1
|
Jing F, Zhao M, Xiong H, Zeng X, Jiang J, Li T. Mechanisms underlying targeted mitochondrial therapy for programmed cardiac cell death. Front Physiol 2025; 16:1548194. [PMID: 40292006 PMCID: PMC12021874 DOI: 10.3389/fphys.2025.1548194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Heart diseases are common clinical diseases, such as cardiac fibrosis, heart failure, hypertension and arrhythmia. Globally, the incidence rate and mortality of heart diseases are increasing by years. The main mechanism of heart disease is related to the cellular state. Mitochondrion is the organ of cellular energy supply, participating in various signal transduction pathways and playing a vital role in the occurrence and development of heart disease. This review summarizes the cell death patterns and molecular mechanisms associated with heart disease and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Fengting Jing
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Hemin Xiong
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Zeng
- School of Continuing Education, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Wu T, Jiang J, Yang Y, Zhang J, Dai Z, Tao H. Toxicity mechanism of metal-organic framework HKUST-1 and its carbonized product to Tetradesmus obliquus: Physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110130. [PMID: 39848481 DOI: 10.1016/j.cbpc.2025.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging materials with unique structures and properties, which have been widely used in many fields due to their various advantages. However, compared with its popular application research, the ecological safety of MOFs has rarely been reported. In this paper, a biological model, the common freshwater green algae Tetradesmus obliquus (T. obliquus) was used to study the effects of the copper-based MOF HKUST-1 and its carbonation product DHKUST-1 on the physiology and transcription level of the algae. A suite of advanced material characterization techniques has been utilized to multidimensionally reveal the physicochemical properties of HKUST-1 and its carbonation product. Notably, DHKUST-1 exhibit higher stability than HKUST-1 in aqueous environments, with lower ion release. During a 96-h exposure experiment, relevant indicators such as algae density, chlorophyll-a content and antioxidant enzyme activities were measured. Additionally, an intriguing IBR model was employed to comprehensively assess the toxicity of HKUST-1 and DHKUST-1 on the antioxidant system of T. obliquus. Furthermore, an in-depth analysis was conducted on the differential gene expression changes in T. obliquus under 10 mg/L HKUST-1 stress, exploring the impact on various pathways within algal cells. Briefly, the toxicity mechanism of HKUST-1 on T. obliquus is multi-involved. The findings of this study are expected to provide important basic data and references for the evaluation of the ecological safety of MOFs.
Collapse
Affiliation(s)
- Tongtong Wu
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiahui Jiang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Yi Yang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Jiehe Zhang
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; School of Medical Imageology, Wannan Medical College, Wuhu 241002, China
| | - Zehong Dai
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Haisheng Tao
- School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Kors S, Schuster M, Maddison DC, Kilaru S, Schrader TA, Costello JL, Islinger M, Smith GA, Schrader M. New insights into the functions of ACBD4/5-like proteins using a combined phylogenetic and experimental approach across model organisms. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119843. [PMID: 39271061 DOI: 10.1016/j.bbamcr.2024.119843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Acyl-CoA binding domain-containing proteins (ACBDs) perform diverse but often uncharacterised functions linked to cellular lipid metabolism. Human ACBD4 and ACBD5 are closely related peroxisomal membrane proteins, involved in tethering of peroxisomes to the ER and capturing fatty acids for peroxisomal β-oxidation. ACBD5 deficiency causes neurological abnormalities including ataxia and white matter disease. Peroxisome-ER contacts depend on an ACBD4/5-FFAT motif, which interacts with ER-resident VAP proteins. As ACBD4/5-like proteins are present in most fungi and all animals, we combined phylogenetic analyses with experimental approaches to improve understanding of their evolution and functions. Notably, all vertebrates exhibit gene sequences for both ACBD4 and ACBD5, while invertebrates and fungi possess only a single ACBD4/5-like protein. Our analyses revealed alterations in domain structure and FFAT sequences, which help understanding functional diversification of ACBD4/5-like proteins. We show that the Drosophila melanogaster ACBD4/5-like protein possesses a functional FFAT motif to tether peroxisomes to the ER via Dm_Vap33. Depletion of Dm_Acbd4/5 caused peroxisome redistribution in wing neurons and reduced life expectancy. In contrast, the ACBD4/5-like protein of the filamentous fungus Ustilago maydis lacks a FFAT motif and does not interact with Um_Vap33. Loss of Um_Acbd4/5 resulted in an accumulation of peroxisomes and early endosomes at the hyphal tip. Moreover, lipid droplet numbers increased, and mitochondrial membrane potential declined, implying altered lipid homeostasis. Our findings reveal differences between tethering and metabolic functions of ACBD4/5-like proteins across evolution, improving our understanding of ACBD4/5 function in health and disease. The need for a unifying nomenclature for ACBD proteins is discussed.
Collapse
Affiliation(s)
- Suzan Kors
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Martin Schuster
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daniel C Maddison
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Sreedhar Kilaru
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Tina A Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gaynor A Smith
- School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Michael Schrader
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
4
|
Liu A, Wang J, Zhou A, Yang F, Pan X, She Z, Yue Z. Interaction between acid-tolerant alga Graesiella sp. MA1 and schwertmannite under long-term acidic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174017. [PMID: 38897455 DOI: 10.1016/j.scitotenv.2024.174017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Schwertmannite (Sch), a typical Fe(III)-oxyhydroxysulphate mineral, is the precipitation reservoir of toxic elements in acid mine drainage (AMD). Acid-tolerant microbes in AMD can participate in the microbe-mediated transformation of Sch, while Sch affects the physiological characteristics of these acid-tolerant microbes. Based on our discovery of algae and Sch enrichment in a contaminated acid mine pit lake, we predicted the interaction between algae and Sch when incubated together. The acid-tolerant alga Graesiella sp. MA1 was isolated from the pit-lake surface water of an acidic mine and incubated with different contents of Sch. Sch was detected as the main product at the end of 81 d; however, there was a weak transformation. The presence of dissolved Fe(II) could be largely attributed to the photoreduction dissolution of Sch, which was promoted by Graesiella sp. MA1. The adaptation and growth phases of Graesiella sp. MA1 differed under Sch stress. The photosynthetic and metabolic activities increased and decreased at the adaptation and growth phases, respectively. The MDA contents and antioxidant activity of SOD, APX, and GSH in algal cells gradually enhanced as the Sch treatment content increased, indicating a defense strategy of Graesiella sp. MA1. Metabolomic analysis revealed that Sch affected the expression of significant differential metabolites in Graesiella sp. MA1. Organic carboxylic acid substances were essentially up-regulated in response to Sch stress. They were abundant in the medium-Sch system with the highest Fe(III) reduction, capable of complexing Fe(III), and underwent photochemical reactions via photo-induced charge transfer. The significant up-regulation of reducing sugars revealed the high energy requirement of Graesiella sp. MA1 under Sch stress. And first enriched KEGG pathway demonstrated the importance of sugar metabolism in Graesiella sp. MA1. Data acquired in this study provide novel insights into extreme acid stress adaptation of acid-tolerant algae and Sch, contributing to furthering understanding of AMD environments.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
5
|
