating a symbolic representation. Activity in no other recorded area exhibited this combination of properties. These findings reveal a neural representation of action symbols localized to PMv, and therefore identify a putative neural substrate for symbolic cognitive operations.
Collapse
Affiliation(s)
- Lucas Y Tian
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Kedar U Garzón
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Adam G Rouse
- Department of Neurosurgery, Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mark A G Eldridge
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marc H Schieber
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY, USA
| | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Center for Brains, Minds and Machines, MIT & Rockefeller University
| |
Collapse
|
5
|
Subias L, Katsu N, Yamada K. Metacognition in nonhuman primates: a review of current knowledge. Primates 2025; 66:9-25. [PMID: 39673592 PMCID: PMC11735554 DOI: 10.1007/s10329-024-01169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/31/2024] [Indexed: 12/16/2024]
Abstract
Metacognition, the ability to monitor and control one's own cognitive processes, has long been considered a hallmark of human cognition. However, two decades of research have provided compelling evidence of metacognitive-like abilities in some nonhuman primates. This review synthesizes current knowledge on the subject, highlighting key experimental paradigms and empirical findings, with an emphasis on the latest studies. Thanks to advances in methods and efforts to counter alternative explanations, there is now a consensus that great apes and some macaque species can monitor and control some of their cognitive processes. Despite numerous investigations, however, whether capuchin monkeys are metacognitive remains unclear. Critical gaps persist in our understanding of metacognition across species. We discuss the importance of expanding research to include a wider range of primate species and the potential role of ecological factors in shaping metacognitive capacities. In addition, we consider some promising avenues for future research, including neurophysiological approaches, studies of metacognitive errors, and field experiments.
Collapse
Affiliation(s)
- Lorraine Subias
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan.
| | - Noriko Katsu
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Kazunori Yamada
- Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
6
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Kawakami S, Okada N, Satomura Y, Shoji E, Mori S, Kiyota M, Omileke F, Hamamoto Y, Morita S, Koshiyama D, Yamagishi M, Sakakibara E, Koike S, Kasai K. Frontal pole-precuneus connectivity is associated with a discrepancy between self-rated and observer-rated depression severity in mood disorders: a resting-state functional magnetic resonance imaging study. Cereb Cortex 2024; 34:bhae284. [PMID: 39049465 PMCID: PMC11269430 DOI: 10.1093/cercor/bhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Discrepancies in self-rated and observer-rated depression severity may underlie the basis for biological heterogeneity in depressive disorders and be an important predictor of outcomes and indicators to optimize intervention strategies. However, the neural mechanisms underlying this discrepancy have been understudied. This study aimed to examine the brain networks that represent the neural basis of the discrepancy between self-rated and observer-rated depression severity using resting-state functional MRI. To examine the discrepancy between self-rated and observer-rated depression severity, self- and observer-ratings discrepancy (SOD) was defined, and the higher and lower SOD groups were selected from depressed patients as participants showing extreme deviation. Resting-state functional MRI analysis was performed to examine regions with significant differences in functional connectivity in the two groups. The results showed that, in the higher SOD group compared to the lower SOD group, there was increased functional connectivity between the frontal pole and precuneus, both of which are subregions of the default mode network that have been reported to be associated with ruminative and self-referential thinking. These results provide insight into the association of brain circuitry with discrepancies between self- and observer-rated depression severity and may lead to more treatment-oriented diagnostic reclassification in the future.
Collapse
Affiliation(s)
- Shintaro Kawakami
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiro Satomura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- Center for Diversity in Medical Education and Research (CDMER), Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Eimu Shoji
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shunsuke Mori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Masahiro Kiyota
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Favour Omileke
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yu Hamamoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Susumu Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mika Yamagishi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Eisuke Sakakibara
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- The International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Zhang Y, Wu P, Xie S, Hou Y, Wu H, Shi H. The neural mechanism of communication between graduate students and advisers in different adviser-advisee relationships. Sci Rep 2024; 14:11741. [PMID: 38778035 PMCID: PMC11111769 DOI: 10.1038/s41598-024-58308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Communication is crucial in constructing the relationship between students and advisers, ultimately bridging interpersonal interactions. Only a few studies however explore the communication between postgraduate students and advisers. To fill the gaps in the empirical researches, this study uses functional near-infrared spectroscopy (FNIRS) techniques to explore the neurophysiology differences in brain activation of postgraduates with different adviser-advise relationships during simulated communication with their advisers. Results showed significant differences in the activation of the prefrontal cortex between high-quality and the low-quality students during simulating and when communicating with advisers, specifically in the Broca's areas, the frontal pole, and the orbitofrontal and dorsolateral prefrontal cortices. This further elucidated the complex cognitive process of communication between graduate students and advisers.
Collapse
Affiliation(s)
- Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Research Center for Innovative Education and Critical Thinking, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Peipei Wu
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Simiao Xie
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Mental Health Education Center, Jinan University, Guangzhou, 510631, Guangdong, China
| | - Yan Hou
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Mental Health Education Center, Hubei University for Nationalities, Enshi, 450004, Hubei, China
| | - Huifen Wu
- School of Education, Hubei Engineering University, Xiaogan, 432100, Hubei, China.
