1
|
Lyu C, Yuan L, Yang Y, Zhang D, Hu W, Zhao K, Ding Y, Chen W, Xiao K, Chen Y, Liu W. Ligand preference of EphB2 receptor is selectively regulated by N-glycosylation. iScience 2025; 28:112386. [PMID: 40330885 PMCID: PMC12052844 DOI: 10.1016/j.isci.2025.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/25/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The Eph receptors and their ephrin ligands play important roles in cell communication and neuron development. Eph interacts with ephrin in a complex manner. Here, we found ephrin-B2 instead of well-recorded ephrin-A5 specifically recognize and activate EphB2 receptor in primary cortical neurons. Domain-swapping and N/Q mutagenesis results show that the ectodomain of EphB2 and its N-glycosylation sites are critical for the ephrin binding selectivity. The N265, N336, N428, and N482Q mutant EphB2 cannot distinguish ephrin-B2 from ephrin-A5. Furthermore, the N-glycosylation sites in EphB2 are evolutionarily conserved and the N-glycan-directed binding strategy is commonly used in other Eph family members. A gain-of-function EphB6 mutant restores its ephrin-B2 binding ability. Finally, EphB2 is robustly glycosylated in the mouse brain and N-glycosylation is required for EphB2 signaling-induced cell rounding and dendritic spine formation. Collectively, our findings provide a molecular basis to understand the exquisite Eph/ephrin interaction preferences.
Collapse
Affiliation(s)
- Chunyu Lyu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Lin Yuan
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yang Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Dongsheng Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Keli Zhao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Yuzhen Ding
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou 310000, Zhejiang, China
| | - Kang Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518045, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
- SIAT-HKUST Joint Laboratory for Brain Science, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
2
|
Phadke RA, Brack A, Fournier LA, Kruzich E, Sha M, Picard I, Johnson C, Stroumbakis D, Salgado M, Yeung C, Escude Velasco B, Liu YY, Cruz-Martín A. The schizophrenia risk gene C4 induces pathological synaptic loss by impairing AMPAR trafficking. Mol Psychiatry 2025; 30:796-809. [PMID: 39227431 PMCID: PMC11746135 DOI: 10.1038/s41380-024-02701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Neuroimmune interactions play a significant role in regulating synaptic plasticity in both the healthy and diseased brain. The complement pathway, an extracellular proteolytic cascade, exemplifies these interactions. Its activation triggers microglia-dependent synaptic elimination via the complement receptor 3 (CR3). Current models of pathological complement activity in the brain propose that accelerated synaptic loss resulting from overexpression of C4 (C4-OE), a gene associated with schizophrenia, follows this pathway. Here, we report that C4-mediated cortical hypoconnectivity is CR3-independent. Instead, C4-OE triggers impaired GluR1 trafficking through an intracellular mechanism involving the endosomal protein SNX27, resulting in pathological synaptic loss. Moreover, C4 circuit alterations in the prefrontal cortex, a brain region associated with neuropsychiatric disorders, were rescued by increasing neuronal levels of SNX27, which we identify as an interacting partner of this neuroimmune protein. Our results link excessive complement activity to an intracellular endo-lysosomal trafficking pathway altering synaptic plasticity.
Collapse
Affiliation(s)
- Rhushikesh A Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Luke A Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Ezra Kruzich
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Mingqi Sha
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Ines Picard
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Connor Johnson
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Dimitri Stroumbakis
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Charlotte Yeung
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Berta Escude Velasco
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Yen Yu Liu
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA.
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA.
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Mutalik SP, Ho CT, O’Shaughnessy EC, Frasineanu AG, Shah AB, Gupton SL. TRIM9 Controls Growth Cone Responses to Netrin Through DCC and UNC5C. J Neurochem 2025; 169:e70002. [PMID: 39871643 PMCID: PMC11834693 DOI: 10.1111/jnc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1. We find that repulsive turning in a netrin gradient is blocked by knockdown of UNC5C, whereas attractive turning is impaired by knockdown of DCC. TRIM9 is a brain-enriched E3 ubiquitin ligase previously shown to bind and cluster the attractive receptor DCC at the plasma membrane and regulate netrin-dependent attractive responses. However, whether TRIM9 also regulated repulsive responses to netrin-1 remained to be seen. In this study, we show that TRIM9 localizes and interacts with both the attractive netrin receptor DCC and the repulsive netrin receptor, UNC5C. We find that deletion of murine Trim9 alters both attractive and repulsive axon turning and changes in growth cones size in response to murine netrin-1. TRIM9 was required for netrin-1-dependent changes in the surface levels of DCC and UNC5C in the growth cone during morphogenesis. We demonstrate that DCC at the membrane regulates the growth cone area and show that TRIM9 negatively regulates FAK activity in the absence of both repulsive and attractive concentrations of netrin-1. Together, our work demonstrates that TRIM9 interacts with and regulates both DCC and UNC5C during attractive and repulsive axonal responses to netrin-1.