Li H, Yu H, Liu D, Liao P, Gao C, Zhou J, Mei J, Zong Y, Ding P, Yao M, Wang B, Lu Y, Huang Y, Gao Y, Zhang C, Zheng M, Gao J. Adenosine diphosphate released from stressed cells triggers mitochondrial transfer to achieve tissue homeostasis. PLoS Biol 2024; 22:e3002753. [PMID: 39163396 PMCID: PMC11335167 DOI: 10.1371/journal.pbio.3002753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cell-to-cell mitochondrial transfer has recently been shown to play a role in maintaining physiological functions of cell. We previously illustrated that mitochondrial transfer within osteocyte dendritic network regulates bone tissue homeostasis. However, the mechanism of triggering this process has not been explored. Here, we showed that stressed osteocytes in mice release adenosine diphosphate (ADP), resulting in triggering mitochondrial transfer from healthy osteocytes to restore the oxygen consumption rate (OCR) and to alleviate reactive oxygen species accumulation. Furthermore, we identified that P2Y2 and P2Y6 transduced the ADP signal to regulate osteocyte mitochondrial transfer. We showed that mitochondrial metabolism is impaired in aged osteocytes, and there were more extracellular nucleotides release into the matrix in aged cortical bone due to compromised membrane integrity. Conditioned medium from aged osteocytes triggered mitochondrial transfer between osteocytes to enhance the energy metabolism. Together, using osteocyte as an example, this study showed new insights into how extracellular ADP triggers healthy cells to rescue energy metabolism crisis in stressed cells via mitochondrial transfer in tissue homeostasis.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialun Mei
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Haynes PR, Pyfrom ES, Li Y, Stein C, Cuddapah VA, Jacobs JA, Yue Z, Sehgal A. A neuron-glia lipid metabolic cycle couples daily sleep to mitochondrial homeostasis. Nat Neurosci 2024; 27:666-678. [PMID: 38360946 PMCID: PMC11001586 DOI: 10.1038/s41593-023-01568-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Sleep is thought to be restorative to brain energy homeostasis, but it is not clear how this is achieved. We show here that Drosophila glia exhibit a daily cycle of glial mitochondrial oxidation and lipid accumulation that is dependent on prior wake and requires the Drosophila APOE orthologs NLaz and GLaz, which mediate neuron-glia lipid transfer. In turn, a full night of sleep is required for glial lipid clearance, mitochondrial oxidative recovery and maximal neuronal mitophagy. Knockdown of neuronal NLaz causes oxidative stress to accumulate in neurons, and the neuronal mitochondrial integrity protein, Drp1, is required for daily glial lipid accumulation. These data suggest that neurons avoid accumulation of oxidative mitochondrial damage during wake by using mitophagy and passing damage to glia in the form of lipids. We propose that a mitochondrial lipid metabolic cycle between neurons and glia reflects a fundamental function of sleep relevant for brain energy homeostasis.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Elana S Pyfrom
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yongjun Li
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carly Stein
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Vishnu Anand Cuddapah
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Jack A Jacobs
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhifeng Yue
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA.
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhang J, Tan YM, Li SR, Battini N, Zhang SL, Lin JM, Zhou CH. Discovery of benzopyridone cyanoacetates as new type of potential broad-spectrum antibacterial candidates. Eur J Med Chem 2024; 265:116107. [PMID: 38171147 DOI: 10.1016/j.ejmech.2023.116107] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Unique benzopyridone cyanoacetates (BCs) as new type of promising broad-spectrum antibacterial candidates were discovered with large potential to combat the lethal multidrug-resistant bacterial infections. Many prepared BCs showed broad antibacterial spectrum with low MIC values against the tested strains. Some highly active BCs exhibited rapid sterilization capacity, low resistant trend and good predictive pharmacokinetic properties. Furthermore, the highly active sodium BCs (NaBCs) displayed low hemolysis and cytotoxicity, and especially octyl NaBC 5g also showed in vivo potent anti-infective potential and appreciable pharmacokinetic profiles. A series of preliminary mechanistic explorations indicated that these active BCs could effectively eliminate bacterial biofilm and destroy membrane integrity, thus resulting in the leakage of bacterial cytoplasm. Moreover, their unique structures might further bind to intracellular DNA, DNA gyrase and topoisomerase IV through various direct noncovalent interactions to hinder bacterial reproduction. Meanwhile, the active BCs also induced bacterial oxidative stress and metabolic disturbance, thereby accelerating bacterial apoptosis. These results provided a bright hope for benzopyridone cyanoacetates as potential novel multitargeting broad-spectrum antibacterial candidates to conquer drug resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Scheckhuber CQ, Damián Ferrara R, Gómez-Montalvo J, Maciver SK, de Obeso Fernández Del Valle A. Oxidase enzyme genes are differentially expressed during Acanthamoeba castellanii encystment. Parasitol Res 2024; 123:116. [PMID: 38289423 DOI: 10.1007/s00436-024-08138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, N.L, Mexico
| | - Rebeca Damián Ferrara
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, N.L, Mexico
| | - Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, N.L, Mexico
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, Scotland, UK
| | | |
Collapse
|
9
|
Wang H, Yan X, Zhang Y, Wang P, Li J, Zhang X. Mitophagy in Alzheimer's Disease: A Bibliometric Analysis from 2007 to 2022. J Alzheimers Dis Rep 2024; 8:101-128. [PMID: 38312534 PMCID: PMC10836605 DOI: 10.3233/adr-230139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024] Open
Abstract
Background The investigation of mitophagy in Alzheimer's disease (AD) remains relatively underexplored in bibliometric analysis. Objective To delve into the progress of mitophagy, offering a comprehensive overview of research trends and frontiers for researchers. Methods Basic bibliometric information, targets, and target-drug-clinical trial-disease extracted from publications identified in the Web of Science Core Collection from 2007 to 2022 were assessed using bibliometric software. Results The study encompassed 5,146 publications, displaying a consistent 16-year upward trajectory. The United States emerged as the foremost contributor in publications, with the Journal of Alzheimer's Disease being the most prolific journal. P. Hemachandra Reddy, George Perry, and Xiongwei Zhu are the top 3 most prolific authors. PINK1 and Parkin exhibited an upward trend in the last 6 years. Keywords (e.g., insulin, aging, epilepsy, tauopathy, and mitochondrial quality control) have recently emerged as focal points of interest within the past 3 years. "Mitochondrial dysfunction" is among the top terms in disease clustering. The top 10 drugs/molecules (e.g., curcumin, insulin, and melatonin) were summarized, accompanied by their clinical trials and related targets. Conclusions This study presents a comprehensive overview of the mitophagy research landscape in AD over the past 16 years, underscoring mitophagy as an emerging molecular mechanism and a crucial focal point for potential drug in AD. This study pioneers the inclusion of targets and their correlations with drugs, clinical trials, and diseases in bibliometric analysis, providing valuable insights and inspiration for scholars and readers of JADR interested in understanding the potential mechanisms and clinical trials in AD.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodong Yan
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yiming Zhang
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Peifu Wang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Jilai Li
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Xia Zhang
- Department of Neurology, Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
- Department of Anatomy, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Wang H, Mu W, Wang S, Shi L, Ma T, Lu Y. Facile synthesis of NS-doped carbon dots as sensitive "ON-OFF-ON" fluorescent sensor for Cu 2+ and GSH detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123460. [PMID: 37778177 DOI: 10.1016/j.saa.2023.123460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
In this paper, a novel nitrogen and sulfur co-doped carbon quantum dots (NS-CQDs) were successfully prepared by a dehydration exothermic carbonization method. The NS-CQDs exhibited uniform size distribution, splendid photostability, and bright fluorescence emission with a fluorescence quantum yield of 24.1 %. It was found that Cu2+ could quench the fluorescence at 467 nm based on the static quenching effect when Cu2+ was added to the NS-CQDs. At this time, the fluorescence sensor changed from the "ON" state to the "OFF" state. When glutathione (GSH) was further introduced into the NS-CQDs/Cu2+ system, the fluorescence intensity of NS-CQDs was amazingly restored through the coordination reaction between GSH and Cu2+. The fluorescence sensor changed from the "OFF" state to the "ON" state. Therefore, NS-CQDs as an "ON-OFF-ON" fluorescence sensor was designed for sequential detection of Cu2+ and GSH. Furthermore, this study successfully demonstrated the sensor's ability to selectively detect Cu2+ and GSH within a wide concentration range. Specifically, the detection range for Cu2+ was 0.1 μM-200.0 μM with a detection limit of 0.07 μM, while the range for GSH was 0.6 μM-180.0 μM with a detection limit of 0.1 μM. Most importantly, the NS-CQDs nanosensor could reliably monitor Cu2+ and GSH levels in human serum samples, with significant potential for practical applications.