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
9
|
Saccenti D, Moro AS, Sassaroli S, Malgaroli A, Ferro M, Lamanna J. Neural correlates of metacognition: Disentangling the brain circuits underlying prospective and retrospective second-order judgments through noninvasive brain stimulation. J Neurosci Res 2024; 102:e25330. [PMID: 38622870 DOI: 10.1002/jnr.25330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/05/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Metacognition encompasses the capability to monitor and control one's cognitive processes, with metamemory and metadecision configuring among the most studied higher order functions. Although imaging experiments evaluated the role of disparate brain regions, neural substrates of metacognitive judgments remain undetermined. The aim of this systematic review is to summarize and discuss the available evidence concerning the neural bases of metacognition which has been collected by assessing the effects of noninvasive brain stimulation (NIBS) on human subjects' metacognitive capacities. Based on such literature analysis, our goal is, at first, to verify whether prospective and retrospective second-order judgments are localized within separate brain circuits and, subsequently, to provide compelling clues useful for identifying new targets for future NIBS studies. The search was conducted following the preferred reporting items for systematic reviews and meta-analyses guidelines among PubMed, PsycINFO, PsycARTICLES, PSYNDEX, MEDLINE, and ERIC databases. Overall, 25 studies met the eligibility criteria, yielding a total of 36 experiments employing transcranial magnetic stimulation and 16 ones making use of transcranial electrical stimulation techniques, including transcranial direct current stimulation and transcranial alternating current stimulation. Importantly, we found that both perspective and retrospective judgments about both memory and perceptual decision-making performances depend on the activation of the anterior and lateral portions of the prefrontal cortex, as well as on the activity of more caudal regions such as the premotor cortex and the precuneus. Combining this evidence with results from previous imaging and lesion studies, we advance ventromedial prefrontal cortex as a promising target for future NIBS studies.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Andrea Stefano Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Sandra Sassaroli
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Studi Cognitivi, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
10
|
Miyamoto K. Neural circuits for retrospective and prospective introspection for the past, present and future in macaque monkeys and humans. Neurosci Res 2024; 201:46-49. [PMID: 38460842 DOI: 10.1016/j.neures.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 03/11/2024]
Abstract
For animals, including humans, to have self-awareness, the ability to reflect on one's own perceptions and cognitions, which is known as metacognition, and an understanding of consistency of the self from the past to the present and into the future based on metacognition is essential. Through the mediation of self-consciousness, animals are thought to be able to proactively act to change their environment rather than passively responding to changes in their environment. However, it has not been known whether animals have self-awareness, and, if so, how it is implemented neurobiologically. In this review article, I introduce our studies examining the neural basis of metacognitive abilities for past, present, and future actions in macaque monkeys and humans, and explore the evolutionary origins of self-awareness.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
11
|
Nougaret S, Ferrucci L, Ceccarelli F, Sacchetti S, Benozzo D, Fascianelli V, Saunders RC, Renaud L, Genovesio A. Neurons in the monkey frontopolar cortex encode learning stage and goal during a fast learning task. PLoS Biol 2024; 22:e3002500. [PMID: 38363801 PMCID: PMC10903959 DOI: 10.1371/journal.pbio.3002500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/29/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
The frontopolar cortex (FPC) is, to date, one of the least understood regions of the prefrontal cortex. The current understanding of its function suggests that it plays a role in the control of exploratory behaviors by coordinating the activities of other prefrontal cortex areas involved in decision-making and exploiting actions based on their outcomes. Based on this hypothesis, FPC would drive fast-learning processes through a valuation of the different alternatives. In our study, we used a modified version of a well-known paradigm, the object-in-place (OIP) task, to test this hypothesis in electrophysiology. This paradigm is designed to maximize learning, enabling monkeys to learn in one trial, which is an ability specifically impaired after a lesion of the FPC. We showed that FPC neurons presented an extremely specific pattern of activity by representing the learning stage, exploration versus exploitation, and the goal of the action. However, our results do not support the hypothesis that neurons in the frontal pole compute an evaluation of different alternatives. Indeed, the position of the chosen target was strongly encoded at its acquisition, but the position of the unchosen target was not. Once learned, this representation was also found at the problem presentation, suggesting a monitoring activity of the synthetic goal preceding its acquisition. Our results highlight important features of FPC neurons in fast-learning processes without confirming their role in the disengagement of cognitive control from the current goals.
Collapse
Affiliation(s)
- Simon Nougaret
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Stefano Sacchetti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Danilo Benozzo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Fascianelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Luc Renaud
- Institut de Neurosciences de la Timone, UMR7289, Centre National de la Recherche Scientifique and Aix-Marseille Université, Marseille, France
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Abstract
Determining the psychological, computational, and neural bases of confidence and uncertainty holds promise for understanding foundational aspects of human metacognition. While a neuroscience of confidence has focused on the mechanisms underpinning subpersonal phenomena such as representations of uncertainty in the visual or motor system, metacognition research has been concerned with personal-level beliefs and knowledge about self-performance. I provide a road map for bridging this divide by focusing on a particular class of confidence computation: propositional confidence in one's own (hypothetical) decisions or actions. Propositional confidence is informed by the observer's models of the world and their cognitive system, which may be more or less accurate-thus explaining why metacognitive judgments are inferential and sometimes diverge from task performance. Disparate findings on the neural basis of uncertainty and performance monitoring are integrated into a common framework, and a new understanding of the locus of action of metacognitive interventions is developed.
Collapse
Affiliation(s)
- Stephen M Fleming
- Department of Experimental Psychology, Wellcome Centre for Human Neuroimaging, and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom;
| |
Collapse
|
13
|
Miyamoto K, Rushworth MFS, Shea N. Imagining the future self through thought experiments. Trends Cogn Sci 2023; 27:446-455. [PMID: 36801162 DOI: 10.1016/j.tics.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/19/2023]
Abstract
The ability of the mind to conceptualize what is not present is essential. It allows us to reason counterfactually about what might have happened had events unfolded differently or had another course of action been taken. It allows us to think about what might happen - to perform 'Gedankenexperimente' (thought experiments) - before we act. However, the cognitive and neural mechanisms mediating this ability are poorly understood. We suggest that the frontopolar cortex (FPC) keeps track of and evaluates alternative choices (what we might have done), whereas the anterior lateral prefrontal cortex (alPFC) compares simulations of possible future scenarios (what we might do) and evaluates their reward values. Together, these brain regions support the construction of suppositional scenarios.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Japan.
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Nicholas Shea
- Institute of Philosophy, School of Advanced Study, University of London, London, UK; Faculty of Philosophy, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Nakai R, Hamazaki Y, Ito H, Imamura M. Early neurogenic properties of iPSC-derived neurosphere formation in Japanese macaque monkeys. Differentiation 2022; 128:33-42. [DOI: 10.1016/j.diff.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/03/2022]
|
15
|
Cai Y, Jin Z, Zhai C, Wang H, Wang J, Tang Y, Kwok SC. Time-sensitive prefrontal involvement in associating confidence with task performance illustrates metacognitive introspection in monkeys. Commun Biol 2022; 5:799. [PMID: 35945257 PMCID: PMC9363445 DOI: 10.1038/s42003-022-03762-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Metacognition refers to the ability to be aware of one's own cognition. Ample evidence indicates that metacognition in the human primate is highly dissociable from cognition, specialized across domains, and subserved by distinct neural substrates. However, these aspects remain relatively understudied in macaque monkeys. In the present study, we investigated the functionality of macaque metacognition by combining a confidence proxy, hierarchical Bayesian meta-d' computational modelling, and a single-pulse transcranial magnetic stimulation technique. We found that Brodmann area 46d (BA46d) played a critical role in supporting metacognition independent of task performance; we also found that the critical role of this region in meta-calculation was time-sensitive. Additionally, we report that macaque metacognition is highly domain-specific with respect to memory and perception decisions. These findings carry implications for our understanding of metacognitive introspection within the primate lineage.