Collapse
Affiliation(s)
- Sampada P. Mutalik
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ellen C. O’Shaughnessy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Anca G. Frasineanu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Aneri B. Shah
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Correspondence to: Stephanie L. Gupton ()
| |
Collapse
|
4
|
Sutley-Koury SN, Taitano-Johnson C, Kulinich AO, Farooq N, Wagner VA, Robles M, Hickmott PW, Santhakumar V, Mimche PN, Ethell IM. EphB2 Signaling Is Implicated in Astrocyte-Mediated Parvalbumin Inhibitory Synapse Development. J Neurosci 2024; 44:e0154242024. [PMID: 39327008 PMCID: PMC11551896 DOI: 10.1523/jneurosci.0154-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired inhibitory synapse development is suggested to drive neuronal hyperactivity in autism spectrum disorders (ASD) and epilepsy. We propose a novel mechanism by which astrocytes control the development of parvalbumin (PV)-specific inhibitory synapses in the hippocampus, implicating ephrin-B/EphB signaling. Here, we utilize genetic approaches to assess functional and structural connectivity between PV and pyramidal cells (PCs) through whole-cell patch-clamp electrophysiology, optogenetics, immunohistochemical analysis, and behaviors in male and female mice. While inhibitory synapse development is adversely affected by PV-specific expression of EphB2, a strong candidate ASD risk gene, astrocytic ephrin-B1 facilitates PV→PC connectivity through a mechanism involving EphB signaling in PV boutons. In contrast, the loss of astrocytic ephrin-B1 reduces PV→PC connectivity and inhibition, resulting in increased seizure susceptibility and an ASD-like phenotype. Our findings underscore the crucial role of astrocytes in regulating inhibitory circuit development and discover a new role of EphB2 receptors in PV-specific inhibitory synapse development.
Collapse
Affiliation(s)
- Samantha N Sutley-Koury
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Christopher Taitano-Johnson
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Anna O Kulinich
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nadia Farooq
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Victoria A Wagner
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | - Marissa Robles
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Peter W Hickmott
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| | | | - Patrice N Mimche
- Department of Dermatology, and Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis Indiana 46202
| | - Iryna M Ethell
- Division of Biomedical Sciences and Biomedical Sciences Graduate Program, School of Medicine, University of California Riverside, Riverside, California 92521
- Neuroscience Graduate Program, University of California Riverside, Riverside, California 92521
| |
Collapse
|
5
|
Ing-Esteves S, Lefebvre JL. Gamma-protocadherins regulate dendrite self-recognition and dynamics to drive self-avoidance. Curr Biol 2024; 34:4224-4239.e4. [PMID: 39214087 DOI: 10.1016/j.cub.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/03/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Neurons form cell-type-specific morphologies that are shaped by cell-surface molecules and their cellular events governing dendrite growth. One growth rule is dendrite self-avoidance, whereby dendrites distribute uniformly within a neuron's territory by avoiding sibling branches. In mammalian neurons, dendrite self-avoidance is regulated by a large family of cell-recognition molecules called the clustered protocadherins (cPcdhs). Genetic and molecular studies suggest that the cPcdhs mediate homophilic recognition and repulsion between self-dendrites. However, this model has not been tested through direct investigation of self-avoidance during development. Here, we performed live imaging and four-dimensional (4D) quantifications of dendrite morphogenesis to define the dynamics and cPcdh-dependent mechanisms of self-avoidance. We focused on the mouse retinal starburst amacrine cell (SAC), which requires the gamma-Pcdhs (Pcdhgs) and self/non-self-recognition to establish a stereotypic radial morphology while permitting dendritic interactions with neighboring SACs. Through morphogenesis, SACs extend dendritic protrusions that iteratively fill the growing arbor and contact and retract from nearby self-dendrites. Compared to non-self-contacting protrusions, self-contacting events have longer lifetimes, and a subset persists as loops. In the absence of the Pcdhgs, non-self-contacting dynamics are unaffected but self-contacting retractions are significantly diminished. Self-contacting bridges accumulate, leading to the bundling of dendritic processes and disruption to the arbor shape. By tracking dendrite self-avoidance in real time, our findings establish that the γ-Pcdhs mediate self-recognition and retraction between contacting sibling dendrites. Our results also illustrate how self-avoidance shapes stochastic and space-filling dendritic outgrowth for robust pattern formation in mammalian neurons.
Collapse
Affiliation(s)
- Samantha Ing-Esteves
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Julie L Lefebvre
- Program for Neuroscience and Mental Health, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Fournier LA, Phadke RA, Salgado M, Brack A, Nocon JC, Bolshakova S, Grant JR, Padró Luna NM, Sen K, Cruz-Martín A. Overexpression of the schizophrenia risk gene C4 in PV cells drives sex-dependent behavioral deficits and circuit dysfunction. iScience 2024; 27:110800. [PMID: 39310747 PMCID: PMC11416532 DOI: 10.1016/j.isci.2024.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Fast-spiking parvalbumin (PV)-positive cells are key players in orchestrating pyramidal neuron activity, and their dysfunction is consistently observed in myriad brain diseases. To understand how immune complement pathway dysregulation in PV cells drives disease pathogenesis, we have developed a transgenic line that permits cell-type specific overexpression of the schizophrenia-associated C4 gene. We found that overexpression of mouse C4 (mC4) in PV cells causes sex-specific alterations in anxiety-like behavior and deficits in synaptic connectivity and excitability of PFC PV cells. Using a computational model, we demonstrated that these microcircuit deficits led to hyperactivity and disrupted neural communication. Finally, pan-neuronal overexpression of mC4 failed to evoke the same deficits in behavior as PV-specific mC4 overexpression, suggesting that perturbations of this neuroimmune gene in fast-spiking neurons are especially detrimental to circuits associated with anxiety-like behavior. Together, these results provide a causative link between C4 and the vulnerability of PV cells in brain disease.