Collapse
Affiliation(s)
- Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Nationalities University, Xining 810007, China.
| | - Wencheng Mu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Siying Wang
- 96602 Military Hospital of Chinese People's Liberation Army, Kunming 650000, PR China
| | - Lin Shi
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Tianfeng Ma
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Yongchang Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, China; Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province, China; College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| |
Collapse
|
11
|
Wang L, Liu J, Chen F, Li G, Wang J, Chan DSH, Wong CY, Wang W, Leung CH. A Switch-On Affinity-Based Iridium(III) Conjugate Probe for Imaging Mitochondrial Glutathione S-Transferase in Breast Cancer Cells. Bioconjug Chem 2023; 34:1727-1737. [PMID: 37750807 DOI: 10.1021/acs.bioconjchem.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Glutathione S-transferase is heterogeneously expressed in breast cancer cells and is therefore emerging as a potential diagnostic biomarker for studying the heterogeneity of breast cancers. However, available fluorescent probes for GSTs depend heavily on GSTs-catalyzed glutathione (GSH) nucleophilic substitution reactions, making them susceptible to interference by the high concentration of nucleophilic species in the cellular environment. Moreover, the functions of subcellular GSTs are generally overlooked due to the lack of suitable luminescence probes. Herein, we report a highly selective affinity-based luminescence probe 1 for GST in breast cancer cells through tethering a GST inhibitor, ethacrynic acid, to an iridium(III) complex. Compared to activity-based probes which require the use of GSH, this probe could image GST-pi in the mitochondria by directly adducting to GST-pi (or potentially GST-pi/GS) in living cells. Probe 1 possesses desirable photophysical properties including a lifetime of 911 ns, a Stokes shift of 343 nm, and high photostability. The "turn on" luminescence mode of the probe enables highly selective detection of the GST with a limit of detection of 1.01 μM, while its long emission lifetime allows sensitive detection in organic dye-spiked autofluorescence samples by a time-resolved mode. The probe was further applied to specifically and quantitatively visualize MDA-MB-231 cells via specific binding to mitochondrial GST, and could differentiate breast cell lines based on their expression levels of GST. To the best of our knowledge, this probe is the first affinity-based iridium(III) imaging probe for the subcellular GST. Our work provides a valuable tool for unmasking the diverse roles of a subcellular GST in living systems, as well as for studying the heterogeneity of breast cancers.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | | | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Northwestern Polytechnical University Chongqing Technology Innovation Center, Chongqing 400000, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, 999078, China
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, 999078, China
| |
Collapse
|
12
|
Townsend LN, Clarke H, Maddison D, Jones KM, Amadio L, Jefferson A, Chughtai U, Bis DM, Züchner S, Allen ND, Van der Goes van Naters W, Peters OM, Smith GA. Cdk12 maintains the integrity of adult axons by suppressing actin remodeling. Cell Death Discov 2023; 9:348. [PMID: 37730761 PMCID: PMC10511712 DOI: 10.1038/s41420-023-01642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023] Open
Abstract
The role of cyclin-dependent kinases (CDKs) that are ubiquitously expressed in the adult nervous system remains unclear. Cdk12 is enriched in terminally differentiated neurons where its conical role in the cell cycle progression is redundant. We find that in adult neurons Cdk12 acts a negative regulator of actin formation, mitochondrial dynamics and neuronal physiology. Cdk12 maintains the size of the axon at sites proximal to the cell body through the transcription of homeostatic enzymes in the 1-carbon by folate pathway which utilize the amino acid homocysteine. Loss of Cdk12 leads to elevated homocysteine and in turn leads to uncontrolled F-actin formation and axonal swelling. Actin remodeling further induces Drp1-dependent fission of mitochondria and the breakdown of axon-soma filtration barrier allowing soma restricted cargos to enter the axon. We demonstrate that Cdk12 is also an essential gene for long-term neuronal survival and loss of this gene causes age-dependent neurodegeneration. Hyperhomocysteinemia, actin changes, and mitochondrial fragmentation are associated with several neurodegenerative conditions such as Alzheimer's disease and we provide a candidate molecular pathway to link together such pathological events.
Collapse
Affiliation(s)
- L N Townsend
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - H Clarke
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D Maddison
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - K M Jones
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - L Amadio
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - A Jefferson
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - U Chughtai
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - D M Bis
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - S Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - N D Allen
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - O M Peters
- School of Biosciences, Cardiff University, Cardiff, CF24 4HQ, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - G A Smith
- School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
13
|
Liu A, Zhang L, Zhou A, Yang F, Yue Z, Wang J. Metabolomic and physiological changes of acid-tolerant Graesiella sp. MA1 during long-term acid stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97209-97218. [PMID: 37589846 DOI: 10.1007/s11356-023-29295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Algae plays a significant role for the primary production in the oligotrophic ecosystems such as the acid mine pit lakes. Graesiella sp. MA1 was a new acid-tolerant photosynthetic protist isolated from an acid mine pit lake. To understand the acid responses of Graesiella sp. MA1, its physiological changes and metabolomics were studied during long-term acid stress. Photosynthetic pigments, soluble proteins, and antioxidant systems of Graesiella sp. MA1 cells displayed two phases, the adaptation phase and the growth phase. During the adaptation phase, both photosynthetic pigments and soluble proteins were inhibited, while antioxidant activity of SOD, APX, and GSH were promoted to response to the organism's damage. Metabolomics results revealed lipids and organic acids were abundant components in Graesiella sp. MA1 cells. In response to acid stress, the levels of acid-dependent resistant amino acids, including glutamate, aspartate, arginine, proline, lysine, and histidine, accumulated continuously to maintain orderly intracellular metabolic processes. In addition, fatty acids were mainly unsaturated, which could improve the fluidity of the cell membranes under acid stress. Metabolomic and physiological changes showed that Graesiella sp. MA1 had tolerance during long-term acid stress and the potential to be used as a bioremediation strain for the acidic wastewater.