Collapse
Affiliation(s)
- Yudian Cai
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Zhiyong Jin
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China.,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Chenxi Zhai
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Huimin Wang
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.,Shanghai Changning Mental Health Center, Shanghai, 200335, China
| | - Jijun Wang
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, 200030, China.,CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, 200031, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China. .,Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China. .,State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China. .,Shanghai Changning Mental Health Center, Shanghai, 200335, China.
| |
Collapse
|
16
|
Boldt A, Gilbert SJ. Partially Overlapping Neural Correlates of Metacognitive Monitoring and Metacognitive Control. J Neurosci 2022; 42:3622-3635. [PMID: 35304428 PMCID: PMC9053853 DOI: 10.1523/jneurosci.1326-21.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 11/21/2022] Open
Abstract
Metacognition describes the process of monitoring one's own mental states, often for the purpose of cognitive control. Previous research has investigated how metacognitive signals are generated (metacognitive monitoring), for example, when people (both female/male) judge their confidence in their decisions and memories. Research has also investigated how metacognitive signals are used to influence behavior (metacognitive control), for example, setting a reminder (i.e., cognitive offloading) for something you are not confident you will remember. However, the mapping between metacognitive monitoring and metacognitive control needs further study on a neural level. We used fMRI to investigate a delayed-intentions task with a reminder element, allowing human participants to use their metacognitive insight to engage metacognitive control. Using multivariate pattern analysis, we found that we could separately decode both monitoring and control, and, to a lesser extent, cross-classify between them. Therefore, brain patterns associated with monitoring and control are partially, but not fully, overlapping.SIGNIFICANCE STATEMENT Models of metacognition commonly distinguish between monitoring (how metacognition is formed) and control (how metacognition is used for behavioral regulation). Research into these facets of metacognition has often happened in isolation. Here, we provide a study which directly investigates the mapping between metacognitive monitoring and metacognitive control at a neural level. We applied multivariate pattern analysis to fMRI data from a novel task in which participants separately rated their confidence (metacognitive monitoring) and how much they would like to use a reminder (metacognitive control). We find support for the notion that the two aspects of metacognition overlap partially but not fully. We argue that future research should focus on how different metacognitive signals are selected for control.
Collapse
Affiliation(s)
- Annika Boldt
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
| | - Sam J Gilbert
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
| |
Collapse
|
17
|
Kuchling F, Fields C, Levin M. Metacognition as a Consequence of Competing Evolutionary Time Scales. ENTROPY (BASEL, SWITZERLAND) 2022; 24:601. [PMID: 35626486 PMCID: PMC9141326 DOI: 10.3390/e24050601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
Evolution is full of coevolving systems characterized by complex spatio-temporal interactions that lead to intertwined processes of adaptation. Yet, how adaptation across multiple levels of temporal scales and biological complexity is achieved remains unclear. Here, we formalize how evolutionary multi-scale processing underlying adaptation constitutes a form of metacognition flowing from definitions of metaprocessing in machine learning. We show (1) how the evolution of metacognitive systems can be expected when fitness landscapes vary on multiple time scales, and (2) how multiple time scales emerge during coevolutionary processes of sufficiently complex interactions. After defining a metaprocessor as a regulator with local memory, we prove that metacognition is more energetically efficient than purely object-level cognition when selection operates at multiple timescales in evolution. Furthermore, we show that existing modeling approaches to coadaptation and coevolution-here active inference networks, predator-prey interactions, coupled genetic algorithms, and generative adversarial networks-lead to multiple emergent timescales underlying forms of metacognition. Lastly, we show how coarse-grained structures emerge naturally in any resource-limited system, providing sufficient evidence for metacognitive systems to be a prevalent and vital component of (co-)evolution. Therefore, multi-scale processing is a necessary requirement for many evolutionary scenarios, leading to de facto metacognitive evolutionary outcomes.
Collapse
Affiliation(s)
- Franz Kuchling
- Department of Biology, Allen Discovery Center at Tufts University, Medford, MA 02155, USA;
| | - Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France;
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, USA
| |
Collapse
|
18
|
An evolutionary gap in primate default mode network organization. Cell Rep 2022; 39:110669. [PMID: 35417698 PMCID: PMC9088817 DOI: 10.1016/j.celrep.2022.110669] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/21/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
The human default mode network (DMN) is engaged at rest and in cognitive states such as self-directed thoughts. Interconnected homologous cortical areas in primates constitute a network considered as the equivalent. Here, based on a cross-species comparison of the DMN between humans and non-hominoid primates (macaques, marmosets, and mouse lemurs), we report major dissimilarities in connectivity profiles. Most importantly, the medial prefrontal cortex (mPFC) of non-hominoid primates is poorly engaged with the posterior cingulate cortex (PCC), though strong correlated activity between the human PCC and the mPFC is a key feature of the human DMN. Instead, a fronto-temporal resting-state network involving the mPFC was detected consistently across non-hominoid primate species. These common functional features shared between non-hominoid primates but not with humans suggest a substantial gap in the organization of the primate’s DMN and its associated cognitive functions. By comparing resting-state networks in humans, macaques, marmosets, and mouse lemurs, Garin et al. identify two networks in non-hominoid primates that include homolog areas of the human default mode network. The mPFC and PCC are tightly connected in the human DMN but poorly connected to each other across non-hominoid primates.
