1
|
Li T, Li Y, Chen J, Nan M, Zhou X, Yang L, Xu W, Zhang C, Kong L. Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation. J Adv Res 2025; 72:571-589. [PMID: 39019111 DOI: 10.1016/j.jare.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation. OBJECTIVES This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact. METHODS This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J. RESULTS Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6. CONCLUSION Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yawei Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jinhu Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Miaomiao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Yang L, Guo C, Zheng Z, Dong Y, Xie Q, Lv Z, Li M, Lu Y, Guo X, Deng R, Liu Y, Feng Y, Mu R, Zhang X, Ma H, Chen Z, Zhang Z, Dong Z, Yang W, Zhang X, Cui Y. Stress dynamically modulates neuronal autophagy to gate depression onset. Nature 2025; 641:427-437. [PMID: 40205038 PMCID: PMC12058529 DOI: 10.1038/s41586-025-08807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/19/2025] [Indexed: 04/11/2025]
Abstract
Chronic stress remodels brain homeostasis, in which persistent change leads to depressive disorders1. As a key modulator of brain homeostasis2, it remains elusive whether and how brain autophagy is engaged in stress dynamics. Here we discover that acute stress activates, whereas chronic stress suppresses, autophagy mainly in the lateral habenula (LHb). Systemic administration of distinct antidepressant drugs similarly restores autophagy function in the LHb, suggesting LHb autophagy as a common antidepressant target. Genetic ablation of LHb neuronal autophagy promotes stress susceptibility, whereas enhancing LHb autophagy exerts rapid antidepressant-like effects. LHb autophagy controls neuronal excitability, synaptic transmission and plasticity by means of on-demand degradation of glutamate receptors. Collectively, this study shows a causal role of LHb autophagy in maintaining emotional homeostasis against stress. Disrupted LHb autophagy is implicated in the maladaptation to chronic stress, and its reversal by autophagy enhancers provides a new antidepressant strategy.
Collapse
Affiliation(s)
- Liang Yang
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhiwei Zheng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qifeng Xie
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zijian Lv
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Min Li
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongshan Deng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Huan Ma
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institute of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangnan Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Cao Q, Xu X, Wang X, He F, Lin Y, Guo D, Bai W, Guo B, Zheng X, Liu T. Mesoscale brain-wide fluctuation analysis: revealing ketamine's rapid antidepressant across multiple brain regions. Transl Psychiatry 2025; 15:155. [PMID: 40253356 PMCID: PMC12009331 DOI: 10.1038/s41398-025-03375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/16/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Depression has been linked to cortico-limbic brain regions, and ketamine is known for its rapid antidepressant effects. However, how these brain regions encode depression collaboratively and how ketamine regulates these regions to exert its prompt antidepressant effects through mesoscale brain-wide fluctuations remain elusive. In this study, we used a multidisciplinary approach, including multi-region in vivo recordings in mice, chronic social defeat stress (CSDS), and machine learning, to construct a Mesoscale Brain-Wide Fluctuation Analysis platform (MBFA-platform). This platform analyzes the mesoscale brain-wide fluctuations of multiple brain regions from the perspective of local field potential oscillations and network dynamics. The decoder results demonstrate that our MBFA platform can accurately classify the Control/CSDS and ketamine/saline-treated groups based on neural oscillation and network activities among the eight brain regions. We found that multiple-region LFPs patterns are disrupted in CSDS-induced social avoidance, with the basolateral amygdala playing a key role. Ketamine primarily exerts the compensatory effects through network dynamics, contributing to its rapid antidepressant effect. These findings highlight the MBFA platform as an interdisciplinary tool for revealing mesoscale brain-wide fluctuations underlying complex emotional pathologies, providing insights into the etiology of psychiatry. Furthermore, the platform's evaluation capabilities present a novel approach for psychiatric therapeutic interventions.
Collapse
Affiliation(s)
- Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaojun Xu
- Bioland Laboratory, Guangdong Province, Guangzhou, China
| | - Xinyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fengkai He
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yichao Lin
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Contesse T, Gomes-Ribeiro J, Royon L, Fofo H, Braine A, Glangetas C, Zhang S, Barbano MF, Soiza-Reilly M, Georges F, Barik J, Fernandez SP. Social stress increases anxiety by GluA1-dependent synaptic strengthening of ventral tegmental area inputs to the basolateral amygdala. Biol Psychiatry 2025:S0006-3223(25)01121-7. [PMID: 40245975 DOI: 10.1016/j.biopsych.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Brain defensive mechanisms evolved to maintain low levels of state anxiety. However, risk factors such as stress exposure shifts activity within defensive circuits, resulting in increased anxiety. The amygdala is a crucial node for maintaining adaptive anxiety levels, and amygdala hyperactivity can lead to pathological anxiety through mechanisms that are not well understood. METHODS We used chronic social defeat stress (CSD) in mice. We combined anatomical tracing methods, patch-clamp recordings and optogenetics to probe how synaptic inputs from the ventral tegmental area (VTA) to the basolateral amygdala (BLA) are affected by CSD. We performed in vivo fiber photometry recordings to track inputs onto basolateral amygdala. Array tomography and electron microscopy were used to unravel the structural composition of VTA-BLA synapses. RESULTS We identified the VTA as a source of glutamatergic inputs to the BLA potentiated by stress. In turn, inputs from mPFC were not potentiated. BLA-projecting VTA glutamatergic neurons are activated by social stress, increasing their excitability and synaptic strength. In vivo potentiation of VTA glutamatergic inputs in the BLA is sufficient to increase anxiety. We showed that stress-induced synaptic strengthening is mediated by insertion of GluA1-containing AMPA receptors. Impeding GluA1 subunit trafficking in BLA neurons with VTA upstream inputs prevents stress-induced increase in synaptic firing and anxiety. CONCLUSIONS Potentiation of VTA inputs increases synaptic integration, enhancing amygdala activity and promoting maladaptive anxiety. Understanding the impact of amygdala hyperactivity could lead to targeted therapies, restoring circuit balance and offering new precision medicine approaches for anxiety disorders.
Collapse
Affiliation(s)
- Thomas Contesse
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323
| | - Joana Gomes-Ribeiro
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323
| | - Lea Royon
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323
| | - Hugo Fofo
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323
| | - Anaelle Braine
- Université de Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - M Flavia Barbano
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mariano Soiza-Reilly
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos AiresC1428EGA, Argentina
| | - François Georges
- Université de Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323.
| | - Sebastian P Fernandez
- Université Côte d'Azur, Nice, France; Institut de Pharmacologie Moléculaire & Cellulaire, CNRS UMR7275, Valbonne, France; Inserm U1323.
| |
Collapse
|
5
|
Luo L, Jing W, Guo Y, Liu D, He A, Lu Y. A cell-type-specific circuit of somatostatin neurons in the habenula encodes antidepressant action in male mice. Nat Commun 2025; 16:3417. [PMID: 40210897 PMCID: PMC11985912 DOI: 10.1038/s41467-025-58591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
Major depression is characterized by an array of negative experiences, including hopelessness and anhedonia. We hypothesize that inhibition of negative experiences or aversion may generate antidepressant action. To directly test this hypothesis, we perform multimodal behavioral screenings in male mice and identify somatostatin (SST)-expressing neurons in the region X (HBX) between the lateral and medial habenula as a specific type of antidepressant neuron. SST neuronal activity modulation dynamically regulates antidepressant induction and relief. We also explore the circuit basis for encoding these modulations using single-unit recordings. We find that SST neurons receive inhibitory synaptic inputs directly from cholecystokinin-expressing neurons in the bed nucleus of the stria terminalis and project excitatory axon terminals onto proenkephalin-expressing neurons in the interpeduncular nucleus. This study reveals a cell-type-specific circuit of SST neurons in the HBX that encodes antidepressant action, and the control of the circuit may contribute to improving well-being.