Collapse
Affiliation(s)
- Azuan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Ao Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Fan Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
14
|
Maddison DC, Malik B, Amadio L, Bis-Brewer DM, Züchner S, Peters OM, Smith GA. COPI-regulated mitochondria-ER contact site formation maintains axonal integrity. Cell Rep 2023; 42:112883. [PMID: 37498742 PMCID: PMC10840514 DOI: 10.1016/j.celrep.2023.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Coat protein complex I (COPI) is best known for its role in Golgi-endoplasmic reticulum (ER) trafficking, responsible for the retrograde transport of ER-resident proteins. The ER is crucial to neuronal function, regulating Ca2+ homeostasis and the distribution and function of other organelles such as endosomes, peroxisomes, and mitochondria via functional contact sites. Here we demonstrate that disruption of COPI results in mitochondrial dysfunction in Drosophila axons and human cells. The ER network is also disrupted, and the neurons undergo rapid degeneration. We demonstrate that mitochondria-ER contact sites (MERCS) are decreased in COPI-deficient axons, leading to Ca2+ dysregulation, heightened mitophagy, and a decrease in respiratory capacity. Reintroducing MERCS is sufficient to rescue not only mitochondrial distribution and Ca2+ uptake but also ER morphology, dramatically delaying neurodegeneration. This work demonstrates an important role for COPI-mediated trafficking in MERC formation, which is an essential process for maintaining axonal integrity.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bilal Malik
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leonardo Amadio
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Owen M Peters
- UK Dementia Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gaynor A Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| |
Collapse
|
15
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
17
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
de Obeso Fernández Del Valle A, Scheckhuber CQ, Chavaro-Pérez DA, Ortega-Barragán E, Maciver SK. mRNA Sequencing Reveals Upregulation of Glutathione S-Transferase Genes during Acanthamoeba Encystation. Microorganisms 2023; 11:992. [PMID: 37110414 PMCID: PMC10142586 DOI: 10.3390/microorganisms11040992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Some members of the genus Acanthamoeba are facultative pathogens typically with a biphasic lifestyle: trophozoites and cysts. Acanthamoeba is capable of infecting the cornea, resulting in Acanthamoeba keratitis. The cyst is one of the key components for the persistence of infection. Gene expression during Acanthamoeba encystation showed an upregulation of glutathione S-transferase (GST) genes and other closely related proteins. mRNA sequencing showed GST, and five genes with similar sequences were upregulated after 24 h of inducing encystation. GST overexpression was verified with qPCR using the HPRT and the cyst-specific protein 21 genes as controls. The GST inhibitor ethacrynic acid was found to decrease cell viability by 70%. These results indicate a role of GST in successful encystation, possibly by maintaining redox balance. GST and associated processes could be targets for potential treatments alongside regular therapies to reduce relapses of Acanthamoeba infection.
Collapse
Affiliation(s)
- Alvaro de Obeso Fernández Del Valle
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Christian Quintus Scheckhuber
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - David Armando Chavaro-Pérez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Erandi Ortega-Barragán
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, UK
| |
Collapse
|
19
|
Zhang C, Qin Y, Deng C, Zhu N, Shi Y, Wang W, Qin L. GSH-specific fluorescent probe for sensing, bioimaging, rapid screening of natural inhibitor Celastrol and ccRCC theranostics. Anal Chim Acta 2023; 1248:340933. [PMID: 36813462 DOI: 10.1016/j.aca.2023.340933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
High level of intracellular glutathione (GSH) has been identified as a major barrier for cancer therapy. Therefore, effective regulation of GSH can be regarded as a novel approach for cancer therapy. In this study, an off-on fluorescent probe (NBD-P) is developed for selective and sensitive sensing GSH. NBD-P has a good cell membrane permeability that can be applied in bioimaging endogenous GSH in living cells. Moreover, the NBD-P probe is used to visualize GSH in animal models. In addition, a rapid drug screening method is successfully established using the fluorescent probe NBD-P. A potent natural inhibitor of GSH is identified as Celastrol from Tripterygium wilfordii Hook F, which effectively triggers mitochondrial apoptosis in clear cell renal cell carcinoma (ccRCC). More importantly, NBD-P can selectively respond to GSH fluctuations to distinguish cancer tissues from normal tissues. Thus, the present study provides insights into fluorescence probes for the screening GSH inhibitors and cancer diagnosis, as well as in-depth exploration of the anti-cancer effects of Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Yan Qin
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Changfeng Deng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
20
|
Li H, Deng C, Zhu N, Zhang C, Zeng Q, Qin L. An ultrasensitive GSH-specific fluorescent probe unveils celastrol-induced ccRCC ferroptosis. Bioorg Chem 2023; 134:106454. [PMID: 36889199 DOI: 10.1016/j.bioorg.2023.106454] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/27/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Glutathione (GSH) is closely related to the occurrence and development of tumors. The intracellular GSH levels are abnormally altered when tumor cells undergo programmed cell death. Therefore, real-time monitoring of the dynamic changes of intracellular GSH levels can better enable the early diagnosis of diseases and evaluate the effects of cell death-inducing drugs. In this study, a stable and highly selective fluorescent probe AR has been designed and synthesized for the fluorescence imaging and rapid detection of GSH in vitro and in vivo, as well as patient-derived tumor tissue. More importantly, the AR probe can be used to track changes in GSH levels and fluorescence imaging during the treatment of clear cell renal cell carcinoma (ccRCC) with celastrol (CeT) via inducing ferroptosis. These findings demonstrate that the developed fluorescent probe AR exhibits high selectivity and sensitivity, as well as good biocompatibility and long-term stability, which can be used to image endogenous GSH in living tumors and cells. Also, a significant decrease in GSH levels was observed by the fluorescent probe AR during the treatment of ccRCC with CeT-induced ferroptosis in vitro and in vivo. Overall, these findings will provide a novel strategy for celastrol targeting ferroptosis in the treatment of ccRCC and the application of fluorescent probes to help reveal the underlying mechanism of CeT in the treatment of ccRCC.
Collapse
Affiliation(s)
- Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Changfeng Deng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qing Zeng
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha 410208, China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Changsha, China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
21
|
Zhou J, Liu H, Zhang T, Wang Z, Zhang J, Lu Y, Li Z, Kong W, Zhao J. MORN4 protects cardiomyocytes against ischemic injury via MFN2-mediated mitochondrial dynamics and mitophagy. Free Radic Biol Med 2023; 196:156-170. [PMID: 36682578 DOI: 10.1016/j.freeradbiomed.2023.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China; Experimental Center for Medical Research, Weifang Medical University, Weifang, 261000, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jiaojiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
22
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Analysis of Mitochondrial Dynamics in Adult Drosophila Axons. Cold Spring Harb Protoc 2023; 2023:75-83. [PMID: 36180217 DOI: 10.1101/pdb.top107819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neuronal survival depends on the generation of ATP from an ever-changing mitochondrial network. This requires a fine balance between the constant degradation of damaged mitochondria, biogenesis of new mitochondria, movement along microtubules, dynamic processes, and adequate functional capacity to meet firing demands. The distribution of mitochondria needs to be tightly controlled throughout the entire neuron, including its projections. Axons in particular can be enormous structures compared to the size of the cell soma, and how mitochondria are maintained in these compartments is poorly defined. Mitochondrial dysfunction in neurons is associated with aging and neurodegenerative diseases, with the axon being preferentially vulnerable to destruction. Drosophila offer a unique way to study these organelles in fully differentiated adult neurons in vivo. Here, we briefly review the regulation of neuronal mitochondria in health, aging, and disease and introduce two methodological approaches to study mitochondrial dynamics and transport in axons using the Drosophila wing system.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
23
|
Maddison DC, Mattedi F, Vagnoni A, Smith GA. Clonal Imaging of Mitochondria in the Dissected Fly Wing. Cold Spring Harb Protoc 2023; 2023:100-105. [PMID: 36180212 DOI: 10.1101/pdb.prot108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mitochondria are essential for long-term neuronal function and survival. They are maintained in neurons, including long axonal stretches, through dynamic processes such as fission, fusion, biogenesis, and mitophagy. Here, we describe a protocol for the in-depth morphological analysis of individual mitochondria in axons in vivo. Most mitochondrial analysis of axons is currently performed in vitro with neurons in a developmental state. Therefore, an understanding of the axonal mitochondrial network during aging in fully differentiated neurons and the long-term consequence of gene knockout is often not developed. By using a clonal system paired with fluorescent genetically encoded markers in the Drosophila wing, we can visualize individual neurons (out of the whole bundle), including their long axons and the mitochondria that they contain, using confocal imaging. The clonal system also allows visualization of neurons with genetic perturbations that would otherwise be lethal if present in the whole organism, allowing investigators to bypass lethality. This protocol can further be adapted to measure the physiological and biochemical state of the mitochondria. Mitochondrial morphology and health in axons are tightly linked to aging, axon injury, and neurodegeneration; therefore, this method can be used to investigate mitochondrial dysfunction associated with novel genes or those linked to neurodegenerative disease and axonopathy.
