1
|
Zhao C, Cao Y, Ibrahim N, Wang Y, Martemyanov KA. Efficient in vivo labeling of endogenous proteins with SMART delineates retina cellular and synaptic organization. Nat Commun 2025; 16:3768. [PMID: 40263339 PMCID: PMC12015494 DOI: 10.1038/s41467-025-58945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
A key application of CRISPR/Cas9-based genomic editing is modification of genes to introduce engineered sequences. However, the editing flexibility is severely constrained by the requirement for targeting sites in proximity to the desired modification site, which makes many modifications intractable. Here, we develop a strategy that overcomes this key limitation to allow CRISPR-based editing at any position with high efficiency. It relies on reconstructing the targeted gene using Silently Mutate And Repair Template (SMART) where we mutate the gap sequence in the repair template to prevent its base pairing with the target DNA while maintaining the same amino acid coding. Using vertebrate retina as a neuronal model system we document the application of SMART editing for labeling endogenous proteins in vivo with high efficiency. We show that SMART editing allows us to access numerous cell types in the retina and address fundamental cell biological questions pertaining to its organization. We propose that this approach will facilitate functional genomic studies in a wide range of systems and increase the precision of corrective gene therapies.
Collapse
Affiliation(s)
- Chuanping Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, USA
| | - Yan Cao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Noor Ibrahim
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Yuchen Wang
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, USA.
| |
Collapse
|
2
|
Soto F, Lin CI, Jo A, Chou SY, Harding EG, Ruzycki PA, Seabold GK, Petralia RS, Kerschensteiner D. Molecular mechanism establishing the OFF pathway in vision. Nat Commun 2025; 16:3708. [PMID: 40251167 PMCID: PMC12008213 DOI: 10.1038/s41467-025-59046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Parallel ON and OFF (positive- and negative-contrast) pathways fundamental to vision arise at the complex synapse of cone photoreceptors. Cone pedicles form spatially segregated functionally opposite connections with ON and OFF bipolar cells. Here, we discover that mammalian cones express LRFN2, a cell-adhesion molecule, which localizes to the pedicle base. LRFN2 stabilizes basal contacts between cone pedicles and OFF bipolar cell dendrites to guide pathway-specific partner choices, encompassing multiple cell types. In addition, LRFN2 trans-synaptically organizes glutamate receptor clusters, determining the contrast preferences of the OFF pathway. ON and OFF pathways converge in the inner retina to regulate bipolar cell outputs. We analyze LRFN2's contributions to ON-OFF interactions, pathway asymmetries, and neural and behavioral responses to approaching predators. Our results reveal that LRFN2 controls the formation of the OFF pathway in vision, supports parallel processing in a single synapse, and shapes contrast coding and the detection of visual threats.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chin-I Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Graduate Program in Neuroscience, Division of Biological & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Jo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ssu-Yu Chou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gail K Seabold
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Bright Center for Human Vision, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Perez RM, Campbell J, Goswami-Sewell D, Venkatraman R, Gomez CC, Bagnetto C, Lee A, Mattos MF, Hoon M, Zuniga-Sanchez E. Ankyrins are essential for synaptic integrity of photoreceptors in the mouse outer retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637690. [PMID: 39990488 PMCID: PMC11844522 DOI: 10.1101/2025.02.11.637690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The mammalian visual system consists of two distinct pathways: rod- and cone-driven vision. The rod pathway is responsible for dim light vision whereas the cone pathway mediates daylight vision and color perception. The distinct processing of visual information begins at the first synapse of rod and cone photoreceptors. The unique composition and organization of the rod and cone synapse is what allows information to be parsed into the different visual pathways. Although this is a critical process for vision, little is known about the key molecules responsible for establishing and maintaining the distinct synaptic architecture of the rod and cone synapse. In the present study, we uncovered a new role for Ankyrins in maintaining the synaptic integrity of the rod and cone synapse. Loss of Ankyrin-B and Ankyrin-G results in connectivity defects between photoreceptors and their synaptic partners. Ultrastructure analysis of the rod and cone synapse revealed impaired synaptic innervation, abnormal terminal morphology, and disruption of synaptic connections. Consistent with these findings, functional studies revealed impaired in vivo retinal responses in animals with loss of Ankyrin-B and Ankyrin-G. Taken together, our data supports a new role for Ankyrins in maintaining synaptic integrity and organization of photoreceptor synapses in the mouse outer retina. SIGNFICANCE STATEMENT The first synapse in the outer retina begins to process visual information into two distinct pathways. This is largely attributed to the different composition and organization of the rod and cone synapse. Although the structural integrity of the rod and cone synapse is critical for normal vision, little is known about the key molecules responsible for maintaining the unique structure of the different photoreceptor synapses. In this study, we demonstrate a new function for the cytoskeletal scaffolding proteins, Ankryin-B and Ankyrin-G in the mouse outer retina. We found Ankyrin-B and Ankyrin-G are both required for proper retinal connectivity, where loss of these molecules leads to synaptic defects and impaired retinal responses.
Collapse
|
4
|
Patierno BM, Emerson MM. Enhanced Transcriptional Activation in Developing Mouse Photoreceptors. Invest Ophthalmol Vis Sci 2025; 66:54. [PMID: 39854013 PMCID: PMC11760266 DOI: 10.1167/iovs.66.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Purpose Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors. Methods Here we investigate whether the use of a photoreceptor cis-regulatory element from the Crx gene in combination with broadly active promoter elements can increase the targeting of developing photoreceptors in the mouse. This study characterizes the in vivo activity of this element for the first time, as well as explores its use as a tool for gain-of-function and loss-of-function experiments. Results We report that a cis-regulatory element from the Crx gene, in combination with broadly active promoter elements, increases the targeting of developing rod photoreceptors in the mouse. Additionally, the same element can be used to target developing cones at embryonic time points by ex vivo electroporation. Utility of this combined element includes greater reporter expression, as well as enhanced overexpression and loss-of-function phenotypes in photoreceptors. Conclusions This study highlights the importance of identifying and testing relevant cis-regulatory elements when planning cell subtype-specific experiments. The use of specific hybrid elements will provide a more efficacious gene delivery system to study mammalian photoreceptor formation, which will benefit research with potential therapeutic relevance for blinding diseases.
Collapse
Affiliation(s)
- Brendon M. Patierno
- Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States
| | - Mark M. Emerson
- Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States
- Department of Biology, The City College of New York, City University of New York, New York, New York, United States
| |
Collapse
|
5
|
Zheng Y, Mayourian J, King JS, Li Y, Bezzerides VJ, Pu WT, VanDusen NJ. Cardiac Applications of CRISPR/AAV-Mediated Precise Genome Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626493. [PMID: 39677651 PMCID: PMC11642850 DOI: 10.1101/2024.12.03.626493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The ability to efficiently make precise genome edits in somatic tissues will have profound implications for gene therapy and basic science. CRISPR/Cas9 mediated homology-directed repair (HDR) is one approach that is commonly used to achieve precise and efficient editing in cultured cells. Previously, we developed a platform capable of delivering CRISPR/Cas9 gRNAs and donor templates via adeno-associated virus to induce HDR (CASAAV-HDR). We demonstrated that CASAAV-HDR is capable of creating precise genome edits in vivo within mouse cardiomyocytes at the neonatal and adult stages. Here, we report several applications of CASAAV-HDR in cardiomyocytes. First, we show the utility of CASAAV-HDR for disease modeling applications by using CASAAV-HDR to create and precisely tag two pathological variants of the titin gene observed in cardiomyopathy patients. We used this approach to monitor the cellular localization of the variants, resulting in mechanistic insights into their pathological functions. Next, we utilized CASAAV-HDR to create another mutation associated with human cardiomyopathy, arginine 14 deletion (R14Del) within the N-terminus of Phospholamban (PLN). We assessed the localization of PLN-R14Del and quantified cardiomyocyte phenotypes associated with cardiomyopathy, including cell morphology, activation of PLN via phosphorylation, and calcium handling. After demonstrating CASAAV-HDR utility for disease modeling we next tested its utility for functional genomics, by targeted genomic insertion of a library of enhancers for a massively parallel reporter assay (MPRA). We show that MPRAs with genomically integrated enhancers are feasible, and can yield superior assay sensitivity compared to tests of the same enhancers in an AAV/episomal context. Collectively, our study showcases multiple applications for in vivo precise editing of cardiomyocyte genomes via CASAAV-HDR.