Collapse
Affiliation(s)
- Lingli Luo
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqing Guo
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Medical Genetics, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Aodi He
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Youming Lu
- Innovation Center of Brain Medical Sciences, Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Zhao Y, Wu JT, Feng JB, Cai XY, Wang XT, Wang L, Xie W, Gu Y, Liu J, Chen W, Zhou L, Shen Y. Dual and plasticity-dependent regulation of cerebello-zona incerta circuits on anxiety-like behaviors. Nat Commun 2025; 16:3339. [PMID: 40199879 PMCID: PMC11978757 DOI: 10.1038/s41467-025-58727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
Clinical observation has identified cerebellar cognitive affective syndrome, which is characterized by various non-motor dysfunctions such as social disorders and anxiety. Increasing evidence has revealed reciprocal mono-/poly-synaptic connections of cerebello-cerebral circuits, forming the concept of the cerebellar connectome. In this study, we demonstrate that neurons in the cerebellar nuclei (CN) of male mice project to a subset of zona incerta (ZI) neurons through long-range glutamatergic and GABAergic transmissions, both capable of encoding acute stress. Furthermore, activating or inhibiting glutamatergic and GABAergic transmissions in the CN → ZI pathway can positively or negatively regulate anxiety and place preference through presynaptic plasticity-dependent mechanisms, as well as mediate motor-induced alleviation of anxiety. Our data support the close relationship between the cerebellum and emotional processes and suggest that targeting cerebellar outputs may be an effective approach for treating anxiety.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, MOE Frontier Science Center for Brain and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
| | - Jin-Tao Wu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Bin Feng
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Yu Cai
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Tai Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luxi Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin Zhou
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ying Shen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory for Precision Diagnosis, Treatment, and Clinical Translation of Rare Diseases of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Hu X, Zhang L, Wang Y, Gao Y, Zhou Z, Tang M, Li H, Kuang W, Gong Q, Huang X. Common and sex-specific differences in hypothalamic subunit volumes and their links with depressive symptoms in treatment-naïve patients with major depressive disorder. Brain Struct Funct 2025; 230:43. [PMID: 40064649 DOI: 10.1007/s00429-025-02904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 02/20/2025] [Indexed: 03/17/2025]
Abstract
The hypothalamus, which consists of histologically and functionally distinct subunits, primarily modulates vegetative symptoms in major depressive disorder (MDD). Sex differences in MDD have been well-documented in terms of illness incidence rates and symptom profiles. However, few studies have explored subunit-level and sex-specific anatomic differences in the hypothalamus in MDD compared to healthy controls (HCs). High-resolution 3D T1-weighted images were obtained from 133 treatment-naïve patients with MDD and 130 age-, sex-, education years-, and handedness-matched HCs. MRI data were preprocessed and segmented into ten bilateral hypothalamic subunits with FreeSurfer software. We tested for both common and sex-specific patterns of hypothalamic anatomic differences in MDD. Regardless of sex, patients with MDD showed significantly smaller volumes in the left anterior-inferior subunit (a-iHyp) and larger volumes in the right posterior subunit (posHyp). The volumes of the left a-iHyp were negatively correlated with sleep disturbance scores in the MDD group. A significant sex-by-diagnosis interaction was observed in the right whole hypothalamus, and subsequent post-hoc analyses revealed that males with MDD showed significantly larger volumes, while females with MDD showed significantly smaller volumes relative to their sex-matched HCs. Common differences in MDD were found in the left anterior-inferior and right posterior hypothalamus that are involved in regulating circadian rhythms and reward, while sex-specific differences in MDD were observed in the right whole hypothalamus. These findings enhance our understanding of distinct hypothalamic subunit related to MDD and shed light on the neurobiology underlying sex-related variations in MDD.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lianqing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yidan Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingxue Gao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zilin Zhou
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mengyue Tang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Qin Q, Li S, Zhong Y, Bai J, An L, Yang L, Gu W, Deng D, Zhao J, Zhang R, Liu H, Bai S. Chronic stress enhances glycolysis and promotes tumorigenesis. Front Oncol 2025; 15:1543872. [PMID: 40129916 PMCID: PMC11931049 DOI: 10.3389/fonc.2025.1543872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Depression is a well-known risk factor for tumors, but the mechanisms other than inflammation are unclear. Aerobic glycolysis is considered to be a critical element in the reprogramming of energy metabolism in malignant tumors, and impaired glycolysis has been reported in the brains of chronic stress mice. Therefore, this study aimed to explore the role of glycolysis in which depression promotes tumorigenesis. We examined the impacts of chronic unpredictable mild stress (CUMS) on the growth and metastasis of breast cancer (BC) and lung cancer (LC). CUMS was used to construct a mouse depression model, BALB/c mice were injected with 4T1-Luc cells in the right subcutaneous mammary fat pad, and C57BL/6 mice were injected with Lewis-Luc cells in the tail vein. The experiments were conducted through behavioral experiments, live imaging techniques of small animals, Western blot, Glycolytic metabolites measurement, Hematoxylin and eosin staining (H&E staining), Nissl staining, and immunohistochemical (IHC) tests. The findings showed that both CUMS and tumors induced depressive-like behavior, neuronal damage, and impaired synaptic plasticity in mice, while CUMS also enhanced tumor development and metastasis in both BC and LC. In the brain, both CUMS and tumor alone and in combination less influence glycolytic products and enzyme levels. However, CUMS significantly enhanced the levels of aerobic glycolytic products and enzymes in tumor tissue. Collectively, our results provide insights into how glycolysis is regulated in the brain, leading to depression-like behavior, and how depression, in turn, enhanced glycolysis and promoted tumorigenesis.
Collapse
Affiliation(s)
- Qiufeng Qin
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuying Li
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yixuan Zhong
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Bai
- Pharmacy Department, JiNan Authority Hospital, Jinan, China
| | - Lin An
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Gu
- Huizhou Hospital of Guangzhou University of Chinese Medicine/Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Di Deng
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinlan Zhao
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Zhang
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiquan Liu
- Huizhou Hospital of Guangzhou University of Chinese Medicine/Huizhou Hospital of Traditional Chinese Medicine, Huizhou, China
| | - Shasha Bai
- From the School of Pharmaceutical Science, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Yadav S, Yadav A, Mishra RK. Chronic unpredictable stress exposure disrupts testicular function by modulating germ cell-junctional dynamics and Nrf2/HO-1/IKKβ/NF-κB pathway. Reprod Toxicol 2025; 132:108845. [PMID: 39884400 DOI: 10.1016/j.reprotox.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/31/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The unpredictable nature of stress complicates understanding its relationship with male infertility. In this study, we investigated testicular germ cell and junctional dynamics in male mice following exposure to chronic unpredictable stress (CUS). Adult Parkes male mice were exposed to CUS for 35 days (one complete spermatogenic cycle), with a random stressor (restraint stress, water deprivation, food deprivation, light flashing, wet bedding, cage shaking, or cage tilting) applied once per day in an intermittent and unpredictable manner to avoid repeating the same stimulus on consecutive days. CUS exposure caused behavioral alterations in mice, as observed through the forced swim test and the tail suspension test. CUS inhibited testosterone biosynthesis by decreasing steroidogenic markers (SF-1, StAR, 3β-HSD, and 17β-HSD). It also resulted in altered oxido-inflammatory and apoptotic markers, including increased LPO, Caspase-3, IKKβ, and NF-κB, along with decreased Nrf2, HO-1, SOD, and catalase in the testis. CUS exposure reduced 1 C and 4 C germ cell populations and decreased germ cell ratios (1 C:2 C, 4 C:2 C, and 4 C:S-phase), impairing sperm development. CUS disrupted meiosis initiation, chromosomal synapsis, and germ cell maintenance by reducing Stra8, SYCP3, and Piwil1 expression in the testis. It also adversely affected blood-testis barrier markers, such as ZO-1 and connexin43. These changes led to altered testicular histomorphology, reduced daily sperm production, and disrupted germ cell dynamics. The findings suggest that CUS inhibits steroidogenesis and perturbs the Nrf2/HO-1/IKKβ/NF-κB oxido-inflammatory pathway. This leads to disrupted germ cell dynamics, compromised blood-testis barrier integrity, altered histomorphology, and reduced sperm production, collectively resulting in testicular dysfunction.
Collapse
Affiliation(s)
- Shubhanshu Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab., Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
11
|
He Y, Ma J, Yu Y, Yin J, Gao G, Yuan Y, Ruan H, Yan X, Song Z, Chang C. Terahertz photoneuromodulation of lateral orbitofrontal cortex neurons ameliorates stress-induced depression and cognitive impairment. FUNDAMENTAL RESEARCH 2025; 5:602-611. [PMID: 40242535 PMCID: PMC11997594 DOI: 10.1016/j.fmre.2024.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 04/18/2025] Open
Abstract
Depression imposes a staggering global socioeconomic burden. Current pharmacotherapies face major limitations, including slow efficacy, adverse effects, and non-response rates of up to 55%, necessitating novel therapeutic modalities. This study introduces terahertz (THz) photoneuromodulation as an innovative physical intervention for depression, offering several advantages over conventional pharmacological or optogenetic approaches. Mild THz photoneuromodulation circumvents the need for exogenous agents or genetic modifications, mitigating potential risks while precisely modulating neurotransmitter levels and neuronal excitability to alleviate depression-like behaviors. In a chronic restraint stress (CRS) mouse model, THz photostimulation rapidly attenuated hyperactivity and increased serotonin levels by 107.5% ± 45.3% in lateral orbitofrontal cortex glutamatergic neurons (OFCGlu) compared to those treated with antidepressants. This led to marked improvements in depressive-like behaviors and cognitive function. Furthermore, THz modulation of OFC activity recapitulated the effects of chemogenetic inhibition, underscoring the OFC's pivotal role in regulating depressive states. This research unveils THz photoneuromodulation as a promising, safe, rapid-acting, and durable neurotherapeutic strategy addressing persistent unmet needs in depression treatment.
