1
|
Yadav G, Vassiliadis P, Dubuc C, Hummel FC, Derosiere G, Duque J. Effect of Extrinsic Reward on Motor Plasticity during Skill Learning. eNeuro 2025; 12:ENEURO.0410-24.2025. [PMID: 40139803 PMCID: PMC11984755 DOI: 10.1523/eneuro.0410-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025] Open
Abstract
Human motor skill acquisition is improved by performance feedback, and coupling such feedback with extrinsic reward (such as money) can enhance skill learning. However, the neurophysiology underlying such behavioral effect is unclear. To bridge this gap, we assessed the effects of reward on multiple forms of motor plasticity during skill learning. Sixty-five healthy participants divided into three groups performed a pinch-grip skill task with sensory feedback only, sensory and reinforcement feedback, or both feedback coupled with an extrinsic monetary reward during skill training. To probe motor plasticity, we applied transcranial magnetic stimulation at rest, on the left primary motor cortex before, at an early-training time point, and after training in the three groups and measured motor-evoked potentials from task-relevant muscle of the right arm. This allowed us to evaluate the amplitude and variability of corticospinal output, GABAergic short-intracortical inhibition, and use-dependent plasticity before training and at two additional time points (early and end training). At the behavioral level, monetary reward accelerated skill learning. In parallel, corticospinal output became less variable early on during training in the presence of extrinsic reward. Interestingly, this effect was particularly pronounced for participants who were more sensitive to reward, as evaluated in an independent questionnaire. Other measures of motor excitability remained comparable across groups. These findings highlight that a mechanism underlying the benefit of reward on motor skill learning is the fine-tuning of early-training resting-state corticospinal variability.
Collapse
Affiliation(s)
- Goldy Yadav
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Pierre Vassiliadis
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion 1951, Switzerland
| | - Cecile Dubuc
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva 1202, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), EPFL Valais, Clinique Romande de Réadaptation, Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva 1202, Switzerland
| | - Gerard Derosiere
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon (CRNL), U1028 UMR5292, Impact Team, Bron F-69500, France
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
2
|
Viaro R, Bernardi D, Maggiolini E, D'Ausilio A, Ferroni CG, Parmiani P, Fadiga L. Differential motor neuron activity in rats during successful and failed grasping. Cereb Cortex 2025; 35:bhaf032. [PMID: 40037413 DOI: 10.1093/cercor/bhaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
A substantial body of literature has focused on neural signals evoked by errors emerging during the execution of goal-directed actions. It is still unclear how motor cortex activity during movement execution relates to feedback error processing. To investigate this, we recorded primary motor cortex (M1) single-unit activity in rats during a grasping task. About half of the recorded neurons showed modulation of their firing activity that did not depend on success or failure, which we termed outcome-independent neurons. Other neurons showed a difference in their discharge profile when comparing successful and unsuccessful trials, which we called outcome-dependent neurons. Among both outcome-dependent and -independent neurons, we further distinguished neurons presenting their maximum firing rate in specific epochs as defined by the task. We compared the cortical distribution of outcome-independent and outcome-dependent neurons to cortical maps of complex forelimb movements evoked by intracortical microstimulation in additional animals. The majority of outcome-independent neurons was localized within the limb extension and paw open-closure movement representations. Outcome-dependent neurons were not clearly associated to particular motor representations. Cortical arrangement of neurons, both outcome-independent and outcome-dependent, and their correlation with distinct movement representations, can serve as indicator for anticipating potential outcomes before the conclusion of an action.
Collapse
Affiliation(s)
- Riccardo Viaro
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Davide Bernardi
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
- Department of Physics and Astronomy, University of Padova, Padova 35131, Italy
| | - Emma Maggiolini
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Alessandro D'Ausilio
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Carolina Giulia Ferroni
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| | - Pierantonio Parmiani
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Luciano Fadiga
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Ferrara 44121, Italy
| |
Collapse
|
3
|
Derosiere G, Shokur S, Vassiliadis P. Reward signals in the motor cortex: from biology to neurotechnology. Nat Commun 2025; 16:1307. [PMID: 39900901 PMCID: PMC11791067 DOI: 10.1038/s41467-024-55016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025] Open
Abstract
Over the past decade, research has shown that the primary motor cortex (M1), the brain's main output for movement, also responds to rewards. These reward signals may shape motor output in its final stages, influencing movement invigoration and motor learning. In this Perspective, we highlight the functional roles of M1 reward signals and propose how they could guide advances in neurotechnologies for movement restoration, specifically brain-computer interfaces and non-invasive brain stimulation. Understanding M1 reward signals may open new avenues for enhancing motor control and rehabilitation.
Collapse
Affiliation(s)
- Gerard Derosiere
- Lyon Neuroscience Research Center, Impact team, INSERM U1028 - CNRS UMR5292, Lyon 1 University, Bron, France.
| | - Solaiman Shokur
- Translational Neural Engineering Laboratory, Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Sensorimotor Neurotechnology Lab (SNL), The BioRobotics Institute, Health Interdisciplinary Center and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
- MINE Lab, Università Vita-Salute San Raffaele, Milano, Italy
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
| |
Collapse
|
4
|
Ghanayim A, Benisty H, Cohen Rimon A, Schwartz S, Dabdoob S, Lifshitz S, Talmon R, Schiller J. VTA projections to M1 are essential for reorganization of layer 2-3 network dynamics underlying motor learning. Nat Commun 2025; 16:200. [PMID: 39746993 PMCID: PMC11696230 DOI: 10.1038/s41467-024-55317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
The primary motor cortex (M1) is crucial for motor skill learning. Previous studies demonstrated that skill acquisition requires dopaminergic VTA (ventral-tegmental area) signaling in M1, however little is known regarding the effect of these inputs at the neuronal and network levels. Using dexterity task, calcium imaging, chemogenetic inhibiting, and geometric data analysis, we demonstrate VTA-dependent reorganization of M1 layer 2-3 during motor learning. While average activity and average functional connectivity of layer 2-3 network remain stable during learning, activity kinetics, correlational configuration of functional connectivity, and average connectivity strength of layer 2-3 neurons gradually transform towards an expert configuration. Additionally, sensory tone representation gradually shifts to success-failure outcome signaling. Inhibiting VTA dopaminergic inputs to M1 during learning, prevents all these changes. Our findings demonstrate dopaminergic VTA-dependent formation of outcome signaling and new connectivity configuration of the layer 2-3 network, supporting reorganization of the M1 network for storing new motor skills.
Collapse
Affiliation(s)
- Amir Ghanayim
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Hadas Benisty
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| | | | - Sivan Schwartz
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Sally Dabdoob
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel
| | - Shira Lifshitz
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical and Computer Engineering, Technion, Haifa, Israel
| | - Jackie Schiller
- Department of Neuroscience, Technion Medical School, Bat-Galim, Haifa, Israel.
| |
Collapse
|
5
|
Li Y, An X, Mulcahey PJ, Qian Y, Xu XH, Zhao S, Mohan H, Suryanarayana SM, Bachschmid-Romano L, Brunel N, Whishaw IQ, Huang ZJ. Cortico-thalamic communication for action coordination in a skilled motor sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.25.563871. [PMID: 37961483 PMCID: PMC10634836 DOI: 10.1101/2023.10.25.563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photo-inhibition to survey across the cortex, we identified a cortical network and a high-order motor area (MOs-c), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photo-inhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD sequence and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, motor cortex corticothalamic channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor sequence.