Collapse
Affiliation(s)
- Daniel C Maddison
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, United Kingdom
| | - Gaynor Ann Smith
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
24
|
Minimal adaptation of the molecular regulators of mitochondrial dynamics in response to unilateral limb immobilisation and retraining in middle-aged men. Eur J Appl Physiol 2023; 123:249-260. [PMID: 36449098 DOI: 10.1007/s00421-022-05107-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity. METHODS Skeletal muscle biopsies were obtained from middle-aged males (n = 24, 49.4 ± 3.2 years) who underwent sequential 14-day interventions of unilateral leg immobilisation, ambulatory recovery, and resistance training. We quantified vastus lateralis gene and protein expression of key proteins involved in mitochondrial biogenesis, fusion, fission, and turnover in at baseline and following each intervention. RESULTS PGC1α mRNA decreased 40% following the immobilisation period, and was accompanied by a 56% reduction in MTFP1 mRNA, a factor involved in mitochondrial fission. Subtle mRNA decreases were also observed in TFAM (17%), DRP1 (15%), with contrasting increases in BNIP3L and PRKN following immobilisation. These changes in gene expression were not accompanied by changes in respective protein expression. Instead, we observed subtle decreases in NRF1 and MFN1 protein expression. Ambulatory recovery restored mRNA and protein expression to pre-intervention levels of all altered components, except for BNIP3L. Resistance training restored BNIP3L mRNA to pre-intervention levels, and further increased mRNA expression of OPA-1, MFN2, MTFP1, and PINK1 past baseline levels. CONCLUSION In healthy middle-aged males, 2 weeks of immobilisation did not induce dramatic differences in markers of mitochondria fission and autophagy. Restoration of ambulatory physical activity following the immobilisation period restored altered gene expression patterns to pre-intervention levels, with little evidence of further adaptation to resistance exercise training.
Collapse
|
25
|
Matoba K, Dohi E, Choi EY, Kano SI. Glutathione S-transferases Control astrocyte activation and neuronal health during neuroinflammation. Front Mol Biosci 2023; 9:1080140. [PMID: 36685285 PMCID: PMC9853189 DOI: 10.3389/fmolb.2022.1080140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
Glutathione S-transferases (GST) are phase II detoxification enzymes of xenobiotic metabolism and readily expressed in the brain. Nevertheless, the current knowledge about their roles in the brain is limited. We have recently discovered that GSTM1 promotes the production of pro-inflammatory mediators by astrocytes and enhances microglial activation during acute brain inflammation. Here we report that GSTM1 significantly affects TNF-α-dependent transcriptional program in astrocytes and modulates neuronal activities and stress during brain inflammation. We have found that a reduced expression of GSTM1 in astrocytes downregulates the expression of pro-inflammatory genes while upregulating the expression of genes involved in interferon responses and fatty acid metabolism. Our data also revealed that GSTM1 reduction in astrocytes increased neuronal stress levels, attenuating neuronal activities during LPS-induced brain inflammation. Furthermore, we found that GSTM1 expression increased in the frontal cortex and hippocampus of aging mice. Thus, this study has further advanced our understanding of the role of Glutathione S-transferases in astrocytes during brain inflammation and paved the way for future studies to determine the critical role of GSTM1 in reactive astrocyte responses in inflammation and aging.
Collapse
Affiliation(s)
- Ken Matoba
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Y. Choi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shin-ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
27
|
Ezaka M, Marutani E, Miyazaki Y, Kanemaru E, Selig MK, Boerboom SL, Ostrom KF, Stemmer-Rachamimov A, Bloch DB, Brenner GJ, Ohshima E, Ichinose F. Oral Administration of Glutathione Trisulfide Increases Reactive Sulfur Levels in Dorsal Root Ganglion and Ameliorates Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2022; 11:2122. [PMID: 36358494 PMCID: PMC9686764 DOI: 10.3390/antiox11112122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Peripheral neuropathy is a dose-limiting side effect of chemotherapy with paclitaxel. Paclitaxel-induced peripheral neuropathy (PIPN) is typically characterized by a predominantly sensory neuropathy presenting with allodynia, hyperalgesia and spontaneous pain. Oxidative mitochondrial damage in peripheral sensory neurons is implicated in the pathogenesis of PIPN. Reactive sulfur species, including persulfides (RSSH) and polysulfides (RSnH), are strong nucleophilic and electrophilic compounds that exert antioxidant effects and protect mitochondria. Here, we examined the potential neuroprotective effects of glutathione trisulfide (GSSSG) in a mouse model of PIPN. Intraperitoneal administration of paclitaxel at 4 mg/kg/day for 4 days induced mechanical allodynia and thermal hyperalgesia in mice. Oral administration of GSSSG at 50 mg/kg/day for 28 days ameliorated mechanical allodynia, but not thermal hyperalgesia. Two hours after oral administration, 34S-labeled GSSSG was detected in lumber dorsal root ganglia (DRG) and in the lumber spinal cord. In mice treated with paclitaxel, GSSSG upregulated expression of genes encoding antioxidant proteins in lumber DRG, prevented loss of unmyelinated axons and inhibited degeneration of mitochondria in the sciatic nerve. In cultured primary neurons from cortex and DRG, GSSSG mitigated paclitaxel-induced superoxide production, loss of axonal mitochondria, and axonal degeneration. These results indicate that oral administration of GSSSG mitigates PIPN by preventing axonal degeneration and mitochondria damage in peripheral sensory nerves. The findings suggest that administration of GSSSG may be an approach to the treatment or prevention of PIPN and other peripheral neuropathies.
Collapse
Affiliation(s)
- Mariko Ezaka
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophie L. Boerboom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina F. Ostrom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary J. Brenner
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Etsuo Ohshima
- Corporate Strategy Department, Kyowa Hakko Bio Co., Ltd., Tokyo 164-0001, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
28
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Goodman LD, Bellen HJ. Recent insights into the role of glia and oxidative stress in Alzheimer's disease gained from Drosophila. Curr Opin Neurobiol 2022; 72:32-38. [PMID: 34418791 PMCID: PMC8854453 DOI: 10.1016/j.conb.2021.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 02/03/2023]
Abstract
Here, we discuss findings made using Drosophila on Alzheimer's disease (AD) risk and progression. Recent studies have investigated the mechanisms underlying glia-mediated neuroprotection in AD. First, we discuss a novel mechanism of glial lipid droplet formation that occurs in response to elevated reactive oxygen species in neurons. The data suggest that disruptions to this process contribute to AD risk. We further discuss novel mechanistic insights into glia-mediated Aβ42-clearance made using the fly. Finally, we highlight work that provides evidence that the aberrant accumulation of reactive oxygen species in AD may not just be a consequence of disease but contribute to disease progression as well. Cumulatively, the discussed studies highlight recent, relevant discoveries in AD made using Drosophila.