Collapse
Affiliation(s)
- Yuanyuan He
- State Key Laboratory of NPT, and Key Laboratory of HEDP of MoE, CAPT, Peking University, Beijing 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
- School of Safety Engineering, North China Institute of Science and Technology, Hebei 065201, China
| | - Jing Ma
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Yun Yu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Junkai Yin
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Ge Gao
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yifang Yuan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Hao Ruan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xueqing Yan
- State Key Laboratory of NPT, and Key Laboratory of HEDP of MoE, CAPT, Peking University, Beijing 100871, China
| | - Zihua Song
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Chao Chang
- State Key Laboratory of NPT, and Key Laboratory of HEDP of MoE, CAPT, Peking University, Beijing 100871, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| |
Collapse
|
12
|
Li S, Zhang J, Li J, Hu Y, Zhang M, Wang H. Optogenetics and chemogenetics: key tools for modulating neural circuits in rodent models of depression. Front Neural Circuits 2025; 19:1516839. [PMID: 40070557 PMCID: PMC11893610 DOI: 10.3389/fncir.2025.1516839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Optogenetics and chemogenetics are emerging neuromodulation techniques that have attracted significant attention in recent years. These techniques enable the precise control of specific neuronal types and neural circuits, allowing researchers to investigate the cellular mechanisms underlying depression. The advancement in these techniques has significantly contributed to the understanding of the neural circuits involved in depression; when combined with other emerging technologies, they provide novel therapeutic targets and diagnostic tools for the clinical treatment of depression. Additionally, these techniques have provided theoretical support for the development of novel antidepressants. This review primarily focuses on the application of optogenetics and chemogenetics in several brain regions closely associated with depressive-like behaviors in rodent models, such as the ventral tegmental area, nucleus accumbens, prefrontal cortex, hippocampus, dorsal raphe nucleus, and lateral habenula and discusses the potential and challenges of optogenetics and chemogenetics in future research. Furthermore, this review discusses the potential and challenges these techniques pose for future research and describes the current state of research on sonogenetics and odourgenetics developed based on optogenetics and chemogenetics. Specifically, this study aimed to provide reliable insights and directions for future research on the role of optogenetics and chemogenetics in the neural circuits of depressive rodent models.
Collapse
Affiliation(s)
- Shaowei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianying Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiehui Li
- Shengli Oilfield Central Hospital, Dongying Rehabilitation Hospital, Dongying, China
| | - Yajie Hu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingkuan Zhang
- College of Medical and Healthcare, Linyi Vocational College, Linyi, China
| | - Haijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Groos D, Reuss AM, Rupprecht P, Stachniak T, Lewis C, Han S, Roggenbach A, Sturman O, Sych Y, Wieckhorst M, Bohacek J, Karayannis T, Aguzzi A, Helmchen F. A distinct hypothalamus-habenula circuit governs risk preference. Nat Neurosci 2025; 28:361-373. [PMID: 39779821 DOI: 10.1038/s41593-024-01856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Appropriate risk evaluation is essential for survival in complex, uncertain environments. Confronted with choosing between certain (safe) and uncertain (risky) options, animals show strong preference for either option consistently across extended time periods. How such risk preference is encoded in the brain remains elusive. A candidate region is the lateral habenula (LHb), which is prominently involved in value-guided behavior. Here, using a balanced two-alternative choice task and longitudinal two-photon calcium imaging in mice, we identify risk-preference-selective activity in LHb neurons reflecting individual risk preference before action selection. By using whole-brain anatomical tracing, multi-fiber photometry and projection-specific and cell-type-specific optogenetics, we find glutamatergic LHb projections from the medial (MH) but not lateral (LH) hypothalamus providing behavior-relevant synaptic input before action selection. Optogenetic stimulation of MH→LHb axons evoked excitatory and inhibitory postsynaptic responses, whereas LH→LHb projections were excitatory. We thus reveal functionally distinct hypothalamus-habenula circuits for risk preference in habitual economic decision-making.
Collapse
Affiliation(s)
- Dominik Groos
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Anna Maria Reuss
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Peter Rupprecht
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Tevye Stachniak
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Division of Biomedical Sciences, Memorial University, St. John's, Newfoundland, Canada
| | | | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Adrian Roggenbach
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Institute of Cellular and Integrative Neuroscience, Strasbourg, France
| | | | - Johannes Bohacek
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Theofanis Karayannis
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Park H, Ryu H, Zhang S, Kim S, Chung C. Mitogen-activated protein kinase dependent presynaptic potentiation in the lateral habenula mediates depressive-like behaviors in rats. Neuropsychopharmacology 2025; 50:540-547. [PMID: 39528624 PMCID: PMC11735983 DOI: 10.1038/s41386-024-02025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Emerging evidence suggests that the enhanced activity of lateral habenula (LHb) is involved in depressive disorders. This abnormal potentiation of LHb neurons was shown to originate from presynaptic alterations; however, the mechanisms underlying this presynaptic enhancement and physiological consequences are yet to be elucidated. Previously, we reported that presynaptic transmission in the LHb is temporally rhythmic, showing greater activity in the afternoon than in the morning. Here, we used a learned helpless rodent model of depression to show that exposure to a stressor or incubation with the stress hormone, corticosterone, abolished the presynaptic temporal variation in the LHb. In addition, selective inhibition of mitogen-activated protein kinase (MAPK) kinase (MAPKK, MEK) activity in the LHb restored the presynaptic alteration even after stress exposure. Moreover, we observed a slight increase in phosphorylated synapsin I after stress exposure. Finally, we found that a blockade of MAPK signaling before stress exposure successfully prevented the depression-like behaviors, including behavioral despair and helplessness, in an acute learned helpless animal model of depression. Our study delineates the cellular and molecular mechanisms responsible for the abnormal presynaptic enhancement of the LHb in depression, which may mediate depressive behaviors.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea.
| |
Collapse
|
15
|
Yang M, Tian S, Han X, Xu L, You J, Wu M, Cao Y, Jiang Y, Zheng Z, Liu J, Meng F, Li C, Wang X. Interleukin-11Rα2 in the hypothalamic arcuate nucleus affects depression-related behaviors and the AKT-BDNF pathway. Gene 2025; 933:148966. [PMID: 39341516 DOI: 10.1016/j.gene.2024.148966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Depression is a widespread emotional disorder with complex pathogenesis. An essential function of the hypothalamus is to regulate emotional disorders. However, further investigation is required to identify the pathogenic genes and molecular mechanisms that contribute to the onset of depression within the hypothalamus. Through RNA-sequencing analysis, this study identified the upregulated expression of interleukin-11 receptor alpha 2 (IL-11Rα2) in the hypothalamus of mice with chronic unpredictable stress (CUS)-induced depression. This substantial increase in IL-11Rα2, not IL-11Rα1 expression levels in the hypothalamus under the influence of CUS was found to be associated with depression-related behaviors. We further showed that IL-11Rα2 is expressed in the arcuate nucleus (ARC) proopiomelanocortin (POMC) neurons of the hypothalamus. Male and female mice exhibited behaviors association with depression, when IL-11Rα2 or its ligand IL-11 was overexpressed in the ARC POMC neurons through the action of an adeno-associated virus. In addition, reductions in the expression levels of proteins involved in the protein kinase B signaling pathways and brain-derived neurotrophic factor were observed upon overexpression of IL-11Rα2 in the hypothalamic ARC. This study emphasizes the importance of IL-11Rα2 in the hypothalamus ARC in the development of depression, and presents it as a potential novel target for depression treatment.
Collapse
Affiliation(s)
- Mengyu Yang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Shulei Tian
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaofeng Han
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lihong Xu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingjing You
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yifan Cao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yuting Jiang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ziteng Zheng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
16
|
Su F, Pfundstein G, Sah S, Zhang S, Keable R, Hagan DW, Sharpe LJ, Clemens KJ, Begg D, Phelps EA, Brown AJ, Leshchyns'ka I, Sytnyk V. Neuronal growth regulator 1 (NEGR1) promotes the synaptic targeting of glutamic acid decarboxylase 65 (GAD65). J Neurochem 2025; 169:e16279. [PMID: 39676071 DOI: 10.1111/jnc.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Neuronal growth regulator 1 (NEGR1) is a synaptic plasma membrane localized cell adhesion molecule implicated in a wide spectrum of psychiatric disorders. By RNAseq analysis of the transcriptomic changes in the brain of NEGR1-deficient mice, we found that NEGR1 deficiency affects the expression of the Gad2 gene. We show that glutamic acid decarboxylase 65 (GAD65), the Gad2 - encoded enzyme synthesizing the inhibitory neurotransmitter GABA on synaptic vesicles, accumulates non-synaptically in brains of NEGR1-deficient mice. The density of non-synaptic GAD65 accumulations is also increased in NEGR1 deficient cultured hypothalamic neurons, and this effect is rescued by re-expression of NEGR1. By using a novel biosensor of the plasma membrane attachment of GAD65, we demonstrate that GAD65 attaches to the plasma membrane. NEGR1 promotes palmitoylation-dependent clearance of GAD65 from the plasma membrane and targeting of GAD65 to plasma membrane-derived endocytic vesicles. In NEGR1 deficient cultured hypothalamic neurons, the synaptic and extrasynaptic levels of the plasma membrane attached GAD65 are increased, and the synaptic levels of GABA are reduced. NEGR1-deficient mice are characterized by reduced body weight, lower GABAergic synapse densities in the arcuate nucleus, and blunted responsiveness to the reinforcing effects of food rewards. Our results indicate that abnormalities in synaptic GABA synthesis can contribute to brain disorders associated with abnormal expression of NEGR1 in humans.