Collapse
|
19
|
Miyamoto K, Setsuie R, Miyashita Y. Conversion of concept-specific decision confidence into integrative introspection in primates. Cell Rep 2022; 38:110581. [PMID: 35354028 DOI: 10.1016/j.celrep.2022.110581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Introspection based on the integration of uncertain evidence is critical for acting upon abstract thinking and imagining future scenarios. However, it is unknown how confidence read-outs from multiple sources of different concepts are integrated, especially considering the relationships among the concepts. In this study, monkeys performed wagering based on an estimation of their performance in a preceding mnemonic decision. We found that the longer the response times for post-decision wagering, the more relieved the impairments having been caused by frontal disruption. This suggests the existence of a time-consuming compensatory metacognitive process. We found posterior inferior parietal lobe (pIPL) as its candidate, which was not coding the wagering per se (i.e., just high bet or low bet), but became more active when monkeys successfully chose the optimal bet option based on mnemonic decision performance. Thereafter, the pIPL prompts dorsal anterior cingulate cortex to carry the chosen wagering option. Our findings suggest a role for the pIPL in metacognitive concept integration.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Experimental Psychology, University of Oxford, Oxford, OXON OX1 3TA, UK; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | - Rieko Setsuie
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| | - Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory for Cognition Circuit Dynamics, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Redish AD, Kepecs A, Anderson LM, Calvin OL, Grissom NM, Haynos AF, Heilbronner SR, Herman AB, Jacob S, Ma S, Vilares I, Vinogradov S, Walters CJ, Widge AS, Zick JL, Zilverstand A. Computational validity: using computation to translate behaviours across species. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200525. [PMID: 34957854 PMCID: PMC8710889 DOI: 10.1098/rstb.2020.0525] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
We propose a new conceptual framework (computational validity) for translation across species and populations based on the computational similarity between the information processing underlying parallel tasks. Translating between species depends not on the superficial similarity of the tasks presented, but rather on the computational similarity of the strategies and mechanisms that underlie those behaviours. Computational validity goes beyond construct validity by directly addressing questions of information processing. Computational validity interacts with circuit validity as computation depends on circuits, but similar computations could be accomplished by different circuits. Because different individuals may use different computations to accomplish a given task, computational validity suggests that behaviour should be understood through the subject's point of view; thus, behaviour should be characterized on an individual level rather than a task level. Tasks can constrain the computational algorithms available to a subject and the observed subtleties of that behaviour can provide information about the computations used by each individual. Computational validity has especially high relevance for the study of psychiatric disorders, given the new views of psychiatry as identifying and mediating information processing dysfunctions that may show high inter-individual variability, as well as for animal models investigating aspects of human psychiatric disorders. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- A. David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam Kepecs
- Department of Neuroscience, Washington University in St. Louis, St Louis, MO 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St Louis, MO 63110, USA
| | - Lisa M. Anderson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia L. Calvin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicola M. Grissom
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ann F. Haynos
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alexander B. Herman
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Suma Jacob
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sisi Ma
- Department of Medicine - Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Iris Vilares
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody J. Walters
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alik S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jennifer L. Zick
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Zilverstand
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Dijkstra N, Kok P, Fleming SM. Perceptual reality monitoring: Neural mechanisms dissociating imagination from reality. Neurosci Biobehav Rev 2022; 135:104557. [PMID: 35122782 DOI: 10.1016/j.neubiorev.2022.104557] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 01/21/2023]
Abstract
There is increasing evidence that imagination relies on similar neural mechanisms as externally triggered perception. This overlap presents a challenge for perceptual reality monitoring: deciding what is real and what is imagined. Here, we explore how perceptual reality monitoring might be implemented in the brain. We first describe sensory and cognitive factors that could dissociate imagery and perception and conclude that no single factor unambiguously signals whether an experience is internally or externally generated. We suggest that reality monitoring is implemented by higher-level cortical circuits that evaluate first-order sensory and cognitive factors to determine the source of sensory signals. According to this interpretation, perceptual reality monitoring shares core computations with metacognition. This multi-level architecture might explain several types of source confusion as well as dissociations between simply knowing whether something is real and actually experiencing it as real. We discuss avenues for future research to further our understanding of perceptual reality monitoring, an endeavour that has important implications for our understanding of clinical symptoms as well as general cognitive function.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom.
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Aging Research, University College London, United Kingdom; Department of Experimental Psychology, University College London, United Kingdom
| |
Collapse
|
22
|
Zoh Y, Chang SWC, Crockett MJ. The prefrontal cortex and (uniquely) human cooperation: a comparative perspective. Neuropsychopharmacology 2022; 47:119-133. [PMID: 34413478 PMCID: PMC8617274 DOI: 10.1038/s41386-021-01092-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Humans have an exceptional ability to cooperate relative to many other species. We review the neural mechanisms supporting human cooperation, focusing on the prefrontal cortex. One key feature of human social life is the prevalence of cooperative norms that guide social behavior and prescribe punishment for noncompliance. Taking a comparative approach, we consider shared and unique aspects of cooperative behaviors in humans relative to nonhuman primates, as well as divergences in brain structure that might support uniquely human aspects of cooperation. We highlight a medial prefrontal network common to nonhuman primates and humans supporting a foundational process in cooperative decision-making: valuing outcomes for oneself and others. This medial prefrontal network interacts with lateral prefrontal areas that are thought to represent cooperative norms and modulate value representations to guide behavior appropriate to the local social context. Finally, we propose that more recently evolved anterior regions of prefrontal cortex play a role in arbitrating between cooperative norms across social contexts, and suggest how future research might fruitfully examine the neural basis of norm arbitration.
Collapse
Affiliation(s)
- Yoonseo Zoh
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Steve W. C. Chang
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| | - Molly J. Crockett
- grid.47100.320000000419368710Department of Psychology, Yale University, New Haven, USA
| |
Collapse
|
23
|
Joo HR, Liang H, Chung JE, Geaghan-Breiner C, Fan JL, Nachman BP, Kepecs A, Frank LM. Rats use memory confidence to guide decisions. Curr Biol 2021; 31:4571-4583.e4. [PMID: 34473948 DOI: 10.1016/j.cub.2021.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
Memory enables access to past experiences to guide future behavior. Humans can determine which memories to trust (high confidence) and which to doubt (low confidence). How memory retrieval, memory confidence, and memory-guided decisions are related, however, is not understood. In particular, how confidence in memories is used in decision making is unknown. We developed a spatial memory task in which rats were incentivized to gamble their time: betting more following a correct choice yielded greater reward. Rat behavior reflected memory confidence, with higher temporal bets following correct choices. We applied machine learning to identify a memory decision variable and built a generative model of memories evolving over time that accurately predicted both choices and confidence reports. Our results reveal in rats an ability thought to exist exclusively in primates and introduce a unified model of memory dynamics, retrieval, choice, and confidence.
