1
|
Lee SYJ, Dallmann CJ, Cook A, Tuthill JC, Agrawal S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the Drosophila leg. Nat Commun 2025; 16:4105. [PMID: 40316553 PMCID: PMC12048489 DOI: 10.1038/s41467-025-59302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Somatosensory neurons provide the nervous system with information about mechanical forces originating inside and outside the body. Here, we use connectomics from electron microscopy to reconstruct and analyze neural circuits downstream of the largest somatosensory organ in the Drosophila leg, the femoral chordotonal organ (FeCO). The FeCO has been proposed to support both proprioceptive sensing of the fly's femur-tibia joint and exteroceptive sensing of substrate vibrations, but it was unknown which sensory neurons and central circuits contribute to each of these functions. We found that different subtypes of FeCO sensory neurons feed into distinct proprioceptive and exteroceptive pathways. Position- and movement-encoding FeCO neurons connect to local leg motor control circuits in the ventral nerve cord (VNC), indicating a proprioceptive function. In contrast, signals from the vibration-encoding FeCO neurons are integrated across legs and transmitted to mechanosensory regions in the brain, indicating an exteroceptive function. Overall, our analyses reveal the structure of specialized circuits for processing proprioceptive and exteroceptive signals from the fly leg. These findings are consistent with a growing body of work in invertebrate and vertebrate species demonstrating the existence of specialized limb mechanosensory pathways for sensing external vibrations.
Collapse
Affiliation(s)
- Su-Yee J Lee
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Chris J Dallmann
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- Neurobiology and Genetics, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Andrew Cook
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| | - John C Tuthill
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - Sweta Agrawal
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Mukunda CL, Sane SP. Encoding of antennal position and velocity by the Johnston's organ in hawkmoths. J Exp Biol 2025; 228:jeb249342. [PMID: 40099381 PMCID: PMC12079665 DOI: 10.1242/jeb.249342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Insect antennae function as versatile, multimodal sensory probes in diverse behavioural contexts. In addition to their primary role as olfactory organs, they serve essential mechanosensory functions across insects, including auditory perception, vestibular feedback, airflow detection, gravity sensing and tactile sensation. These diverse functions are facilitated by the mechanosensory Johnston's organ (JO), located at the joint between the flagellum and the pedicel (second antennal segment). This joint lacks muscles, which means that JOs can perceive only passive deflections of the flagellum. Earlier work that characterized the sensitivity and short response time of the JO sensory units in hawkmoths showed that their sensitivity to a broad frequency range is range-fractionated. This vastly expands the functional repertoire of the JO. However, it is not clear what components of antennal kinematics are encoded by the JO. Here, we conducted experiments to test the hypothesis that JO neurons encode the position and velocity of angular movements of the flagellum. We recorded intracellularly from the axons of primary sensory neurons of the JO while stimulating it with ramp-and-hold stimuli in which either the antennal position or antennal angular velocity was maintained at various constant values. Our study shows that JO neurons encode angular velocity and position of the antenna in their response. We also characterized the neural adaptation of the responses to angular velocities and positions. The majority of neurons were sensitive to a movement in the ventrad direction, in the direction of gravity. The adaptation and directional response properties give rise to a nonlinear hysteresis-like response. Together, these findings highlight the neurophysiological basis underlying the functional versatility of the JO.
Collapse
Affiliation(s)
- Chinmayee L. Mukunda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sanjay P. Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
3
|
Tao L, Ayambem D, Barranca VJ, Bhandawat V. Neurons Underlying Aggression-Like Actions That Are Shared by Both Males and Females in Drosophila. J Neurosci 2024; 44:e0142242024. [PMID: 39317475 PMCID: PMC11529818 DOI: 10.1523/jneurosci.0142-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
Aggression involves both sexually monomorphic and dimorphic actions. How the brain implements these two types of actions is poorly understood. We found that in Drosophila melanogaster, a set of neurons, which we call CL062, previously shown to mediate male aggression also mediate female aggression. These neurons elicit aggression acutely and without the presence of a target. Although the same set of actions is elicited in males and females, the overall behavior is sexually dimorphic. The CL062 neurons do not express fruitless, a gene required for sexual dimorphism in flies, and expressed by most other neurons important for controlling fly aggression. Connectomic analysis in a female electron microscopy dataset suggests that these neurons have limited connections with fruitless expressing neurons that have been shown to be important for aggression and signal to different descending neurons. Thus, CL062 is part of a monomorphic circuit for aggression that functions parallel to the known dimorphic circuits.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | | | | | - Vikas Bhandawat
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
4
|
Polat L, Harpaz T, Zaidel A. Rats rely on airflow cues for self-motion perception. Curr Biol 2024; 34:4248-4260.e5. [PMID: 39214088 DOI: 10.1016/j.cub.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Self-motion perception is a vital skill for all species. It is an inherently multisensory process that combines inertial (body-based) and relative (with respect to the environment) motion cues. Although extensively studied in human and non-human primates, there is currently no paradigm to test self-motion perception in rodents using both inertial and relative self-motion cues. We developed a novel rodent motion simulator using two synchronized robotic arms to generate inertial, relative, or combined (inertial and relative) cues of self-motion. Eight rats were trained to perform a task of heading discrimination, similar to the popular primate paradigm. Strikingly, the rats relied heavily on airflow for relative self-motion perception, with little contribution from the (limited) optic flow cues provided-performance in the dark was almost as good. Relative self-motion (airflow) was perceived with greater reliability vs. inertial. Disrupting airflow, using a fan or windshield, damaged relative, but not inertial, self-motion perception. However, whiskers were not needed for this function. Lastly, the rats integrated relative and inertial self-motion cues in a reliability-based (Bayesian-like) manner. These results implicate airflow as an important cue for self-motion perception in rats and provide a new domain to investigate the neural bases of self-motion perception and multisensory processing in awake behaving rodents.
Collapse
Affiliation(s)
- Lior Polat
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Harpaz
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
5
|
Gao T, Deng B, Wang J, Yi G. A linearized modeling framework for the frequency selectivity in neurons postsynaptic to vibration receptors. Cogn Neurodyn 2024; 18:2061-2075. [PMID: 39104690 PMCID: PMC11297856 DOI: 10.1007/s11571-024-10070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/11/2023] [Accepted: 01/16/2024] [Indexed: 08/07/2024] Open
Abstract
Vibration is an indispensable part of the tactile perception, which is encoded to oscillatory synaptic currents by receptors and transferred to neurons in the brain. The A2 and B1 neurons in the drosophila brain postsynaptic to the vibration receptors exhibit selective preferences for oscillatory synaptic currents with different frequencies, which is caused by the specific voltage-gated Na+ and K+ currents that both oppose the variations in membrane potential. To understand the peculiar role of the Na+ and K+ currents in shaping the filtering property of A2 and B1 neurons, we develop a linearized modeling framework that allows to systematically change the activation properties of these ionic channels. A data-driven conductance-based biophysical model is used to reproduce the frequency filtering of oscillatory synaptic inputs. Then, this data-driven model is linearized at the resting potential and its frequency response is calculated based on the transfer function, which is described by the magnitude-frequency curve. When we regulate the activation properties of the Na+ and K+ channels by changing the biophysical parameters, the dominant pole of the transfer function is found to be highly correlated with the fluctuation of the active current, which represents the strength of suppression of slow voltage variation. Meanwhile, the dominant pole also shapes the magnitude-frequency curve and further qualitatively determines the filtering property of the model. The transfer function provides a parsimonious description of how the biophysical parameters in Na+ and K+ channels change the inhibition of slow variations in membrane potential by Na+ and K+ currents, and further illustrates the relationship between the filtering properties and the activation properties of Na+ and K+ channels. This computational framework with the data-driven conductance-based biophysical model and its linearized model contributes to understanding the transmission and filtering of vibration stimulus in the tactile system.