Collapse
Affiliation(s)
- Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Justin S. King
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | | | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Tejeda-Muñoz N, Binder G, Mei KC. Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis. Cells Dev 2024; 180:203974. [PMID: 39528157 PMCID: PMC12009640 DOI: 10.1016/j.cdev.2024.203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Aberrations in the Wnt signaling pathway, particularly mutations in genes like APC and β-catenin, are pivotal in initiating and driving the progression of colorectal cancer (CRC), establishing this pathway as a crucial target for therapeutic intervention. Membrane trafficking plays a key role in regulating Wnt signaling by controlling the activation, modulation, and secretion of essential signaling molecules that contribute to CRC progression. This review explores the connection between membrane trafficking and Wnt signaling, with a specific focus on macropinocytosis-an endocytic process involved in nutrient uptake that also plays a role in Wnt signal regulation. The relationship between Wnt signaling and macropinocytosis, critical in both embryonic development and cancer onset, reveals a new dimension for therapeutic intervention. Targeting Wnt signaling through the modulation of macropinocytosis and broader membrane trafficking pathways presents a promising therapeutic strategy, with several candidates already in early clinical trials. These emerging approaches underscore the potential of targeting Wnt and its associated membrane trafficking processes for CRC treatment, aligning with the development of innovative therapies.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
7
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Nayak G, Grover K, Ahmed A, Nguyen MT, Hu YC, Gamlin P, Lang RA. Developmental control of rod number via a light-dependent retrograde pathway from intrinsically photosensitive retinal ganglion cells. Dev Cell 2024; 59:2897-2911.e6. [PMID: 39142280 PMCID: PMC11537824 DOI: 10.1016/j.devcel.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Photoreception is essential for the development of the visual system, shaping vision's first synapse to cortical development. Here, we find that the lighting environment controls developmental rod apoptosis via Opn4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using genetics, sensory environment manipulations, and computational approaches, we establish a pathway where light-dependent glutamate released from ipRGCs is detected via a transiently expressed glutamate receptor (Grik3) on rod precursors within the inner retina. Communication between these cells is mediated by hybrid neurites on ipRGCs that sense light before eye opening. These structures span the ipRGC-rod precursor distance over development and contain the machinery for photoreception (Opn4) and neurotransmitter release (Vglut2 & Syp). Assessment of the human gestational retina identifies conserved hallmarks of an ipRGC-to-rod axis, including displaced rod precursors, transient GRIK3 expression, and ipRGCs with deep-projecting neurites. This analysis defines an adaptive retrograde pathway linking the sensory environment to rod precursors via ipRGCs prior to eye opening.
Collapse
Affiliation(s)
- Shane P D'Souza
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Brian A Upton
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kiara C Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ian Glass
- Birth Defects Research Laboratory, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Gowri Nayak
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kassidy Grover
- Division of Hematology and Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Abdulla Ahmed
- Medical Doctor (M.D.) Training Program, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Minh-Thanh Nguyen
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yueh-Chiang Hu
- Transgenic Animal and Genome Editing Core, Department of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Richard A Lang
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Science of Light Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Abrahamson Pediatric Eye Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
9
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. Synaptotagmin-9 in mouse retina. Vis Neurosci 2024; 41:E003. [PMID: 39291699 PMCID: PMC11417998 DOI: 10.1017/s0952523824000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 09/19/2024]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Medical Education, Creighton University, Omaha, NE, USA
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
10
|
Kim SY, Park CH, Moon BH, Seabold GK. Murine Retina Outer Plexiform Layer Development and Transcriptome Analysis of Pre-Synapses in Photoreceptors. Life (Basel) 2024; 14:1103. [PMID: 39337887 PMCID: PMC11433150 DOI: 10.3390/life14091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Photoreceptors in the mammalian retina convert light signals into electrical and molecular signals through phototransduction and transfer the visual inputs to second-order neurons via specialized ribbon synapses. Two kinds of photoreceptors, rods and cones, possess distinct morphology and function. Currently, we have limited knowledge about rod versus (vs.) cone synapse development and the associated genes. The transcription factor neural retina leucine zipper (NRL) determines the rod vs. cone photoreceptor cell fate and is critical for rod differentiation. Nrl knockout mice fail to form rods, generating all cone or S-cone-like (SCL) photoreceptors in the retina, whereas ectopic expression of Nrl using a cone-rod homeobox (Crx) promoter (CrxpNrl) forms all rods. Here, we examined rod and cone pre-synapse development, including axonal elongation, terminal shaping, and synaptic lamination in the outer plexiform layer (OPL) in the presence or absence of Nrl. We show that NRL loss and knockdown result in delayed OPL maturation and plasticity with aberrant dendrites of bipolar neurons. The integrated analyses of the transcriptome in developing rods and SCLs with NRL CUT&RUN and synaptic gene ontology analyses identified G protein subunit beta (Gnb) 1 and p21 (RAC1) activated kinase 5 (Pak5 or Pak7) transcripts were upregulated in developing rods and down-regulated in developing SCLs. Notably, Gnb1 and Gnb5 are rod dominant, and Gnb3 is enriched in cones. NRL binds to the genes of Gnb1, Gnb3, and Gnb5. NRL also regulates pre-synapse ribbon genes, and their expression is altered in rods and SCLs. Our study of histological and gene analyses provides new insights into the morphogenesis of photoreceptor pre-synapse development and regulation of associated genes in the developing retina.