Collapse
Affiliation(s)
- Luke A. Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Rhushikesh A. Phadke
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Maria Salgado
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
| | - Jian Carlo Nocon
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sonia Bolshakova
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Bioinformatics MS Program, Boston University, Boston, MA, USA
| | - Jaylyn R. Grant
- Biological Sciences, Eastern Illinois University, Charleston, IL, USA
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
| | - Nicole M. Padró Luna
- The Summer Undergraduate Research Fellowship (SURF) Program, Boston University, Boston, MA, USA
- Biology Department, College of Natural Sciences, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Kamal Sen
- Neurophotonics Center, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Hearing Research Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA, USA
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- NeuroTechnology Center (NTC), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Guptarak J, Scaduto P, Tumurbaatar B, Zhang WR, Jupiter D, Taglialatela G, Fracassi A. Cognitive integrity in Non-Demented Individuals with Alzheimer's Neuropathology is associated with preservation and remodeling of dendritic spines. Alzheimers Dement 2024; 20:4677-4691. [PMID: 38829680 PMCID: PMC11247701 DOI: 10.1002/alz.13900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Individuals referred to as Non-Demented with Alzheimer's Neuropathology (NDAN) exhibit cognitive resilience despite presenting Alzheimer's disease (AD) histopathological signs. Investigating the mechanisms behind this resilience may unveil crucial insights into AD resistance. METHODS DiI labeling technique was used to analyze dendritic spine morphology in control (CTRL), AD, and NDAN post mortem frontal cortex, particularly focusing on spine types near and far from amyloid beta (Aβ) plaques. RESULTS NDAN subjects displayed a higher spine density in regions distant from Aβ plaques versus AD patients. In distal areas from the plaques, NDAN individuals exhibited more immature spines, while AD patients had a prevalence of mature spines. Additionally, our examination of levels of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), a protein associated with synaptic plasticity and AD, showed significantly lower expression in AD versus NDAN and CTRL. DISCUSSION These results suggest that NDAN individuals undergo synaptic remodeling, potentially facilitated by Pin1, serving as a compensatory mechanism to preserve cognitive function despite AD pathology. HIGHLIGHTS Spine density is reduced near Aβ plaques compared to the distal area in CTRL, AD, and NDAN dendrites. NDAN shows higher spine density than AD in areas far from Aβ plaques. Far from Aβ plaques, NDAN has a higher density of immature spines, AD a higher density of mature spines. AD individuals show significantly lower levels of Pin1 compared to NDAN and CTRL.
Collapse
Affiliation(s)
- Jutatip Guptarak
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Pietro Scaduto
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Batbayar Tumurbaatar
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Wen Ru Zhang
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Daniel Jupiter
- Department of Biostatistics and Data Science, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at GalvestonGalvestonTexasUSA
| |
Collapse
|
8
|
Srikanth KD, Elahi H, Chander P, Washburn HR, Hassler S, Mwirigi JM, Kume M, Loucks J, Arjarapu R, Hodge R, Shiers SI, Sankaranarayanan I, Erdjument-Bromage H, Neubert TA, Campbell ZT, Paik R, Price TJ, Dalva MB. VLK drives extracellular phosphorylation of EphB2 to govern the EphB2-NMDAR interaction and injury-induced pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585314. [PMID: 38562765 PMCID: PMC10983893 DOI: 10.1101/2024.03.18.585314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phosphorylation of hundreds of protein extracellular domains is mediated by two kinase families, yet the significance of these kinases is underexplored. Here, we find that the presynaptic release of the tyrosine directed-ectokinase, Vertebrate Lonesome Kinase (VLK/Pkdcc), is necessary and sufficient for the direct extracellular interaction between EphB2 and GluN1 at synapses, for phosphorylation of the ectodomain of EphB2, and for injury-induced pain. Pkdcc is an essential gene in the nervous system, and VLK is found in synaptic vesicles, and is released from neurons in a SNARE-dependent fashion. VLK is expressed by nociceptive sensory neurons where presynaptic sensory neuron-specific knockout renders mice impervious to post-surgical pain, without changing proprioception. VLK defines an extracellular mechanism that regulates protein-protein interaction and non-opioid-dependent pain in response to injury.
Collapse
Affiliation(s)
- Kolluru D Srikanth
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Hajira Elahi
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Praveen Chander
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Halley R Washburn
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Shayne Hassler
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- College of Medicine, University of Houston; Houston, TX 77004, USA
| | - Juliet M Mwirigi
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Moeno Kume
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Jessica Loucks
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
| | - Rohita Arjarapu
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
| | - Rachel Hodge
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Stephanie I Shiers
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison; Madison, WI 53792, USA
| | - Raehum Paik
- Department of Anesthesiology, University of Wisconsin-Madison; Madison, WI 53792, USA
- Department of Genetics, University of Texas Health Science Center at San Antonio; San Antonio, TX 78229, USA
| | - Theodore J Price
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Matthew B Dalva
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
9
|
Kruzich E, Phadke RA, Brack A, Stroumbakis D, Infante O, Cruz-Martín A. A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices. STAR Protoc 2023; 4:102707. [PMID: 37948187 PMCID: PMC10658395 DOI: 10.1016/j.xpro.2023.102707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Advances in super-resolution imaging enable us to delve into its intricate structural and functional complexities with unprecedented detail. Here, we present a pipeline to visualize and analyze the nanoscale organization of cortical layer 1 apical dendritic spines in the mouse prefrontal cortex. We describe steps for brain slice preparation, immunostaining, stimulated emission depletion super-resolution microscopy, and data analysis using the Imaris software package. This protocol allows the study of physiologically relevant brain circuits implicated in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ezra Kruzich
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Rhushikesh A Phadke
- Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Alison Brack
- Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Dimitri Stroumbakis
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA
| | - Oriannys Infante
- Montclair State University, Montclair, NJ 07043, USA; Summer Undergraduate Research Fellowship Program, Boston University, Boston, MA 02215, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology, and Biochemistry Section in the Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Kim Y, Ahmed S, Miller WT. Colorectal cancer-associated mutations impair EphB1 kinase function. J Biol Chem 2023; 299:105115. [PMID: 37527777 PMCID: PMC10463257 DOI: 10.1016/j.jbc.2023.105115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA.