Collapse
Affiliation(s)
- Feifei Su
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shuyue Zhang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Kelly J Clemens
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Denovan Begg
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
18
|
Zheng Z, Liu Y, Mu R, Guo X, Feng Y, Guo C, Yang L, Qiu W, Zhang Q, Yang W, Dong Z, Qiu S, Dong Y, Cui Y. A small population of stress-responsive neurons in the hypothalamus-habenula circuit mediates development of depression-like behavior in mice. Neuron 2024; 112:3924-3939.e5. [PMID: 39389052 DOI: 10.1016/j.neuron.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Accumulating evidence has shown that various brain functions are associated with experience-activated neuronal ensembles. However, whether such neuronal ensembles are engaged in the pathogenesis of stress-induced depression remains elusive. Utilizing activity-dependent viral strategies in mice, we identified a small population of stress-responsive neurons, primarily located in the middle part of the lateral hypothalamus (mLH) and the medial part of the lateral habenula (LHbM). These neurons serve as "starter cells" to transmit stress-related information and mediate the development of depression-like behaviors during chronic stress. Starter cells in the mLH and LHbM form dominant connections, which are selectively potentiated by chronic stress. Silencing these connections during chronic stress prevents the development of depression-like behaviors, whereas activating these connections directly elicits depression-like behaviors without stress experience. Collectively, our findings dissect a core functional unit within the LH-LHb circuit that mediates the development of depression-like behaviors in mice.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yiqin Liu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Ruiqi Mu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Xiaonan Guo
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yirong Feng
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Chen Guo
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Liang Yang
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Wenxi Qiu
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Wei Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaoqi Dong
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuang Qiu
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Yiyan Dong
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| | - Yihui Cui
- Department of Psychiatry of Sir Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Zhukovskaya A, Zimmerman CA, Willmore L, Pan-Vazquez A, Janarthanan SR, Lynch LA, Falkner AL, Witten IB. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. Neuron 2024; 112:3940-3956.e10. [PMID: 39393349 PMCID: PMC11624084 DOI: 10.1016/j.neuron.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/04/2024] [Accepted: 09/08/2024] [Indexed: 10/13/2024]
Abstract
Some individuals are susceptible to chronic stress, and others are more resilient. While many brain regions implicated in learning are dysregulated after stress, little is known about whether and how neural teaching signals during stress differ between susceptible and resilient individuals. Here, we seek to determine if activity in the lateral habenula (LHb), which encodes a negative teaching signal, differs between susceptible and resilient mice during stress to produce different outcomes. After (but not before) chronic social defeat stress, the LHb is active when susceptible mice are in proximity of the aggressor strain. During stress, activity is higher in susceptible mice during aggressor interactions, and activation biases mice toward susceptibility. This manipulation generates a persistent and widespread increase in the balance of subcortical vs. cortical activity in susceptible mice. Taken together, our results indicate that heightened activity in the LHb during stress produces lasting brainwide and behavioral substrates of susceptibility.
Collapse
Affiliation(s)
- Anna Zhukovskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
20
|
Su X, Lei B, He J, Liu Y, Wang A, Tang Y, Liu W, Zhong Y. Identification of GABAergic subpopulations in the lateral hypothalamus for home-driven behaviors in mice. Cell Rep 2024; 43:114842. [PMID: 39412991 DOI: 10.1016/j.celrep.2024.114842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024] Open
Abstract
Home information profoundly influences behavioral states in both humans and animals. However, how "home" is represented in the brain and its role in driving diverse related behaviors remain elusive. Here, we demonstrate that home bedding contains sufficient home information to modulate affective behaviors, including aversion responses, defensive aggression, and mating behaviors. These varied responses to home information are mediated by gama-aminobutyric acid (GABA)ergic neurons in the lateral hypothalamus (LHGABA). Inhibiting LHGABA abolishes, while activating mimics, the effects of home bedding on these behaviors across different contexts. Specifically, projections from LHGABA to the ventral tegmental area (VTA) mediate the relaxation of aversive emotion, while projections to the periaqueductal gray (PAG) initiate defensive concerns. Thus, our data suggest that home information in different contexts converges to activate distinct subgroups of the LHGABA, which, in turn, elicit appropriate affective behaviors in relieving aversion, fighting intruders, or enhancing mating through involving distinct downstream projections.
Collapse
Affiliation(s)
- Xiaoya Su
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Bo Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Beijing Academy of Artificial Intelligence, Beijing 100084, P.R. China.
| | - Junyue He
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Peking University, Tsinghua University, National Institute Biological Science Joint Graduate Program, Beijing, P.R. China
| | - Yunlong Liu
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ao Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Yikai Tang
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Weixuan Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China
| | - Yi Zhong
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China; McGovern Institute of Brain Research, Beijing 100084, P.R. China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, P.R. China; MOE Key Laboratory of Protein Sciences, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
21
|
Seo K, Won S, Lee HY, Sin Y, Lee S, Park H, Kim YG, Yang SY, Kim DJ, Suk K, Koo JW, Baek M, Choi SY, Lee H. Astrocytic inhibition of lateral septal neurons promotes diverse stress responses. Nat Commun 2024; 15:10091. [PMID: 39572547 PMCID: PMC11582824 DOI: 10.1038/s41467-024-54376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Inhibitory neuronal circuits within the lateral septum (LS) play a key role in regulating mood and stress responses. Even though glial cells can modulate these circuits, the impact of astrocytes on LS neural circuits and their functional interactions remains largely unexplored. Here, we demonstrate that astrocytes exhibit increased intracellular Ca²⁺ levels in response to aversive sensory and social stimuli in both male and female mice. This astrocytic Ca²⁺ elevation inhibits neighboring LS neurons by reducing excitatory synaptic transmissions through A1R-mediated signaling in both the dorsal (LSd) and intermediate LS (LSi) and enhancing inhibitory synaptic transmission via A2AR-mediated signaling in the LSi. At the same time, astrocytes reduce inhibitory tone on distant LS neurons. In the LSd, astrocytes promote social avoidance and anxiety, as well as increased heart rate in socially stressed male mice. In contrast, astrocytes in the LSi contribute to elevated heart rate and heightened blood corticosterone levels in unstressed male mice. These results suggest that the dynamic interactions between astrocytes and neurons within the LS modulate physiological and behavioral responses to stressful experiences.
Collapse
Affiliation(s)
- Kain Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sanghyun Won
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hee-Yoon Lee
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Yeonju Sin
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Sangho Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Hyejin Park
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Yong Geon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Seo Young Yang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Myungin Baek
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology and Neuroscience, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea.
| | - Hyosang Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea.
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.
| |
Collapse
|
22
|
Smirnova K, Amstislavskaya T, Smirnova L. BMAL1-Potential Player of Aberrant Stress Response in Q31L Mice Model of Affective Disorders: Pilot Results. Int J Mol Sci 2024; 25:12468. [PMID: 39596543 PMCID: PMC11595136 DOI: 10.3390/ijms252212468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Dysregulation in the stress-response system as a result of genetical mutation can provoke the manifestation of affective disorders under stress conditions. Mutations in the human DISC1 gene is one of the main risk factors of affective disorders. It was known that DISC1 regulates a large number of proteins including BMAL1, which is involved in the regulation of glucocorticoid synthesis in the adrenal glands and the sensitivity of glucocorticoid receptor target genes. Male mice with a point mutation Q31L in the Disc1 gene were exposed to chronic unpredictable stress (CUS), after which the behavioral and physiological stress response assessed. To assess whether there were any changes in BMAL1 in key brain regions involved in the stress response, immunohistochemistry was applied. It was shown that the Q31L mice had an aberrant behavioral response, especially to the 2 weeks of CUS, which was expressed in unchanged motor activity, increased time of social interaction, and alterations in anxiety and fear-related behavior. Q31L males did not show an increase in blood corticosterone levels after CUS and a decrease in body weight. Immunohistochemical analysis in intact Q31L mice revealed a decrease in BMAL1 immunofluorescence in the CA1 hippocampal area and lateral habenula. Thus, the Q31L mutation of the Disc1 gene disrupts behavioral and physiological stress response and the BMAL1 dysregulation may underlie it, so this protein can act as a molecular target for the treatment of affective disorders.