Collapse
Affiliation(s)
- Yi Li
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xu An
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Yongjun Qian
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology, Peking University, China
| | - X. Hermione Xu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shengli Zhao
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Hemanth Mohan
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | | | | | - Nicolas Brunel
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Research, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Z. Josh Huang
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| |
Collapse
|
6
|
Yao M, Tudi A, Jiang T, An X, Jia X, Li A, Huang ZJ, Gong H, Li X, Luo Q. From Individual to Population: Circuit Organization of Pyramidal Tract and Intratelencephalic Neurons in Mouse Sensorimotor Cortex. RESEARCH (WASHINGTON, D.C.) 2024; 7:0470. [PMID: 39376961 PMCID: PMC11456696 DOI: 10.34133/research.0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024]
Abstract
The sensorimotor cortex participates in diverse functions with different reciprocally connected subregions and projection-defined pyramidal neuron types therein, while the fundamental organizational logic of its circuit elements at the single-cell level is still largely unclear. Here, using mouse Cre driver lines and high-resolution whole-brain imaging to selectively trace the axons and dendrites of cortical pyramidal tract (PT) and intratelencephalic (IT) neurons, we reconstructed the complete morphology of 1,023 pyramidal neurons and generated a projectome of 6 subregions within the sensorimotor cortex. Our morphological data revealed substantial hierarchical and layer differences in the axonal innervation patterns of pyramidal neurons. We found that neurons located in the medial motor cortex had more diverse projection patterns than those in the lateral motor and sensory cortices. The morphological characteristics of IT neurons in layer 5 were more complex than those in layer 2/3. Furthermore, the soma location and morphological characteristics of individual neurons exhibited topographic correspondence. Different subregions and layers were composed of different proportions of projection subtypes that innervate downstream areas differentially. While the axonal terminals of PT neuronal population in each cortical subregion were distributed in specific subdomains of the superior colliculus (SC) and zona incerta (ZI), single neurons selectively innervated a combination of these projection targets. Overall, our data provide a comprehensive list of projection types of pyramidal neurons in the sensorimotor cortex and begin to unveil the organizational principle of these projection types in different subregions and layers.
Collapse
Affiliation(s)
- Mei Yao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
| | - Ayizuohere Tudi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xu An
- Department of Neurobiology,
Duke University Medical Center, Durham, NC, USA
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Z. Josh Huang
- Department of Neurobiology,
Duke University Medical Center, Durham, NC, USA
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics,
Huazhong University of Science and Technology, Wuhan, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xiangning Li
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering,
Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province,
Hainan University, Haikou, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering,
Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province,
Hainan University, Haikou, China
| |
Collapse
|
7
|
Economo MN, Komiyama T, Kubota Y, Schiller J. Learning and Control in Motor Cortex across Cell Types and Scales. J Neurosci 2024; 44:e1233242024. [PMID: 39358022 PMCID: PMC11459264 DOI: 10.1523/jneurosci.1233-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
The motor cortex is essential for controlling the flexible movements underlying complex behaviors. Behavioral flexibility involves the ability to integrate and refine new movements, thereby expanding an animal's repertoire. This review discusses recent strides in motor learning mechanisms across spatial and temporal scales, describing how neural networks are remodeled at the level of synapses, cell types, and circuits and across time as animals' learn new skills. It highlights how changes at each scale contribute to the evolving structure and function of neural circuits that accompanies the expansion and refinement of motor skills. We review new findings highlighted by advanced imaging techniques that have opened new vistas in optical physiology and neuroanatomy, revealing the complexity and adaptability of motor cortical circuits, crucial for learning and control. At the structural level, we explore the dynamic regulation of dendritic spines mediating corticocortical and thalamocortical inputs to the motor cortex. We delve into the role of perisynaptic astrocyte processes in maintaining synaptic stability during learning. We also examine the functional diversity among pyramidal neuron subtypes, their dendritic computations and unique contributions to single cell and network function. Further, we highlight how cortical activation is characterized by increased consistency and reduced strength as new movements are learned and how external inputs contribute to these changes. Finally, we consider the motor cortex's necessity as movements unfold over long time scales. These insights will continue to drive new research directions, enhancing our understanding of motor cortical circuit transformations that underpin behavioral changes expressed throughout an animal's life.
Collapse
Affiliation(s)
- Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts 02215
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215
| | - Takaki Komiyama
- Department of Neurobiology, University of California San Diego, La Jolla, California 92093
- Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, California 92093
- Department of Neurosciences, University of California San Diego, La Jolla, California 920937
| | - Yoshiyuki Kubota
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Support Unit for Electron Microscopy Techniques, Research Resources Division, RIKEN Center for Brain Science, Wako 351-0198, Japan
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Haifa 31096, Israel
| |
Collapse
|
8
|
Sihn D, Chae S, Kim SP. A method to find temporal structure of neuronal coactivity patterns with across-trial correlations. J Neurosci Methods 2024; 408:110172. [PMID: 38782124 DOI: 10.1016/j.jneumeth.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The across-trial correlation of neurons' coactivity patterns emerges to be important for information coding, but methods for finding their temporal structures remain largely unexplored. NEW METHOD In the present study, we propose a method to find time clusters in which coactivity patterns of neurons are correlated across trials. We transform the multidimensional neural activity at each timing into a coactivity pattern of binary states, and predict the coactivity patterns at different timings. We devise a method suitable for these coactivity pattern predictions, call general event prediction. Cross-temporal prediction accuracy is then used to estimate across-trial correlations between coactivity patterns at two timings. We extract time clusters from the cross-temporal prediction accuracy by a modified k-means algorithm. RESULTS The feasibility of the proposed method is verified through simulations based on ground truth. We apply the proposed method to a calcium imaging dataset recorded from the motor cortex of mice, and demonstrate time clusters of motor cortical coactivity patterns during a motor task. COMPARISON WITH EXISTING METHODS While the existing cosine similarity method, which does not account for across-trial correlation, shows temporal structures only for contralateral neural responses, the proposed method reveals those for both contralateral and ipsilateral neural responses, demonstrating the effect of across-trial correlations. CONCLUSIONS This study introduces a novel method for measuring the temporal structure of neuronal ensemble activity.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea.
| |
Collapse
|
9
|
Tekin M, Shen H, Smith SS. Sex differences in motor learning flexibility are accompanied by sex differences in mushroom spine pruning of the mouse primary motor cortex during adolescence. Front Neurosci 2024; 18:1420309. [PMID: 39040633 PMCID: PMC11262054 DOI: 10.3389/fnins.2024.1420309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Although males excel at motor tasks requiring strength, females exhibit greater motor learning flexibility. Cognitive flexibility is associated with low baseline mushroom spine densities achieved by pruning which can be triggered by α4βδ GABAA receptors (GABARs); defective synaptic pruning impairs this process. Methods We investigated sex differences in adolescent pruning of mushroom spine pruning of layer 5 pyramidal cells of primary motor cortex (L5M1), a site essential for motor learning, using microscopic evaluation of Golgi stained sections. We assessed α4GABAR expression using immunohistochemical and electrophysiological techniques (whole cell patch clamp responses to 100 nM gaboxadol, selective for α4βδ GABARs). We then compared performance of groups with different post-pubertal mushroom spine densities on motor learning (constant speed) and learning flexibility (accelerating speed following constant speed) rotarod tasks. Results Mushroom spines in proximal L5M1 of female mice decreased >60% from PND35 (puberty onset) to PND56 (Pubertal: 2.23 ± 0.21 spines/10 μm; post-pubertal: 0.81 ± 0.14 spines/10 μm, P < 0.001); male mushroom spine density was unchanged. This was due to greater α4βδ GABAR expression in the female (P < 0.0001) because α4 -/- mice did not exhibit mushroom spine pruning. Although motor learning was similar for all groups, only female wild-type mice (low mushroom spine density) learned the accelerating rotarod task after the constant speed task (P = 0.006), a measure of motor learning flexibility. Conclusions These results suggest that optimal motor learning flexibility of female mice is associated with low baseline levels of post-pubertal mushroom spine density in L5M1 compared to male and female α4 -/- mice.