| |
Collapse
|
11
|
Schramm S, Krizanovic N, Roggenbuck U, Jöckel KH, Herring A, Keyvani K, Jokisch M. Blood Kallikrein-8 and Non-Amnestic Mild Cognitive Impairment: An Exploratory Study. J Alzheimers Dis Rep 2023; 7:327-337. [DOI: 10.3233/adr-220073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Blood kallikrein-8 is supposed to be a biomarker for mild cognitive impairment (MCI) due to Alzheimer’s disease (AD), a precursor of AD dementia. Little is known about the association of kallikrein-8 and non-AD type dementias. Objective: To investigate whether blood kallikrein-8 is elevated in individuals with non-amnestic MCI (naMCI), which has a higher probability to progress to a non-AD type dementia, compared with cognitively unimpaired (CU) controls. Methods: We measured blood kallikrein-8 at ten-year follow-up (T2) in 75 cases and 75 controls matched for age and sex who were participants of the population-based Heinz Nixdorf Recall study (baseline: 2000–2003). Cognitive performance was assessed in a standardized manner at five (T1) and ten-year follow-up. Cases were CU or had subjective cognitive decline (SCD) at T1 and had naMCI at T2. Controls were CU at both follow-ups. The association between kallikrein-8 (per 500 pg/ml increase) and naMCI was estimated using conditional logistic regression: odds ratios (OR) and 95% confidence intervals (95% CI) were determined, adjusted for inter-assay variability and freezing duration. Results: Valid kallikrein-8 values were measured in 121 participants (45% cases, 54.5% women, 70.5±7.1 years). In cases, the mean kallikrein-8 was higher than in controls (922±797 pg/ml versus 884±782 pg/ml). Kallikrein-8 was not associated with having naMCI compared to being CU (adjusted; OR: 1.03 [95% CI: 0.80–1.32]). Conclusion: This is the first population-based study that shows that blood kallikrein-8 tends not to be elevated in individuals with naMCI compared with CU. This adds to the evidence of the possible AD specificity of kallikrein-8.
Collapse
Affiliation(s)
- Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nela Krizanovic
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Zaccard CR, Gippo I, Song A, Geula C, Penzes P. Dendritic spinule-mediated structural synaptic plasticity: Implications for development, aging, and psychiatric disease. Front Mol Neurosci 2023; 16:1059730. [PMID: 36741924 PMCID: PMC9895827 DOI: 10.3389/fnmol.2023.1059730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are highly dynamic and changes in their density, size, and shape underlie structural synaptic plasticity in cognition and memory. Fine membranous protrusions of spines, termed dendritic spinules, can contact neighboring neurons or glial cells and are positively regulated by neuronal activity. Spinules are thinner than filopodia, variable in length, and often emerge from large mushroom spines. Due to their nanoscale, spinules have frequently been overlooked in diffraction-limited microscopy datasets. Until recently, our knowledge of spinules has been interpreted largely from single snapshots in time captured by electron microscopy. We summarize herein the current knowledge about the molecular mechanisms of spinule formation. Additionally, we discuss possible spinule functions in structural synaptic plasticity in the context of development, adulthood, aging, and psychiatric disorders. The literature collectively implicates spinules as a mode of structural synaptic plasticity and suggests the existence of morphologically and functionally distinct spinule subsets. A recent time-lapse, enhanced resolution imaging study demonstrated that the majority of spinules are small, short-lived, and dynamic, potentially exploring their environment or mediating retrograde signaling and membrane remodeling via trans-endocytosis. A subset of activity-enhanced, elongated, long-lived spinules is associated with complex PSDs, and preferentially contacts adjacent axonal boutons not presynaptic to the spine head. Hence, long-lived spinules can form secondary synapses with the potential to alter synaptic connectivity. Published studies further suggest that decreased spinules are associated with impaired synaptic plasticity and intellectual disability, while increased spinules are linked to hyperexcitability and neurodegenerative diseases. In summary, the literature indicates that spinules mediate structural synaptic plasticity and perturbations in spinules can contribute to synaptic dysfunction and psychiatric disease. Additional studies would be beneficial to further delineate the molecular mechanisms of spinule formation and determine the exact role of spinules in development, adulthood, aging, and psychiatric disorders.
Collapse
Affiliation(s)
- Colleen R. Zaccard
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Isabel Gippo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Amy Song
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,*Correspondence: Peter Penzes,
| |
Collapse
|
13
|
Wit CB, Hiesinger PR. Neuronal filopodia: From stochastic dynamics to robustness of brain morphogenesis. Semin Cell Dev Biol 2023; 133:10-19. [PMID: 35397971 DOI: 10.1016/j.semcdb.2022.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Brain development relies on dynamic morphogenesis and interactions of neurons. Filopodia are thin and highly dynamic membrane protrusions that are critically required for neuronal development and neuronal interactions with the environment. Filopodial interactions are typically characterized by non-deterministic dynamics, yet their involvement in developmental processes leads to stereotypic and robust outcomes. Here, we discuss recent advances in our understanding of how filopodial dynamics contribute to neuronal differentiation, migration, axonal and dendritic growth and synapse formation. Many of these advances are brought about by improved methods of live observation in intact developing brains. Recent findings integrate known and novel roles ranging from exploratory sensors and decision-making agents to pools for selection and mechanical functions. Different types of filopodial dynamics thereby reveal non-deterministic subcellular decision-making processes as part of genetically encoded brain development.