Collapse
Affiliation(s)
- Soo-Young Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Haewon Park
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bo-Hyun Moon
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gail K Seabold
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Thoreson WB, Zenisek D. Presynaptic Proteins and Their Roles in Visual Processing by the Retina. Annu Rev Vis Sci 2024; 10:347-375. [PMID: 38621251 PMCID: PMC11536687 DOI: 10.1146/annurev-vision-101322-111204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The sense of vision begins in the retina, where light is detected and processed through a complex series of synaptic connections into meaningful information relayed to the brain via retinal ganglion cells. Light responses begin as tonic and graded signals in photoreceptors, later emerging from the retina as a series of spikes from ganglion cells. Processing by the retina extracts critical features of the visual world, including spatial frequency, temporal frequency, motion direction, color, contrast, and luminance. To achieve this, the retina has evolved specialized and unique synapse types. These include the ribbon synapses of photoreceptors and bipolar cells, the dendritic synapses of amacrine and horizontal cells, and unconventional synaptic feedback from horizontal cells to photoreceptors. We review these unique synapses in the retina with a focus on the presynaptic molecules and physiological properties that shape their capabilities.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| | - David Zenisek
- Departments of Cellular and Molecular Physiology, Ophthalmology and Visual Sciences, and Neuroscience, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
12
|
Tejeda-Muñoz N, Mei KC. Wnt signaling in cell adhesion, development, and colon cancer. IUBMB Life 2024; 76:383-396. [PMID: 38230869 DOI: 10.1002/iub.2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Wnt signaling is essential for embryonic development, influencing processes such as axis formation, cell proliferation and differentiation, cell fate decisions, and axon guidance. It also plays a role in maintaining tissue homeostasis in adult organisms. The loss of normal cell polarity and adhesion caused by Wnt signaling activation is a fundamental step for tumor progression and metastasis. Activating the canonical Wnt pathway is a driving force in many human cancers, especially colorectal, hepatocellular, and mammary carcinomas. Wnt causes the stabilization and nuclear transport of newly synthesized transcriptional regulator β-catenin. The generally accepted view is that the canonical effects of Wnt growth factors are caused by the transcription of β-catenin target genes. Here, we review recent findings that indicate Wnt is a regulator of many other cellular physiological activities, such as macropinocytosis, endosome trafficking, protein stability, focal adhesions, and lysosomal activity. Some of these regulatory responses occur within minutes and do not require new protein synthesis, indicating that there is much more to Wnt beyond the well-established transcriptional role of β-catenin. The main conclusion that emerges from these studies is that in basal cell conditions, the activity of the key protein kinase GSK3, which is inhibited by Wnt pathway activation, normally represses the actin machinery that orchestrates macropinocytosis with implications in cancer. These contributions expand our understanding of the multifaceted roles of Wnt signaling in cellular processes, development, and cancer, providing insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kuo-Ching Mei
- School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, USA
| |
Collapse
|
13
|
Campos RC, Matsunaga K, Reid MW, Fernandez GE, Stepanian K, Bharathan SP, Li M, Thornton ME, Grubbs BH, Nagiel A. Non-canonical Wnt pathway expression in the developing mouse and human retina. Exp Eye Res 2024; 244:109947. [PMID: 38815793 PMCID: PMC11179970 DOI: 10.1016/j.exer.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The non-canonical Wnt pathway is an evolutionarily conserved pathway essential for tissue patterning and development across species and tissues. In mammals, this pathway plays a role in neuronal migration, dendritogenesis, axon growth, and synapse formation. However, its role in development and synaptogenesis of the human retina remains less established. In order to address this knowledge gap, we analyzed publicly available single-cell RNA sequencing (scRNAseq) datasets for mouse retina, human retina, and human retinal organoids over multiple developmental time points during outer retinal maturation. We identified ligands, receptors, and mediator genes with a putative role in retinal development, including those with novel or species-specific expression, and validated this expression using fluorescence in situ hybridization (FISH). By quantifying outer nuclear layer (ONL) versus inner nuclear layer (INL) expression, we provide evidence for the differential expression of certain non-canonical Wnt signaling components in the developing mouse and human retina during outer plexiform layer (OPL) development. Importantly, we identified distinct expression patterns of mouse and human FZD3 and WNT10A, as well as previously undescribed expression, such as for mouse Wnt2b in Chat+ starburst amacrine cells. Human retinal organoids largely recapitulated the human non-canonical Wnt pathway expression. Together, this work provides the basis for further study of non-canonical Wnt signaling in mouse and human retinal development and synaptogenesis.
Collapse
Affiliation(s)
- Rosanna C Campos
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Development, Stem Cells and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kate Matsunaga
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mark W Reid
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - G Esteban Fernandez
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Sumitha P Bharathan
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meng Li
- USC Libraries Bioinformatics Services, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA; Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Qiao M. Deciphering the genetic code of neuronal type connectivity through bilinear modeling. eLife 2024; 12:RP91532. [PMID: 38857169 PMCID: PMC11164534 DOI: 10.7554/elife.91532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Understanding how different neuronal types connect and communicate is critical to interpreting brain function and behavior. However, it has remained a formidable challenge to decipher the genetic underpinnings that dictate the specific connections formed between neuronal types. To address this, we propose a novel bilinear modeling approach that leverages the architecture similar to that of recommendation systems. Our model transforms the gene expressions of presynaptic and postsynaptic neuronal types, obtained from single-cell transcriptomics, into a covariance matrix. The objective is to construct this covariance matrix that closely mirrors a connectivity matrix, derived from connectomic data, reflecting the known anatomical connections between these neuronal types. When tested on a dataset of Caenorhabditis elegans, our model achieved a performance comparable to, if slightly better than, the previously proposed spatial connectome model (SCM) in reconstructing electrical synaptic connectivity based on gene expressions. Through a comparative analysis, our model not only captured all genetic interactions identified by the SCM but also inferred additional ones. Applied to a mouse retinal neuronal dataset, the bilinear model successfully recapitulated recognized connectivity motifs between bipolar cells and retinal ganglion cells, and provided interpretable insights into genetic interactions shaping the connectivity. Specifically, it identified unique genetic signatures associated with different connectivity motifs, including genes important to cell-cell adhesion and synapse formation, highlighting their role in orchestrating specific synaptic connections between these neurons. Our work establishes an innovative computational strategy for decoding the genetic programming of neuronal type connectivity. It not only sets a new benchmark for single-cell transcriptomic analysis of synaptic connections but also paves the way for mechanistic studies of neural circuit assembly and genetic manipulation of circuit wiring.
Collapse
Affiliation(s)
- Mu Qiao
- LinkedInMountain ViewUnited States
| |
Collapse
|
15
|
Patierno BM, Emerson MM. Enhanced Plasmid-Based Transcriptional Activation in Developing Mouse Photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597220. [PMID: 38895286 PMCID: PMC11185626 DOI: 10.1101/2024.06.06.597220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rod photoreceptor formation in the postnatal mouse is a widely used model system for studying mammalian photoreceptor development. This experimental paradigm provides opportunities for both gain and loss-of-function studies which can be accomplished through in vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors. Here we report that the use of a photoreceptor cis-regulatory element from the Crx gene in combination with broadly active promoter elements can increase the targeting of developing rod photoreceptors in the mouse. This can lead to greater reporter expression, as well as enhanced misexpression and loss-of-function phenotypes in these cells. This study also highlights the importance of identifying and testing relevant cis-regulatory elements when planning cell subtype specific experiments. The use of the specific hybrid elements in this study will provide a more efficacious gene delivery system to study mammalian photoreceptor formation.
Collapse
Affiliation(s)
- Brendon M. Patierno
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, 10031
| | - Mark M. Emerson
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, 10031
- Department of Biology, The City College of New York, City University of New York, New York, NY, 10031
| |
Collapse
|
16
|
Tejeda-Muñoz N, Azbazdar Y, Sosa EA, Monka J, Wei PS, Binder G, Mei KC, Kurmangaliyev YZ, De Robertis EM. Na,K-ATPase activity promotes macropinocytosis in colon cancer via Wnt signaling. Biol Open 2024; 13:bio060269. [PMID: 38713004 PMCID: PMC11139033 DOI: 10.1242/bio.060269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Recent research has shown that membrane trafficking plays an important role in canonical Wnt signaling through sequestration of the β-catenin destruction complex inside multivesicular bodies (MVBs) and lysosomes. In this study, we introduce Ouabain, an inhibitor of the Na,K-ATPase pump that establishes electric potentials across membranes, as a potent inhibitor of Wnt signaling. We find that Na,K-ATPase levels are elevated in advanced colon carcinoma, that this enzyme is elevated in cancer cells with constitutively activated Wnt pathway and is activated by GSK3 inhibitors that increase macropinocytosis. Ouabain blocks macropinocytosis, which is an essential step in Wnt signaling, probably explaining the strong effects of Ouabain on this pathway. In Xenopus embryos, brief Ouabain treatment at the 32-cell stage, critical for the earliest Wnt signal in development-inhibited brains, could be reversed by treatment with Lithium chloride, a Wnt mimic. Inhibiting membrane trafficking may provide a way of targeting Wnt-driven cancers.