Collapse
Affiliation(s)
- Tian Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
6
|
Eichler K, Hampel S, Alejandro-García A, Calle-Schuler SA, Santana-Cruz A, Kmecova L, Blagburn JM, Hoopfer ED, Seeds AM. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. eLife 2024; 12:RP87602. [PMID: 38634460 PMCID: PMC11026096 DOI: 10.7554/elife.87602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.
Collapse
Affiliation(s)
- Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Adrián Alejandro-García
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Steven A Calle-Schuler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Alexis Santana-Cruz
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Lucia Kmecova
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Jonathan M Blagburn
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Eric D Hoopfer
- Neuroscience Program, Carleton CollegeNorthfieldUnited States
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
7
|
Eichler K, Hampel S, Alejandro-García A, Calle-Schuler SA, Santana-Cruz A, Kmecova L, Blagburn JM, Hoopfer ED, Seeds AM. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528119. [PMID: 36798384 PMCID: PMC9934617 DOI: 10.1101/2023.02.11.528119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.
Collapse
Affiliation(s)
- Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Adrián Alejandro-García
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Steven A Calle-Schuler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Alexis Santana-Cruz
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Lucia Kmecova
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Neuroscience Program, Carleton College, Northfield, Minnesota
- Contributed equally
| | - Jonathan M Blagburn
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Eric D Hoopfer
- Neuroscience Program, Carleton College, Northfield, Minnesota
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
8
|
Ishida IG, Sethi S, Mohren TL, Abbott L, Maimon G. Neuronal calcium spikes enable vector inversion in the Drosophila brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.24.568537. [PMID: 38077032 PMCID: PMC10705278 DOI: 10.1101/2023.11.24.568537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A typical neuron signals to downstream cells when it is depolarized and firing sodium spikes. Some neurons, however, also fire calcium spikes when hyperpolarized. The function of such bidirectional signaling remains unclear in most circuits. Here we show how a neuron class that participates in vector computation in the fly central complex employs hyperpolarization-elicited calcium spikes to invert two-dimensional mathematical vectors. When cells switch from firing sodium to calcium spikes, this leads to a ~180° realignment between the vector encoded in the neuronal population and the fly's internal heading signal, thus inverting the vector. We show that the calcium spikes rely on the T-type calcium channel Ca-α1T, and argue, via analytical and experimental approaches, that these spikes enable vector computations in portions of angular space that would otherwise be inaccessible. These results reveal a seamless interaction between molecular, cellular and circuit properties for implementing vector math in the brain.
Collapse
Affiliation(s)
- Itzel G. Ishida
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Sachin Sethi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - Thomas L. Mohren
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| | - L.F. Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York NY, USA
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York NY, USA
| |
Collapse
|
9
|
Huang Z, Sun Z, Liu J, Ju X, Xia H, Yang Y, Chen K, Wang Q. Insect transient receptor potential vanilloid channels as potential targets of insecticides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104899. [PMID: 37531974 DOI: 10.1016/j.dci.2023.104899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Chordotonal organs are miniature sensory organs present in insects. Chordotonal organs depend on transient receptor potential (TRP) channels. Transient receptor potential vanilloid (TRPV) channels are the only TRPs identified that can act as targets of insecticides. By binding with TRPV channels, insecticides targeting the chordotonal organs trigger the inflow of calcium ions, resulting in abnormal function of the chordotonal organ to achieve the goal of eliminating pests. TRPV channels are highly expressed in various developmental stages and tissue parts of insects and play an important role in the whole life history of insects. In this review, we will discuss the structure and types of TRPV channels as well as their genetic relationships in different species. We also systematically reviewed the recent progress of TRPV channels as insecticide targets, demonstrating that TRPV channels can be used as the target of new high-efficiency insecticides.
Collapse
Affiliation(s)
- Zengqing Huang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jiayi Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
10
|
Aso Y, Yamada D, Bushey D, Hibbard KL, Sammons M, Otsuna H, Shuai Y, Hige T. Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement. eLife 2023; 12:e85756. [PMID: 37721371 PMCID: PMC10588983 DOI: 10.7554/elife.85756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/07/2023] [Indexed: 09/19/2023] Open
Abstract
How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daichi Yamada
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Daniel Bushey
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Megan Sammons
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel HillChapel HillUnited States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
11
|
Mugnaini M, Mehrotra D, Davoine F, Sharma V, Mendes AR, Gerhardt B, Concha-Miranda M, Brecht M, Clemens AM. Supra-orbital whiskers act as wind-sensing antennae in rats. PLoS Biol 2023; 21:e3002168. [PMID: 37410722 DOI: 10.1371/journal.pbio.3002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
We know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.5 m/s) and high (1.5 m/s) airflow. Whisker tips showed increasing movement from low to high airflow conditions, with all whisker tips moving during high airflow. Low airflow conditions-most similar to naturally occurring wind stimuli-engaged whisker tips differentially. Most whiskers moved little, but the long supra-orbital (lSO) whisker showed maximal displacement, followed by the α, β, and A1 whiskers. The lSO whisker differs from other whiskers in its exposed dorsal position, upward bending, length and thin diameter. Ex vivo extracted lSO whiskers also showed exceptional airflow displacement, suggesting whisker-intrinsic biomechanics mediate the unique airflow-sensitivity. Micro computed tomography (micro-CT) revealed that the ring-wulst-the follicle structure receiving the most sensitive afferents-was more complete/closed in the lSO, and other wind-sensitive whiskers, than in non-wind-sensitive whiskers, suggesting specialization of the supra-orbital for omni-directional sensing. We localized and targeted the cortical supra-orbital whisker representation in simultaneous Neuropixels recordings with D/E-row whisker barrels. Responses to wind-stimuli were stronger in the supra-orbital whisker representation than in D/E-row barrel cortex. We assessed the behavioral significance of whiskers in an airflow-sensing paradigm. We observed that rats spontaneously turn towards airflow stimuli in complete darkness. Selective trimming of wind-responsive whiskers diminished airflow turning responses more than trimming of non-wind-responsive whiskers. Lidocaine injections targeted to supra-orbital whisker follicles also diminished airflow turning responses compared to control injections. We conclude that supra-orbital whiskers act as wind antennae.