Collapse
Affiliation(s)
- Michael Tekin
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
- Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY, United States
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
10
|
Yang Y, Ning Y, Li M, Xu Y, Wang R, Zheng N, Zhang S. Decoding Continuous Forelimb Kinematics in Mice Using Single-Photon Calcium Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039470 DOI: 10.1109/embc53108.2024.10782493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In the natural environment, most spontaneous behaviors involve compound movements consisting of tightly coupled sequences of sub-movements. Motor commands are issued from motor cortex to downstream areas and effectors, suggesting that the neural representations in the primary motor cortex for different sub-movements should be separable. Previous research has limited insights into how neural system regulates the interplay between the sequential nature and separability of such representations. In this study, we categorized forelimb behaviors during the mouse water-reaching task, employing single-photon calcium signals to classify forelimb postures. We discovered distinct neural patterns associated with different actions during the mouse water-reaching task. The frame-by-frame prediction of water-reaching trajectories revealed the overall continuity of neural changes during the grasping action. By utilizing different time windows for neural decoding of forepaws states, we speculated on the potential temporal overlap of neural patterns during continuous movements. This overlap may underlie the rapid and smooth transitions between sub-movements.
Collapse
|
11
|
Wang Y, Sun QQ. A prefrontal motor circuit initiates persistent movement. Nat Commun 2024; 15:5264. [PMID: 38898065 PMCID: PMC11187183 DOI: 10.1038/s41467-024-49615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Persistence reinforces continuous action, which benefits animals in many aspects. Diverse external or internal signals may trigger animals to start a persistent movement. However, it is unclear how the brain decides to persist with current actions by selecting specific information. Using single-unit extracellular recordings and opto-tagging in awake mice, we demonstrated that a group of dorsal mPFC (dmPFC) motor cortex projecting (MP) neurons initiate a persistent movement by selectively encoding contextual information rather than natural valence. Inactivation of dmPFC MP neurons impairs the initiation and reduces neuronal activity in the insular and motor cortex. After the persistent movement is initiated, the dmPFC MP neurons are not required to maintain it. Finally, a computational model suggests that a successive sensory stimulus acts as an input signal for the dmPFC MP neurons to initiate a persistent movement. These results reveal a neural initiation mechanism on the persistent movement.
Collapse
Affiliation(s)
- Yihan Wang
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY, 82071, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Qian-Quan Sun
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY, 82071, USA.
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA.
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
12
|
Liu X, Qi S, Hou L, Liu Y, Wang X. Noninvasive Deep Brain Stimulation via Temporal Interference Electric Fields Enhanced Motor Performance of Mice and Its Neuroplasticity Mechanisms. Mol Neurobiol 2024; 61:3314-3329. [PMID: 37987957 DOI: 10.1007/s12035-023-03721-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
A noninvasive deep brain stimulation via temporal interference (TI) electric fields is a novel neuromodulation technology, but few advances about TI stimulation effectiveness and mechanisms have been reported. One hundred twenty-six mice were selected for the experiment by power analysis. In the present study, TI stimulation was proved to stimulate noninvasively primary motor cortex (M1) of mice, and 7-day TI stimulation with an envelope frequency of 20 Hz (∆f =20 Hz), instead of an envelope frequency of 10 Hz (∆f =10 Hz), could obviously improve mice motor performance. The mechanism of action may be related to enhancing the strength of synaptic connections, improving synaptic transmission efficiency, increasing dendritic spine density, promoting neurotransmitter release, and increasing the expression and activity of synapse-related proteins, such as brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and glutamate receptor protein. Furthermore, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and its upstream BDNF play an important role in the enhancement of locomotor performance in mice by TI stimulation. To our knowledge, it is the first report about TI stimulation promoting multiple motor performances and describing its mechanisms. TI stimulation might serve as a novel promising approach to enhance motor performance and treat dysfunction in deep brain regions.
Collapse
Affiliation(s)
- Xiaodong Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shuo Qi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Lijuan Hou
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Yu Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
13
|
Bjorklund GR, Rees KP, Balasubramanian K, Hewitt LT, Nishimura K, Newbern JM. Hyperactivation of MEK1 in cortical glutamatergic neurons results in projection axon deficits and aberrant motor learning. Dis Model Mech 2024; 17:dmm050570. [PMID: 38826084 PMCID: PMC11247507 DOI: 10.1242/dmm.050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
Abnormal extracellular signal-regulated kinase 1/2 (ERK1/2, encoded by Mapk3 and Mapk1, respectively) signaling is linked to multiple neurodevelopmental diseases, especially the RASopathies, which typically exhibit ERK1/2 hyperactivation in neurons and non-neuronal cells. To better understand how excitatory neuron-autonomous ERK1/2 activity regulates forebrain development, we conditionally expressed a hyperactive MEK1 (MAP2K1) mutant, MEK1S217/221E, in cortical excitatory neurons of mice. MEK1S217/221E expression led to persistent hyperactivation of ERK1/2 in cortical axons, but not in soma/nuclei. We noted reduced axonal arborization in multiple target domains in mutant mice and reduced the levels of the activity-dependent protein ARC. These changes did not lead to deficits in voluntary locomotion or accelerating rotarod performance. However, skilled motor learning in a single-pellet retrieval task was significantly diminished in these MEK1S217/221E mutants. Restriction of MEK1S217/221E expression to layer V cortical neurons recapitulated axonal outgrowth deficits but did not affect motor learning. These results suggest that cortical excitatory neuron-autonomous hyperactivation of MEK1 is sufficient to drive deficits in axon outgrowth, which coincide with reduced ARC expression, and deficits in skilled motor learning. Our data indicate that neuron-autonomous decreases in long-range axonal outgrowth may be a key aspect of neuropathogenesis in RASopathies.