Collapse
Affiliation(s)
- Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yagmur Azbazdar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Eric A. Sosa
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Monka
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | - Grace Binder
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, Johnson City, NY 13790, USA
| | | | - Edward M. De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles 90095-1662, USA
| |
Collapse
|
17
|
Touahri Y, Hanna J, Tachibana N, Okawa S, Liu H, David LA, Olender T, Vasan L, Pak A, Mehta DN, Chinchalongporn V, Balakrishnan A, Cantrup R, Dixit R, Mattar P, Saleh F, Ilnytskyy Y, Murshed M, Mains PE, Kovalchuk I, Lefebvre JL, Leong HS, Cayouette M, Wang C, Del Sol A, Brand M, Reese BE, Schuurmans C. Pten regulates endocytic trafficking of cell adhesion and Wnt signaling molecules to pattern the retina. Cell Rep 2024; 43:114005. [PMID: 38551961 PMCID: PMC11290456 DOI: 10.1016/j.celrep.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.
Collapse
Affiliation(s)
- Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Joseph Hanna
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Satoshi Okawa
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hedy Liu
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Lakshmy Vasan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alissa Pak
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Dhruv Nimesh Mehta
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Vorapin Chinchalongporn
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Fermisk Saleh
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3G 1A6, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Julie L Lefebvre
- Department of Molecular Genetics, University of Toronto, Toronto ON M5S 1A8, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Immunology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Antonio Del Sol
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg; CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Benjamin E Reese
- Department of Psychological and Brain Sciences, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5060, USA
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
18
|
Wang X, Duan M, Li J, Ma A, Xin G, Xu D, Li Z, Liu B, Ma Q. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer. Nat Commun 2024; 15:338. [PMID: 38184630 PMCID: PMC10771517 DOI: 10.1038/s41467-023-44570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduce MarsGT: Multi-omics Analysis for Rare population inference using a Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperforms existing tools in identifying rare cells across 550 simulated and four real human datasets. In mouse retina data, it reveals unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detects an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identifies a rare MAIT-like population impacted by a high IFN-I response and reveals the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Maoteng Duan
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China.
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
19
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
20
|
Gurdita A, Pham Truong VQB, Dolati P, Juric M, Tachibana N, Liu ZC, Ortín-Martínez A, Ibrahimi M, Pokrajac NT, Comanita L, Pacal M, Huang M, Sugita S, Bremner R, Wallace VA. Progenitor division and cell autonomous neurosecretion are required for rod photoreceptor sublaminar positioning. Proc Natl Acad Sci U S A 2023; 120:e2308204120. [PMID: 37812728 PMCID: PMC10589646 DOI: 10.1073/pnas.2308204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Migration is essential for the laminar stratification and connectivity of neurons in the central nervous system. In the retina, photoreceptors (PRs) migrate to positions according to birthdate, with early-born cells localizing to the basal-most side of the outer nuclear layer. It was proposed that apical progenitor mitoses physically drive these basal translocations non-cell autonomously, but direct evidence is lacking, and whether other mechanisms participate is unknown. Here, combining loss- or gain-of-function assays to manipulate cell cycle regulators (Sonic hedgehog, Cdkn1a/p21) with an in vivo lentiviral labelling strategy, we demonstrate that progenitor division is one of two forces driving basal translocation of rod soma. Indeed, replacing Shh activity rescues abnormal rod translocation in retinal explants. Unexpectedly, we show that rod differentiation also promotes rod soma translocation. While outer segment function or formation is dispensable, Crx and SNARE-dependent synaptic function are essential. Thus, both non-cell and cell autonomous mechanisms underpin PR soma sublaminar positioning in the mammalian retina.
Collapse
Affiliation(s)
- Akshay Gurdita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Victor Q. B. Pham Truong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Parnian Dolati
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Matey Juric
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Zhongda C. Liu
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Mostafa Ibrahimi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Nenad T. Pokrajac
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
| | - Marek Pacal
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ONM5G 1X5, Canada
| | - Mengjia Huang
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Shuzo Sugita
- Division of Experimental and Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ONM5G 1X5, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ONM5T 3A9, Canada
| | - Valerie A. Wallace
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ONM5T 2S8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ONM5T 3A9, Canada
| |
Collapse
|
21
|
Thürkauf M, Lin S, Oliveri F, Grimm D, Platt RJ, Rüegg MA. Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9. Nat Commun 2023; 14:6116. [PMID: 37777530 PMCID: PMC10542775 DOI: 10.1038/s41467-023-41769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Molecular screens comparing different disease states to identify candidate genes rely on the availability of fast, reliable and multiplexable systems to interrogate genes of interest. CRISPR/Cas9-based reverse genetics is a promising method to eventually achieve this. However, such methods are sorely lacking for multi-nucleated muscle fibers, since highly efficient nuclei editing is a requisite to robustly inactive candidate genes. Here, we couple Cre-mediated skeletal muscle fiber-specific Cas9 expression with myotropic adeno-associated virus-mediated sgRNA delivery to establish a system for highly effective somatic gene deletions in mice. Using well-characterized genes, we show that local or systemic inactivation of these genes copy the phenotype of traditional gene-knockout mouse models. Thus, this proof-of-principle study establishes a method to unravel the function of individual genes or entire signaling pathways in adult skeletal muscle fibers without the cumbersome requirement of generating knockout mice.
Collapse
Affiliation(s)
| | - Shuo Lin
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, Heidelberg University, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Randall J Platt
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | |
Collapse
|
22
|
D'Souza SP, Upton BA, Eldred KC, Glass I, Grover K, Ahmed A, Ngyuen MT, Gamlin P, Lang RA. Developmental adaptation of rod photoreceptor number via photoreception in melanopsin (OPN4) retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554675. [PMID: 37662196 PMCID: PMC10473760 DOI: 10.1101/2023.08.24.554675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Photoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using a combination of genetics, sensory environment manipulations, and computational approaches, we establish a molecular pathway in which light-dependent glutamate release from ipRGCs is detected via a transiently expressed kainate receptor (GRIK3) in immature rods localized to the inner retina. Communication between ipRGCs and nascent inner retinal rods appears to be mediated by unusual hybrid neurites projecting from ipRGCs that sense light before eye-opening. These structures, previously referred to as outer retinal dendrites (ORDs), span the ipRGC-immature rod distance over the first postnatal week and contain the machinery for sensory detection (melanopsin, OPN4) and axonal/anterograde neurotransmitter release (Synaptophysin, and VGLUT2). Histological and computational assessment of human mid-gestation development reveal conservation of several hallmarks of an ipRGC-to-immature rod pathway, including displaced immature rods, transient GRIK3 expression in the rod lineage, and the presence of ipRGCs with putative neurites projecting deep into the developing retina. Thus, this analysis defines a retinal retrograde signaling pathway that links the sensory environment to immature rods via ipRGC photoreceptors, allowing the visual system to adapt to distinct lighting environments priory to eye-opening.