Collapse
Affiliation(s)
- Matias Mugnaini
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Dhruv Mehrotra
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute and Hospital, Montréal, Québec, Canada
| | - Federico Davoine
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Varun Sharma
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- School of Biological Sciences & Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Rita Mendes
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Champalimaud Neuroscience Programme; Champalimaud Foundation, Doca de Pedrouços, Lisbon, Portugal
| | - Ben Gerhardt
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- University of Edinburgh, Simons Initiative for the Developing Brain, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
12
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Steele TJ, Lanz AJ, Nagel KI. Olfactory navigation in arthropods. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:467-488. [PMID: 36658447 PMCID: PMC10354148 DOI: 10.1007/s00359-022-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Using odors to find food and mates is one of the most ancient and highly conserved behaviors. Arthropods from flies to moths to crabs use broadly similar strategies to navigate toward odor sources-such as integrating flow information with odor information, comparing odor concentration across sensors, and integrating odor information over time. Because arthropods share many homologous brain structures-antennal lobes for processing olfactory information, mechanosensors for processing flow, mushroom bodies (or hemi-ellipsoid bodies) for associative learning, and central complexes for navigation, it is likely that these closely related behaviors are mediated by conserved neural circuits. However, differences in the types of odors they seek, the physics of odor dispersal, and the physics of locomotion in water, air, and on substrates mean that these circuits must have adapted to generate a wide diversity of odor-seeking behaviors. In this review, we discuss common strategies and specializations observed in olfactory navigation behavior across arthropods, and review our current knowledge about the neural circuits subserving this behavior. We propose that a comparative study of arthropod nervous systems may provide insight into how a set of basic circuit structures has diversified to generate behavior adapted to different environments.
Collapse
Affiliation(s)
- Theresa J Steele
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
14
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. SAMPL is a high-throughput solution to study unconstrained vertical behavior in small animals. Cell Rep 2023; 42:112573. [PMID: 37267107 PMCID: PMC10592459 DOI: 10.1016/j.celrep.2023.112573] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
Balance and movement are impaired in many neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics but without the throughput and scalability necessary to screen candidate genes/potential therapeutics. Here, we present a scalable apparatus to measure posture and locomotion (SAMPL). SAMPL includes extensible hardware and open-source software with real-time processing and can acquire data from D. melanogaster, C. elegans, and D. rerio as they move vertically. Using SAMPL, we define how zebrafish balance as they navigate vertically and discover small but systematic variations among kinematic parameters between genetic backgrounds. We demonstrate SAMPL's ability to resolve differences in posture and navigation as a function of effect size and data gathered, providing key data for screens. SAMPL is therefore both a tool to model balance and locomotor disorders and an exemplar of how to scale apparatus to support screens.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Franziska Auer
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hannah Gelnaw
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Samantha N Davis
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kyla R Hamling
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christina E May
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Katherine I Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
15
|
Taisz I, Donà E, Münch D, Bailey SN, Morris BJ, Meechan KI, Stevens KM, Varela-Martínez I, Gkantia M, Schlegel P, Ribeiro C, Jefferis GSXE, Galili DS. Generating parallel representations of position and identity in the olfactory system. Cell 2023; 186:2556-2573.e22. [PMID: 37236194 PMCID: PMC10403364 DOI: 10.1016/j.cell.2023.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/07/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.
Collapse
Affiliation(s)
- István Taisz
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Erika Donà
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Billy J Morris
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Katie M Stevens
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marina Gkantia
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
16
|
Petrucco L, Lavian H, Wu YK, Svara F, Štih V, Portugues R. Neural dynamics and architecture of the heading direction circuit in zebrafish. Nat Neurosci 2023; 26:765-773. [PMID: 37095397 PMCID: PMC10166860 DOI: 10.1038/s41593-023-01308-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Animals generate neural representations of their heading direction. Notably, in insects, heading direction is topographically represented by the activity of neurons in the central complex. Although head direction cells have been found in vertebrates, the connectivity that endows them with their properties is unknown. Using volumetric lightsheet imaging, we find a topographical representation of heading direction in a neuronal network in the zebrafish anterior hindbrain, where a sinusoidal bump of activity rotates following directional swims of the fish and is otherwise stable over many seconds. Electron microscopy reconstructions show that, although the cell bodies are located in a dorsal region, these neurons arborize in the interpeduncular nucleus, where reciprocal inhibitory connectivity stabilizes the ring attractor network that encodes heading. These neurons resemble those found in the fly central complex, showing that similar circuit architecture principles may underlie the representation of heading direction across the animal kingdom and paving the way to an unprecedented mechanistic understanding of these networks in vertebrates.
Collapse
Affiliation(s)
- Luigi Petrucco
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilian University, Munich, Germany
| | - Hagar Lavian
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Munich, Germany
| | - Fabian Svara
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | | | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
17
|
Verbe A, Martinez D, Viollet S. Sensory fusion in the hoverfly righting reflex. Sci Rep 2023; 13:6138. [PMID: 37061548 PMCID: PMC10105705 DOI: 10.1038/s41598-023-33302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
We study how falling hoverflies use sensory cues to trigger appropriate roll righting behavior. Before being released in a free fall, flies were placed upside-down with their legs contacting the substrate. The prior leg proprioceptive information about their initial orientation sufficed for the flies to right themselves properly. However, flies also use visual and antennal cues to recover faster and disambiguate sensory conflicts. Surprisingly, in one of the experimental conditions tested, hoverflies flew upside-down while still actively flapping their wings. In all the other conditions, flies were able to right themselves using two roll dynamics: fast ([Formula: see text]50ms) and slow ([Formula: see text]110ms) in the presence of consistent and conflicting cues, respectively. These findings suggest that a nonlinear sensory integration of the three types of sensory cues occurred. A ring attractor model was developed and discussed to account for this cue integration process.
Collapse
Affiliation(s)
- Anna Verbe
- Aix-Marseille Université, CNRS, ISM, 13009, Marseille, France
- PNI, Princeton University, Washington Road, Princeton, NJ, 08540, USA
| | - Dominique Martinez
- Aix-Marseille Université, CNRS, ISM, 13009, Marseille, France
- Université de Lorraine, CNRS, LORIA, 54000, Nancy, France
| | | |
Collapse
|
18
|
Zhu Y, Auer F, Gelnaw H, Davis SN, Hamling KR, May CE, Ahamed H, Ringstad N, Nagel KI, Schoppik D. Scalable Apparatus to Measure Posture and Locomotion (SAMPL): a high-throughput solution to study unconstrained vertical behavior in small animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523102. [PMID: 36712122 PMCID: PMC9881893 DOI: 10.1101/2023.01.07.523102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to screen candidate genes / potential therapeutics. We present a powerful solution: a Scalable Apparatus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-time processing. We first demonstrate that SAMPL's hardware and acquisition software can acquire data from from D. melanogaster, C. elegans, and D. rerio as they move vertically. Next, we leverage SAMPL's throughput to rapidly (two weeks) gather a new zebrafish dataset. We use SAMPL's analysis and visualization tools to replicate and extend our current understanding of how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters vary systematically with genetic background, and (2) that such background variation is small relative to the changes that accompany early development. Finally, we simulate SAMPL's ability to resolve differences in posture or vertical navigation as a function of affect size and data gathered -- key data for screens. Taken together, our apparatus, data, and analysis provide a powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of how to scale hardware to enable the throughput necessary for screening.