Collapse
Affiliation(s)
- Charlotte B Wit
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - P Robin Hiesinger
- Devision of Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023; 508:137-152. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. Synaptogenesis requires contact between axon and dendrite, selection of correct and rejection of incorrect partners, and recruitment of appropriate pre- and postsynaptic proteins needed for the establishment of functional synaptic contact. Key regulators of these events are families of transsynaptic proteins, where one protein is found on the presynaptic neuron and the other is found on the postsynaptic neuron. Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Praveen Chander
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Kolluru D Srikanth
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Yuan Q, Bao B, Li M, Tang Y. Bioactive Composite Nanoparticles for Effective Microenvironment Regulation, Neuroprotection, and Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15623-15631. [PMID: 35322659 DOI: 10.1021/acsami.2c00579] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain injuries typically result in neural tissue damage and trigger a permanent neurologic deficit. Current methods exhibit limited effects due to the harsh microenvironment of injury regions rich in reactive oxygen species (ROS). Herein, a microenvironment regulation combined with cellular differentiation strategy is designed for repairing injured nerves. We prepare PMNT/F@D-NP nanoparticles comprising a bioactive polythiophene derivative (PMNT) and fullerenol as a multifunctional theranostic nanoplatform. PMNT/F@D-NPs can significantly reduce the accumulation of ROS in the simulated ischemic brain injury trial and inhibit cell apoptosis due to the effective free radical scavenging ability of fullerenol. Interestingly, the bioactive PMNT/F@D-NPs can promote the proliferation and differentiation of neurons, confirmed by immunofluorescence and western blotting studies. This newly developed strategy exhibits a combinatorial therapeutic effect by promoting nerve cell survival and differentiation while improving the microenvironment in the damaged area, which paves the way for the rational design of multifunctional agents for brain injury therapy.
Collapse
Affiliation(s)
- Qiong Yuan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Benkai Bao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Meiqi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yanli Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
16
|
Abstract
The EPH receptor tyrosine kinases and their signaling partners, the EPHRINS, comprise a large class of cell signaling molecules that plays diverse roles in development. As cell membrane-anchored signaling molecules, they regulate cellular organization by modulating the strength of cellular contacts, usually by impacting the actin cytoskeleton or cell adhesion programs. Through these cellular functions, EPH/EPHRIN signaling often regulates tissue shape. Indeed, recent evidence indicates that this signaling family is ancient and associated with the origin of multicellularity. Though extensively studied, our understanding of the signaling mechanisms employed by this large family of signaling proteins remains patchwork, and a truly "canonical" EPH/EPHRIN signal transduction pathway is not known and may not exist. Instead, several foundational evolutionarily conserved mechanisms are overlaid by a myriad of tissue -specific functions, though common themes emerge from these as well. Here, I review recent advances and the related contexts that have provided new understanding of the conserved and varied molecular and cellular mechanisms employed by EPH/EPHRIN signaling during development.
Collapse
Affiliation(s)
- Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, United States; Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA, United States; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
17
|
Schramm S, Jokisch M, Jöckel KH, Herring A, Keyvani K. Is kallikrein-8 a blood biomarker for detecting amnestic mild cognitive impairment? Results of the population-based Heinz Nixdorf Recall study. Alzheimers Res Ther 2021; 13:202. [PMID: 34930454 PMCID: PMC8690879 DOI: 10.1186/s13195-021-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Kallikrein-8 (KLK8) might be an early blood-biomarker of Alzheimer's disease (AD). We examined whether blood KLK8 is elevated in persons with amnestic mild cognitive impairment (aMCI) which is a precursor of AD, compared to cognitively unimpaired (CU) controls. METHODS Forty cases and 80 controls, matched by sex and age (± 3years), were participants of the longitudinal population-based Heinz Nixdorf Recall study (baseline: 2000-2003). Standardized cognitive performance was assessed 5 (T1) and 10 years after baseline (T2). Cases were CU at T1 and had incidental aMCI at T2. Controls were CU at T1 and T2. Blood KLK8 was measured at T2. Using multiple logistic regression the association between KLK8 in cases vs. controls was investigated by estimating odds ratios (OR) and 95% confidence intervals (95%CI), adjusted for inter-assay variability and freezing duration. Using receiver operating characteristic (ROC) analysis, the diagnostic accuracy of KLK8 was determined by estimating the area under the curve (AUC) and 95%CI (adjusted for inter-assay variability, freezing duration, age, sex). RESULTS Thirty-seven participants with aMCI vs. 72 CU (36.7%women, 71.0±8.0 (mean±SD) years) had valid KLK8 measurements. Mean KLK8 was higher in cases than in controls (911.6±619.8 pg/ml vs.783.1±633.0 pg/ml). Fully adjusted, a KLK8 increase of 500pg/ml was associated with a 2.68 (1.05-6.84) higher chance of having aMCI compared to being CU. With an AUC of 0.92 (0.86-0.97), blood KLK8 was a strong discriminator for aMCI and CU. CONCLUSION This is the first population-based study to demonstrate the potential clinical utility of blood KLK8 as a biomarker for incipient AD.
Collapse
Affiliation(s)
- Sara Schramm
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | - Martha Jokisch
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Davidson AM, Mejía-Gómez H, Jacobowitz M, Mostany R. Dendritic Spine Density and Dynamics of Layer 5 Pyramidal Neurons of the Primary Motor Cortex Are Elevated With Aging. Cereb Cortex 2021; 30:767-777. [PMID: 31298696 DOI: 10.1093/cercor/bhz124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
It is well established that motor impairment often occurs alongside healthy aging, leading to problems with fine motor skills and coordination. Although previously thought to be caused by neuronal death accumulating across the lifespan, it is now believed that the source of this impairment instead stems from more subtle changes in neural connectivity. The dendritic spine is a prime target for exploration of this problem because it is the postsynaptic partner of most excitatory synapses received by the pyramidal neuron, a cortical cell that carries much of the information processing load in the cerebral cortex. We repeatedly imaged the same dendrites in young adult and aged mouse motor cortex over the course of 1 month to look for differences in the baseline state of the dendritic spine population. These experiments reveal increased dendritic spine density, without obvious changes in spine clustering, occurring at the aged dendrite. Additionally, aged dendrites exhibit elevated spine turnover and stabilization alongside decreased long-term spine survival. These results suggest that at baseline the aged motor cortex may exist in a perpetual state of relative instability and attempts at compensation. This phenotype of aging may provide clues for future targets of aging-related motor impairment remediation.