Collapse
Affiliation(s)
- George R. Bjorklund
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Katherina P. Rees
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Lauren T. Hewitt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kenji Nishimura
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jason M. Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Bo W, Cai M, Ma Y, Di L, Geng Y, Li H, Tang C, Tai F, He Z, Tian Z. Manipulation of Glutamatergic Neuronal Activity in the Primary Motor Cortex Regulates Cardiac Function in Normal and Myocardial Infarction Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305581. [PMID: 38488323 PMCID: PMC11132081 DOI: 10.1002/advs.202305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/28/2024] [Indexed: 05/29/2024]
Abstract
Cardiac function is under neural regulation; however, brain regions in the cerebral cortex responsible for regulating cardiac function remain elusive. In this study, retrograde trans-synaptic viral tracing is used from the heart to identify a specific population of the excitatory neurons in the primary motor cortex (M1) that influences cardiac function in mice. Optogenetic activation of M1 glutamatergic neurons increases heart rate, ejection fraction, and blood pressure. By contrast, inhibition of M1 glutamatergic neurons decreased cardiac function and blood pressure as well as tyrosine hydroxylase (TH) expression in the heart. Using viral tracing and optogenetics, the median raphe nucleus (MnR) is identified as one of the key relay brain regions in the circuit from M1 that affect cardiac function. Then, a mouse model of cardiac injury is established caused by myocardial infarction (MI), in which optogenetic activation of M1 glutamatergic neurons impaired cardiac function in MI mice. Moreover, ablation of M1 neurons decreased the levels of norepinephrine and cardiac TH expression, and enhanced cardiac function in MI mice. These findings establish that the M1 neurons involved in the regulation of cardiac function and blood pressure. They also help the understanding of the neural mechanisms underlying cardiovascular regulation.
Collapse
Affiliation(s)
- Wenyan Bo
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Mengxin Cai
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Yixuan Ma
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Lingyun Di
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Yanbin Geng
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Hangzhuo Li
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Caicai Tang
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Fadao Tai
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Zhixiong He
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Institute of Brain and Behavioral SciencesShaanxi Normal UniversityXi'an710119China
| |
Collapse
|
15
|
Wang Y, Sun QQ. A prefrontal motor circuit initiates persistent movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548619. [PMID: 38585867 PMCID: PMC10996565 DOI: 10.1101/2023.07.11.548619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persistence reinforces continuous action, which benefits animals in many aspects. Diverse information may trigger animals to start a persistent movement. However, it is unclear how the brain decides to persist with current actions by selecting specific information. Using single-unit extracellular recordings and opto-tagging in awake mice, we demonstrated that a group of dorsal mPFC (dmPFC) motor cortex projecting (MP) neurons initiate a persistent movement selectively encoding contextual information rather than natural valence. Inactivation of dmPFC MP neurons impairs the initiation and reduces neuronal activity in the insular and motor cortex. Finally, a computational model suggests that a successive sensory stimulus acts as an input signal for the dmPFC MP neurons to initiate a persistent movement. These results reveal a neural initiation mechanism on the persistent movement.
Collapse
Affiliation(s)
- Yihan Wang
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY82071, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
| | - Qian-Quan Sun
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY82071, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY82071, USA
- Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY82071, USA
| |
Collapse
|
16
|
Hasnain MA, Birnbaum JE, Nunez JLU, Hartman EK, Chandrasekaran C, Economo MN. Separating cognitive and motor processes in the behaving mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554474. [PMID: 37662199 PMCID: PMC10473744 DOI: 10.1101/2023.08.23.554474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The cognitive processes supporting complex animal behavior are closely associated with ubiquitous movements responsible for our posture, facial expressions, ability to actively sample our sensory environments, and other critical processes. These movements are strongly related to neural activity across much of the brain and are often highly correlated with ongoing cognitive processes, making it challenging to dissociate the neural dynamics that support cognitive processes from those supporting related movements. In such cases, a critical issue is whether cognitive processes are separable from related movements, or if they are driven by common neural mechanisms. Here, we demonstrate how the separability of cognitive and motor processes can be assessed, and, when separable, how the neural dynamics associated with each component can be isolated. We establish a novel two-context behavioral task in mice that involves multiple cognitive processes and show that commonly observed dynamics taken to support cognitive processes are strongly contaminated by movements. When cognitive and motor components are isolated using a novel approach for subspace decomposition, we find that they exhibit distinct dynamical trajectories. Further, properly accounting for movement revealed that largely separate populations of cells encode cognitive and motor variables, in contrast to the 'mixed selectivity' often reported. Accurately isolating the dynamics associated with particular cognitive and motor processes will be essential for developing conceptual and computational models of neural circuit function and evaluating the function of the cell types of which neural circuits are composed.
Collapse
Affiliation(s)
- Munib A. Hasnain
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
| | - Jaclyn E. Birnbaum
- Graduate Program for Neuroscience, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
| | | | - Emma K. Hartman
- Department of Biomedical Engineering, Boston University, Boston, MA
| | - Chandramouli Chandrasekaran
- Department of Psychological and Brain Sciences, Boston University, Boston, MA
- Department of Neurobiology & Anatomy, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| | - Michael N. Economo
- Department of Biomedical Engineering, Boston University, Boston, MA
- Center for Neurophotonics, Boston University, Boston, MA
- Center for Systems Neuroscience, Boston University, Boston, MA
| |
Collapse
|
17
|
Cieslak PE, Drabik S, Gugula A, Trenk A, Gorkowska M, Przybylska K, Szumiec L, Kreiner G, Rodriguez Parkitna J, Blasiak A. Dopamine Receptor-Expressing Neurons Are Differently Distributed throughout Layers of the Motor Cortex to Control Dexterity. eNeuro 2024; 11:ENEURO.0490-23.2023. [PMID: 38423792 DOI: 10.1523/eneuro.0490-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
The motor cortex comprises the primary descending circuits for flexible control of voluntary movements and is critically involved in motor skill learning. Motor skill learning is impaired in patients with Parkinson's disease, but the precise mechanisms of motor control and skill learning are still not well understood. Here we have used transgenic mice, electrophysiology, in situ hybridization, and neural tract-tracing methods to target genetically defined cell types expressing D1 and D2 dopamine receptors in the motor cortex. We observed that putative D1 and D2 dopamine receptor-expressing neurons (D1+ and D2+, respectively) are organized in highly segregated, nonoverlapping populations. Moreover, based on ex vivo patch-clamp recordings, we showed that D1+ and D2+ cells have distinct morphological and electrophysiological properties. Finally, we observed that chemogenetic inhibition of D2+, but not D1+, neurons disrupts skilled forelimb reaching in adult mice. Overall, these results demonstrate that dopamine receptor-expressing cells in the motor cortex are highly segregated and play a specialized role in manual dexterity.
Collapse
Affiliation(s)
- Przemyslaw E Cieslak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Drabik
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Martyna Gorkowska
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Kinga Przybylska
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Lukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow 31-343, Poland
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
18
|
Ford AN, Czarny JE, Rogalla MM, Quass GL, Apostolides PF. Auditory Corticofugal Neurons Transmit Auditory and Non-auditory Information During Behavior. J Neurosci 2024; 44:e1190232023. [PMID: 38123993 PMCID: PMC10869159 DOI: 10.1523/jneurosci.1190-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.