Collapse
Affiliation(s)
- Hannah R Joo
- Medical Scientist Training Program, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA.
| | - Hexin Liang
- Neuroscience Graduate Program, The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jason E Chung
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Charlotte Geaghan-Breiner
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA
| | - Jiang Lan Fan
- Bioengineering Graduate Program, University of California, Berkeley/University of California, San Francisco, 1675 Owens Street, San Francisco, CA 94158, USA
| | - Benjamin P Nachman
- Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Berkeley Institute of Data Science, University of California, Berkeley, 190 Doe Library, Berkeley, CA 94720, USA
| | - Adam Kepecs
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA.
| |
Collapse
|
24
|
Klink PC, Aubry JF, Ferrera VP, Fox AS, Froudist-Walsh S, Jarraya B, Konofagou EE, Krauzlis RJ, Messinger A, Mitchell AS, Ortiz-Rios M, Oya H, Roberts AC, Roe AW, Rushworth MFS, Sallet J, Schmid MC, Schroeder CE, Tasserie J, Tsao DY, Uhrig L, Vanduffel W, Wilke M, Kagan I, Petkov CI. Combining brain perturbation and neuroimaging in non-human primates. Neuroimage 2021; 235:118017. [PMID: 33794355 PMCID: PMC11178240 DOI: 10.1016/j.neuroimage.2021.118017] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, the Netherlands.
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Vincent P Ferrera
- Department of Neuroscience & Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew S Fox
- Department of Psychology & California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Béchir Jarraya
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France; Foch Hospital, UVSQ, Suresnes, France
| | - Elisa E Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Adam Messinger
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| | - Anna S Mitchell
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Michael Ortiz-Rios
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Hiroyuki Oya
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Neurosurgery, University of Iowa, Iowa city, IA, USA
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | | | - Jérôme Sallet
- Department of Experimental Psychology, Oxford University, Oxford, United Kingdom; Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Michael Christoph Schmid
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom; Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | - Charles E Schroeder
- Nathan Kline Institute, Orangeburg, NY, USA; Columbia University, New York, NY, USA
| | - Jordy Tasserie
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Doris Y Tsao
- Division of Biology and Biological Engineering, Tianqiao and Chrissy Chen Institute for Neuroscience; Howard Hughes Medical Institute; Computation and Neural Systems, Caltech, Pasadena, CA, USA
| | - Lynn Uhrig
- NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Santé et de la Recherche Médicale (INSERM), Cognitive Neuroimaging Unit, Université Paris-Saclay, France
| | - Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, Neurosciences Department, KU Leuven Medical School, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven Belgium; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melanie Wilke
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Igor Kagan
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany.
| | - Christopher I Petkov
- Newcastle University Medical School, Newcastle upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|
25
|
Miyamoto K, Trudel N, Kamermans K, Lim MC, Lazari A, Verhagen L, Wittmann MK, Rushworth MFS. Identification and disruption of a neural mechanism for accumulating prospective metacognitive information prior to decision-making. Neuron 2021; 109:1396-1408.e7. [PMID: 33730554 PMCID: PMC8063717 DOI: 10.1016/j.neuron.2021.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
More than one type of probability must be considered when making decisions. It is as necessary to know one's chance of performing choices correctly as it is to know the chances that desired outcomes will follow choices. We refer to these two choice contingencies as internal and external probability. Neural activity across many frontal and parietal areas reflected internal and external probabilities in a similar manner during decision-making. However, neural recording and manipulation approaches suggest that one area, the anterior lateral prefrontal cortex (alPFC), is highly specialized for making prospective, metacognitive judgments on the basis of internal probability; it is essential for knowing which decisions to tackle, given its assessment of how well they will be performed. Its activity predicted prospective metacognitive judgments, and individual variation in activity predicted individual variation in metacognitive judgments. Its disruption altered metacognitive judgments, leading participants to tackle perceptual decisions they were likely to fail.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Nadescha Trudel
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Kevin Kamermans
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Michele C Lim
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging (WIN), FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Marco K Wittmann
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, Tinsley Building, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
26
|
Isoda M. Socially relative reward valuation in the primate brain. Curr Opin Neurobiol 2020; 68:15-22. [PMID: 33307380 DOI: 10.1016/j.conb.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022]
Abstract
Reward valuation in social contexts is by nature relative rather than absolute; it is made in reference to others. This socially relative reward valuation is based on our propensity to conduct comparisons and competitions between self and other. Exploring its neural substrate has been an active area of research in human neuroimaging. More recently, electrophysiological investigation of the macaque brain has enabled us to understand neural mechanisms underlying this valuation process at single-neuron and network levels. Here I show that shared neural networks centered at the medial prefrontal cortex and dopamine-related subcortical regions are involved in this process in humans and nonhuman primates. Thus, socially relative reward valuation is mediated by cortico-subcortically coordinated activity linking social and reward brain networks.
Collapse
Affiliation(s)
- Masaki Isoda
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan.
| |
Collapse
|
27
|
He B, Cao L, Xia X, Zhang B, Zhang D, You B, Fan L, Jiang T. Fine-Grained Topography and Modularity of the Macaque Frontal Pole Cortex Revealed by Anatomical Connectivity Profiles. Neurosci Bull 2020; 36:1454-1473. [PMID: 33108588 PMCID: PMC7719154 DOI: 10.1007/s12264-020-00589-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
The frontal pole cortex (FPC) plays key roles in various higher-order functions and is highly developed in non-human primates. An essential missing piece of information is the detailed anatomical connections for finer parcellation of the macaque FPC than provided by the previous tracer results. This is important for understanding the functional architecture of the cerebral cortex. Here, combining cross-validation and principal component analysis, we formed a tractography-based parcellation scheme that applied a machine learning algorithm to divide the macaque FPC (2 males and 6 females) into eight subareas using high-resolution diffusion magnetic resonance imaging with the 9.4T Bruker system, and then revealed their subregional connections. Furthermore, we applied improved hierarchical clustering to the obtained parcels to probe the modular structure of the subregions, and found that the dorsolateral FPC, which contains an extension to the medial FPC, was mainly connected to regions of the default-mode network. The ventral FPC was mainly involved in the social-interaction network and the dorsal FPC in the metacognitive network. These results enhance our understanding of the anatomy and circuitry of the macaque brain, and contribute to FPC-related clinical research.
Collapse
Affiliation(s)
- Bin He
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, 150080, China.,Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Long Cao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaoluan Xia
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Dan Zhang
- Core Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, 100084, China
| | - Bo You
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, 150080, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, 100190, China. .,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, CAS, Beijing, 100190, China. .,University of CAS, Beijing, 100049, China.