Collapse
Affiliation(s)
- Lindsey D. Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA,CORRESPONDANCE
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Differential gene expression by RNA-seq during Alzheimer’s disease-like progression in the Drosophila melanogaster model. Neurosci Res 2022; 180:1-12. [DOI: 10.1016/j.neures.2022.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/10/2023]
|
31
|
Mattedi F, Chennell G, Vagnoni A. Detailed Imaging of Mitochondrial Transport and Precise Manipulation of Mitochondrial Function with Genetically Encoded Photosensitizers in Adult Drosophila Neurons. Methods Mol Biol 2022; 2431:385-407. [PMID: 35412288 DOI: 10.1007/978-1-0716-1990-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Precise distribution of mitochondria is essential for maintaining neuronal homeostasis. Although detailed mechanisms governing the transport of mitochondria have emerged, it is still poorly understood how the regulation of transport is coordinated in space and time within the physiological context of an organism. How alteration in mitochondrial functionality may trigger changes in organellar dynamics also remains unclear in this context. Therefore, the use of genetically encoded tools to perturb mitochondrial functionality in real time would be desirable. Here we describe methods to interfere with mitochondrial function with high spatiotemporal precision with the use of photosensitizers in vivo in the intact wing nerve of adult Drosophila. We also provide details on how to visualize the transport of mitochondria and to improve the quality of the imaging to attain super-resolution in this tissue.
Collapse
Affiliation(s)
- Francesca Mattedi
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - George Chennell
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Wohl Cellular Imaging Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
32
|
Fagan RR, Kearney PJ, Luethi D, Bolden NC, Sitte HH, Emery P, Melikian HE. Dopaminergic Ric GTPase activity impacts amphetamine sensitivity and sleep quality in a dopamine transporter-dependent manner in Drosophila melanogaster. Mol Psychiatry 2021; 26:7793-7802. [PMID: 34471250 PMCID: PMC8881384 DOI: 10.1038/s41380-021-01275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) is required for movement, sleep, and reward, and DA signaling is tightly controlled by the presynaptic DA transporter (DAT). Therapeutic and addictive psychostimulants, including methylphenidate (Ritalin; MPH), cocaine, and amphetamine (AMPH), markedly elevate extracellular DA via their actions as competitive DAT inhibitors (MPH, cocaine) and substrates (AMPH). DAT silencing in mice and invertebrates results in hyperactivity, reduced sleep, and blunted psychostimulant responses, highlighting DAT's essential role in DA-dependent behaviors. DAT surface expression is not static; rather it is dynamically regulated by endocytic trafficking. PKC-stimulated DAT endocytosis requires the neuronal GTPase, Rit2, and Rit2 silencing in mouse DA neurons impacts psychostimulant sensitivity. However, it is unknown whether or not Rit2-mediated changes in psychostimulant sensitivity are DAT-dependent. Here, we leveraged Drosophila melanogaster to test whether the Drosophila Rit2 ortholog, Ric, impacts dDAT function, trafficking, and DA-dependent behaviors. Orthologous to hDAT and Rit2, dDAT and Ric directly interact, and the constitutively active Ric mutant Q117L increased dDAT surface levels and function in cell lines and ex vivo Drosophila brains. Moreover, DAergic RicQ117L expression caused sleep fragmentation in a DAT-dependent manner but had no effect on total sleep and daily locomotor activity. Importantly, we found that Rit2 is required for AMPH-stimulated DAT internalization in mouse striatum, and that DAergic RicQ117L expression significantly increased Drosophila AMPH sensitivity in a DAT-dependent manner, suggesting a conserved impact of Ric-dependent DAT trafficking on AMPH sensitivity. These studies support that the DAT/Rit2 interaction impacts both baseline behaviors and AMPH sensitivity, potentially by regulating DAT trafficking.
Collapse
Affiliation(s)
- Rita R. Fagan
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Patrick J. Kearney
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Dino Luethi
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Nicholas C. Bolden
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Harald H. Sitte
- Medical University Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria, A-1090
| | - Patrick Emery
- Department of Neurobiology, UMASS Medical School, Worcester, MA
| | - Haley E. Melikian
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, UMASS Medical School, Worcester, MA,Address correspondence to: Haley Melikian, Ph.D., Department of Neurobiology, UMASS Medical School, LRB 726, 364 Plantation St., Worcester, MA 01605, 774-455-4308 (phone), 508-856-6266 (fax),
| |
Collapse
|
33
|
Palaniyappan L, Park MTM, Jeon P, Limongi R, Yang K, Sawa A, Théberge J. Is There a Glutathione Centered Redox Dysregulation Subtype of Schizophrenia? Antioxidants (Basel) 2021; 10:1703. [PMID: 34829575 PMCID: PMC8615159 DOI: 10.3390/antiox10111703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia continues to be an illness with poor outcome. Most mechanistic changes occur many years before the first episode of schizophrenia; these are not reversible after the illness onset. A developmental mechanism that is still modifiable in adult life may center on intracortical glutathione (GSH). A large body of pre-clinical data has suggested the possibility of notable GSH-deficit in a subgroup of patients with schizophrenia. Nevertheless, studies of intracortical GSH are not conclusive in this regard. In this review, we highlight the recent ultra-high field magnetic resonance spectroscopic studies linking GSH to critical outcome measures across various stages of schizophrenia. We discuss the methodological steps required to conclusively establish or refute the persistence of GSH-deficit subtype and clarify the role of the central antioxidant system in disrupting the brain structure and connectivity in the early stages of schizophrenia. We propose in-vivo GSH quantification for patient selection in forthcoming antioxidant trials in psychosis. This review offers directions for a promising non-dopaminergic early intervention approach in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Min Tae M. Park
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
| | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| | - Roberto Limongi
- Robarts Research Institute, Western University, London, ON N6A 5C1, Canada;
| | - Kun Yang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (K.Y.); (A.S.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jean Théberge
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; (M.T.M.P.); (J.T.)
- Department of Medical Biophysics, Western University, London, ON N6A 5C1, Canada;
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
34
|
Sinharoy P, McFarland KS, Majewska NI, Betenbaugh MJ, Handlogten MW. Redox as a bioprocess parameter: analytical redox quantification in biological therapeutic production. Curr Opin Biotechnol 2021; 71:49-54. [PMID: 34243034 DOI: 10.1016/j.copbio.2021.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Engineered Chinese hamster ovary (CHO) cells are the most widely utilized cell line for protein-based therapeutics production at industrial scales. Process development strategies which improve production capacity and quality are often implemented without an understanding of underlying intracellular changes. Intracellular redox conditions drive reactions in pathways critical to biologics production, including bioenergetic and biosynthetic pathways, necessitating methods to quantify redox-related changes. Advances in methods for analytical redox quantification presented here, including bioreactor probes, redox-targeted proteomics, genetically encoded redox-sensitive fluorescent proteins, and biochemical assays, are creating new opportunities to characterize the effects of redox in biologics production. Implementing these methods will lead to enhanced media formulations, improved bioprocess strategies, and new cell line engineering targets and ultimately develop redox into an optimizable bioprocess parameter to improve the yield and quality of these lifesaving medicines.