Collapse
Affiliation(s)
- Alexander N Ford
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Jordyn E Czarny
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Meike M Rogalla
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Gunnar L Quass
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
| | - Pierre F Apostolides
- Department of Otolaryngology/Head and Neck Surgery, Kresge Hearing Research Institute, Ann Arbor, Michigan 48109
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
20
|
Zhang A, Zador AM. Neurons in the primary visual cortex of freely moving rats encode both sensory and non-sensory task variables. PLoS Biol 2023; 21:e3002384. [PMID: 38048367 PMCID: PMC10721203 DOI: 10.1371/journal.pbio.3002384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2023] [Accepted: 10/17/2023] [Indexed: 12/06/2023] Open
Abstract
Neurons in primary visual cortex (area V1) are strongly driven by both sensory stimuli and non-sensory events. However, although the representation of sensory stimuli has been well characterized, much less is known about the representation of non-sensory events. Here, we characterize the specificity and organization of non-sensory representations in rat V1 during a freely moving visual decision task. We find that single neurons encode diverse combinations of task features simultaneously and across task epochs. Despite heterogeneity at the level of single neuron response patterns, both visual and nonvisual task variables could be reliably decoded from small neural populations (5 to 40 units) throughout a trial. Interestingly, in animals trained to make an auditory decision following passive observation of a visual stimulus, some but not all task features could also be decoded from V1 activity. Our results support the view that even in V1-the earliest stage of the cortical hierarchy-bottom-up sensory information may be combined with top-down non-sensory information in a task-dependent manner.
Collapse
Affiliation(s)
- Anqi Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York, United States of America
| | - Anthony M. Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|
21
|
Serradj N, Marino F, Moreno-López Y, Bernstein A, Agger S, Soliman M, Sloan A, Hollis E. Task-specific modulation of corticospinal neuron activity during motor learning in mice. Nat Commun 2023; 14:2708. [PMID: 37169765 PMCID: PMC10175564 DOI: 10.1038/s41467-023-38418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Zhou L, Li X, Su B. Spatial Regulation Control of Oxygen Metabolic Consumption in Mouse Brain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204468. [PMID: 36257822 PMCID: PMC9731700 DOI: 10.1002/advs.202204468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/24/2022] [Indexed: 05/25/2023]
Abstract
The mammalian brain relies on significant oxygen metabolic consumption to fulfill energy supply, brain function, and neural activity. In this study, in vivo electrochemistry is combined with physiological and ethological analyses to explore oxygen metabolic consumption in an area of the mouse brain that includes parts of the primary somatosensory cortex, primary motor cortex, hippocampus, and striatum. The oxygen levels at different locations of this boundary section are spatially resolved by measuring the electrical current in vivo using ingeniously designed anti-biofouling carbon fiber microelectrodes. The characteristics of the current signals are further interpreted by simultaneously recording the physiological responses of the mice. Additionally, ethological tests are performed to validate the correlation between oxygen levels and mouse behavior. It is found that high-dose caffeine injection can evoke spatial variability in oxygen metabolic consumption between the four neighboring brain regions. It is proposed that the oxygen metabolic consumption in different brain regions is not independent of each other but is subject to spatial regulation control following the rules of "rank of brain region" and "relative distance." Furthermore, as revealed by in vivo wireless electrochemistry and ethological analysis, mice are at risk of neuronal damage from long-term intake of high-dose caffeine.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Xinru Li
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| | - Bin Su
- Institute of Analytical ChemistryDepartment of ChemistryZhejiang UniversityHangzhou310058China
| |
Collapse
|
23
|
Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance. Cell Rep 2022; 41:111494. [DOI: 10.1016/j.celrep.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
|
24
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
25
|
Yang J, Serrano P, Yin X, Sun X, Lin Y, Chen SX. Functionally distinct NPAS4-expressing somatostatin interneuron ensembles critical for motor skill learning. Neuron 2022; 110:3339-3355.e8. [PMID: 36099920 DOI: 10.1016/j.neuron.2022.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
During motor learning, dendritic spines on pyramidal neurons (PNs) in the primary motor cortex (M1) undergo reorganization. Intriguingly, the inhibition from local somatostatin-expressing inhibitory neurons (SST-INs) plays an important role in regulating the PN plasticity and thus new motor skill acquisition. However, the molecular mechanisms underlying this process remain unclear. Here, we identified that the early-response transcription factor, NPAS4, is selectively expressed in SST-INs during motor learning. By utilizing in vivo two-photon imaging in mice, we found that cell-type-specific deletion of Npas4 in M1 disrupted learning-induced spine reorganization among PNs and impaired motor learning. In addition, NPAS4-expressing SST-INs exhibited lower neuronal activity during task-related movements, and chemogenetically increasing the activity of NPAS4-expressing ensembles was sufficient to mimic the effects of Npas4 deletion. Together, our results reveal an instructive role of NPAS4-expressing SST-INs in modulating the inhibition to downstream task-related PNs to allow proper spine reorganization that is critical for motor learning.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pablo Serrano
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaochen Sun
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Yingxi Lin
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Simon X Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
26
|
Parr-Brownlie LC, Itoga CA, Walters JR, Underwood CF. Oscillatory waveform sharpness asymmetry changes in motor thalamus and motor cortex in a rat model of Parkinson's disease. Exp Neurol 2022; 354:114089. [PMID: 35461830 PMCID: PMC11345867 DOI: 10.1016/j.expneurol.2022.114089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) causes bursty and oscillatory activity in basal ganglia output that is thought to contribute to movement deficits through impact on motor thalamus and motor cortex (MCx). We examined the effect of dopamine loss on motor thalamus and motor cortex activity by recording neuronal and LFP activities in ventroanterior-ventrolateral (VAVL) thalamus and MCx in urethane-anesthetised control and parkinsonian rats. Dopamine lesion decreased the firing rate and increased the bursting of putative pyramidal neurons in layer V, but not layer VI, of the MCx without changing other aspects of firing pattern. In contrast, dopamine lesion did not affect VAVL firing rate, pattern or low threshold calcium spike bursts. Slow-wave (~1 Hz) oscillations in LFP recordings were analyzed with conventional power and waveform shape analyses. While dopamine lesion did not influence total power, it was consistently associated with an increase in oscillatory waveform sharpness asymmetry (i.e., sharper troughs vs. peaks) in both motor thalamus and MCx. Furthermore, we found that measures of sharpness asymmetry were positively correlated in paired motor thalamus-MCx recordings, and that correlation coefficients were larger in dopamine lesioned rats. These data support the idea that dysfunctional MCx activity in parkinsonism emerges from subsets of cell groups (e.g. layer V pyramidal neurons) and is evident in the shape but not absolute power of slow-wave oscillations. Hypoactive layer V pyramidal neuron firing in dopamine lesioned rats is unlikely to be driven by VAVL thalamus and may, therefore, reflect the loss of mesocortical dopaminergic afferents and/or changes in intrinsic excitability.