Collapse
Affiliation(s)
- Yunlu Zhu
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Franziska Auer
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hannah Gelnaw
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Samantha N. Davis
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Kyla R. Hamling
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Christina E. May
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - Hassan Ahamed
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Niels Ringstad
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine
| | - Katherine I. Nagel
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
| | - David Schoppik
- Department. of Otolaryngology, New York University Grossman School of Medicine
- The Neuroscience Institute, New York University Grossman School of Medicine
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine
- Lead Contact
| |
Collapse
|
19
|
Harris SC, Dunn FA. Asymmetric retinal direction tuning predicts optokinetic eye movements across stimulus conditions. eLife 2023; 12:e81780. [PMID: 36930180 PMCID: PMC10023158 DOI: 10.7554/elife.81780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
Across species, the optokinetic reflex (OKR) stabilizes vision during self-motion. OKR occurs when ON direction-selective retinal ganglion cells (oDSGCs) detect slow, global image motion on the retina. How oDSGC activity is integrated centrally to generate behavior remains unknown. Here, we discover mechanisms that contribute to motion encoding in vertically tuned oDSGCs and leverage these findings to empirically define signal transformation between retinal output and vertical OKR behavior. We demonstrate that motion encoding in vertically tuned oDSGCs is contrast-sensitive and asymmetric for oDSGC types that prefer opposite directions. These phenomena arise from the interplay between spike threshold nonlinearities and differences in synaptic input weights, including shifts in the balance of excitation and inhibition. In behaving mice, these neurophysiological observations, along with a central subtraction of oDSGC outputs, accurately predict the trajectories of vertical OKR across stimulus conditions. Thus, asymmetric tuning across competing sensory channels can critically shape behavior.
Collapse
Affiliation(s)
- Scott C Harris
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Felice A Dunn
- Department of Ophthalmology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
20
|
Suver MP, Medina AM, Nagel KI. Active antennal movements in Drosophila can tune wind encoding. Curr Biol 2023; 33:780-789.e4. [PMID: 36731464 PMCID: PMC9992063 DOI: 10.1016/j.cub.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 02/04/2023]
Abstract
Insects use their antennae to smell odors,1,2 detect auditory cues,3,4 and sense mechanosensory stimuli such as wind5 and objects,6,7,8 frequently by combining sensory processing with active movements. Genetic access to antennal motor systems would therefore provide a powerful tool for dissecting the circuit mechanisms underlying active sensing, but little is known about how the most genetically tractable insect, Drosophila melanogaster, moves its antennae. Here, we use deep learning to measure how tethered Drosophila move their antennae in the presence of sensory stimuli and identify genetic reagents for controlling antennal movement. We find that flies perform both slow adaptive movements and fast flicking movements in response to wind-induced deflections, but not the attractive odor apple cider vinegar. Next, we describe four muscles in the first antennal segment that control antennal movements and identify genetic driver lines that provide access to two groups of antennal motor neurons and an antennal muscle. Through optogenetic inactivation, we provide evidence that antennal motor neurons contribute to active movements with different time courses. Finally, we show that activation of antennal motor neurons and muscles can adjust the gain and acuity of wind direction encoding by antennal displacement. Together, our experiments provide insight into the neural control of antennal movement and suggest that active antennal positioning in Drosophila may tune the precision of wind encoding.
Collapse
Affiliation(s)
- Marie P Suver
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA
| | - Ashley M Medina
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU Langone Medical Center, 435 E 30(th) St., New York, NY 10016, USA.
| |
Collapse
|
21
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Thiagarajan D, Eberl F, Veit D, Hansson BS, Knaden M, Sachse S. Aversive Bimodal Associations Differently Impact Visual and Olfactory Memory Performance in Drosophila. iScience 2022; 25:105485. [PMID: 36404920 PMCID: PMC9672954 DOI: 10.1016/j.isci.2022.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Animals form sensory associations and store them as memories to guide behavioral decisions. Although unimodal learning has been studied extensively in insects, it is important to explore sensory cues in combination because most behaviors require multimodal inputs. In our study, we optimized the T-maze to employ both visual and olfactory cues in a classical aversive learning paradigm in Drosophila melanogaster. In contrast to unimodal training, bimodal training evoked a significant short-term visual memory after a single training trial. Interestingly, the same protocol did not enhance short-term olfactory memory and even had a negative impact. However, compromised long-lasting olfactory memory significantly improved after bimodal training. Our study demonstrates that the effect of bimodal integration on learning is not always beneficial and is conditional upon the formed memory strengths. We postulate that flies utilize information on a need-to basis: bimodal training augments weakly formed memories while stronger associations are impacted differently.
Collapse
Affiliation(s)
- Devasena Thiagarajan
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Daniel Veit
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Silke Sachse
- Research Group Olfactory Coding, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
23
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
24
|
Baker CA, McKellar C, Pang R, Nern A, Dorkenwald S, Pacheco DA, Eckstein N, Funke J, Dickson BJ, Murthy M. Neural network organization for courtship-song feature detection in Drosophila. Curr Biol 2022; 32:3317-3333.e7. [PMID: 35793679 PMCID: PMC9378594 DOI: 10.1016/j.cub.2022.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Animals communicate using sounds in a wide range of contexts, and auditory systems must encode behaviorally relevant acoustic features to drive appropriate reactions. How feature detection emerges along auditory pathways has been difficult to solve due to challenges in mapping the underlying circuits and characterizing responses to behaviorally relevant features. Here, we study auditory activity in the Drosophila melanogaster brain and investigate feature selectivity for the two main modes of fly courtship song, sinusoids and pulse trains. We identify 24 new cell types of the intermediate layers of the auditory pathway, and using a new connectomic resource, FlyWire, we map all synaptic connections between these cell types, in addition to connections to known early and higher-order auditory neurons-this represents the first circuit-level map of the auditory pathway. We additionally determine the sign (excitatory or inhibitory) of most synapses in this auditory connectome. We find that auditory neurons display a continuum of preferences for courtship song modes and that neurons with different song-mode preferences and response timescales are highly interconnected in a network that lacks hierarchical structure. Nonetheless, we find that the response properties of individual cell types within the connectome are predictable from their inputs. Our study thus provides new insights into the organization of auditory coding within the Drosophila brain.