Collapse
Affiliation(s)
- Pritam Sinharoy
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA
| | - Kevin S McFarland
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Natalia I Majewska
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, USA
| | - Michael W Handlogten
- Cell Culture and Fermentation Sciences, BioPharmaceuticals Development, R&D, AstraZeneca, Gaithersburg, USA.
| |
Collapse
|
35
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Abstract
There is a tight association between mitochondrial dysfunction and neurodegenerative diseases and axons that are particularly vulnerable to degeneration, but how mitochondria are maintained in axons to support their physiology remains poorly defined. In an in vivo forward genetic screen for mutants altering axonal mitochondria, we identified tsg101 Neurons mutant for tsg101 exhibited an increase in mitochondrial number and decrease in mitochondrial size. TSG101 is best known as a component of the endosomal sorting complexes required for transport (ESCRT) complexes; however, loss of most other ESCRT components did not affect mitochondrial numbers or size, suggesting TSG101 regulates mitochondrial biology in a noncanonical, ESCRT-independent manner. The TSG101-mutant phenotype was not caused by lack of mitophagy, and we found that autophagy blockade was detrimental only to the mitochondria in the cell bodies, arguing mitophagy and autophagy are dispensable for the regulation of mitochondria number in axons. Interestingly, TSG101 mitochondrial phenotypes were instead caused by activation of PGC-1ɑ/Nrf2-dependent mitochondrial biogenesis, which was mTOR independent and TFEB dependent and required the mitochondrial fission-fusion machinery. Our work identifies a role for TSG101 in inhibiting mitochondrial biogenesis, which is essential for the maintenance of mitochondrial numbers and sizes, in the axonal compartment.
Collapse
|
37
|
Erchova I, Sun S, Votruba M. A Perspective on Accelerated Aging Caused by the Genetic Deficiency of the Metabolic Protein, OPA1. Front Neurol 2021; 12:641259. [PMID: 33927681 PMCID: PMC8076550 DOI: 10.3389/fneur.2021.641259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
Autosomal Dominant Optic Atrophy (ADOA) is an ophthalmological condition associated primarily with mutations in the OPA1 gene. It has variable onset, sometimes juvenile, but in other patients, the disease does not manifest until adult middle age despite the presence of a pathological mutation. Thus, individuals carrying mutations are considered healthy before the onset of clinical symptoms. Our research, nonetheless, indicates that on the cellular level pathology is evident from birth and mutant cells are different from controls. We argue that the adaptation and early recruitment of cytoprotective responses allows normal development and functioning but leads to an exhaustion of cellular reserves, leading to premature cellular aging, especially in neurons and skeletal muscle cells. The appearance of clinical symptoms, thus, indicates the overwhelming of natural cellular defenses and break-down of native protective mechanisms.
Collapse
Affiliation(s)
- Irina Erchova
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Shanshan Sun
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Marcela Votruba
- Mitochondria and Vision Lab, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom.,Cardiff Eye Unit, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
38
|
Mitochondrial hyperfusion: a friend or a foe. Biochem Soc Trans 2021; 48:631-644. [PMID: 32219382 DOI: 10.1042/bst20190987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The cellular mitochondrial population undergoes repeated cycles of fission and fusion to maintain its integrity, as well as overall cellular homeostasis. While equilibrium usually exists between the fission-fusion dynamics, their rates are influenced by organellar and cellular metabolic and pathogenic conditions. Under conditions of cellular stress, there is a disruption of this fission and fusion balance and mitochondria undergo either increased fusion, forming a hyperfused meshwork or excessive fission to counteract stress and remove damaged mitochondria via mitophagy. While some previous reports suggest that hyperfusion is initiated to ameliorate cellular stress, recent studies show its negative impact on cellular health in disease conditions. The exact mechanism of mitochondrial hyperfusion and its role in maintaining cellular health and homeostasis, however, remain unclear. In this review, we aim to highlight the different aspects of mitochondrial hyperfusion in either promoting or mitigating stress and also its role in immunity and diseases.
Collapse
|
39
|
Cantarero L, Juárez-Escoto E, Civera-Tregón A, Rodríguez-Sanz M, Roldán M, Benítez R, Hoenicka J, Palau F. Mitochondria-lysosome membrane contacts are defective in GDAP1-related Charcot-Marie-Tooth disease. Hum Mol Genet 2021; 29:3589-3605. [PMID: 33372681 PMCID: PMC7823109 DOI: 10.1093/hmg/ddaa243] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. GDAP1 is an atypical glutathione S-transferase (GST) of the outer mitochondrial membrane and the mitochondrial membrane contacts with the endoplasmic reticulum (MAMs). Here, we investigate the role of this GST in the autophagic flux and the membrane contact sites (MCSs) between mitochondria and lysosomes in the cellular pathophysiology of GDAP1 deficiency. We demonstrate that GDAP1 participates in basal autophagy and that its depletion affects LC3 and PI3P biology in autophagosome biogenesis and membrane trafficking from MAMs. GDAP1 also contributes to the maturation of lysosome by interacting with PYKfyve kinase, a pH-dependent master lysosomal regulator. GDAP1 deficiency causes giant lysosomes with hydrolytic activity, a delay in the autophagic lysosome reformation, and TFEB activation. Notably, we found that GDAP1 interacts with LAMP-1, which supports that GDAP1-LAMP-1 is a new tethering pair of mitochondria and lysosome membrane contacts. We observed mitochondria-lysosome MCSs in soma and axons of cultured mouse embryonic motor neurons and human neuroblastoma cells. GDAP1 deficiency reduces the MCSs between these organelles, causes mitochondrial network abnormalities, and decreases levels of cellular glutathione (GSH). The supply of GSH-MEE suffices to rescue the lysosome membranes and the defects of the mitochondrial network, but not the interorganelle MCSs nor early autophagic events. Overall, we show that GDAP1 enables the proper function of mitochondrial MCSs in both degradative and nondegradative pathways, which could explain primary insults in GDAP1-related CMT pathophysiology, and highlights new redox-sensitive targets in axonopathies where mitochondria and lysosomes are involved.
Collapse
Affiliation(s)
- Lara Cantarero
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Elena Juárez-Escoto
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Azahara Civera-Tregón
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - María Rodríguez-Sanz
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
| | - Mónica Roldán
- Confocal Microscopy Unit, IPER, Department of Genetic and Molecular Medicine, and Department of Pathology, Hospital Sant Joan de Déu, Barcelona 08950, Spain
| | - Raúl Benítez
- Biomedical Engineering Research Center (CREB), Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Automatic Control Department and Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, Barcelona 08028, Spain
| | - Janet Hoenicka
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
| | - Francesc Palau
- Department of Neurogenetics and Molecular Medicine—IPER, Institut de Recerca Sant Joan de Déu (IRSJD), Barcelona 08950, Spain
- Department of Neurogenetics and Molecular Medicine, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona 08950, Spain
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Barcelona 08950, Spain
- Department of General Internal Medicine, Clinic Institute of Medicine and Dermatology (ICMiD), Hospital Clínic, Barcelona 08036, Spain
- Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona 08036, Spain
| |
Collapse
|
40
|
The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021; 12:58. [PMID: 33431811 PMCID: PMC7801447 DOI: 10.1038/s41419-020-03355-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases, a subset of age-driven diseases, have been known to exhibit increased oxidative stress. The resultant increase in reactive oxygen species (ROS) has long been viewed as a detrimental byproduct of many cellular processes. Despite this, therapeutic approaches using antioxidants were deemed unsuccessful in circumventing neurodegenerative diseases. In recent times, it is widely accepted that these toxic by-products could act as secondary messengers, such as hydrogen peroxide (H2O2), to drive important signaling pathways. Notably, mitochondria are considered one of the major producers of ROS, especially in the production of mitochondrial H2O2. As a secondary messenger, cellular H2O2 can initiate redox signaling through oxidative post-translational modifications (oxPTMs) on the thiol group of the amino acid cysteine. With the current consensus that cellular ROS could drive important biological signaling pathways through redox signaling, researchers have started to investigate the role of cellular ROS in the pathogenesis of neurodegenerative diseases. Moreover, mitochondrial dysfunction has been linked to various neurodegenerative diseases, and recent studies have started to focus on the implications of mitochondrial ROS from dysfunctional mitochondria on the dysregulation of redox signaling. Henceforth, in this review, we will focus our attention on the redox signaling of mitochondrial ROS, particularly on mitochondrial H2O2, and its potential implications with neurodegenerative diseases.