Collapse
|
23
|
Wang X, Duan M, Li J, Ma A, Xu D, Li Z, Liu B, Ma Q. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553454. [PMID: 37645917 PMCID: PMC10462017 DOI: 10.1101/2023.08.15.553454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Rare cell populations are key in neoplastic progression and therapeutic response, offering potential intervention targets. However, their computational identification and analysis often lag behind major cell types. To fill this gap, we introduced MarsGT: Multi-omics Analysis for Rare population inference using Single-cell Graph Transformer. It identifies rare cell populations using a probability-based heterogeneous graph transformer on single-cell multi-omics data. MarsGT outperformed existing tools in identifying rare cells across 400 simulated and four real human datasets. In mouse retina data, it revealed unique subpopulations of rare bipolar cells and a Müller glia cell subpopulation. In human lymph node data, MarsGT detected an intermediate B cell population potentially acting as lymphoma precursors. In human melanoma data, it identified a rare MAIT-like population impacted by a high IFN-I response and revealed the mechanism of immunotherapy. Hence, MarsGT offers biological insights and suggests potential strategies for early detection and therapeutic intervention of disease.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Maoteng Duan
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Perez R, Park Y, Hirano A, Brecha N, Frankfort B, Zuniga-Sanchez E. Modeling subcellular specificity in the developing retina. RESEARCH SQUARE 2023:rs.3.rs-3214285. [PMID: 37609217 PMCID: PMC10441513 DOI: 10.21203/rs.3.rs-3214285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The precise wiring of the nervous system relies on neurons extending their processes at the right time and place to find their appropriate synaptic partner. The mechanisms that determine when and where neurons extend their neurites during synaptogenesis remains a central question in the field. In the present study, we developed a cell culture system coupled with live imaging to investigate the wiring mechanisms in the developing nervous system. We focused on horizontal cells which are interneurons in the mammalian outer retina known to synapse selectively to distinct photoreceptors. Our data shows cultured horizontal cells extend neurites in a similar manner as in vivo with horizontal cells isolated from young mice extending more complex processes compared to those from adult retinas. In addition, horizontal cells cultured alone do not extend neurites and require other retinal cells for neurite extension suggesting that there must be extrinsic cues that promote neurite outgrowth. Moreover, these extrinsic cues do not appear to be solely secreted factors as supernatant from wild-type retinas is not sufficient to promote neurite outgrowth. In summary, we established a new system that can be used to decipher the mechanisms involved in neuronal wiring of the developing central nervous system.
Collapse
|
25
|
Goswami-Sewell D, Bagnetto C, Gomez CC, Anderson JT, Maheshwari A, Zuniga-Sanchez E. βII-Spectrin Is Required for Synaptic Positioning during Retinal Development. J Neurosci 2023; 43:5277-5289. [PMID: 37369589 PMCID: PMC10359034 DOI: 10.1523/jneurosci.0063-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein βII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of βII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of βII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, βII-spectrin in the developing retina. βII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of βII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.
Collapse
Affiliation(s)
| | - Caitlin Bagnetto
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Cesiah C Gomez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph T Anderson
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Akash Maheshwari
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
26
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Hagiwara A, Mizutani A, Kawamura S, Abe M, Hida Y, Sakimura K, Ohtsuka T. Critical Role of the Presynaptic Protein CAST in Maintaining the Photoreceptor Ribbon Synapse Triad. Int J Mol Sci 2023; 24:ijms24087251. [PMID: 37108413 PMCID: PMC10138387 DOI: 10.3390/ijms24087251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The cytomatrix at the active zone-associated structural protein (CAST) and its homologue, named ELKS, being rich in glutamate (E), leucine (L), lysine (K), and serine (S), belong to a family of proteins that organize presynaptic active zones at nerve terminals. These proteins interact with other active zone proteins, including RIMs, Munc13s, Bassoon, and the β subunit of Ca2+ channels, and have various roles in neurotransmitter release. A previous study showed that depletion of CAST/ELKS in the retina causes morphological changes and functional impairment of this structure. In this study, we investigated the roles of CAST and ELKS in ectopic synapse localization. We found that the involvement of these proteins in ribbon synapse distribution is complex. Unexpectedly, CAST and ELKS, in photoreceptors or in horizontal cells, did not play a major role in ribbon synapse ectopic localization. However, depletion of CAST and ELKS in the mature retina resulted in degeneration of the photoreceptors. These findings suggest that CAST and ELKS play critical roles in maintaining neural signal transduction in the retina, but the regulation of photoreceptor triad synapse distribution is not solely dependent on their actions within photoreceptors and horizontal cells.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Ayako Mizutani
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Saki Kawamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yamato Hida
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
28
|
Zhang S, Liu C, Wang Q, Zhou H, Wu H, Zhuang J, Cao Y, Shi H, Zhang J, Wang J. CRYAA and GJA8 promote visual development after whisker tactile deprivation. Heliyon 2023; 9:e13897. [PMID: 36915480 PMCID: PMC10006481 DOI: 10.1016/j.heliyon.2023.e13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Deprivation of one sense can be followed by enhanced development of other senses via cross-modal plasticity mechanisms. To study the effect of whisker tactile deprivation on vision during the early stages of development, we clipped the bilateral whiskers of young mice and found that their vision was impaired but later recovered to normal levels. Our results demonstrate that inhibition of the PI3K/AKT/ERK signaling pathway caused short-term visual impairment during early development, while high expression levels of Crystallin Alpha A (CRYAA) and Gap Junction Protein Alpha 8 (GJA8) in the retina led to the recovery of developmental visual acuity. Interestingly, analysis of single-cell sequencing results from human embryonic retinas at 9-19 gestational weeks (GW) revealed that CRYAA and GJA8 display stage-specific peak expression during human embryonic retinal development, suggesting potential functions in visual development. Our data show that high expression levels of CRYAA and GJA8 in the retina after whisker deprivation rescue impaired visual development, which may provide a foundation for further research on the mechanisms of cross-modal plasticity and in particular, offer new insights into the mechanisms underlying tactile-visual cross-modal development.
Collapse
Affiliation(s)
- Shibo Zhang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Qian Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hao Wu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Yiyang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Hongwei Shi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author.
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai, China
- Corresponding author.
| |
Collapse
|
29
|
Jiang D, Burger CA, Akhanov V, Liang JH, Mackin RD, Albrecht NE, Andrade P, Schafer DP, Samuel MA. Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina. Immunity 2022; 55:2318-2335.e7. [PMID: 36379210 PMCID: PMC9772037 DOI: 10.1016/j.immuni.2022.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
Microglia utilize their phagocytic activity to prune redundant synapses and refine neural circuits during precise developmental periods. However, the neuronal signals that control this phagocytic clockwork remain largely undefined. Here, we show that neuronal signal-regulatory protein alpha (SIRPα) is a permissive cue for microglial phagocytosis in the developing murine retina. Removal of neuronal, but not microglial, SIRPα reduced microglial phagocytosis, increased synpase numbers, and impaired circuit function. Conversely, prolonging neuronal SIRPα expression extended developmental microglial phagocytosis. These outcomes depended on the interaction of presynaptic SIRPα with postsynaptic CD47. Global CD47 deficiency modestly increased microglial phagocytosis, while CD47 overexpression reduced it. This effect was rescued by coexpression of neuronal SIRPα or codeletion of neuronal SIRPα and CD47. These data indicate that neuronal SIRPα regulates microglial phagocytosis by limiting microglial SIRPα access to neuronal CD47. This discovery may aid our understanding of synapse loss in neurological diseases.
Collapse
Affiliation(s)
- Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justine H Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Mackin
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pilar Andrade
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Subramanian R, Sahoo D. Boolean implication analysis of single-cell data predicts retinal cell type markers. BMC Bioinformatics 2022; 23:378. [PMID: 36114457 PMCID: PMC9482279 DOI: 10.1186/s12859-022-04915-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background The retina is a complex tissue containing multiple cell types that are essential for vision. Understanding the gene expression patterns of various retinal cell types has potential applications in regenerative medicine. Retinal organoids (optic vesicles) derived from pluripotent stem cells have begun to yield insights into the transcriptomics of developing retinal cell types in humans through single cell RNA-sequencing studies. Previous methods of gene reporting have relied upon techniques in vivo using microarray data, or correlational and dimension reduction methods for analyzing single cell RNA-sequencing data computationally. We aimed to develop a state-of-the-art Boolean method that filtered out noise, could be applied to a wide variety of datasets and lent insight into gene expression over differentiation. Results Here, we present a bioinformatic approach using Boolean implication to discover genes which are retinal cell type-specific or involved in retinal cell fate. We apply this approach to previously published retina and retinal organoid datasets and improve upon previously published correlational methods. Our method improves the prediction accuracy of marker genes of retinal cell types and discovers several new high confidence cone and rod-specific genes. Conclusions The results of this study demonstrate the benefits of a Boolean approach that considers asymmetric relationships. We have shown a statistically significant improvement from correlational, symmetric methods in the prediction accuracy of retinal cell-type specific genes. Furthermore, our method contains no cell or tissue-specific tuning and hence could impact other areas of gene expression analyses in cancer and other human diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04915-4.