Collapse
Affiliation(s)
- A M Davidson
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - H Mejía-Gómez
- Neuroscience Program, Brain Institute, Tulane University, New Orleans, LA 70118, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - M Jacobowitz
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - R Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
19
|
Semaphorin3F Drives Dendritic Spine Pruning Through Rho-GTPase Signaling. Mol Neurobiol 2021; 58:3817-3834. [PMID: 33856648 DOI: 10.1007/s12035-021-02373-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spines of cortical pyramidal neurons are initially overproduced then remodeled substantially in the adolescent brain to achieve appropriate excitatory balance in mature circuits. Here we investigated the molecular mechanism of developmental spine pruning by Semaphorin 3F (Sema3F) and its holoreceptor complex, which consists of immunoglobulin-class adhesion molecule NrCAM, Neuropilin-2 (Npn2), and PlexinA3 (PlexA3) signaling subunits. Structure-function studies of the NrCAM-Npn2 interface showed that NrCAM stabilizes binding between Npn2 and PlexA3 necessary for Sema3F-induced spine pruning. Using a mouse neuronal culture system, we identified a dual signaling pathway for Sema3F-induced pruning, which involves activation of Tiam1-Rac1-PAK1-3 -LIMK1/2-Cofilin1 and RhoA-ROCK1/2-Myosin II in dendritic spines. Inhibitors of actin remodeling impaired spine collapse in the cortical neurons. Elucidation of these pathways expands our understanding of critical events that sculpt neuronal networks and may provide insight into how interruptions to these pathways could lead to spine dysgenesis in diseases such as autism, bipolar disorder, and schizophrenia.
Collapse
|
20
|
Klein R, Pasterkamp RJ. Recent advances in inter-cellular interactions during neural circuit assembly. Curr Opin Neurobiol 2021; 69:25-32. [PMID: 33383489 DOI: 10.1016/j.conb.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Neural circuit assembly is regulated by inter-cellular interactions involving secreted and surface-tethered guidance molecules. Here, we review recent progress in our understanding of their mechanisms-of-action and biological effects. We discuss mechanisms through which the secreted cue Netrin-1 regulates neuron migration and highlight novel roles for axon-derived secreted guidance cues. We cover recent structural work at atomic resolution that provides new insights into the activation mechanisms of axon guidance receptors and into protein complexes containing cell adhesion molecules, such as Teneurin (Ten), Latrophilin (Lphn) and FLRT. Ten-Ten homophilic, Ten-Lphn heterophilic, and Ten-Lphn-FLRT tripartite complexes seem to elicit distinct context-dependent cellular responses. Seemingly opposite responses can also be triggered by the Eph/ephrin signaling system. Here, recent work provides a simple mechanism for the decision of forming a new synapse versus rejection of the pre-synaptic partner. These studies identify novel regulatory mechanisms and biological functions that will apply generally in developing neural systems.
Collapse
Affiliation(s)
- Rüdiger Klein
- Department Molecules-Signaling-Development, Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 2020; 109:103564. [DOI: 10.1016/j.mcn.2020.103564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
|
22
|
Freudenblum J, Meyer D, Kimmel RA. Inducible Mosaic Cell Labeling Provides Insights Into Pancreatic Islet Morphogenesis. Front Cell Dev Biol 2020; 8:586651. [PMID: 33102488 PMCID: PMC7546031 DOI: 10.3389/fcell.2020.586651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
Pancreatic islets, discrete microorgans embedded within the exocrine pancreas, contain beta cells which are critical for glucose homeostasis. Loss or dysfunction of beta cells leads to diabetes, a disease with expanding global prevalence, and for which regenerative therapies are actively being pursued. Recent efforts have focused on producing mature beta cells in vitro, but it is increasingly recognized that achieving a faithful three-dimensional islet structure is crucial for generating fully functional beta cells. Our current understanding of islet morphogenesis is far from complete, due to the deep internal location of the pancreas in mammalian models, which hampers direct visualization. Zebrafish is a model system well suited for studies of pancreas morphogenesis due to its transparency and the accessible location of the larval pancreas. In order to further clarify the cellular mechanisms of islet formation, we have developed new tools for in vivo visualization of single-cell dynamics. Our results show that clustering islet cells make contact and interconnect through dynamic actin-rich processes, move together while remaining in close proximity to the duct, and maintain high protrusive motility after forming clusters. Quantitative analyses of cell morphology and motility in 3-dimensions lays the groundwork to define therapeutically applicable factors responsible for orchestrating the morphogenic behaviors of coalescing endocrine cells.