Collapse
|
41
|
Marí M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial Glutathione: Recent Insights and Role in Disease. Antioxidants (Basel) 2020; 9:antiox9100909. [PMID: 32987701 PMCID: PMC7598719 DOI: 10.3390/antiox9100909] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are the main source of reactive oxygen species (ROS), most of them deriving from the mitochondrial respiratory chain. Among the numerous enzymatic and non-enzymatic antioxidant systems present in mitochondria, mitochondrial glutathione (mGSH) emerges as the main line of defense for maintaining the appropriate mitochondrial redox environment. mGSH’s ability to act directly or as a co-factor in reactions catalyzed by other mitochondrial enzymes makes its presence essential to avoid or to repair oxidative modifications that can lead to mitochondrial dysfunction and subsequently to cell death. Since mitochondrial redox disorders play a central part in many diseases, harboring optimal levels of mGSH is vitally important. In this review, we will highlight the participation of mGSH as a contributor to disease progression in pathologies as diverse as Alzheimer’s disease, alcoholic and non-alcoholic steatohepatitis, or diabetic nephropathy. Furthermore, the involvement of mitochondrial ROS in the signaling of new prescribed drugs and in other pathologies (or in other unmet medical needs, such as gender differences or coronavirus disease of 2019 (COVID-19) treatment) is still being revealed; guaranteeing that research on mGSH will be an interesting topic for years to come.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vicente Roca-Agujetas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Network Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain; (E.d.G.); (C.d.D.); (V.R.-A.); (B.C.); (A.T.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08036 Barcelona, Spain
- Correspondence: (M.M.); (A.M.); (A.C.); Tel.: +34-93-363-8300 (M.M.)
| |
Collapse
|
42
|
Amartuvshin O, Lin C, Hsu S, Kao S, Chen A, Tang W, Chou H, Chang D, Hsu Y, Hsiao B, Rastegari E, Lin K, Wang Y, Yao C, Chen G, Chen B, Hsu H. Aging shifts mitochondrial dynamics toward fission to promote germline stem cell loss. Aging Cell 2020; 19:e13191. [PMID: 32666649 PMCID: PMC7431834 DOI: 10.1111/acel.13191] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.
Collapse
Affiliation(s)
- Oyundari Amartuvshin
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Shao‐Chun Hsu
- Imaging Core Facility at the Institute of Cellular and Organismic BiologyAcademia SinicaTaipeiTaiwan
| | - Shih‐Han Kao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- Present address:
Institute of ChemistryAcademia SinicaTaipeiTaiwan
| | - Alvin Chen
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Wei‐Chun Tang
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Han‐Lin Chou
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Dong‐Lin Chang
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Yen‐Yang Hsu
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | - Bai‐Shiou Hsiao
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
- The Affiliated Senior High School of National Taiwan Normal UniversityTaipeiTaiwan
| | | | - Kun‐Yang Lin
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Yu‐Ting Wang
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| | - Chi‐Kuang Yao
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Guang‐Chao Chen
- Institute of Biological ChemistryAcademia SinicaTaipeiTaiwan
| | - Bi‐Chang Chen
- Research Center for Applied ScienceAcademia SinicaTaipeiTaiwan
| | - Hwei‐Jan Hsu
- Molecular and Cell BiologyTaiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
- Graduate Institute of Life ScienceNational Defense Medical CenterTaipeiTaiwan
- Institute of Cellular and Organismic BiologyTaipeiTaiwan
| |
Collapse
|
43
|
Sabouny R, Shutt TE. Reciprocal Regulation of Mitochondrial Fission and Fusion. Trends Biochem Sci 2020; 45:564-577. [DOI: 10.1016/j.tibs.2020.03.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
|
44
|
Mattedi F, Vagnoni A. Temporal Control of Axonal Transport: The Extreme Case of Organismal Ageing. Front Cell Neurosci 2019; 13:393. [PMID: 31555095 PMCID: PMC6716446 DOI: 10.3389/fncel.2019.00393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023] Open
Abstract
A fundamental question in cell biology is how cellular components are delivered to their destination with spatial and temporal precision within the crowded cytoplasmic environment. The long processes of neurons represent a significant spatial challenge and make these cells particularly dependent on mechanisms for long-range cytoskeletal transport of proteins, RNA and organelles. Although many studies have substantiated a role for defective transport of axonal cargoes in the pathogenesis of neurodevelopmental and neurodegenerative diseases, remarkably little is known about how transport is regulated throughout ageing. The scale of the challenge posed by ageing is considerable because, in this case, the temporal regulation of transport is ultimately dictated by the length of organismal lifespan, which can extend to days, years or decades. Recent methodological advances to study live axonal transport during ageing in situ have provided new tools to scratch beneath the surface of this complex problem and revealed that age-dependent decline in the transport of mitochondria is a common feature across different neuronal populations of several model organisms. In certain instances, the molecular pathways that affect transport in ageing animals have begun to emerge. However, the functional implications of these observations are still not fully understood. Whether transport decline is a significant determinant of neuronal ageing or a mere consequence of decreased cellular fitness remains an open question. In this review, we discuss the latest developments in axonal trafficking in the ageing nervous system, along with the early studies that inaugurated this new area of research. We explore the possibility that the interplay between mitochondrial function and motility represents a crucial driver of ageing in neurons and put forward the hypothesis that declining axonal transport may be legitimately considered a hallmark of neuronal ageing.
Collapse
Affiliation(s)
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King’s College London, London, United Kingdom
| |
Collapse
|
45
|
Melrose J. The Glucosinolates: A Sulphur Glucoside Family of Mustard Anti-Tumour and Antimicrobial Phytochemicals of Potential Therapeutic Application. Biomedicines 2019; 7:biomedicines7030062. [PMID: 31430999 PMCID: PMC6784281 DOI: 10.3390/biomedicines7030062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
This study reviewed aspects of the biology of two members of the glucosinolate family, namely sinigrin and glucoraphanin and their anti-tumour and antimicrobial properties. Sinigrin and glucoraphanin are converted by the β-sulphoglucosidase myrosinase or the gut microbiota into their bioactive forms, allyl isothiocyanate (AITC) and sulphoraphanin (SFN) which constitute part of a sophisticated defence system plants developed over several hundred million years of evolution to protect them from parasitic attack from aphids, ticks, bacteria or nematodes. Delivery of these components from consumption of cruciferous vegetables rich in the glucosinolates also delivers many other members of the glucosinolate family so the dietary AITCs and SFN do not act in isolation. In vitro experiments with purified AITC and SFN have demonstrated their therapeutic utility as antimicrobials against a range of clinically important bacteria and fungi. AITC and SFN are as potent as Vancomycin in the treatment of bacteria listed by the World Health Organisation as antibiotic-resistant “priority pathogens” and also act as anti-cancer agents through the induction of phase II antioxidant enzymes which inactivate potential carcinogens. Glucosinolates may be useful in the treatment of biofilms formed on medical implants and catheters by problematic pathogenic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus and are potent antimicrobials against a range of clinically important bacteria and fungi. The glucosinolates have also been applied in the prevention of bacterial and fungal spoilage of food products in advanced atmospheric packaging technology which improves the shelf-life of these products.
Collapse
Affiliation(s)
- James Melrose
- Honorary Senior Research Associate, Raymond Purves Bone and Joint Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia.
- Adjunct Professor, Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- Sydney Medical School, Northern, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|