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, 100190, China. .,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, CAS, Beijing, 100190, China. .,Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China. .,The Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia. .,University of CAS, Beijing, 100049, China. .,Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
28
|
Off-Peak 594-nm Light Surpasses On-Peak 532-nm Light in Silencing Distant ArchT-Expressing Neurons In Vivo. iScience 2020; 23:101276. [PMID: 32599561 PMCID: PMC7326739 DOI: 10.1016/j.isci.2020.101276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/23/2020] [Accepted: 06/11/2020] [Indexed: 01/02/2023] Open
Abstract
For large brain volume manipulations using optogenetics, both effective opsin excitation and efficient light delivery with minimal light absorption are required to minimize the illuminating light intensity and concomitant off-target effects. ArchT, a widely used potent inhibitory opsin, is commonly activated by 532-nm light, which lies on its in vitro excitation peak. However, 532-nm light also lies on a peak range of the hemoglobin absorption spectrum. Therefore, we predicted that 594-nm light is superior in suppressing distant ArchT-expressing neurons, which is slightly off the ArchT-excitation-plateau and largely off the peak of the hemoglobin absorption spectrum. We quantitatively tested this prediction by the electrophysiological recording of the rat cortex in vivo. At illumination distances greater than 500 μm, 594-nm light was more effective than 532-nm light. Its superiority increased with distance. These results validate our prediction and highlight the significance of excitation-absorption trade-off in selecting illumination wavelength for optogenetics in vivo. Wavelength-dependency of optogenetic neuronal control was directly measured in vivo Off-peak light silence 1-mm-distant ArchT-neuron twice more than on-peak light in vivo Superiority of off-peak light at distance arose from its less absorption of light Simulation of light propagation supported unexpectedly large effect of hemoglobin
Collapse
|
29
|
Masset P, Ott T, Lak A, Hirokawa J, Kepecs A. Behavior- and Modality-General Representation of Confidence in Orbitofrontal Cortex. Cell 2020; 182:112-126.e18. [PMID: 32504542 DOI: 10.1016/j.cell.2020.05.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Every decision we make is accompanied by a sense of confidence about its likely outcome. This sense informs subsequent behavior, such as investing more-whether time, effort, or money-when reward is more certain. A neural representation of confidence should originate from a statistical computation and predict confidence-guided behavior. An additional requirement for confidence representations to support metacognition is abstraction: they should emerge irrespective of the source of information and inform multiple confidence-guided behaviors. It is unknown whether neural confidence signals meet these criteria. Here, we show that single orbitofrontal cortex neurons in rats encode statistical decision confidence irrespective of the sensory modality, olfactory or auditory, used to make a choice. The activity of these neurons also predicts two confidence-guided behaviors: trial-by-trial time investment and cross-trial choice strategy updating. Orbitofrontal cortex thus represents decision confidence consistent with a metacognitive process that is useful for mediating confidence-guided economic decisions.
Collapse
Affiliation(s)
- Paul Masset
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Torben Ott
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Armin Lak
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Junya Hirokawa
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Heyes C, Bang D, Shea N, Frith CD, Fleming SM. Knowing Ourselves Together: The Cultural Origins of Metacognition. Trends Cogn Sci 2020; 24:349-362. [PMID: 32298621 PMCID: PMC7903141 DOI: 10.1016/j.tics.2020.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Metacognition - the ability to represent, monitor and control ongoing cognitive processes - helps us perform many tasks, both when acting alone and when working with others. While metacognition is adaptive, and found in other animals, we should not assume that all human forms of metacognition are gene-based adaptations. Instead, some forms may have a social origin, including the discrimination, interpretation, and broadcasting of metacognitive representations. There is evidence that each of these abilities depends on cultural learning and therefore that cultural selection might shape human metacognition. The cultural origins hypothesis is a plausible and testable alternative that directs us towards a substantial new programme of research.
Collapse
Affiliation(s)
- Cecilia Heyes
- All Souls College, University of Oxford, High Street, Oxford OX1 4AL, UK; Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK.
| | - Dan Bang
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK; Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK
| | - Nicholas Shea
- Institute of Philosophy, Senate House, Malet Street, London WC1E 7HU, UK; Faculty of Philosophy, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Christopher D Frith
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK; Institute of Philosophy, Senate House, Malet Street, London WC1E 7HU, UK
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London WC1N 3BG, UK; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London WC1B 5EH, UK; Department of Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| |
Collapse
|
31
|
Hampton RR, Engelberg JWM, Brady RJ. Explicit memory and cognition in monkeys. Neuropsychologia 2020; 138:107326. [PMID: 31917205 PMCID: PMC8719341 DOI: 10.1016/j.neuropsychologia.2019.107326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 11/19/2022]
Abstract
Taxonomies of human memory, influenced heavily by Endel Tulving, make a fundamental distinction between explicit and implicit memory. Humans are aware of explicit memories, whereas implicit memories control behavior even though we are not aware of them. Efforts to understand the evolution of memory, and to use nonhuman animals to model human memory, will be facilitated by better understanding the extent to which this critical distinction exists in nonhuman animals. Work with metacognition paradigms in the past 20 years has produced a strong case for the existence of explicit memory in nonhuman primates and possibly other nonhuman animals. Clear dissociations of explicit and implicit memory by metacognition have yet to be demonstrated in nonhumans, although dissociations between memory systems by other behavioral techniques, and by brain manipulations, suggest that the explicit-implicit distinction applies to nonhumans. Neurobehavioral studies of metamemory are beginning to identify neural substrates for memory monitoring in the frontal cortex of monkeys. We have strong evidence that at least some memory systems are explicit in rhesus monkeys, but we need to learn more about the distribution of explicit processes across cognitive systems within monkeys, and across species.
Collapse
Affiliation(s)
- Robert R Hampton
- Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Jonathan W M Engelberg
- Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Ryan J Brady
- Department of Psychology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Stolyarova A, Rakhshan M, Hart EE, O'Dell TJ, Peters MAK, Lau H, Soltani A, Izquierdo A. Contributions of anterior cingulate cortex and basolateral amygdala to decision confidence and learning under uncertainty. Nat Commun 2019; 10:4704. [PMID: 31624264 PMCID: PMC6797780 DOI: 10.1038/s41467-019-12725-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The subjective sense of certainty, or confidence, in ambiguous sensory cues can alter the interpretation of reward feedback and facilitate learning. We trained rats to report the orientation of ambiguous visual stimuli according to a spatial stimulus-response rule that must be learned. Following choice, rats could wait a self-timed delay for reward or initiate a new trial. Waiting times increase with discrimination accuracy, demonstrating that this measure can be used as a proxy for confidence. Chemogenetic silencing of BLA shortens waiting times overall whereas ACC inhibition renders waiting times insensitive to confidence-modulating attributes of visual stimuli, suggesting contribution of ACC but not BLA to confidence computations. Subsequent reversal learning is enhanced by confidence. Both ACC and BLA inhibition block this enhancement but via differential adjustments in learning strategies and consistent use of learned rules. Altogether, we demonstrate dissociable roles for ACC and BLA in transmitting confidence and learning under uncertainty.