Collapse
Affiliation(s)
- Julia Freudenblum
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Letellier M, Lagardère M, Tessier B, Janovjak H, Thoumine O. Optogenetic control of excitatory post-synaptic differentiation through neuroligin-1 tyrosine phosphorylation. eLife 2020; 9:e52027. [PMID: 32324534 PMCID: PMC7180054 DOI: 10.7554/elife.52027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroligins (Nlgns) are adhesion proteins mediating trans-synaptic contacts in neurons. However, conflicting results around their role in synaptic differentiation arise from the various techniques used to manipulate Nlgn expression level. Orthogonally to these approaches, we triggered here the phosphorylation of endogenous Nlgn1 in CA1 mouse hippocampal neurons using a photoactivatable tyrosine kinase receptor (optoFGFR1). Light stimulation for 24 hr selectively increased dendritic spine density and AMPA-receptor-mediated EPSCs in wild-type neurons, but not in Nlgn1 knock-out neurons or when endogenous Nlgn1 was replaced by a non-phosphorylatable mutant (Y782F). Moreover, light stimulation of optoFGFR1 partially occluded LTP in a Nlgn1-dependent manner. Combined with computer simulations, our data support a model by which Nlgn1 tyrosine phosphorylation promotes the assembly of an excitatory post-synaptic scaffold that captures surface AMPA receptors. This optogenetic strategy highlights the impact of Nlgn1 intracellular signaling in synaptic differentiation and potentiation, while enabling an acute control of these mechanisms.
Collapse
Affiliation(s)
- Mathieu Letellier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Matthieu Lagardère
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Béatrice Tessier
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash UniversityClaytonAustralia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash UniversityClaytonAustralia
| | - Olivier Thoumine
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297BordeauxFrance
| |
Collapse
|
24
|
Sanes JR, Zipursky SL. Synaptic Specificity, Recognition Molecules, and Assembly of Neural Circuits. Cell 2020; 181:536-556. [DOI: 10.1016/j.cell.2020.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
25
|
Dou X, Lee JY, Charness ME. Neuroprotective Peptide NAPVSIPQ Antagonizes Ethanol Inhibition of L1 Adhesion by Promoting the Dissociation of L1 and Ankyrin-G. Biol Psychiatry 2020; 87:656-665. [PMID: 31640849 PMCID: PMC7056560 DOI: 10.1016/j.biopsych.2019.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Ethanol causes developmental neurotoxicity partly by blocking adhesion mediated by the L1 neural cell adhesion molecule. This action of ethanol is antagonized by femtomolar concentrations of the neuropeptide NAPVSIPQ (NAP), an active fragment of the activity-dependent neuroprotective protein (ADNP). How femtomolar concentrations of NAP antagonize millimolar concentrations of ethanol is unknown. L1 sensitivity to ethanol requires L1 association with ankyrin-G; therefore, we asked whether NAP promotes the dissociation of ankyrin-G and L1. METHODS L1-ankyrin-G association was studied using immunoprecipitation, Western blotting, and immunofluorescence in NIH/3T3 cells transfected with wild-type and mutated human L1 genes. Phosphorylation of the ankyrin binding motif in the L1 cytoplasmic domain was studied after NAP treatment of intact cells, rat brain homogenates, and purified protein fragments. RESULTS Femtomolar concentrations of NAP stimulated the phosphorylation of tyrosine-1229 (L1-Y1229) at the ankyrin binding motif of the L1 cytoplasmic domain, leading to the dissociation of L1 from ankyrin-G and the spectrin-actin cytoskeleton. NAP increased the association of L1 and EphB2 and directly activated EphB2 phosphorylation of L1-Y1229. These actions of NAP were reproduced by P7A-NAP, a NAP variant that also blocks the teratogenic actions of ethanol, but not by I6A-NAP, which does not block ethanol teratogenesis as potently. Finally, knockdown of EPHB2 prevented ethanol inhibition of L1 adhesion in NIH/3T3 cells. CONCLUSIONS NAP potently antagonizes ethanol inhibition of L1 adhesion by stimulating EphB2 phosphorylation of L1-Y1229. EphB2 plays a critical role in synaptic development; its potent activation by NAP suggests that ADNP may mediate synaptic development partly by activating EphB2.
Collapse
Affiliation(s)
- Xiaowei Dou
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Jerry Y. Lee
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132
| | - Michael E. Charness
- Veterans Affairs Boston Healthcare System; Department of Neurology, Harvard Medical School, West Roxbury, MA 02132,Department of Neurology, Boston University, School of Medicine, Boston, MA 02119, To whom correspondence should be addressed. Michael E. Charness, M.D., VA Boston Healthcare System, 1400 VFW Parkway, West Roxbury, MA 02132, Phone: 857-203-6011,
| |
Collapse
|
26
|
McCormick LE, Gupton SL. Mechanistic advances in axon pathfinding. Curr Opin Cell Biol 2020; 63:11-19. [PMID: 31927278 DOI: 10.1016/j.ceb.2019.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The development of a functional nervous system entails establishing connectivity between appropriate synaptic partners. During axonal pathfinding, the developing axon navigates through the extracellular environment, extending toward postsynaptic targets. In the early 1900s, Ramon y Cajal suggested that the growth cone, a specialized, dynamic, and cytoskeletal-rich structure at the tip of the extending axon, is guided by chemical cues in the extracellular environment. A century of work supports this hypothesis and introduced myriad guidance cues and receptors that promote a variety of growth cone behaviors including extension, pause, collapse, retraction, turning, and branching. Here, we highlight research from the last two years regarding pathways implicated in axon pathfinding.