Collapse
|
31
|
WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme. Proc Natl Acad Sci U S A 2022; 119:e2201707119. [PMID: 35671428 PMCID: PMC9214544 DOI: 10.1073/pnas.2201707119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
WNT/β-catenin signaling is critical for lung development, and homeostasis and it has also been implicated in inflammatory lung diseases. However, the underlying molecular mechanisms, especially those at play during inflammatory conditions, are unclear. Here, we show that loss of the WNT coreceptor Related to receptor tyrosine kinase (RYK) specifically in mesenchymal cells results in lung inflammation. Our data indicate that RYK signaling through β-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. A number of inflammatory lung diseases, including chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and pneumonia, are modulated by WNT/β-catenin signaling. However, the underlying molecular mechanisms remain unclear. Here, starting with a forward genetic screen in mouse, we identify the WNT coreceptor Related to receptor tyrosine kinase (RYK) acting in mesenchymal tissues as a cell survival and antiinflammatory modulator. Ryk mutant mice exhibit lung hypoplasia and inflammation as well as alveolar simplification due to defective secondary septation, and deletion of Ryk specifically in mesenchymal cells also leads to these phenotypes. By analyzing the transcriptome of wild-type and mutant lungs, we observed the up-regulation of proapoptotic and inflammatory genes whose expression can be repressed by WNT/RYK signaling in vitro. Moreover, mesenchymal Ryk deletion at postnatal and adult stages can also lead to lung inflammation, thus indicating a continued role for WNT/RYK signaling in homeostasis. Our results indicate that RYK signaling through β-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. Notably, RYK expression is down-regulated in the stromal cells of pneumonitis patient lungs. Altogether, our data reveal that RYK signaling plays critical roles as an antiinflammatory modulator during lung development and homeostasis and provide an animal model to further investigate the etiology of, and therapeutic approaches to, inflammatory lung diseases.
Collapse
|
32
|
Matsuyama A, Kalargyrou AA, Smith AJ, Ali RR, Pearson RA. A comprehensive atlas of Aggrecan, Versican, Neurocan and Phosphacan expression across time in wildtype retina and in retinal degeneration. Sci Rep 2022; 12:7282. [PMID: 35508614 PMCID: PMC9068689 DOI: 10.1038/s41598-022-11204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
As photoreceptor cells die during retinal degeneration, the surrounding microenvironment undergoes significant changes that are increasingly recognized to play a prominent role in determining the efficacy of therapeutic interventions. Chondroitin Sulphate Proteoglycans (CSPGs) are a major component of the extracellular matrix that have been shown to inhibit neuronal regrowth and regeneration in the brain and spinal cord, but comparatively little is known about their expression in retinal degeneration. Here we provide a comprehensive atlas of the expression patterns of four individual CSPGs in three models of inherited retinal degeneration and wildtype mice. In wildtype mice, Aggrecan presented a biphasic expression, while Neurocan and Phosphacan expression declined dramatically with time and Versican expression remained broadly constant. In degeneration, Aggrecan expression increased markedly in Aipl1-/- and Pde6brd1/rd1, while Versican showed regional increases in the periphery of Rho-/- mice. Conversely, Neurocan and Phosphacan broadly decrease with time in all models. Our data reveal significant heterogeneity in the expression of individual CSPGs. Moreover, there are striking differences in the expression patterns of specific CSPGs in the diseased retina, compared with those reported following injury elsewhere in the CNS. Better understanding of the distinct distributions of individual CSPGs will contribute to creating more permissive microenvironments for neuro-regeneration and repair.
Collapse
Affiliation(s)
- A Matsuyama
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan.
| | - A A Kalargyrou
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - A J Smith
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R R Ali
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - R A Pearson
- Ocular Cell and Gene therapy Group, Centre for Gene Therapy and Regenerative Medicine, King's College London, 8th Floor, Tower Wing, Guy's Hospital, London, SE1 9RT, UK.
- University College London Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
33
|
Xu S, Sergeeva AP, Katsamba PS, Mannepalli S, Bahna F, Bimela J, Zipursky SL, Shapiro L, Honig B, Zinn K. Affinity requirements for control of synaptic targeting and neuronal cell survival by heterophilic IgSF cell adhesion molecules. Cell Rep 2022; 39:110618. [PMID: 35385751 PMCID: PMC9078203 DOI: 10.1016/j.celrep.2022.110618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Neurons in the developing brain express many different cell adhesion molecules (CAMs) on their surfaces. CAM-binding affinities can vary by more than 200-fold, but the significance of these variations is unknown. Interactions between the immunoglobulin superfamily CAM DIP-α and its binding partners, Dpr10 and Dpr6, control synaptic targeting and survival of Drosophila optic lobe neurons. We design mutations that systematically change interaction affinity and analyze function in vivo. Reducing affinity causes loss-of-function phenotypes whose severity scales with the magnitude of the change. Synaptic targeting is more sensitive to affinity reduction than is cell survival. Increasing affinity rescues neurons that would normally be culled by apoptosis. By manipulating CAM expression together with affinity, we show that the key parameter controlling circuit assembly is surface avidity, which is the strength of adherence between cell surfaces. We conclude that CAM binding affinities and expression levels are finely tuned for function during development.
Collapse
Affiliation(s)
- Shuwa Xu
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Seetha Mannepalli
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Fabiana Bahna
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Jude Bimela
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, HHMI, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA; Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Kai Zinn
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA.
| |
Collapse
|
34
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
35
|
Ortin‐Martinez A, Yan NE, Tsai ELS, Comanita L, Gurdita A, Tachibana N, Liu ZC, Lu S, Dolati P, Pokrajac NT, El‐Sehemy A, Nickerson PEB, Schuurmans C, Bremner R, Wallace VA. Photoreceptor nanotubes mediate the in vivo exchange of intracellular material. EMBO J 2021; 40:e107264. [PMID: 34494680 PMCID: PMC8591540 DOI: 10.15252/embj.2020107264] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.
Collapse
Affiliation(s)
- Arturo Ortin‐Martinez
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Nicole E Yan
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Akshay Gurdita
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Zhongda C Liu
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Suying Lu
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
| | - Parnian Dolati
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Neno T Pokrajac
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Ahmed El‐Sehemy
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Philip E B Nickerson
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
| | - Carol Schuurmans
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of BiochemistryUniversity of TorontoTorontoONCanada
- Sunnybrook Research InstituteTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Rod Bremner
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Lunenfeld Tanenbaum Research InstituteMount Sinai HospitalSinai Health SystemsTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| | - Valerie A Wallace
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health NetworkTorontoONCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
- Department of Ophthalmology and Vision SciencesUniversity of TorontoTorontoONCanada
| |
Collapse
|
36
|
Adhesion GPCR Latrophilin 3 regulates synaptic function of cone photoreceptors in a trans-synaptic manner. Proc Natl Acad Sci U S A 2021; 118:2106694118. [PMID: 34732574 DOI: 10.1073/pnas.2106694118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors mediate daylight vision in vertebrates. Changes in neurotransmitter release at cone synapses encode visual information and is subject to precise control by negative feedback from enigmatic horizontal cells. However, the mechanisms that orchestrate this modulation are poorly understood due to a virtually unknown landscape of molecular players. Here, we report a molecular player operating selectively at cone synapses that modulates effects of horizontal cells on synaptic release. Using an unbiased proteomic screen, we identified an adhesion GPCR Latrophilin3 (LPHN3) in horizontal cell dendrites that engages in transsynaptic control of cones. We detected and characterized a prominent splice isoform of LPHN3 that excludes a element with inhibitory influence on transsynaptic interactions. A gain-of-function mouse model specifically routing LPHN3 splicing to this isoform but not knockout of LPHN3 diminished CaV1.4 calcium channel activity profoundly disrupted synaptic release by cones and resulted in synaptic transmission deficits. These findings offer molecular insight into horizontal cell modulation on cone synaptic function and more broadly demonstrate the importance of alternative splicing in adhesion GPCRs for their physiological function.