Collapse
Affiliation(s)
- Christa A Baker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Janelia Research Campus, HHMI, Ashburn, VA, USA
| | - Rich Pang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Computer Science, Princeton University, Princeton, NJ, USA
| | - Diego A Pacheco
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nils Eckstein
- Janelia Research Campus, HHMI, Ashburn, VA, USA; Institute of Neuroinformatics UZH/ETHZ, Zurich, Switzerland
| | - Jan Funke
- Janelia Research Campus, HHMI, Ashburn, VA, USA
| | | | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
25
|
Matheson AMM, Lanz AJ, Medina AM, Licata AM, Currier TA, Syed MH, Nagel KI. A neural circuit for wind-guided olfactory navigation. Nat Commun 2022; 13:4613. [PMID: 35941114 PMCID: PMC9360402 DOI: 10.1038/s41467-022-32247-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
To navigate towards a food source, animals frequently combine odor cues about source identity with wind direction cues about source location. Where and how these two cues are integrated to support navigation is unclear. Here we describe a pathway to the Drosophila fan-shaped body that encodes attractive odor and promotes upwind navigation. We show that neurons throughout this pathway encode odor, but not wind direction. Using connectomics, we identify fan-shaped body local neurons called h∆C that receive input from this odor pathway and a previously described wind pathway. We show that h∆C neurons exhibit odor-gated, wind direction-tuned activity, that sparse activation of h∆C neurons promotes navigation in a reproducible direction, and that h∆C activity is required for persistent upwind orientation during odor. Based on connectome data, we develop a computational model showing how h∆C activity can promote navigation towards a goal such as an upwind odor source. Our results suggest that odor and wind cues are processed by separate pathways and integrated within the fan-shaped body to support goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M M Matheson
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Department of Biological Sciences, Columbia University, 600 Sherman Fairchild Center, New York, NY, 10027, USA
| | - Aaron J Lanz
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Ashley M Medina
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Al M Licata
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
| | - Timothy A Currier
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA
- Center for Neural Science, NYU, New York, NY, 4 Washington Place, New York, NY, 10003, USA
- Department of Neurobiology, Stanford University, 299W. Campus Drive, Stanford, CA, 94305, USA
| | - Mubarak H Syed
- Department of Biology, 219 Yale Blvd NE, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katherine I Nagel
- Neuroscience Institute, NYU Medical Center, 435 E 30th St., New York, NY, 10016, USA.
| |
Collapse
|
26
|
Sorrells TR, Pandey A, Rosas-Villegas A, Vosshall LB. A persistent behavioral state enables sustained predation of humans by mosquitoes. eLife 2022; 11:e76663. [PMID: 35550041 PMCID: PMC9154740 DOI: 10.7554/elife.76663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Predatory animals pursue prey in a noisy sensory landscape, deciding when to continue or abandon their chase. The mosquito Aedes aegypti is a micropredator that first detects humans at a distance through sensory cues such as carbon dioxide. As a mosquito nears its target, it senses more proximal cues such as body heat that guide it to a meal of blood. How long the search for blood continues after initial detection of a human is not known. Here, we show that a 5 s optogenetic pulse of fictive carbon dioxide induced a persistent behavioral state in female mosquitoes that lasted for more than 10 min. This state is highly specific to females searching for a blood meal and was not induced in recently blood-fed females or in males, who do not feed on blood. In males that lack the gene fruitless, which controls persistent social behaviors in other insects, fictive carbon dioxide induced a long-lasting behavior response resembling the predatory state of females. Finally, we show that the persistent state triggered by detection of fictive carbon dioxide enabled females to engorge on a blood meal mimic offered up to 14 min after the initial 5 s stimulus. Our results demonstrate that a persistent internal state allows female mosquitoes to integrate multiple human sensory cues over long timescales, an ability that is key to their success as an apex micropredator of humans.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Anjali Pandey
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Adriana Rosas-Villegas
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
27
|
Tao L, Bhandawat V. Mechanisms of Variability Underlying Odor-Guided Locomotion. Front Behav Neurosci 2022; 16:871884. [PMID: 35600988 PMCID: PMC9115574 DOI: 10.3389/fnbeh.2022.871884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation. We review these sources of variability in the context of the Drosophila olfactory system. While these sources of variability are important, using a model for locomotion, we show that another important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| | - Vikas Bhandawat
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Flexible navigational computations in the Drosophila central complex. Curr Opin Neurobiol 2022; 73:102514. [DOI: 10.1016/j.conb.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022]
|
29
|
Multimodal Information Processing and Associative Learning in the Insect Brain. INSECTS 2022; 13:insects13040332. [PMID: 35447774 PMCID: PMC9033018 DOI: 10.3390/insects13040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Insect behaviors are a great indicator of evolution and provide useful information about the complexity of organisms. The realistic sensory scene of an environment is complex and replete with multisensory inputs, making the study of sensory integration that leads to behavior highly relevant. We summarize the recent findings on multimodal sensory integration and the behaviors that originate from them in our review. Abstract The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings.
Collapse
|
30
|
A pair of commissural command neurons induces Drosophila wing grooming. iScience 2022; 25:103792. [PMID: 35243214 PMCID: PMC8859526 DOI: 10.1016/j.isci.2022.103792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
In many behaviors such walking and swimming, animals need to coordinate their left and right limbs. In Drosophila, wing grooming can be induced by activation of sensory organs called campaniform sensilla. Flies usually clean one wing at a time, coordinating their left and right hind legs to sweep the dorsal and ventral surfaces of the wing. Here, we identify a pair of interneurons located in the ventral nerve cord that we name wing projection neurons 1 (wPN1) whose optogenetic activation induces wing grooming. Inhibition of wPN1 activity reduces wing grooming. They receive synaptic input from ipsilateral wing campaniform sensilla and wing mechanosensory bristle neurons, and they extend axonal arbors to the hind leg neuropils. Although they project contralaterally, their activation induces ipsilateral wing grooming. Anatomical and behavioral data support a role for wPN1 as command neurons coordinating both hind legs to work together to clean the stimulated wing. A pair of ventral cord neurons, wPN1, is sufficient and necessary for wing grooming wPN1 receive contacts from two types of wing mechanosensors wPN1 are cholinergic and have commissural projections Single-side activation of wPN1 drives both hind legs to clean the ipsilateral wing
Collapse
|
31
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
32
|
Karam CS, Williams BL, Jones SK, Javitch JA. The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in Drosophila. Neurochem Res 2022; 47:177-189. [PMID: 33630236 PMCID: PMC8384956 DOI: 10.1007/s11064-021-03275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
The dopamine transporter (DAT) mediates the inactivation of released dopamine (DA) through its reuptake, and thereby plays an important homeostatic role in dopaminergic neurotransmission. Amphetamines exert their stimulant effects by targeting DAT and inducing the reverse transport of DA, leading to a dramatic increase of extracellular DA. Animal models have proven critical to investigating the molecular and cellular mechanisms underlying transporter function and its modulation by psychostimulants such as amphetamine. Here we establish a behavioral model for amphetamine action using adult Drosophila melanogaster. We use it to characterize the effects of amphetamine on sleep and sleep architecture. Our data show that amphetamine induces hyperactivity and disrupts sleep in a DA-dependent manner. Flies that do not express a functional DAT (dDAT null mutants) have been shown to be hyperactive and to exhibit significantly reduced sleep at baseline. Our data show that, in contrast to its action in control flies, amphetamine decreases the locomotor activity of dDAT null mutants and restores their sleep by modulating distinct aspects of sleep structure. To begin to explore the circuitry involved in the actions of amphetamine on sleep, we also describe the localization of dDAT throughout the fly brain, particularly in neuropils known to regulate sleep. Together, our data establish Drosophila as a robust model for studying the regulatory mechanisms that govern DAT function and psychostimulant action.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Brenna L Williams
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Dr, Unit 19, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Tiraboschi E, Leonardelli L, Segata G, Haase A. Parallel Processing of Olfactory and Mechanosensory Information in the Honey Bee Antennal Lobe. Front Physiol 2021; 12:790453. [PMID: 34950059 PMCID: PMC8691435 DOI: 10.3389/fphys.2021.790453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
In insects, neuronal responses to clean air have so far been reported only episodically in moths. Here we present results obtained by fast two-photon calcium imaging in the honey bee Apis mellifera, indicating a substantial involvement of the antennal lobe, the first olfactory neuropil, in the processing of mechanical stimuli. Clean air pulses generate a complex pattern of glomerular activation that provides a code for stimulus intensity and dynamics with a similar level of stereotypy as observed for the olfactory code. Overlapping the air pulses with odor stimuli reveals a superposition of mechanosensory and odor response codes with high contrast. On the mechanosensitive signal, modulations were observed in the same frequency regime as the oscillatory motion of the antennae, suggesting a possible way to detect odorless airflow directions. The transduction of mechanosensory information via the insect antennae has so far been attributed primarily to Johnston's organ in the pedicel of the antenna. The possibility that the antennal lobe activation by clean air originates from Johnston's organ could be ruled out, as the signal is suppressed by covering the surfaces of the otherwise freely moving and bending antennae, which should leave Johnston's organ unaffected. The tuning curves of individual glomeruli indicate increased sensitivity at low-frequency mechanical oscillations as produced by the abdominal motion in waggle dance communication, suggesting a further potential function of this mechanosensory code. The discovery that the olfactory system can sense both odors and mechanical stimuli has recently been made also in mammals. The results presented here give hope that studies on insects can make a fundamental contribution to the cross-taxa understanding of this dual function, as only a few thousand neurons are involved in their brains, all of which are accessible by in vivo optical imaging.