Collapse
Affiliation(s)
- Laura E McCormick
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Stephanie L Gupton
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
27
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
28
|
Lamprecht R. Regulation of signaling proteins in the brain by light. Prog Neurobiol 2019; 180:101638. [DOI: 10.1016/j.pneurobio.2019.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
|
29
|
Cook ZT, Brockway NL, Tobias ZJC, Pajarla J, Boardman IS, Ippolito H, Nkombo Nkoula S, Weissman TA. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context. Mol Biol Cell 2019; 30:491-505. [PMID: 30586321 PMCID: PMC6594444 DOI: 10.1091/mbc.e18-06-0340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fluorescent proteins are a powerful experimental tool, allowing the visualization of gene expression and cellular behaviors in a variety of systems. Multicolor combinations of fluorescent proteins, such as Brainbow, have expanded the range of possible research questions and are useful for distinguishing and tracking cells. The addition of a separately driven color, however, would allow researchers to report expression of a manipulated gene within the multicolor context to investigate mechanistic effects. A far-red or near-infrared protein could be particularly suitable in this context, as these can be distinguished spectrally from Brainbow. We investigated five far-red/near-infrared proteins in zebrafish: TagRFP657, mCardinal, miRFP670, iRFP670, and mIFP. Our results show that both mCardinal and iRFP670 are useful fluorescent proteins for zebrafish expression. We also introduce a new transgenic zebrafish line that expresses Brainbow under the control of the neuroD promoter. We demonstrate that mCardinal can be used to track the expression of a manipulated bone morphogenetic protein receptor within the Brainbow context. The overlay of near-infrared fluorescence onto a Brainbow background defines a clear strategy for future research questions that aim to manipulate or track the effects of specific genes within a population of cells that are delineated using multicolor approaches.
Collapse
Affiliation(s)
- Zoe T. Cook
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | | - Joy Pajarla
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | - Helen Ippolito
- Biology Department, Lewis and Clark College, Portland, OR 97219
| | | | | |
Collapse
|
30
|
Kilinc D. The Emerging Role of Mechanics in Synapse Formation and Plasticity. Front Cell Neurosci 2018; 12:483. [PMID: 30574071 PMCID: PMC6291423 DOI: 10.3389/fncel.2018.00483] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The regulation of synaptic strength forms the basis of learning and memory, and is a key factor in understanding neuropathological processes that lead to cognitive decline and dementia. While the mechanical aspects of neuronal development, particularly during axon growth and guidance, have been extensively studied, relatively little is known about the mechanical aspects of synapse formation and plasticity. It is established that a filamentous actin network with complex spatiotemporal behavior controls the dendritic spine shape and size, which is thought to be crucial for activity-dependent synapse plasticity. Accordingly, a number of actin binding proteins have been identified as regulators of synapse plasticity. On the other hand, a number of cell adhesion molecules (CAMs) are found in synapses, some of which form transsynaptic bonds to align the presynaptic active zone (PAZ) with the postsynaptic density (PSD). Considering that these CAMs are key components of cellular mechanotransduction, two critical questions emerge: (i) are synapses mechanically regulated? and (ii) does disrupting the transsynaptic force balance lead to (or exacerbate) synaptic failure? In this mini review article, I will highlight the mechanical aspects of synaptic structures-focusing mainly on cytoskeletal dynamics and CAMs-and discuss potential mechanoregulation of synapses and its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Devrim Kilinc
- INSERM U1167, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
31
|
Almeida RG. The Rules of Attraction in Central Nervous System Myelination. Front Cell Neurosci 2018; 12:367. [PMID: 30374292 PMCID: PMC6196289 DOI: 10.3389/fncel.2018.00367] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
The wrapping of myelin around axons is crucial for the development and function of the central nervous system (CNS) of vertebrates, greatly regulating the conduction of action potentials. Oligodendrocytes, the myelinating glia of the CNS, have an intrinsic tendency to wrap myelin around any permissive structure in vitro, but in vivo, myelin is targeted with remarkable specificity only to certain axons. Despite the importance of myelination, the mechanisms by which oligodendrocytes navigate a complex milieu that includes many types of cells and their cellular projections and select only certain axons for myelination remains incompletely understood. In this Mini-review, I highlight recent studies that shed light on the molecular and cellular rules governing CNS myelin targeting.
Collapse
Affiliation(s)
- Rafael Góis Almeida
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
32
|
Henderson NT, Dalva MB. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol Cell Neurosci 2018; 91:108-121. [PMID: 30031105 PMCID: PMC6159941 DOI: 10.1016/j.mcn.2018.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.
Collapse
Affiliation(s)
- Nathan T Henderson
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States
| | - Matthew B Dalva
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States.
| |
Collapse
|
33
|
Prigge CL, Kay JN. Dendrite morphogenesis from birth to adulthood. Curr Opin Neurobiol 2018; 53:139-145. [PMID: 30092409 DOI: 10.1016/j.conb.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/04/2023]
Abstract
Dendrites are the conduits for receiving (and in some cases transmitting) neural signals; their ability to do these jobs is a direct result of their morphology. Developmental patterning mechanisms are critical to ensuring concordance between dendritic form and function. This article reviews recent studies in vertebrate retina and brain that elucidate key strategies for dendrite functional maturation. Specific cellular and molecular signals control the initiation and elaboration of dendritic arbors, and facilitate integration of young neurons into particular circuits. In some cells, dendrite growth and remodeling continues into adulthood. Once formed, dendrites subdivide into compartments with distinct physiological properties that enable dendritic computations. Understanding these key stages of dendrite patterning will help reveal how circuit functional properties arise during development.
Collapse
Affiliation(s)
- Cameron L Prigge
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeremy N Kay
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
34
|
Blockus H, Polleux F. Circuit Wiring: Neurite Speed Dating versus Stable Synaptic Matchmaking. Dev Cell 2018; 45:423-424. [PMID: 29787706 DOI: 10.1016/j.devcel.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Understanding the mechanisms establishing the complex but precise pattern of connectivity characterizing neural circuits remains an immense challenge. In a recent issue of Neuron, Mao and colleagues (2018) provide new insights by showing that the activation kinetics of EphB2, a transmembrane receptor tyrosine kinase, control whether dendritic filopodia makes a synapse with candidate axons.
Collapse
Affiliation(s)
- Heike Blockus
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY 10027, USA.
| |
Collapse
|