Collapse
Affiliation(s)
- Kristina Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Tamara Amstislavskaya
- Research Institute of Neuroscience and Medicine, Timakova 4, 630090 Novosibirsk, Russia;
| | - Liudmila Smirnova
- Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia;
| |
Collapse
|
23
|
Li X, Liu X, Liu J, Zhou F, Li Y, Zhao Y, Yin X, Shi Y, Shi H. Neuronal TCF7L2 in Lateral Habenula Is Involved in Stress-Induced Depression. Int J Mol Sci 2024; 25:12404. [PMID: 39596468 PMCID: PMC11594340 DOI: 10.3390/ijms252212404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Depression is a complex psychiatric disorder that has substantial implications for public health. The lateral habenula (LHb), a vital brain structure involved in mood regulation, and the N-methyl-D-aspartate receptor (NMDAR) within this structure are known to be associated with depressive behaviors. Recent research has identified transcription factor 7-like 2 (TCF7L2) as a crucial transcription factor in the Wnt signaling pathway, influencing diverse neuropsychiatric processes. In this study, we explore the role of TCF7L2 in the LHb and its effect on depressive-like behaviors in mice. By using behavioral tests, AAV-mediated gene knockdown or overexpression, and pharmacological interventions, we investigated the effects of alterations in TCF7L2 expression in the LHb. Our results indicate that TCF7L2 expression is reduced in neurons within the LHb of male ICR mice exposed to chronic mild stress (CMS), and neuron-specific knockdown of TCF7L2 in LHb neurons leads to notable antidepressant activity, as evidenced by reduced immobility time in the tail suspension test (TST) and forced swimming test (FST). Conversely, the overexpression of TCF7L2 in LHb neurons induces depressive behaviors. Furthermore, the administration of the NMDAR agonist NMDA reversed the antidepressant activity of TCF7L2 knockdown, and the NMDAR antagonist memantine alleviated the depressive behaviors induced by TCF7L2 overexpression, indicating the involvement of NMDAR. These findings offer novel insights into the molecular mechanisms of depression, highlighting the potential of TCF7L2 as both a biomarker and a therapeutic target for depression. Exploring the relationship between TCF7L2 signaling and LHb function may lead to innovative therapeutic approaches for alleviating depressive symptoms.
Collapse
Affiliation(s)
- Xincheng Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Xiaoyu Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Jiaxin Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Fei Zhou
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Yunluo Li
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; (X.L.); (X.L.); (J.L.); (F.Z.); (Y.L.); (Y.Z.); (X.Y.)
- Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Early Life Health Promotion, College of Nursing, Hebei Medical University, Shijiazhuang 050031, China
| |
Collapse
|
24
|
Wu JL, Li ZM, Chen H, Chen WJ, Hu NY, Jin SY, Li XW, Chen YH, Yang JM, Gao TM. Distinct septo-hippocampal cholinergic projections separately mediate stress-induced emotional and cognitive deficits. SCIENCE ADVANCES 2024; 10:eado1508. [PMID: 39514666 PMCID: PMC11546849 DOI: 10.1126/sciadv.ado1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Patients suffering from chronic stress develop numerous symptoms, including emotional and cognitive deficits. The precise circuit mechanisms underlying different symptoms remain poorly understood. We identified two distinct basal forebrain cholinergic subpopulations in mice projecting to the dorsal hippocampus (dHPC) or ventral hippocampus (vHPC), which exhibited distinct input organizations, electrophysiological characteristics, transcriptomics, and responses to positive and negative valences of stimuli and were critical for cognitive and emotional modulation, respectively. Moreover, chronic stress induced elevated anxiety levels and cognitive deficits in mice, accompanied by enhanced vHPC but suppressed dHPC cholinergic projections. Chemogenetic activation of dHPC or inhibition of vHPC cholinergic projections alleviated stress-induced aberrant behaviors. Furthermore, we identified that the acetylcholinesterase inhibitor donepezil combined with blockade of muscarinic receptor 1-type muscarinic acetylcholine receptors in the vHPC rescued both stress-induced phenotypes. These data illuminated distinct septo-hippocampal cholinergic circuits mediated specific symptoms independently under stress, which may provide promising strategies for circuit-based treating of stress-related psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Hao Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Jun Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Neng-Yuan Hu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:719-728. [PMID: 39547824 DOI: 10.1016/j.joim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study investigates the sleep-modulating effects of ginsenoside Rg1 (Rg1, C42H72O14), a key bioactive component of ginseng, and elucidates its underlying mechanisms. METHODS C57BL/6J mice were intraperitoneally administered doses of Rg1 ranging from 12.5 to 100 mg/kg. Sleep parameters were assessed to determine the average duration of each sleep stage by monitoring the electrical activity of the brain and muscles. Further, orexin neurons in the lateral hypothalamus (LH) and corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) were ablated using viral vector surgery and electrode embedding. The excitability of LHorexin and PVHCRH neurons was evaluated through the measurement of cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-Fos) expression. RESULTS Rg1 (12.5-100 mg/kg) augmented the duration of non-rapid eye movement (NREM) sleep phases, while reducing the duration of wakefulness, in a dose dependent manner. The reduced latency from wakefulness to NREM sleep indicates an accelerated sleep initiation time. We found that these sleep-promoting effects were weakened in the LHorexin and PVHCRH neuron ablation groups, and disappeared in the orexin and CRH double-ablation group. Decreased c-Fos protein expression in the LH and PVH confirmed that Rg1 promoted NREM sleep by inhibiting orexin and CRH neurons. CONCLUSION Rg1 increases the duration of NREM sleep, underscoring the essential roles of LHorexin and PVHCRH neurons in facilitating the sleep-promoting effects of Rg1. Please cite this article as: Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. J Integr Med. 2024; 22(6): 721-730.
Collapse
Affiliation(s)
- Yi-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Gui
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Chang-Rui Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200040, China.
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
26
|
Liu L, Jin YD, Fan YH. Progress in research of corticotropin-releasing hormone receptor 2 in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2024; 32:742-749. [DOI: 10.11569/wcjd.v32.i10.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Members of the corticotropin-releasing hormone family and their receptors are widely distributed in central and peripheral tissues and are involved in the regulation of the cardiovascular system, metabolism, immune function, and inflammatory response in the body. Corticotropin-releasing hormone receptor 2 (CRHR2), one of specific receptors for corticotropin releasing factor, attenuates stress-induced intestinal hypersensitivity, influences intestinal microbial composition and diversity, has strong anti-inflammatory capacity, and regulates the proliferation, migration, and apoptosis of intestinal epithelial cells, and promotes intestinal mucosal repair. In recent years, studies have shown that the levels of CRHR2 in the colon tissue of patients with inflammatory bowel disease (IBD) are significantly different from those in normal human intestinal tissue, and it has been suggested that CRHR2 may be a potential therapeutic target for IBD. This paper reviews the physiological functions of CRHR2 and its clinical relevance to IBD, with the aim of exploring its specific mechanism of action and potential clinical application in the treatment of IBD, so as to provide a basis for the development of more effective therapeutic means for IBD in the future.
Collapse
Affiliation(s)
- Liu Liu
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Dan Jin
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Yi-Hong Fan
- Department of Gastroen-terology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
27
|
He Y, Ren Y, Chen X, Wang Y, Yu H, Cai J, Wang P, Ren Y, Xie P. Neural and molecular investigation into the paraventricular thalamus for chronic restraint stress induced depressive-like behaviors. J Adv Res 2024:S2090-1232(24)00480-6. [PMID: 39447640 DOI: 10.1016/j.jare.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Disturbance of neural circuits and chronic stress contribute to depression onset. Given the crucial role of paraventricular nucleus of thalamus (PVT) in emotional behaviors, however, the specific neural and molecular mechanism of PVT in depression still unclear. OBJECTIVE Our study aim to explore the neural and molecular mechanism of PVT in depression. METHODS In the present study, we utilize behavioral tests,chemogenetics, RNA-sequence, molecular profiling and pharmacological approaches to investigate the role of PVT in depression. RESULTS We observed that CamkIIα neurons in PVT were inactivated by chronic restraint stress (CRS) with reduced c-Fos positive neurons. Activation of PVTCamkIIα neurons displayed antidepressant-like effect in both naive and CRS mice, whereas inhibition or ablation of these neurons is sufficient to trigger depressive-like behaviors. Moreover, we found that activating PVT → Nucleus accumbens (NAc) circuit attenuated depressive-like behaviors induced by CRS, while inhibiting this circuit directly caused behavioral deficits in mice. Intriguingly, artificially enhancing PVT → Central amygdala (CeA) pathway failed to alleviate depressive-like behaviors. Importantly, increased expression of neuropeptide Y (NPY) and depressive-like behaviors induced by CRS could be ameliorated via antidepressant treatment, manipulation of PVTCamkIIα neurons (or PVT → NAc circuit) and NPY inhibitor. CONCLUSION Taken together, our study uncovered that PVT regulated depressive-like behaviors via PVT → NAc circuit together with NPY, thus shedding light on potential target for preventing depression and promoting clinical translation.