Collapse
Affiliation(s)
- Ettore Tiraboschi
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Luana Leonardelli
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy.,Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
| | | | - Albrecht Haase
- Department of Physics, University of Trento, Trento, Italy.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| |
Collapse
|
34
|
Sun X, Yue S, Mangan M. How the insect central complex could coordinate multimodal navigation. eLife 2021; 10:e73077. [PMID: 34882094 PMCID: PMC8741217 DOI: 10.7554/elife.73077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.
Collapse
Affiliation(s)
- Xuelong Sun
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou UniversityGuangzhouChina
- Computational Intelligence Lab and L-CAS, School of Computer Science, University of LincolnLincolnUnited Kingdom
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
35
|
van Breugel F. A Nonlinear Observability Analysis of Ambient Wind Estimation with Uncalibrated Sensors, Inspired by Insect Neural Encoding. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2021; 2021:1399-1406. [PMID: 37786448 PMCID: PMC10545229 DOI: 10.1109/cdc45484.2021.9683219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Estimating the direction of ambient fluid flow is key for many flying or swimming animals and robots, but can only be accomplished through indirect measurements and active control. Recent work with tethered flying insects indicates that their sensory representation of orientation, apparent wind, direction of movement, and control is represented by a 2-dimensional angular encoding in the central brain. This representation simplifies sensory integration by projecting the direction (but not scale) of measurements with different units onto a universal polar coordinate frame. To align these angular measurements with one another and the motor system does, however, require a calibration of angular gain and offset for each sensor. This calibration could change with time due to changes in the environment or physical structure. The circumstances under which small robots and animals with angular sensors and changing calibrations could self-calibrate and estimate the direction of ambient fluid flow while moving remains an open question. Here, a methodical nonlinear observability analysis is presented to address this. The analysis shows that it is mathematically feasible to continuously estimate flow direction and perform self-calibrations by adopting frequent changes in course (or active prevention thereof) and orientation, and requires fusion and temporal differentiation of three sensory measurements: apparent flow, orientation (or its derivative), and direction of motion (or its derivative). These conclusions are consistent with the zigzagging trajectories exhibited by many plume tracking organisms, suggesting that perhaps flow estimation is a secondary driver of their trajectory structure.
Collapse
|
36
|
Hulse BK, Haberkern H, Franconville R, Turner-Evans D, Takemura SY, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife 2021; 10:e66039. [PMID: 34696823 PMCID: PMC9477501 DOI: 10.7554/elife.66039] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron microscopy-based connectome of the Drosophila CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.
Collapse
Affiliation(s)
- Brad K Hulse
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hannah Haberkern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Romain Franconville
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel Turner-Evans
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Shin-ya Takemura
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marcella Noorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Chuntao Dan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ann M Hermundstad
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
37
|
Lingenfelter B, Nag A, van Breugel F. Insect inspired vision-based velocity estimation through spatial pooling of optic flow during linear motion. BIOINSPIRATION & BIOMIMETICS 2021; 16:10.1088/1748-3190/ac1f7b. [PMID: 34412040 PMCID: PMC10561965 DOI: 10.1088/1748-3190/ac1f7b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Insects rely on the perception of image motion, or optic flow, to estimate their velocity relative to nearby objects. This information provides important sensory input for avoiding obstacles. However, certain behaviors, such as estimating the absolute distance to a landing target, accurately measuring absolute distance traveled, and estimating the ambient wind speed require decoupling optic flow into its component parts: absolute ground velocity and distance to nearby objects. Behavioral experiments suggest that insects perform these calculations, but their mechanism for doing so remains unknown. Here we present a novel algorithm that combines the geometry of dynamic forward motion with known features of insect visual processing to provide a hypothesis for how insects mightdirectlyestimate absolute ground velocity from a combination of optic flow and acceleration information. Our robotics-inspired-biology approach reveals three critical requirements. First, absolute ground velocity can only be directly estimated from optic flow during times of active acceleration and deceleration. Second, spatial pooling of optic flow across a receptive field helps to alleviate the effects of noise and/or low resolution visual systems. Third, averaging velocity estimates from multiple receptive fields further helps to reject noise. Our algorithm provides a hypothesis for how insects might estimate absolute velocity from vision during active maneuvers, and also provides a theoretical framework for designing fast analog circuitry for efficient state estimation that can be applied to insect-sized robots.