Collapse
Affiliation(s)
- A Stolyarova
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - M Rakhshan
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - E E Hart
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - T J O'Dell
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - M A K Peters
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, 92521, USA
| | - H Lau
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychology, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory for Brain and Cognitive Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - A Soltani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - A Izquierdo
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Abstract
The perirhinal cortex (PRC) serves as the gateway to the hippocampus for episodic memory formation and plays a part in retrieval through its backward connectivity to various neocortical areas. First, I present the evidence suggesting that PRC neurons encode both experientially acquired object features and their associative relations. Recent studies have revealed circuit mechanisms in the PRC for the retrieval of cue-associated information, and have demonstrated that, in monkeys, PRC neuron-encoded information can be behaviourally read out. These studies, among others, support the theory that the PRC converts visual representations of an object into those of its associated features and initiates backward-propagating, interareal signalling for retrieval of nested associations of object features that, combined, extensionally represent the object meaning. I propose that the PRC works as the ventromedial hub of a 'two-hub model' at an apex of the hierarchy of a distributed memory network and integrates signals encoded in other downstream cortical areas that support diverse aspects of knowledge about an object.
Collapse
|
34
|
Ott T, Masset P, Kepecs A. The Neurobiology of Confidence: From Beliefs to Neurons. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:9-16. [PMID: 31270145 DOI: 10.1101/sqb.2018.83.038794] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
How confident are you? As humans, aware of our subjective sense of confidence, we can readily answer. Knowing your level of confidence helps to optimize both routine decisions such as whether to go back and check if the front door was locked and momentous ones like finding a partner for life. Yet the inherently subjective nature of confidence has limited investigations by neurobiologists. Here, we provide an overview of recent advances in this field and lay out a conceptual framework that lets us translate psychological questions about subjective confidence into the language of neuroscience. We show how statistical notions of confidence provide a bridge between our subjective sense of confidence and confidence-guided behaviors in nonhuman animals, thus enabling the study of the underlying neurobiology. We discuss confidence as a core cognitive process that enables organisms to optimize behavior such as learning or resource allocation and that serves as the basis of metacognitive reasoning. These approaches place confidence on a solid footing and pave the way for a mechanistic understanding of how the brain implements confidence-based algorithms to guide behavior.
Collapse
Affiliation(s)
- Torben Ott
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Masset
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.,Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA.,Department of Molecular and Cellular Biology & Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
35
|
Shea N, Frith CD. The Global Workspace Needs Metacognition. Trends Cogn Sci 2019; 23:560-571. [DOI: 10.1016/j.tics.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
|
36
|
Ye Q, Zou F, Dayan M, Lau H, Hu Y, Kwok SC. Individual susceptibility to TMS affirms the precuneal role in meta-memory upon recollection. Brain Struct Funct 2019; 224:2407-2419. [PMID: 31254060 DOI: 10.1007/s00429-019-01909-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/08/2019] [Indexed: 11/25/2022]
Abstract
A recent virtual-lesion study using inhibitory repetitive transcranial magnetic stimulation (rTMS) confirmed the causal behavioral relevance of the precuneus in the evaluation of one's own memory performance (aka mnemonic metacognition). This study's goal is to elucidate how these TMS-induced neuromodulatory effects might relate to the neural correlates and be modulated by individual anatomical profiles in relation to meta-memory. In a within-subjects design, we assessed the impact of 20-min rTMS over the precuneus, compared to the vertex, across three magnetic resonance imaging (MRI) neuro-profiles on 18 healthy subjects during a memory versus a perceptual task. Task-based functional MRI revealed that BOLD signal magnitude in the precuneus is associated with variation in individual meta-memory efficiency. Moreover, individuals with higher resting-state functional connectivity (rs-fcMRI) between the precuneus and the hippocampus, or smaller gray matter volume in the stimulated precuneal region exhibit considerably higher vulnerability to the TMS effect. These effects were not observed in the perceptual domain. Thus, we provide compelling evidence in outlining a possible circuit encompassing the precuneus and its mnemonic midbrain neighbor the hippocampus at the service of realizing our meta-awareness during memory recollection of episodic details.
Collapse
Affiliation(s)
- Qun Ye
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Futing Zou
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Michael Dayan
- Human Neuroscience Platform, Foundation Campus Biotech Geneva, Geneva, Switzerland
| | - Hakwan Lau
- Department of Psychology, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Brain Research Institute, University of California-Los Angeles, Los Angeles, CA, 90095, USA.,Department of Psychology, University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China.,State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | - Yi Hu
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, School of Psychology and Cognitive Science, East China Normal University, Shanghai, 200062, China. .,Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China. .,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
37
|
Mnemonic Introspection in Macaques Is Dependent on Superior Dorsolateral Prefrontal Cortex But Not Orbitofrontal Cortex. J Neurosci 2019; 39:5922-5934. [PMID: 31123101 PMCID: PMC6650985 DOI: 10.1523/jneurosci.0330-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
The human PFC has been associated more with meta-perceptual as opposed to meta-memory decisions from correlational neuroimaging investigations. Recently, metacognitive abilities have also been shown to be causally dependent upon anterior and dorsal PFC in nonhuman primate lesion studies. Two studies, using postdecision wagering paradigms and reversible inactivation, challenged this meta-perceptual versus meta-memory notion and showed that dorsal and anterior prefrontal areas are associated with metamemory for experienced objects and awareness of ignorance, respectively. Causal investigations are important but scarce; nothing is known, for example, about the causal contributions of prefrontal subregions to spatial metamemory. Here, we investigated the effects of dorsal versus ventral PFC lesions on two-alternative forced-choice spatial discrimination tasks in male macaque monkeys. Importantly, we were rigorous in approach and applied three independent but complementary indices used to quantify individual animals' metacognitive ability (“Type II sensitivity”) by two variants of meta-d′/d′ and phi coefficient (φ). Our results were consistent across indices: while neither lesions to superior dorsolateral PFC nor orbitofrontal cortex impaired spatial recognition performance, only monkeys with superior dorsolateral PFC lesions were impaired in meta-accuracy. Together with the observation that the same orbitofrontal cortex lesioned monkeys were impaired in updating rule value in a Wisconsin Card Sorting Test analog, we therefore document a functional double-dissociation between these two PFC regions. Our study presents important causal evidence that other dimensions, namely, domain-specific processing (e.g., spatial vs nonspatial metamemory), also need considerations in understanding the functional specialization in the neural underpinnings of introspection. SIGNIFICANCE STATEMENT This study demonstrates macaque monkeys' metacognitive capability of introspecting its own memory success is causally dependent on intact superior dorsolateral prefrontal cortices but not the orbitofrontal cortices. Combining neurosurgical techniques on monkeys and state-of-the-art measures of metacognition, we affirm a critical role of the PFC in supporting spatial meta-recognition memory and delineate functional specificity within PFC for distinct elements of metacognition.