Collapse
Affiliation(s)
- Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yikun Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Heming Yu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchao Cai
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Ren
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
28
|
Zhang Y, Shen J, Xie F, Liu Z, Yin F, Cheng M, Wang L, Cai M, Herzog H, Wu P, Zhang Z, Zhan C, Liu T. Feedforward inhibition of stress by brainstem neuropeptide Y neurons. Nat Commun 2024; 15:7603. [PMID: 39217143 PMCID: PMC11365948 DOI: 10.1038/s41467-024-51956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to stress is a key determinant for mammalian functioning. While many studies have revealed neural circuits and substrates responsible for initiating and mediating stress responses, little is known about how the brain resists to stress and prevents overreactions. Here, we identified a previously uncharacterized neuropeptide Y (NPY) neuronal population in the dorsal raphe nucleus and ventrolateral periaqueductal gray region (DRN/vlPAG) with anxiolytic effects in male mice. NPYDRN/vlPAG neurons are rapidly activated by various stressful stimuli. Inhibiting these neurons exacerbated hypophagic and anxiety responses during stress, while activation significantly ameliorates acute stress-induced hypophagia and anxiety levels and transmits positive valence. Furthermore, NPYDRN/vlPAG neurons exert differential but synergic anxiolytic effects via inhibitory projections to the paraventricular thalamic nucleus (PVT) and the lateral hypothalamic area (LH). Together, our findings reveal a feedforward inhibition neural mechanism underlying stress resistance and suggest NPYDRN/vlPAG neurons as a potential therapeutic target for stress-related disorders.
Collapse
Grants
- the National Key R&D Program of China (2019YFA0801900, 2018YFA0800300), the National Natural Science Foundation of China (9235730017, 92249302, 32150610475, 31971074), Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202001), Faculty Resources Project of College of Life Sciences, Inner Mongolia University (2022-102)
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, the National Natural Science Foundation of China (32171144) and Shanghai Pujiang Program (22PJD007).
- the STI2030-Major Projects (2021ZD0203900),the National Natural Science Foundation of China (32271063, 31822026, 31500860), Research Funds of Center for Advanced Interdisciplinary Science and Biomedicine of IHM (QYPY20220018)
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Jiayi Shen
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiwei Liu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fangfang Yin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Mingxiu Cheng
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Liang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meiting Cai
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Herbert Herzog
- St Vincent's Centre for Applied Medical Research, Faculty of Medicine, UNSW, Sydney, NSW, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ping Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Zhi Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Cheng Zhan
- Hefei National Research center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China.
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Shanghai, China.
- School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
29
|
Cao Z, Yung WH, Ke Y. Distinct populations of lateral preoptic nucleus neurons jointly contribute to depressive-like behaviors through divergent projections in male mice. Neurobiol Stress 2024; 32:100667. [PMID: 39233784 PMCID: PMC11372801 DOI: 10.1016/j.ynstr.2024.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
The lateral preoptic area (LPO) is a component of the hypothalamus involved in various physiological functions including sleep-wakefulness transition, thermoregulation, and water-salt balance. In this study, we discovered that distinct LPO excitatory neurons project separately to the aversive processing center lateral habenula (LHb) and the reward processing hub ventral tegmental area (VTA). Following chronic restraint stress (CRS), the LHb-projecting and VTA-projecting LPO neurons exhibited increased and decreased neuronal activities, respectively. Optogenetic activation of LHb-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within LHb evoked aversion and avoidance behaviors, while activation of VTA-projecting LPO excitatory neurons and LPO excitatory neuronal terminals within VTA produced preference and exploratory behaviors in mice. Furthermore, either optogenetic inhibition of LHb-projecting LPO excitatory neurons or activation of VTA-projecting LPO excitatory neurons during CRS effectively prevented the development of depressive-like behaviors. Our study unveils, for the first-time, divergent pathways originating from LPO that regulate opposite affective states in mice and implicates that an imbalance of their activities could lead to depressive-like behaviors. These circuitries represent promising therapeutic targets to relieve emotional dysfunctions in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhiping Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| | - Wing-Ho Yung
- Department of Neuroscience, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, 999077, Hong Kong, China
| |
Collapse
|
30
|
He E, Ma R, Qu S, Zheng X, Peng X, Ji J, Ma W, Zhang X, Li Y, Li H, Li Y, Li L, Gong Z. L-methionine and the L-type Ca 2+ channel agonist BAY K 8644 collaboratively contribute to the reduction of depressive-like behavior in mice. Front Neural Circuits 2024; 18:1435507. [PMID: 39268349 PMCID: PMC11391425 DOI: 10.3389/fncir.2024.1435507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The L-type Ca2+ channel (LTCC, also known as Cav1,2) is involved in the regulation of key neuronal functions, such as dendritic information integration, cell survival, and neuronal gene expression. Clinical studies have shown an association between L-type calcium channels and the onset of depression, although the precise mechanisms remain unclear. The development of depression results from a combination of environmental and genetic factors. DNA methylation, a significant epigenetic modification, plays a regulatory role in the pathogenesis of psychiatric disorders such as posttraumatic stress disorder (PTSD), depression, and autism. In our study, we observed reduced Dnmt3a expression levels in the hippocampal DG region of mice with LPS-induced depression compared to control mice. The antidepressant Venlafaxine was able to increase Dnmt3a expression levels. Conversely, Bay K 8644, an agonist of the L-type Ca2+ channel, partially ameliorated depression-like behaviors but did not elevate Dnmt3a expression levels. Furthermore, when we manipulated DNA methylation levels during Bay K 8644 intervention in depression-like models, we found that enhancing the expression of Dnmt3a could improve LPS-induced depression/anxiety-like behaviors, while inhibiting DNA methylation exacerbated anxiety-like behaviors, the combined use of BAY K 8644 and L-methionine can better improve depressive-like behavior. These findings indicate that DNA methylation plays a role in the regulation of depression-like behaviors by the L-type Ca2+ channel, and further research is needed to elucidate the interactions between DNA methylation and L-type Ca2+ channels.
Collapse
Affiliation(s)
- Ershu He
- School of Medicine, Dali University, Dali, China
| | - Ruixue Ma
- School of Medicine, Dali University, Dali, China
| | - Shanglan Qu
- School of Medicine, Dali University, Dali, China
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor's University, Subang Jaya, Malaysia
| | - Xiaoye Zheng
- School of Medicine, Dali University, Dali, China
| | - Xin Peng
- School of Medicine, Dali University, Dali, China
| | - Jieyu Ji
- School of Medicine, Dali University, Dali, China
| | - Wenhao Ma
- School of Medicine, Dali University, Dali, China
| | - Xueyan Zhang
- School of Medicine, Dali University, Dali, China
| | - Ying Li
- School of Medicine, Dali University, Dali, China
| | - Hanwei Li
- School of Medicine, Dali University, Dali, China
| | - Yanjiao Li
- School of Medicine, Dali University, Dali, China
| | - Lijuan Li
- School of Medicine, Dali University, Dali, China
| | - Zhiting Gong
- School of Medicine, Dali University, Dali, China
| |
Collapse
|
31
|
Michel L, Molina P, Mameli M. The behavioral relevance of a modular organization in the lateral habenula. Neuron 2024; 112:2669-2685. [PMID: 38772374 DOI: 10.1016/j.neuron.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Behavioral strategies for survival rely on the updates the brain continuously makes based on the surrounding environment. External stimuli-neutral, positive, and negative-relay core information to the brain, where a complex anatomical network rapidly organizes actions, including approach or escape, and regulates emotions. Human neuroimaging and physiology in nonhuman primates, rodents, and teleosts suggest a pivotal role of the lateral habenula in translating external information into survival behaviors. Here, we review the literature describing how discrete habenular modules-reflecting the molecular signatures, anatomical connectivity, and functional components-are recruited by environmental stimuli and cooperate to prompt specific behavioral outcomes. We argue that integration of these findings in the context of valence processing for reinforcing or discouraging behaviors is necessary, offering a compelling model to guide future work.
Collapse
Affiliation(s)
- Leo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
32
|
Li Y, Cacciottolo TM, Yin N, He Y, Liu H, Liu H, Yang Y, Henning E, Keogh JM, Lawler K, Mendes de Oliveira E, Gardner EJ, Kentistou KA, Laouris P, Bounds R, Ong KK, Perry JRB, Barroso I, Tu L, Bean JC, Yu M, Conde KM, Wang M, Ginnard O, Fang X, Tong L, Han J, Darwich T, Williams KW, Yang Y, Wang C, Joss S, Firth HV, Xu Y, Farooqi IS. Loss of transient receptor potential channel 5 causes obesity and postpartum depression. Cell 2024; 187:4176-4192.e17. [PMID: 38959890 PMCID: PMC11961024 DOI: 10.1016/j.cell.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.