Collapse
Affiliation(s)
- Bryson Lingenfelter
- Department of Computer Science and Engineering, University of Nevada, Reno, United States of America
| | - Arunava Nag
- Department of Mechanical Engineering, University of Nevada, Reno, United States of America
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, United States of America
| |
Collapse
|
38
|
Goulard R, Buehlmann C, Niven JE, Graham P, Webb B. A unified mechanism for innate and learned visual landmark guidance in the insect central complex. PLoS Comput Biol 2021; 17:e1009383. [PMID: 34555013 PMCID: PMC8491911 DOI: 10.1371/journal.pcbi.1009383] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/05/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Insects can navigate efficiently in both novel and familiar environments, and this requires flexiblity in how they are guided by sensory cues. A prominent landmark, for example, can elicit strong innate behaviours (attraction or menotaxis) but can also be used, after learning, as a specific directional cue as part of a navigation memory. However, the mechanisms that allow both pathways to co-exist, interact or override each other are largely unknown. Here we propose a model for the behavioural integration of innate and learned guidance based on the neuroanatomy of the central complex (CX), adapted to control landmark guided behaviours. We consider a reward signal provided either by an innate attraction to landmarks or a long-term visual memory in the mushroom bodies (MB) that modulates the formation of a local vector memory in the CX. Using an operant strategy for a simulated agent exploring a simple world containing a single visual cue, we show how the generated short-term memory can support both innate and learned steering behaviour. In addition, we show how this architecture is consistent with the observed effects of unilateral MB lesions in ants that cause a reversion to innate behaviour. We suggest the formation of a directional memory in the CX can be interpreted as transforming rewarding (positive or negative) sensory signals into a mapping of the environment that describes the geometrical attractiveness (or repulsion). We discuss how this scheme might represent an ideal way to combine multisensory information gathered during the exploration of an environment and support optimal cue integration.
Collapse
Affiliation(s)
- Roman Goulard
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Cornelia Buehlmann
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| | - Jeremy E. Niven
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| | - Paul Graham
- School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, United Kingdom
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
39
|
Raithel CU, Gottfried JA. Using your nose to find your way: Ethological comparisons between human and non-human species. Neurosci Biobehav Rev 2021; 128:766-779. [PMID: 34214515 PMCID: PMC8359807 DOI: 10.1016/j.neubiorev.2021.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 02/08/2023]
Abstract
Olfaction is arguably the least valued among our sensory systems, and its significance for human behavior is often neglected. Spatial navigation represents no exception to the rule: humans are often characterized as purely visual navigators, a view that undermines the contribution of olfactory cues. Accordingly, research investigating whether and how humans use olfaction to navigate space is rare. In comparison, research on olfactory navigation in non-human species is abundant, and identifies behavioral strategies along with neural mechanisms characterizing the use of olfactory cues during spatial tasks. Using an ethological approach, our review draws from studies on olfactory navigation across species to describe the adaptation of strategies under the influence of selective pressure. Mammals interact with spatial environments by abstracting multisensory information into cognitive maps. We thus argue that olfactory cues, alongside inputs from other sensory modalities, play a crucial role in spatial navigation for mammalian species, including humans; that is, odors constitute one of the many building blocks in the formation of cognitive maps.
Collapse
Affiliation(s)
- Clara U Raithel
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA.
| | - Jay A Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Hamilton Walk, Stemmler Hall, Room G10, Philadelphia, PA, 19104, USA; Department of Psychology, School of Arts and Sciences, University of Pennsylvania, 425 S. University Avenue, Stephen A. Levin Building, Philadelphia, PA, 19104, USA
| |
Collapse
|
40
|
Jiang L, Litwin-Kumar A. Models of heterogeneous dopamine signaling in an insect learning and memory center. PLoS Comput Biol 2021; 17:e1009205. [PMID: 34375329 PMCID: PMC8354444 DOI: 10.1371/journal.pcbi.1009205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
The Drosophila mushroom body exhibits dopamine dependent synaptic plasticity that underlies the acquisition of associative memories. Recordings of dopamine neurons in this system have identified signals related to external reinforcement such as reward and punishment. However, other factors including locomotion, novelty, reward expectation, and internal state have also recently been shown to modulate dopamine neurons. This heterogeneity is at odds with typical modeling approaches in which these neurons are assumed to encode a global, scalar error signal. How is dopamine dependent plasticity coordinated in the presence of such heterogeneity? We develop a modeling approach that infers a pattern of dopamine activity sufficient to solve defined behavioral tasks, given architectural constraints informed by knowledge of mushroom body circuitry. Model dopamine neurons exhibit diverse tuning to task parameters while nonetheless producing coherent learned behaviors. Notably, reward prediction error emerges as a mode of population activity distributed across these neurons. Our results provide a mechanistic framework that accounts for the heterogeneity of dopamine activity during learning and behavior. Dopamine neurons across the animal kingdom are involved in the formation of associative memories. While numerous studies have recorded activity in these neurons related to external and predicted rewards, the diversity of these neurons’ activity and their tuning to non-reward-related quantities such as novelty, movement, and internal state have proved challenging to account for in traditional modeling approaches. Using a well-characterized model system for learning and memory, the mushroom body of Drosophila fruit flies, Jiang and Litwin-Kumar provide an account of the diversity of signals across dopamine neurons. They show that models optimized to solve tasks like those encountered by flies exhibit heterogeneous activity across dopamine neurons, but nonetheless this activity is sufficient for the system to solve the tasks. The models will be useful to generate testable hypotheses about dopamine neuron activity across different experimental conditions.
Collapse
Affiliation(s)
- Linnie Jiang
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- Neurosciences Program, Stanford University, Stanford, California, United States of America
| | - Ashok Litwin-Kumar
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
41
|
Breugel FV. Correlated decision making across multiple phases of olfactory guided search in Drosophila improves search efficiency. J Exp Biol 2021; 224:271881. [PMID: 34286337 DOI: 10.1242/jeb.242267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Nearly all motile organisms must search for food, often requiring multiple phases of exploration across heterogeneous environments. The fruit fly, Drosophila, has emerged as an effective model system for studying this behavior, however, little is known about the extent to which experiences at one point in their search might influence decisions in another. To investigate whether prior experiences impact flies' search behavior after landing, I tracked individually labelled fruit flies as they explored three odor emitting but food-barren objects. I found two features of their behavior that are correlated with the distance they travel on foot. First, flies walked larger distances when they approached the odor source, which they were almost twice as likely to do when landing on the patch farthest downwind. Computational fluid dynamics simulations suggest this patch may have had a stronger baseline odor, but only ∼15% higher than the other two. This small increase, together with flies' high olfactory sensitivity, suggests that perhaps their flight trajectory used to approach the patches plays a role. Second, flies also walked larger distances when the time elapsed since their last visit was longer. However, the correlation is subtle and subject to a large degree of variability. Using agent-based models, I show that this small correlation can increase search efficiency by 25-50% across many scenarios. Furthermore, my models provide mechanistic hypotheses explaining the variability through either a noisy or straightforward decision-making process. Surprisingly, these stochastic decision-making algorithms enhance search efficiency in challenging but realistic search scenarios compared to deterministic strategies.