Collapse
|
38
|
Mione V, Tsujimoto S, Genovesio A. Neural Correlations Underlying Self-Generated Decision in the Frontal Pole Cortex during a Cued Strategy Task. Neuroscience 2019; 404:519-528. [PMID: 30811970 DOI: 10.1016/j.neuroscience.2019.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Abstract
We have previously shown how the Frontal Pole cortex (FPC) neurons play a unique role in both the monitoring and evaluating of self-generated decisions during feedback in a visually cued strategy task. For each trial of this task, a cue instructed one of two strategies: to either stay with the previous goal or shift to the alternative goal. Each cue was followed by a delay period, then each choice was followed by a feedback. FPC neurons show goal-selective activity exclusively during the feedback period. Here, we studied how neural correlation dynamically changes, along with a trial in FPC. We classified the cells as goal-selective and not goal-selective (NS) and analyzed the time-course of the cross-correlations in 76 pairs of neurons from each group. We compared a control epoch with the feedback epoch and we found higher correlations in the latter one between goal-selective neurons than between NS neurons, in which the correlated activity dropped during feedback. This supports the involvement of goal-selective cells in the evaluation of self-generated decisions at the feedback time. We also observed a dynamic change of the correlations in time, indicating that the connections among cell-assemblies were transient, changing between internal states at the feedback time. These results indicate that the changing of the pattern of neural correlations can underlie the flexibility of the prefrontal computations.
Collapse
Affiliation(s)
- Valentina Mione
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy
| | - Satoshi Tsujimoto
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan; The Nielsen Company Singapore Pte Ltd, Singapore
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
39
|
Vaccaro AG, Fleming SM. Thinking about thinking: A coordinate-based meta-analysis of neuroimaging studies of metacognitive judgements. Brain Neurosci Adv 2018; 2:2398212818810591. [PMID: 30542659 PMCID: PMC6238228 DOI: 10.1177/2398212818810591] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 09/28/2018] [Indexed: 11/15/2022] Open
Abstract
Metacognition supports reflection upon and control of other cognitive processes.
Despite metacognition occupying a central role in human psychology, its neural
substrates remain underdetermined, partly due to study-specific differences in
task domain and type of metacognitive judgement under study. It is also unclear
how metacognition relates to other apparently similar abilities that depend on
recursive thought such as theory of mind or mentalising. Now that neuroimaging
studies of metacognition are more prevalent, we have an opportunity to
characterise consistencies in neural substrates identified across different
analysis types and domains. Here we used quantitative activation likelihood
estimation methods to synthesise findings from 47 neuroimaging studies on
metacognition, divided into categories based on the target of metacognitive
evaluation (memory and decision-making), analysis type (judgement-related
activation, confidence-related activation, and predictors of metacognitive
sensitivity), and, for metamemory judgements, temporal focus (prospective and
retrospective). A domain-general network, including medial and lateral
prefrontal cortex, precuneus, and insula was associated with the level of
confidence in self-performance in both decision-making and memory tasks. We
found preferential engagement of right anterior dorsolateral prefrontal cortex
in metadecision experiments and bilateral parahippocampal cortex in metamemory
experiments. Results on metacognitive sensitivity were inconclusive, likely due
to fewer studies reporting this contrast. Finally, by comparing our results to
meta-analyses of mentalising, we obtain evidence for common engagement of the
ventromedial and anterior dorsomedial prefrontal cortex in both metacognition
and mentalising, suggesting that these regions may support second-order
representations for thinking about the thoughts of oneself and others.
Collapse
Affiliation(s)
- Anthony G Vaccaro
- Division of Psychology and Language Sciences, University College London, London, UK.,Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| |
Collapse
|
40
|
Nakai R, Ohnuki M, Kuroki K, Ito H, Hirai H, Kitajima R, Fujimoto T, Nakagawa M, Enard W, Imamura M. Derivation of induced pluripotent stem cells in Japanese macaque (Macaca fuscata). Sci Rep 2018; 8:12187. [PMID: 30111816 PMCID: PMC6093926 DOI: 10.1038/s41598-018-30734-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022] Open
Abstract
Non-human primates are our closest relatives and are of special interest for ecological, evolutionary and biomedical research. The Japanese macaque (Macaca fuscata) has contributed to the progress of primatology and neurosciences over 60 years. Despite this importance, the molecular and cellular basis of the Japanese macaque remains unexplored since useful cellular tools are lacking. Here we generated induced pluripotent stem cells (iPSCs) from skin fibroblasts of the Japanese macaque with Sendai virus or plasmid vectors. The Japanese macaque iPSCs (jm-iPSCs) were established under feeder-free culture conditions, but feeder cells turned out to be essential for their maintenance. The jm-iPSCs formed human iPSC-like flat colonies which were positive for pluripotent antigens including alkaline phosphatase, SSEA4, and TRA-1-81. They also expressed endogenous OCT3/4, SOX2, L-MYC, and KLF4 and other pluripotent marker genes. The potential to differentiate into all three germ layers and neural stem cells was confirmed by embryoid body and neurosphere formation, respectively. The jm-iPSCs will provide a robust in vitro tool for investigating the underlying mechanisms of development and physiology studies with the Japanese macaque.
Collapse
Affiliation(s)
- Risako Nakai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Mari Ohnuki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.,Anthropology and Human Genomics, Department Biology II, Ludwig Maximilians University Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Kota Kuroki
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Haruka Ito
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Hirohisa Hirai
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Ryunosuke Kitajima
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Toko Fujimoto
- Department of Life Science, Gakushuin University, Tokyo, 171-8588, Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, Ludwig Maximilians University Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Masanori Imamura
- Molecular Biology Section, Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|