Collapse
|
37
|
Zhang X, Wang W, Jin ZB. Retinal organoids as models for development and diseases. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:33. [PMID: 34719743 PMCID: PMC8557999 DOI: 10.1186/s13619-021-00097-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
The evolution of pluripotent stem cell-derived retinal organoids (ROs) has brought remarkable opportunities for developmental studies while also presenting new therapeutic avenues for retinal diseases. With a clear understanding of how well these models mimic native retinas, such preclinical models may be crucial tools that are widely used for the more efficient translation of studies into novel treatment strategies for retinal diseases. Genetic modifications or patient-derived ROs can allow these models to simulate the physical microenvironments of the actual disease process. However, we are currently at the beginning of the three-dimensional (3D) RO era, and a general quantitative technology for analyzing ROs derived from numerous differentiation protocols is still missing. Continued efforts to improve the efficiency and stability of differentiation, as well as understanding the disparity between the artificial retina and the native retina and advancing the current treatment strategies, will be essential in ensuring that these scientific advances can benefit patients with retinal disease. Herein, we briefly discuss RO differentiation protocols, the current applications of RO as a disease model and the treatments for retinal diseases by using RO modeling, to have a clear view of the role of current ROs in retinal development and diseases.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Science Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
38
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
39
|
Zhu Y, Zhang T, Zhao Y, Wang Y, Lv Y, Li S, Yang S, Zhu M, Zhao W, Wang Q. Screening, construction, and serological identification of the diagnostic antigen molecule EG-06283 for the diagnosis of Echinococcus granulosus. Parasitol Res 2021; 120:2557-2567. [PMID: 34043054 DOI: 10.1007/s00436-021-07183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Several strategies exist to prevent and control echinococcosis, a global parasitic disease. However, most treatments are ineffective and adverse effects are common. Therefore, we aimed to screen protoscolex antigen molecules of Echinococcus granulosus to identify a diagnostic biomarker for hydatid disease. Published E. granulosus transcriptome sequencing data were analyzed to screen for antigen molecules that are highly expressed in protoscoleces but not in oncospheres. The membrane protein EG-06283 (annotated as Frizzled-4) was selected from 16 antigens, and its gene fragment was subjected to codon optimization and synthesis. rEG-06283 expression was induced in the pET-24a/EG-06283/BL21 strain; subsequently, the protein was purified and subcutaneously injected into ICR mice at weeks 0, 2, 4, and 6. Blood sampling occurred periodically to quantify serum immunoglobulin G (IgG) levels via enzyme-linked immunosorbent assays (ELISA). Immunogenicity was determined by western blot assays using sera from normal mice and mice with secondary hydatid infections. The antigen's immune reactivity and diagnostic value were validated using sera of patients with hydatid disease. ELISA results confirmed that the antigen molecule induced specific IgG production in mice, resulting in significantly higher levels than those in the adjuvant and control groups (P < 0.05). The western blot results indicated that the protein was recognized by antibodies in the sera of mice with hydatid infection and the antisera of immunized mice. Quantification of protein levels in the sera of patients with hydatid disease significantly differed from levels in healthy participants (P < 0.05). These results indicate that rEG-06283 is a potential diagnostic antigen for E. granulosus infections.
Collapse
Affiliation(s)
- Yazhou Zhu
- Department of Cell Biology and Genetics, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Tingrui Zhang
- Department of Cell Biology and Genetics, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yinqi Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yin Wang
- Department of Neurobiology, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yongxue Lv
- Department of Cell Biology and Genetics, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shasha Li
- Department of Cell Biology and Genetics, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Songhao Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wei Zhao
- Department of Cell Biology and Genetics, School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Qiang Wang
- Scientific Technology Center of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
40
|
Suthon S, Perkins RS, Bryja V, Miranda-Carboni GA, Krum SA. WNT5B in Physiology and Disease. Front Cell Dev Biol 2021; 9:667581. [PMID: 34017835 PMCID: PMC8129536 DOI: 10.3389/fcell.2021.667581] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022] Open
Abstract
WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.
Collapse
Affiliation(s)
- Sarocha Suthon
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rachel S Perkins
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, Brno, Czechia
| | - Gustavo A Miranda-Carboni
- Division of Hematology and Oncology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
41
|
Burger CA, Jiang D, Mackin RD, Samuel MA. Development and maintenance of vision's first synapse. Dev Biol 2021; 476:218-239. [PMID: 33848537 DOI: 10.1016/j.ydbio.2021.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022]
Abstract
Synapses in the outer retina are the first information relay points in vision. Here, photoreceptors form synapses onto two types of interneurons, bipolar cells and horizontal cells. Because outer retina synapses are particularly large and highly ordered, they have been a useful system for the discovery of mechanisms underlying synapse specificity and maintenance. Understanding these processes is critical to efforts aimed at restoring visual function through repairing or replacing neurons and promoting their connectivity. We review outer retina neuron synapse architecture, neural migration modes, and the cellular and molecular pathways that play key roles in the development and maintenance of these connections. We further discuss how these mechanisms may impact connectivity in the retina.
Collapse
Affiliation(s)
- Courtney A Burger
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robert D Mackin
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Huffington Center on Aging, Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Ribeiro J, Procyk CA, West EL, O'Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR. Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 2021; 35:109022. [PMID: 33882303 PMCID: PMC8065177 DOI: 10.1016/j.celrep.2021.109022] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.
Collapse
Affiliation(s)
- Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Emma L West
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Monica F Martins
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Aura Hare
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Mark Basche
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Neeraj Jumbo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matteo Rizzi
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kate Powell
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Menahil Tariq
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Kellogg Eye Centre, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
43
|
Pourhoseini S, Goswami-Sewell D, Zuniga-Sanchez E. Neurofascin Is a Novel Component of Rod Photoreceptor Synapses in the Outer Retina. Front Neural Circuits 2021; 15:635849. [PMID: 33643000 PMCID: PMC7902911 DOI: 10.3389/fncir.2021.635849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Neural circuit formation is an intricate and complex process where multiple neuron types must come together to form synaptic connections at a precise location and time. How this process is orchestrated during development remains poorly understood. Cell adhesion molecules are known to play a pivotal role in assembling neural circuits. They serve as recognition molecules between corresponding synaptic partners. In this study, we identified a new player in assembling neural circuits in the outer retina, the L1-family cell adhesion molecule Neurofascin (Nfasc). Our data reveals Nfasc is expressed in the synaptic layer where photoreceptors make synaptic connections to their respective partners. A closer examination of Nfasc expression shows high levels of expression in rod bipolars but not in cone bipolars. Disruption of Nfasc using a conditional knockout allele results in selective loss of pre- and post-synaptic proteins in the rod synaptic layer but not in the cone synaptic layer. Electron microscopic analysis confirms that indeed there are abnormal synaptic structures with less dendrites of rod bipolars innervating rod terminals in loss of Nfasc animals. Consistent with these findings, we also observe a decrease in rod-driven retinal responses with disruption of Nfasc function but not in cone-driven responses. Taken together, our data suggest a new role of Nfasc in rod synapses within the mouse outer retina.