Collapse
Affiliation(s)
- Louise C Parr-Brownlie
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand; Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA.
| | - Christy A Itoga
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Judith R Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Building 35 Room 1C 903, Bethesda, MD 20892-3702, USA
| | - Conor F Underwood
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Sohn J, Suzuki M, Youssef M, Hatada S, Larkum ME, Kawaguchi Y, Kubota Y. Presynaptic supervision of cortical spine dynamics in motor learning. SCIENCE ADVANCES 2022; 8:eabm0531. [PMID: 35895812 PMCID: PMC9328689 DOI: 10.1126/sciadv.abm0531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In mammalian neocortex, learning triggers the formation and turnover of new postsynaptic spines on pyramidal cell dendrites. However, the biological principles of spine reorganization during learning remain elusive because the identity of their presynaptic neuronal partners is unknown. Here, we show that two presynaptic neural circuits supervise distinct programs of spine dynamics to execute learning. We imaged spine dynamics in motor cortex during learning and performed post hoc identification of their afferent presynaptic neurons. New spines that appeared during learning formed small transient contacts with corticocortical neurons that were eliminated on skill acquisition. In contrast, persistent spines with axons from thalamic neurons were formed and enlarged. These results suggest that pyramidal cell dendrites in motor cortex use a neural circuit division of labor during skill learning, with dynamic teaching contacts from top-down intracortical axons followed by synaptic memory formation driven by thalamic axons. Dual spine supervision may govern diverse skill learning in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
| | - Mototaka Suzuki
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammed Youssef
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Animal Physiology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Sayuri Hatada
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
| | - Matthew E. Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10117 Berlin, Germany
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan
- Department of Physiological Sciences, The Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
- Support Unit for Electron Microscopy Techniques, Research Resources Division, RIKEN Center for Brain Science, Wako 351-0198, Japan
| |
Collapse
|
28
|
Bowles S, Hickman J, Peng X, Williamson WR, Huang R, Washington K, Donegan D, Welle CG. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 2022; 110:2867-2885.e7. [PMID: 35858623 DOI: 10.1016/j.neuron.2022.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/23/2022]
Abstract
Vagus nerve stimulation (VNS) is a neuromodulation therapy for a broad and expanding set of neurologic conditions. However, the mechanism through which VNS influences central nervous system circuitry is not well described, limiting therapeutic optimization. VNS leads to widespread brain activation, but the effects on behavior are remarkably specific, indicating plasticity unique to behaviorally engaged neural circuits. To understand how VNS can lead to specific circuit modulation, we leveraged genetic tools including optogenetics and in vivo calcium imaging in mice learning a skilled reach task. We find that VNS enhances skilled motor learning in healthy animals via a cholinergic reinforcement mechanism, producing a rapid consolidation of an expert reach trajectory. In primary motor cortex (M1), VNS drives precise temporal modulation of neurons that respond to behavioral outcome. This suggests that VNS may accelerate motor refinement in M1 via cholinergic signaling, opening new avenues for optimizing VNS to target specific disease-relevant circuitry.
Collapse
Affiliation(s)
- Spencer Bowles
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jordan Hickman
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Xiaoyu Peng
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - W Ryan Williamson
- IDEA Core, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rongchen Huang
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kayden Washington
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dane Donegan
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cristin G Welle
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
29
|
Kang YF, Chen RT, Ding H, Li L, Gao JM, Liu LZ, Zhang YM. Structure–Function Decoupling: A Novel Perspective for Understanding the Radiation-Induced Brain Injury in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2022; 16:915164. [PMID: 35860295 PMCID: PMC9289669 DOI: 10.3389/fnins.2022.915164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced functional and structural brain alterations are well documented in patients with nasopharyngeal carcinoma (NPC), followed by radiotherapy (RT); however, alterations in structure–function coupling remain largely unknown. Herein, we aimed to assess radiation-induced structure–function decoupling and its importance in predicting radiation encephalopathy (RE). We included 62 patients with NPC (22 patients in the pre-RT cohort, 18 patients in the post-RT-RE+ve cohort, and 22 patients in the post-RT-RE–ve cohort). A metric of regional homogeneity (ReHo)/voxel-based morphometry (VBM) was used to detect radiation-induced structure–function decoupling, which was then used as a feature to construct a predictive model for RE. Compared with the pre-RT group, patients in the post-RT group (which included post-RT-RE+ve and post-RT-RE–ve) showed higher ReHo/VBM coupling values in the substantia nigra (SN), the putamen, and the bilateral thalamus and lower values in the brain stem, the cerebellum, the bilateral medial temporal lobes (MTLs), the bilateral insula, the right precentral and postcentral gyri, the medial prefrontal cortex (MPFC), and the left inferior parietal lobule (IPL). In the post-RT group, negative correlations were observed between maximum dosage of RT (MDRT) to the ipsilateral temporal lobe and ReHo/VBM values in the ipsilateral middle temporal gyrus (MTG). Moreover, structure–function decoupling in the bilateral superior temporal gyrus (STG), the bilateral precentral and postcentral gyri, the paracentral lobules, the right precuneus and IPL, and the right MPFC exhibited excellent predictive performance (accuracy = 88.0%) in identifying patients likely to develop RE. These findings show that ReHo/VBM may be a novel effective imaging metric that reflects the neural mechanism underlying RE in patients with NPC.
Collapse
Affiliation(s)
- Ya-fei Kang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Rui-ting Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Ding
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-ming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-zhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - You-ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: You-ming Zhang,
| |
Collapse
|
30
|
Sporn S, Chen X, Galea JM. The dissociable effects of reward on sequential motor behavior. J Neurophysiol 2022; 128:86-104. [PMID: 35642849 PMCID: PMC9291426 DOI: 10.1152/jn.00467.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 01/14/2023] Open
Abstract
Reward has consistently been shown to enhance motor behavior; however, its beneficial effects appear to be largely unspecific. For example, reward is associated with both rapid and training-dependent improvements in performance, with a mechanistic account of these effects currently lacking. Here we tested the hypothesis that these distinct reward-based improvements are driven by dissociable reward types: monetary incentive and performance feedback. Whereas performance feedback provides information on how well a motor task has been completed (knowledge of performance), monetary incentive increases the motivation to perform optimally without providing a performance-based learning signal. Experiment 1 showed that groups who received monetary incentive rapidly improved movement times (MTs), using a novel sequential reaching task. In contrast, only groups with correct performance-based feedback showed learning-related improvements. Importantly, pairing both maximized MT performance gains and accelerated movement fusion. Fusion describes an optimization process during which neighboring sequential movements blend together to form singular actions. Results from experiment 2 served as a replication and showed that fusion led to enhanced performance speed while also improving movement efficiency through increased smoothness. Finally, experiment 3 showed that these improvements in performance persist for 24 h even without reward availability. This highlights the dissociable impact of monetary incentive and performance feedback, with their combination maximizing performance gains and leading to stable improvements in the speed and efficiency of sequential actions.NEW & NOTEWORTHY Our work provides a mechanistic framework for how reward influences motor behavior. Specifically, we show that rapid improvements in speed and accuracy are driven by reward presented in the form of money, whereas knowledge of performance through performance feedback leads to training-based improvements. Importantly, combining both maximized performance gains and led to improvements in movement quality through fusion, which describes an optimization process during which sequential movements blend into a single action.