Collapse
Affiliation(s)
- Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Taizhou People's Hospital, Medical School of Yangzhou University, Taizhou, Jiangsu, China
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Panayiotis Laouris
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R B Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lydia Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tia Darwich
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust & Wellcome Sanger Institute, Cambridge, UK
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
33
|
Zhang Z, Zhang W, Fang Y, Wang N, Liu G, Zou N, Song Z, Liu H, Wang L, Xiao Q, Zhao J, Wang Y, Lei T, Zhang C, Liu X, Zhang B, Luo F, Xia J, He C, Hu Z, Ren S, Zhao H. A potentiation of REM sleep-active neurons in the lateral habenula may be responsible for the sleep disturbance in depression. Curr Biol 2024; 34:3287-3300.e6. [PMID: 38944036 DOI: 10.1016/j.cub.2024.05.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
Psychiatric disorders with dysfunction of the lateral habenula (LHb) show sleep disturbance, especially a disinhibition of rapid eye movement (REM) sleep in major depression. However, the role of LHb in physiological sleep control and how LHb contributes to sleep disturbance in major depression remain elusive. Here, we found that functional manipulations of LHb glutamatergic neurons bidirectionally modulated both non-REM (NREM) sleep and REM sleep. Activity recording revealed heterogeneous activity patterns of LHb neurons across sleep/wakefulness cycles, but LHb neurons were preferentially active during REM sleep. Using an activity-dependent tagging method, we selectively labeled a population of REM sleep-active LHb neurons and demonstrated that these neurons specifically promoted REM sleep. Neural circuit studies showed that LHb neurons regulated REM sleep via projections to the ventral tegmental area but not to the rostromedial tegmental nucleus. Furthermore, we found that the increased REM sleep in a depression mouse model was associated with a potentiation of REM sleep-active LHb neurons, including an increased proportion, elevated spike firing, and altered activity mode. Importantly, inhibition of REM sleep-active LHb neurons not only attenuated the increased REM sleep but also alleviated depressive-like behaviors in a depression mouse model. Thus, our results demonstrated that REM sleep-active LHb neurons selectively promoted REM sleep, and a potentiation of these neurons contributed to depression-associated sleep disturbance.
Collapse
Affiliation(s)
- Zehui Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yuanyuan Fang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Anaesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Na Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Guoying Liu
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Nan Zou
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
| | - Zhenbo Song
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hanshu Liu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Longshuo Wang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qin Xiao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Juanjuan Zhao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yaling Wang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Ting Lei
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Cai Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Xiaofeng Liu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fenlan Luo
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jianxia Xia
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chao He
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| | - Shuancheng Ren
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China.
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
34
|
Jiang R, Lu Z, Wang C, Xiao J, Liu Q, Xu X, Shi J, Shen J, Zhu X, Gong P, Zhuang QX, Shi K, Shi W. Beta2 adrenergic receptor-mediated abnormal myelopoiesis drives neuroinflammation in aged patients with traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadp5239. [PMID: 39028822 PMCID: PMC11259178 DOI: 10.1126/sciadv.adp5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Aged patients often suffer poorer neurological recovery than younger patients after traumatic brain injury (TBI), but the mechanisms underlying this difference remain unclear. Here, we demonstrate abnormal myelopoiesis characterized by increased neutrophil and classical monocyte output but impaired nonclassical patrolling monocyte population in aged patients with TBI as well as in an aged murine TBI model. Retrograde and anterograde nerve tracing indicated that increased adrenergic input through the central amygdaloid nucleus-bone marrow axis drives abnormal myelopoiesis after TBI in a β2-adrenergic receptor-dependent manner, which is notably enhanced in aged mice after injury. Selective blockade of β2-adrenergic receptors rebalances abnormal myelopoiesis and improves the outcomes of aged mice after TBI. We therefore demonstrate that increased β2-adrenergic input-driven abnormal myelopoiesis exacerbates post-TBI neuroinflammation in the aged, representing a mechanism underlying the poorer recovery of aged patients and that blockade of β2-adrenergic receptor is a potential approach to promote neurological recovery after TBI.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhichao Lu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chenxing Wang
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jun Xiao
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qianqian Liu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xide Xu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jinlong Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianhong Shen
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peipei Gong
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Kaibin Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Chinese Institutes for Medical Research, Beijing 100069, China
| | - Wei Shi
- Department of Neurosurgery, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
35
|
Zhukovskaya A, Christopher Z, Willmore L, Pan Vazquez A, Janarthanan S, Falkner A, Witten I. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565681. [PMID: 39005438 PMCID: PMC11244933 DOI: 10.1101/2023.11.06.565681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Some individuals are susceptible to the experience of chronic stress and others are more resilient. While many brain regions implicated in learning are dysregulated after stress, little is known about whether and how neural teaching signals during stress differ between susceptible and resilient individuals. Here, we seek to determine if activity in the lateral habenula (LHb), which encodes a negative teaching signal, differs between susceptible and resilient mice during stress to produce different outcomes. After, but not before, chronic social defeat stress (CSDS), the LHb is active when susceptible mice are in the proximity of the aggressor strain. During stress itself, LHb activity is higher in susceptible mice during aggressor proximity, and activation of the LHb during stress biases mice towards susceptibility. This manipulation generates a persistent and widespread increase in the balance of subcortical versus cortical activity in susceptible mice. Taken together, our results indicate that heightened activity in the LHb during stress produces lasting brainwide and behavioral substrates of susceptibility.
Collapse
|
36
|
Chen B, Su T, Yang M, Wang Q, Zhou H, Tan G, Liu S, Wu Z, Zhong X, Ning Y. Static and dynamic functional connectivity of the habenula in late-life depression patient with suicidal ideation. J Affect Disord 2024; 356:499-506. [PMID: 38574869 DOI: 10.1016/j.jad.2024.03.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Suicide is one of the most lethal complications of late-life depression (LLD), and habenular dysfunction may be involved in depression-related suicidality and may serve as a potential target for alleviating suicidal ideation. This study aimed to investigate abnormal functional connectivity of the habenula in LLD patients with suicidal ideation. METHODS One hundred twenty-seven patients with LLD (51 with suicidal ideation (LLD-S) and 76 without suicidal ideation (LLD-NS)) and 75 healthy controls (HCs) were recruited. The static functional connectivity (sFC) and dynamic functional connectivity (dFC) between the habenula and the whole brain were compared among the three groups, and correlation and moderation analyses were applied to investigate whether suicidal ideation moderated the relationships of habenular FC with depressive symptoms and cognitive impairment. RESULTS The dFC between the right habenula and the left orbitofrontal cortex (OFC) increased in the following order: LLD-S > LLD-NS > control. No significant difference in the habenular sFC was found among the LLD-S, LLD-NS and control groups. The dFC between the right habenula and the left OFC was positively associated with global cognitive function and visuospatial skills, and the association between this dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD. CONCLUSION The increased variability in dFC between the right habenula and left OFC was more pronounced in the LLD-S group than in the LLD-NS group, and the association between habenular-OFC dFC and visuospatial skills was moderated by suicidal ideation in patients with LLD.
Collapse
Affiliation(s)
- Ben Chen
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Su
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huarong Zhou
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guili Tan
- Department of Rehabilitation, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Siting Liu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
37
|
Cao X, Zhu M, Xu G, Li F, Yan Y, Zhang J, Wang J, Zeng F, Bao Y, Zhang X, Liu T, Zhang D. HCN channels in the lateral habenula regulate pain and comorbid depressive-like behaviors in mice. CNS Neurosci Ther 2024; 30:e14831. [PMID: 38961317 PMCID: PMC11222070 DOI: 10.1111/cns.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.
Collapse
Affiliation(s)
- Xue‐zhong Cao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Meng‐ye Zhu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gang Xu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Fan Li
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jin‐jin Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianbing Wang
- Department of AnesthesiologyJiangxi Cancer HospitalNanchangJiangxiChina
| | - Fei Zeng
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yang Bao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xue‐xue Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tao Liu
- Department of Pediatricsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Da‐ying Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
38
|
Meng L, Zheng X, Xie K, Li Y, Liu D, Xu Y, Zhang J, Wu F, Guo G. Hyperexcitation of the glutamatergic neurons in lateral hypothalamus induced by chronic pain contributes to depression-like behavior and learning and memory impairment in male mice. Neurobiol Stress 2024; 31:100654. [PMID: 38948390 PMCID: PMC11214532 DOI: 10.1016/j.ynstr.2024.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Chronic pain can induce mood disorders and cognitive dysfunctions, such as anxiety, depression, and learning and memory impairment in humans. However, the specific neural network involved in anxiety- and depression-like behaviors and learning and memory impairment caused by chronic pain remains poorly understood. In this study, behavioral test results showed that chronic pain induced anxiety- and depression-like behaviors, and learning and memory impairment in male mice. c-Fos immunofluorescence and fiber photometry recording showed that glutamatergic neurons in the LH of mice with chronic pain were selectively activated. Next, the glutamatergic neurons of LH in normal mice were activated using optogenetic and chemogenetic methods, which recapitulates some of the depressive-like behaviors, as well as memory impairment, but not anxiety-like behavior. Finally, inhibition of glutamatergic neurons in the LH of mice with chronic pain, effectively relieved anxiety- and depression-like behaviors and learning and memory impairment. Taken together, our findings suggest that hyperexcitation of glutamatergic neurons in the LH is involved in depression-like behavior and learning and memory impairment induced by chronic pain.