Collapse
Affiliation(s)
- Sahar Pourhoseini
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | | | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
44
|
Dorskind JM, Kolodkin AL. Revisiting and refining roles of neural guidance cues in circuit assembly. Curr Opin Neurobiol 2021; 66:10-21. [PMID: 32823181 PMCID: PMC10725571 DOI: 10.1016/j.conb.2020.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Neural guidance mechanisms ensure the precise targeting and synaptogenesis events essential for normal circuit function. Neuronal growth cones encounter numerous attractive and repulsive cues as they navigate toward their intermediate and final targets; temporal and spatial regulation of these responses are critical for circuit assembly. Recent work highlights the complexity of these events throughout neural development and the multifaceted functions of a wide range of guidance cues. Here, we discuss recent studies that leverage advances in genetics, single cell tracing, transcriptomics and proteomics to further our understanding of the molecular mechanisms underlying neural guidance and overall circuit organization.
Collapse
Affiliation(s)
- Joelle M Dorskind
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Alex L Kolodkin
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv Drug Deliv Rev 2021; 168:181-195. [PMID: 32603815 DOI: 10.1016/j.addr.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022]
Abstract
A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.
Collapse
|
46
|
Tsuboi A. LRR-Containing Oncofetal Trophoblast Glycoprotein 5T4 Shapes Neural Circuits in Olfactory and Visual Systems. Front Mol Neurosci 2020; 13:581018. [PMID: 33192298 PMCID: PMC7655536 DOI: 10.3389/fnmol.2020.581018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
In mammals, the sensory experience can regulate the development of various brain structures, including the cortex, hippocampus, retina, and olfactory bulb (OB). Odor experience-evoked neural activity drives the development of dendrites on excitatory projection neurons in the OB, such as mitral and tufted cells, as well as inhibitory interneurons. OB interneurons are generated continuously in the subventricular zone and differentiate into granule cells (GCs) and periglomerular cells (PGCs). However, it remains unknown what role each type of OB interneuron plays in controlling olfactory behaviors. Recent studies showed that among the various types of OB interneurons, a subtype of GCs expressing oncofetal trophoblast glycoprotein 5T4 is required for simple odor detection and discrimination behaviors. Mouse 5T4 (also known as Tpbg) is a type I membrane glycoprotein whose extracellular domain contains seven leucine-rich repeats (LRRs) sandwiched between characteristic LRR-N and LRR-C regions. Recently, it was found that the developmental expression of 5T4 increases dramatically in the retina just before eye-opening. Single-cell transcriptomics further suggests that 5T4 is involved in the development and maintenance of functional synapses in a subset of retinal interneurons, including rod bipolar cells (RBCs) and amacrine cells (ACs). Collectively, 5T4, expressed in interneurons of the OB and retina, plays a key role in sensory processing in the olfactory and visual systems.
Collapse
Affiliation(s)
- Akio Tsuboi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
47
|
Hiesinger PR. Brain wiring with composite instructions. Bioessays 2020; 43:e2000166. [PMID: 33145823 DOI: 10.1002/bies.202000166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/12/2022]
Abstract
The quest for molecular mechanisms that guide axons or specify synaptic contacts has largely focused on molecules that intuitively relate to the idea of an "instruction." By contrast, "permissive" factors are traditionally considered background machinery without contribution to the information content of a molecularly executed instruction. In this essay, I recast this dichotomy as a continuum from permissive to instructive actions of single factors that provide relative contributions to a necessarily collaborative effort. Individual molecules or other factors do not constitute absolute instructions by themselves; they provide necessary context for each other, thereby creating a composite that defines the overall instruction. The idea of composite instructions leads to two main conclusions: first, a composite of many seemingly permissive factors can define a specific instruction even in the absence of a single dominant contributor; second, individual factors are not necessarily related intuitively to the overall instruction or phenotypic outcome.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Division of Neurobiology, Institute for Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Kurmangaliyev YZ, Yoo J, Valdes-Aleman J, Sanfilippo P, Zipursky SL. Transcriptional Programs of Circuit Assembly in the Drosophila Visual System. Neuron 2020; 108:1045-1057.e6. [PMID: 33125872 DOI: 10.1016/j.neuron.2020.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022]
Abstract
Precise patterns of synaptic connections between neurons are encoded in their genetic programs. Here, we use single-cell RNA sequencing to profile neuronal transcriptomes at multiple stages in the developing Drosophila visual system. We devise an efficient strategy for profiling neurons at multiple time points in a single pool, thereby minimizing batch effects and maximizing the reliability of time-course data. A transcriptional atlas spanning multiple stages is generated, including more than 150 distinct neuronal populations; of these, 88 are followed through synaptogenesis. This analysis reveals a common (pan-neuronal) program unfolding in highly coordinated fashion in all neurons, including genes encoding proteins comprising the core synaptic machinery and membrane excitability. This program is overlaid by cell-type-specific programs with diverse cell recognition molecules expressed in different combinations and at different times. We propose that a pan-neuronal program endows neurons with the competence to form synapses and that cell-type-specific programs control synaptic specificity.
Collapse
Affiliation(s)
- Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juyoun Yoo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier Valdes-Aleman
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Piero Sanfilippo
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
49
|
Lozoya OA, McClelland KS, Papas BN, Li JL, Yao HHC. Patterns, Profiles, and Parsimony: Dissecting Transcriptional Signatures From Minimal Single-Cell RNA-Seq Output With SALSA. Front Genet 2020; 11:511286. [PMID: 33193599 PMCID: PMC7586319 DOI: 10.3389/fgene.2020.511286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/18/2020] [Indexed: 11/23/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technologies have precipitated the development of bioinformatic tools to reconstruct cell lineage specification and differentiation processes with single-cell precision. However, current start-up costs and recommended data volumes for statistical analysis remain prohibitively expensive, preventing scRNA-seq technologies from becoming mainstream. Here, we introduce single-cell amalgamation by latent semantic analysis (SALSA), a versatile workflow that combines measurement reliability metrics with latent variable extraction to infer robust expression profiles from ultra-sparse sc-RNAseq data. SALSA uses a matrix focusing approach that starts by identifying facultative genes with expression levels greater than experimental measurement precision and ends with cell clustering based on a minimal set of Profiler genes, each one a putative biomarker of cluster-specific expression profiles. To benchmark how SALSA performs in experimental settings, we used the publicly available 10X Genomics PBMC 3K dataset, a pre-curated silver standard from human frozen peripheral blood comprising 2,700 single-cell barcodes, and identified 7 major cell groups matching transcriptional profiles of peripheral blood cell types and driven agnostically by < 500 Profiler genes. Finally, we demonstrate successful implementation of SALSA in a replicative scRNA-seq scenario by using previously published DropSeq data from a multi-batch mouse retina experimental design, thereby identifying 10 transcriptionally distinct cell types from > 64,000 single cells across 7 independent biological replicates based on < 630 Profiler genes. With these results, SALSA demonstrates that robust pattern detection from scRNA-seq expression matrices only requires a fraction of the accrued data, suggesting that single-cell sequencing technologies can become affordable and widespread if meant as hypothesis-generation tools to extract large-scale differential expression effects.
Collapse
Affiliation(s)
- Oswaldo A. Lozoya
- Genomic Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Kathryn S. McClelland
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Brian N. Papas
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Humphrey H.-C. Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
50
|
Peng YR, Sampath AP. LRR-ning the Rules: Synapse Organization in the Primary Rod Pathway. Neuron 2020; 105:949-951. [PMID: 32191854 DOI: 10.1016/j.neuron.2020.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Sinha et al. (2020) demonstrate that synaptic organization at rod bipolar cell terminals is regulated by a leucine-rich repeat protein, LRRTM4. LRRTM4 is expressed specifically by rod bipolar cells; eliminating it in mouse retina perturbs the organization of synaptic ribbons and impairs the function of inhibitory synapses.
Collapse
Affiliation(s)
- Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|