Collapse
Affiliation(s)
- Sebastian Sporn
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Department of Clinical and Movement Neuroscience, Queens Square Institute of Neurology, University College London, London, United Kingdom
| | - Xiuli Chen
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Joseph M Galea
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
31
|
Zhao YN, Zhang Y, Tao SY, Huang ZL, Qu WM, Yang SR. Whole-Brain Monosynaptic Afferents to Rostromedial Tegmental Nucleus Gamma-Aminobutyric Acid-Releasing Neurons in Mice. Front Neurosci 2022; 16:914300. [PMID: 35733933 PMCID: PMC9207306 DOI: 10.3389/fnins.2022.914300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Increasing evidence has revealed that the rostromedial tegmental area (RMTg) mediates many behaviors, including sleep and addiction. However, presynaptic patterns governing the activity of γ-aminobutyric acid-releasing (GABAergic) neurons, the main neuronal type in the RMTg, have not been defined. Here, we used cell-type-specific retrograde trans-synaptic rabies viruses to map and quantify the monosynaptic afferents to RMTg GABAergic neurons in mouse whole brains. We identified 71 ascending projection brain regions. Sixty-eight percent of the input neurons arise from the ipsilateral and 32% from the contralateral areas of the brain. The first three strongest projection regions were the ipsilateral lateral hypothalamus, zone incerta, and contralateral pontine reticular nucleus. Immunohistochemistry imaging showed that the input neurons in the dorsal raphe, laterodorsal tegmentum, and dorsal part of zone incerta were colocalized with serotoninergic, cholinergic, and neuronal nitric oxide synthetase-expressing neurons, respectively. However, in the lateral hypothalamus, a few input neurons innervating RMTg GABAergic neurons colocalized orexinergic neurons but lacked colocalization of melanin-concentrating hormone neurons. Our findings provide anatomical evidence to understand how RMTg GABAergic neurons integrate diverse information to exert varied functions.
Collapse
|
32
|
Manita S, Ikezoe K, Kitamura K. A Novel Device of Reaching, Grasping, and Retrieving Task for Head-Fixed Mice. Front Neural Circuits 2022; 16:842748. [PMID: 35633733 PMCID: PMC9133411 DOI: 10.3389/fncir.2022.842748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reaching, grasping, and retrieving movements are essential to our daily lives and are common in many mammalian species. To understand the mechanism for controlling this movement at the neural circuit level, it is necessary to observe the activity of individual neurons involved in the movement. For stable electrophysiological or optical recordings of neural activity in a behaving animal, head fixation effectively minimizes motion artifacts. Here, we developed a new device that allows mice to perform reaching, grasping, and retrieving movements during head fixation. In this method, agar cubes were presented as target objects in front of water-restricted mice, and the mice were able to reach, grasp, and retrieve them with their forelimb. The agar cubes were supplied by a custom-made automatic dispenser, which uses a microcontroller to control the two motors to push out the agar cubes. This agar presentation system supplied approximately 20 agar cubes in consecutive trials. We confirmed that each agar cube could be presented to the mouse with an average weight of 55 ± 3 mg and positional accuracy of less than 1 mm. Using this system, we showed that head-fixed mice could perform reaching, grasping, and retrieving tasks after 1 week of training. When the agar cube was placed near the mice, they could grasp it with a high success rate without extensive training. On the other hand, when the agar cube was presented far from the mice, the success rate was initially low and increased with subsequent test sessions. Furthermore, we showed that activity in the primary motor cortex is required for reaching movements in this task. Therefore, our system can be used to study neural circuit mechanisms for the control and learning of reaching, grasping, and retrieving movements under head-fixed conditions.
Collapse
|
33
|
Currie SP, Ammer JJ, Premchand B, Dacre J, Wu Y, Eleftheriou C, Colligan M, Clarke T, Mitchell L, Faisal AA, Hennig MH, Duguid I. Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes. Cell Rep 2022; 39:110801. [PMID: 35545038 PMCID: PMC9620742 DOI: 10.1016/j.celrep.2022.110801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 11/25/2022] Open
Abstract
Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer 5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/pull task and find that most neurons show movement-invariant responses, with a minority displaying movement specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neurons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being routed through relatively small, distributed subpopulations of projection neurons.
Collapse
Affiliation(s)
- Stephen P Currie
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Julian J Ammer
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Brian Premchand
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Joshua Dacre
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Yufei Wu
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Constantinos Eleftheriou
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Matt Colligan
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Thomas Clarke
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Leah Mitchell
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - A Aldo Faisal
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Department of Computing, Imperial College London, London SW7 2AZ, UK; MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Matthias H Hennig
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences and Patrick Wild Centre, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
34
|
Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration. Nat Commun 2022; 13:2450. [PMID: 35508447 PMCID: PMC9068924 DOI: 10.1038/s41467-022-30069-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Animals can capitalize on invariance in the environment by learning and automating highly consistent actions; however, they must also remain flexible and adapt to environmental changes. It remains unclear how primary motor cortex (M1) can drive precise movements, yet also support behavioral exploration when faced with consistent errors. Using a reach-to-grasp task in rats, along with simultaneous electrophysiological monitoring in M1 and dorsolateral striatum (DLS), we find that behavioral exploration to overcome consistent task errors is closely associated with tandem increases in M1 and DLS neural variability; subsequently, consistent ensemble patterning returns with convergence to a new successful strategy. We also show that compared to reliably patterned intracranial microstimulation in M1, variable stimulation patterns result in significantly greater movement variability. Our results thus indicate that motor and striatal areas can flexibly transition between two modes, reliable neural pattern generation for automatic and precise movements versus variable neural patterning for behavioral exploration. It is not fully understood how behavioral flexibility is established in the context of automatic performance of a complex motor skill. Here the authors show that corticostriatal activity can flexibly transition between two modes during a reach to-grasp task in rats: reliable neural pattern generation for precise, automatic movements versus variable neural patterning for behavioral exploration.
Collapse
|
35
|
Otor Y, Achvat S, Cermak N, Benisty H, Abboud M, Barak O, Schiller Y, Poleg-Polsky A, Schiller J. Dynamic compartmental computations in tuft dendrites of layer 5 neurons during motor behavior. Science 2022; 376:267-275. [PMID: 35420959 DOI: 10.1126/science.abn1421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tuft dendrites of layer 5 pyramidal neurons form specialized compartments important for motor learning and performance, yet their computational capabilities remain unclear. Structural-functional mapping of the tuft tree from the motor cortex during motor tasks revealed two morphologically distinct populations of layer 5 pyramidal tract neurons (PTNs) that exhibit specific tuft computational properties. Early bifurcating and large nexus PTNs showed marked tuft functional compartmentalization, representing different motor variable combinations within and between their two tuft hemi-trees. By contrast, late bifurcating and smaller nexus PTNs showed synchronous tuft activation. Dendritic structure and dynamic recruitment of the N-methyl-d-aspartate (NMDA)-spiking mechanism explained the differential compartmentalization patterns. Our findings support a morphologically dependent framework for motor computations, in which independent amplification units can be combinatorically recruited to represent different motor sequences within the same tree.
Collapse
Affiliation(s)
- Yara Otor
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Shay Achvat
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Nathan Cermak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Hadas Benisty
- Yale University School of Medicine; Bethany, CT, USA
| | - Maisan Abboud
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Omri Barak
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Yitzhak Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics; University of Colorado School of Medicine, 12800 East 19th Avenue MS8307, Aurora, CO 8004, USA
| | - Jackie Schiller
- Department of Physiology, Technion Medical School, Bat-Galim, Haifa 31096, Israel
| |
Collapse
|
36
|
Cousineau J, Plateau V, Baufreton J, Le Bon-Jégo M. Dopaminergic modulation of primary motor cortex: From cellular and synaptic mechanisms underlying motor learning to cognitive symptoms in Parkinson's disease. Neurobiol Dis 2022; 167:105674. [PMID: 35245676 DOI: 10.1016/j.nbd.2022.105674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.