Collapse
|
42
|
Hensgen R, Göthe J, Jahn S, Hümmert S, Schneider KL, Takahashi N, Pegel U, Gotthardt S, Homberg U. Organization and neural connections of the lateral complex in the brain of the desert locust. J Comp Neurol 2021; 529:3533-3560. [PMID: 34216020 DOI: 10.1002/cne.25209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/08/2022]
Abstract
The lateral complexes (LXs) are bilaterally paired neuropils in the insect brain that mediate communication between the central complex (CX), a brain center controlling spatial orientation, various sensory processing areas, and thoracic motor centers that execute locomotion. The LX of the desert locust consists of the lateral accessory lobe (LAL), and the medial and lateral bulb. We have analyzed the anatomical organization and the neuronal connections of the LX in the locust, to provide a basis for future functional studies. Reanalyzing the morphology of neurons connecting the CX and the LX revealed likely feedback loops in the sky compass network of the CX via connections in the gall of the LAL and a newly identified neuropil termed ovoid body. In addition, we characterized 16 different types of neuron that connect the LAL with other areas in the brain. Eight types of neuron provide information flow between both LALs, five types are LAL input neurons, and three types are LAL output neurons. Among these are neurons providing input from sensory brain areas such as the lobula and antennal neuropils. Brain regions most often targeted by LAL neurons are the posterior slope, the wedge, and the crepine. Two descending neurons with dendrites in the LAL were identified. Our data support and complement existing knowledge about how the LAL is embedded in the neuronal network involved in processing of sensory information and generation of appropriate behavioral output for goal-directed locomotion.
Collapse
Affiliation(s)
- Ronja Hensgen
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jonas Göthe
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Sophie Hümmert
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kim Lucia Schneider
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Naomi Takahashi
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uta Pegel
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Sascha Gotthardt
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
43
|
Abstract
Wind can act as an external cue to control an animal's heading. A new study reveals the neural mechanisms behind the wind information pathway in the insect brain.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Marie Dacke
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
44
|
Ni L. Genetic Transsynaptic Techniques for Mapping Neural Circuits in Drosophila. Front Neural Circuits 2021; 15:749586. [PMID: 34675781 PMCID: PMC8524129 DOI: 10.3389/fncir.2021.749586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
A neural circuit is composed of a population of neurons that are interconnected by synapses and carry out a specific function when activated. It is the structural framework for all brain functions. Its impairments often cause diseases in the nervous system. To understand computations and functions in a brain circuit, it is of crucial importance to identify how neurons in this circuit are connected. Genetic transsynaptic techniques provide opportunities to efficiently answer this question. These techniques label synapses or across synapses to unbiasedly label synaptic partners. They allow for mapping neural circuits with high reproducibility and throughput, as well as provide genetic access to synaptically connected neurons that enables visualization and manipulation of these neurons simultaneously. This review focuses on three recently developed Drosophila genetic transsynaptic tools for detecting chemical synapses, highlights their advantages and potential pitfalls, and discusses the future development needs of these techniques.
Collapse
|
45
|
Currier TA, Matheson AMM, Nagel KI. Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons. eLife 2020; 9:e61510. [PMID: 33377868 PMCID: PMC7793622 DOI: 10.7554/elife.61510] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Andrew MM Matheson
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
46
|
Kaushik PK, Olsson SB. Using virtual worlds to understand insect navigation for bio-inspired systems. CURRENT OPINION IN INSECT SCIENCE 2020; 42:97-104. [PMID: 33010476 DOI: 10.1016/j.cois.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Insects perform a wide array of intricate behaviors over large spatial and temporal scales in complex natural environments. A mechanistic understanding of insect cognition has direct implications on how brains integrate multimodal information and can inspire bio-based solutions for autonomous robots. Virtual Reality (VR) offers an opportunity assess insect neuroethology while presenting complex, yet controlled, stimuli. Here, we discuss the use of insects as inspiration for artificial systems, recent advances in different VR technologies, current knowledge gaps, and the potential for application of insect VR research to bio-inspired robots. Finally, we advocate the need to diversify our model organisms, behavioral paradigms, and embrace the complexity of the natural world. This will help us to uncover the proximate and ultimate basis of brain and behavior and extract general principles for common challenging problems.
Collapse
Affiliation(s)
- Pavan Kumar Kaushik
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| | - Shannon B Olsson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bengaluru, 560064, India.
| |
Collapse
|
47
|
Morimoto MM, Nern A, Zhao A, Rogers EM, Wong AM, Isaacson MD, Bock DD, Rubin GM, Reiser MB. Spatial readout of visual looming in the central brain of Drosophila. eLife 2020; 9:e57685. [PMID: 33205753 PMCID: PMC7744102 DOI: 10.7554/elife.57685] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/17/2020] [Indexed: 01/24/2023] Open
Abstract
Visual systems can exploit spatial correlations in the visual scene by using retinotopy, the organizing principle by which neighboring cells encode neighboring spatial locations. However, retinotopy is often lost, such as when visual pathways are integrated with other sensory modalities. How is spatial information processed outside of strictly visual brain areas? Here, we focused on visual looming responsive LC6 cells in Drosophila, a population whose dendrites collectively cover the visual field, but whose axons form a single glomerulus-a structure without obvious retinotopic organization-in the central brain. We identified multiple cell types downstream of LC6 in the glomerulus and found that they more strongly respond to looming in different portions of the visual field, unexpectedly preserving spatial information. Through EM reconstruction of all LC6 synaptic inputs to the glomerulus, we found that LC6 and downstream cell types form circuits within the glomerulus that enable spatial readout of visual features and contralateral suppression-mechanisms that transform visual information for behavioral control.
Collapse
Affiliation(s)
- Mai M Morimoto
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Allan M Wong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mathew D Isaacson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| |
Collapse
|
48
|
Hampel S, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. eLife 2020; 9:e59976. [PMID: 33103999 PMCID: PMC7652415 DOI: 10.7554/elife.59976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.
Collapse
Affiliation(s)
- Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Daichi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
49
|
Okubo TS, Patella P, D'Alessandro I, Wilson RI. A Neural Network for Wind-Guided Compass Navigation. Neuron 2020; 107:924-940.e18. [PMID: 32681825 PMCID: PMC7507644 DOI: 10.1016/j.neuron.2020.06.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 11/27/2022]
Abstract
Spatial maps in the brain are most accurate when they are linked to external sensory cues. Here, we show that the compass in the Drosophila brain is linked to the direction of the wind. Shifting the wind rightward rotates the compass as if the fly were turning leftward, and vice versa. We describe the mechanisms of several computations that integrate wind information into the compass. First, an intensity-invariant representation of wind direction is computed by comparing left-right mechanosensory signals. Then, signals are reformatted to reduce the coding biases inherent in peripheral mechanics, and wind cues are brought into the same circular coordinate system that represents visual cues and self-motion signals. Because the compass incorporates both mechanosensory and visual cues, it should enable navigation under conditions where no single cue is consistently reliable. These results show how local sensory signals can be transformed into a global, multimodal, abstract representation of space.
Collapse
Affiliation(s)
- Tatsuo S Okubo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Paola Patella
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
50
|
Bates AS, Schlegel P, Roberts RJV, Drummond N, Tamimi IFM, Turnbull R, Zhao X, Marin EC, Popovici PD, Dhawan S, Jamasb A, Javier A, Serratosa Capdevila L, Li F, Rubin GM, Waddell S, Bock DD, Costa M, Jefferis GSXE. Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. Curr Biol 2020; 30:3183-3199.e6. [PMID: 32619485 PMCID: PMC7443706 DOI: 10.1016/j.cub.2020.06.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.
Collapse
Affiliation(s)
- Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Nikolas Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Xincheng Zhao
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Patricia D Popovici
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Arian Jamasb
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Alexandre Javier
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford OX1 3SR, UK
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, VT 05405, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|