Collapse
|
37
|
Lee C, Harkin EF, Yin X, Naud R, Chen S. Cell-type specific responses to associative learning in the primary motor cortex. eLife 2022; 11:72549. [PMID: 35113017 PMCID: PMC8856656 DOI: 10.7554/elife.72549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue–reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca2+ imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs’ responses became more reliable to the CS, while VIP-INs’ responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs’ responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Going beyond primary motor cortex to improve brain–computer interfaces. Trends Neurosci 2022; 45:176-183. [DOI: 10.1016/j.tins.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
|
39
|
Yue Y, Xu P, Liu Z, Sun X, Su J, Du H, Chen L, Ash RT, Smirnakis S, Simha R, Kusner L, Zeng C, Lu H. Motor training improves coordination and anxiety in symptomatic Mecp2-null mice despite impaired functional connectivity within the motor circuit. SCIENCE ADVANCES 2021; 7:eabf7467. [PMID: 34678068 PMCID: PMC8535852 DOI: 10.1126/sciadv.abf7467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/01/2021] [Indexed: 05/03/2023]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by loss of function of the X-linked methyl-CpG–binding protein 2 (MECP2). Several case studies report that gross motor function can be improved in children with RTT through treadmill walking, but whether the MeCP2-deficient motor circuit can support actual motor learning remains unclear. We used two-photon calcium imaging to simultaneously observe layer (L) 2/3 and L5a excitatory neuronal activity in the motor cortex (M1) while mice adapted to changing speeds on a computerized running wheel. Despite circuit hypoactivity and weakened functional connectivity across L2/3 and L5a, the Mecp2-null circuit’s firing pattern evolved with improved performance over 2 weeks. Moreover, trained mice became less anxious and lived 20% longer than untrained mice. Because motor deficits and anxiety are core symptoms of RTT, which is not diagnosed until well after symptom onset, these results underscore the benefit of motor learning.
Collapse
Affiliation(s)
- Yuanlei Yue
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Pan Xu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Zhichao Liu
- Department of Physics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaoqian Sun
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037, USA
| | - Juntao Su
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Hongfei Du
- Department of Statistics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Lingling Chen
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ryan T. Ash
- Department of Psychiatry, Stanford University, Palo Alto, CA 94305, USA
| | - Stelios Smirnakis
- Department of Neurology, Brigham and Women’s Hospital, Jamaica Plain VA Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rahul Simha
- Department of Computer Science, School of Engineering and Applied Science, The George Washington University, Washington, DC 20037, USA
| | - Linda Kusner
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Chen Zeng
- Department of Physics, Columbian College of Arts and Sciences, The George Washington University, Washington, DC 20037, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
40
|
Wang Y, Sun QQ. A long-range, recurrent neuronal network linking the emotion regions with the somatic motor cortex. Cell Rep 2021; 36:109733. [PMID: 34551292 PMCID: PMC8507441 DOI: 10.1016/j.celrep.2021.109733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Recurrent neural networks (RNNs) are designed to learn sequential patterns in silico, but it is unclear whether and how an RNN forms in the native networks of the mammalian brain. Here, we report an innate RNN, which is formed by the unidirectional connections from three basic units: input units arriving from emotion regions, a hidden unit in the medial prefrontal cortex (mPFC), and output units located at the somatic motor cortex (sMO). Specifically, the neurons from basal lateral amygdala (BLA) and the insular cortex (IC) project to the mPFC motor-cortex-projecting (MP) neurons. These MP neurons form a local self-feedback loop and target major projecting neurons of the sMO. Within the sMO, the neurons in the infragranular layers receive stronger input than the neurons in supragranular layers. Finally, we show in vivo evidence that the communications from the emotion regions to the sMO are abolished when MP neurons are chemogenetically silenced.
Collapse
Affiliation(s)
- Yihan Wang
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Qian-Quan Sun
- Graduate Neuroscience Program, University of Wyoming, Laramie, WY 82071, USA; Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
41
|
Vassiliadis P, Derosiere G, Dubuc C, Lete A, Crevecoeur F, Hummel FC, Duque J. Reward boosts reinforcement-based motor learning. iScience 2021; 24:102821. [PMID: 34345810 PMCID: PMC8319366 DOI: 10.1016/j.isci.2021.102821] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants. Reward improved motor skill learning beyond performance-based reinforcement feedback. Importantly, the beneficial effect of reward involved a specific potentiation of reinforcement-related adjustments in motor commands, which concerned primarily the most relevant motor component for task success and persisted on the following day in the absence of reward. We propose that the long-lasting effects of motivation on motor learning may entail a form of associative learning resulting from the repetitive pairing of the reinforcement feedback and reward during training, a mechanism that may be exploited in future rehabilitation protocols.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva 1202, Switzerland
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Cecile Dubuc
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Aegryan Lete
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| | - Frederic Crevecoeur
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Friedhelm C. Hummel
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva 1202, Switzerland
- Defitech Chair for Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Sion (EPFL), Sion 1951, Switzerland
- Clinical Neuroscience, University of Geneva Medical School (HUG), Geneva 1202, Switzerland
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, 53, Avenue Mounier, Brussels 1200, Belgium
| |
Collapse
|
42
|
Aeed F, Cermak N, Schiller J, Schiller Y. Intrinsic Disruption of the M1 Cortical Network in a Mouse Model of Parkinson's Disease. Mov Disord 2021; 36:1565-1577. [PMID: 33606292 DOI: 10.1002/mds.28538] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) disrupts motor performance by affecting the basal ganglia system. Yet, despite the critical position of the primary motor cortex in linking basal ganglia computations with motor performance, its contribution to motor disability in PD is largely unknown. The objective of this study was to characterize the role of the primary motor cortex in PD-related motor disability. METHODS Two-photon calcium imaging and optogenetic stimulation of primary motor cortex neurons was done during performance of a dexterous reach-to-grasp motor task in control and 6-hydroxydopamine-induced PD mice. RESULTS Experimental PD disrupted performance of the reach-to-grasp motor task and especially initiation of the task, which was partially restored by optogenetic activation of the primary motor cortex. Two-photon calcium imaging during task performance revealed experimental-PD affected the primary motor cortex in a cell-type-specific manner. It suppressed activation of output layer 5 pyramidal tract neurons, with greater effects on freeze versus nonfreeze trials. In contrast, it did not attenuate the initial movement-related activation response of layer 2/3 pyramidal neurons while diminishing the late inhibitory phase of their response. At the network level, experimental PD disrupted movement-related population dynamics of the layer 5 pyramidal tract network while almost not affecting the dynamics of the layer 2/3 neuronal population. It also disrupted short- and long-term robustness and stability of the pyramidal tract subnetwork, with reduced intertrial temporal accuracy and diminished reproducibility of motor parameter encoding and temporal recruitment of the output pyramidal tract neurons over repeated daily sessions. CONCLUSIONS Experimental PD disrupts both external driving and intrinsic properties of the primary motor cortex. Motor disability in experimental PD results primarily from the inability to generate robust and stable output motor sequences in the parkinsonian primary motor cortex output layer 5 pyramidal tract subnetwork. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Fadi Aeed
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nathan Cermak
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|