Collapse
Affiliation(s)
| | | | - Keman Xie
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yifei Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
39
|
Li XY, Zhang SY, Hong YZ, Chen ZG, Long Y, Yuan DH, Zhao JJ, Tang SS, Wang H, Hong H. TGR5-mediated lateral hypothalamus-dCA3-dorsolateral septum circuit regulates depressive-like behavior in male mice. Neuron 2024; 112:1795-1814.e10. [PMID: 38518778 DOI: 10.1016/j.neuron.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.
Collapse
Affiliation(s)
- Xu-Yi Li
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Ya Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Zhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Gang Chen
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Long
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Hua Yuan
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Jia Zhao
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Su-Su Tang
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Wang
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine/Nanhu Brain-Computer Interface Institute, Hangzhou 310013, China.
| | - Hao Hong
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
40
|
Liu Y, Chen L, Lin L, Xu C, Xiong Y, Qiu H, Li X, Li S, Cao H. Unveiling the hidden pathways: Exploring astrocytes as a key target for depression therapy. J Psychiatr Res 2024; 174:101-113. [PMID: 38626560 DOI: 10.1016/j.jpsychires.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Depressive disorders are widely debilitating psychiatric disease. Despite the considerable progress in the field of depression therapy, extensive research spanning many decades has failed to uncover pathogenic pathways that might aid in the creation of long-acting and rapid-acting antidepressants. Consequently, it is imperative to reconsider existing approaches and explore other targets to improve this area of study. In contemporary times, several scholarly investigations have unveiled that persons who have received a diagnosis of depression, as well as animal models employed to study depression, demonstrate a decrease in both the quantity as well as density of astrocytes, accompanied by alterations in gene expression and morphological attributes. Astrocytes rely on a diverse array of channels and receptors to facilitate their neurotransmitter transmission inside tripartite synapses. This study aimed to investigate the potential processes behind the development of depression, specifically focusing on astrocyte-associated neuroinflammation and the involvement of several molecular components such as connexin 43, potassium channel Kir4.1, aquaporin 4, glutamatergic aspartic acid transporter protein, SLC1A2 or GLT-1, glucocorticoid receptors, 5-hydroxytryptamine receptor 2B, and autophagy, that localized on the surface of astrocytes. The study also explores novel approaches in the treatment of depression, with a focus on astrocytes, offering innovative perspectives on potential antidepressant medications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Gastroenterology, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Lin Lin
- Scientific Research Management Department, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Caijuan Xu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Yifan Xiong
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China; Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China.
| |
Collapse
|
41
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Huang T, Guo X, Huang X, Yi C, Cui Y, Dong Y. Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics. J Zhejiang Univ Sci B 2024; 25:1-11. [PMID: 38616136 DOI: 10.1631/jzus.b2300933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 04/16/2024]
Abstract
Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.
Collapse
Affiliation(s)
- Taida Huang
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaonan Guo
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Huang
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Chenju Yi
- Research Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China.
| | - Yihui Cui
- Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China. ,
| | - Yiyan Dong
- Department of Neurology and International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China. ,
| |
Collapse
|
43
|
Wang W, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Unlocking the power of Lactoferrin: Exploring its role in early life and its preventive potential for adult chronic diseases. Food Res Int 2024; 182:114143. [PMID: 38519174 DOI: 10.1016/j.foodres.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Nutrition during the early postnatal period exerts a profound impact on both infant development and later-life health. Breast milk, which contains lactoferrin, a dynamic protein, plays a crucial role in the growth of various biological systems and in preventing numerous chronic diseases. Based on the relationship between early infant development and chronic diseases later in life, this paper presents a review of the effects of lactoferrin in early life on neonates intestinal tract, immune system, nervous system, adipocyte development, and early intestinal microflora establishment, as well as the preventive and potential mechanisms of early postnatal lactoferrin against adult allergy, inflammatory bowel disease, depression, cancer, and obesity. Furthermore, we summarized the application status of lactoferrin in the early postnatal period and suggested directions for future research.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
44
|
Chen SD, You J, Zhang W, Wu BS, Ge YJ, Xiang ST, Du J, Kuo K, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Feng JF, Dong Q, Cheng W, Yu JT. The genetic architecture of the human hypothalamus and its involvement in neuropsychiatric behaviours and disorders. Nat Hum Behav 2024; 8:779-793. [PMID: 38182882 DOI: 10.1038/s41562-023-01792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Tong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jing Du
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic, Developmental Psychiatry Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
45
|
Liu D, Zheng X, Hui Y, Xu Y, Du J, Du Z, Che Y, Wu F, Yu G, Zhang J, Gong X, Guo G. Lateral hypothalamus orexinergic projection to the medial prefrontal cortex modulates chronic stress-induced anhedonia but not anxiety and despair. Transl Psychiatry 2024; 14:149. [PMID: 38493173 PMCID: PMC10944479 DOI: 10.1038/s41398-024-02860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Yuqing Hui
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Xu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Jinjiang Du
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Zean Du
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Yichen Che
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Fengming Wu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Guangyin Yu
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China
| | - Jifeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China.
| | - Xiaobing Gong
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
46
|
Chen C, Wang M, Yu T, Feng W, Xu Y, Ning Y, Zhang B. Habenular functional connections are associated with depression state and modulated by ketamine. J Affect Disord 2024; 345:177-185. [PMID: 37879411 DOI: 10.1016/j.jad.2023.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Depression is a widespread mental health disorder with complex neurobiological underpinnings. The habenula, known as the 'anti-reward center', is thought to play a pivotal role in the pathophysiology of depression. This study aims to elucidate the association between the functional connections of the habenula and depression severity and to explore the modulation of these connections by ketamine. METHODS We studied 177 participants from a 7-T resting-state functional magnetic resonance imaging subset of the Human Connectome Project dataset to determine the associations between the functional connections of the habenula and depression. Additionally, we analyzed 60 depressed patients from our ketamine database to conduct a preliminary study on alterations in the functional connections of the habenula after ketamine infusions. We also investigated whether the baseline functional connectivity of the habenula is linked to subsequent improvement in depression. RESULTS We found that functional connections between the habenula and the substantia nigra, as well as the ventral tegmental area were negatively correlated with depression scores and elevated after ketamine infusions. Furthermore, the connection between the right habenula and the right substantia nigra was negatively associated with the improvement of depression. LIMITATIONS The Human Connectome Project dataset primarily consists of data from healthy participants, with varying levels of depression scores. CONCLUSION These results suggest that the habenula may facilitate depression by suppressing dopamine reward centers, and ketamine may relieve depression by disinhibiting these dopaminergic regions. This study may enhance our understanding of the neural underpinnings of depression and ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Chengfeng Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqia Wang
- Institute of Mental Health, Peking University, Beijing, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tong Yu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanting Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingyi Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
47
|
Piper JA, Musumeci G, Castorina A. The Neuroanatomy of the Habenular Complex and Its Role in the Regulation of Affective Behaviors. J Funct Morphol Kinesiol 2024; 9:14. [PMID: 38249091 PMCID: PMC10801627 DOI: 10.3390/jfmk9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The habenular complex is a diencephalic structure divided into the medial and lateral divisions that lie within the epithalamus of most vertebrates. This brain structure, whose activities are mainly regulated via inputs/outputs from and to the stria medullaris and the fasciculus retroflexus, plays a significant role in the modulation of anti-reward behaviors in both the rodent and human brain. Such anti-reward circuits are regulated by dopaminergic and serotonergic projections with several other subcortical and cortical regions; therefore, it is plausible that impairment to this key subcortical structure or its connections contributes to the pathogenesis of affective disorders. Current literature reveals the existence of structural changes in the habenula complex in individuals afflicted by such disorders; however, there is a need for more comprehensive investigations to elucidate the underlying neuroanatomical connections that underpin disease development. In this review article, we aim to provide a comprehensive view of the neuroanatomical differences between the rodent and human habenular complex, the main circuitries, and provide an update on the emerging roles of this understudied subcortical structure in the control of affective behaviors, with special emphasis to morbid conditions of the affective sphere.
Collapse
Affiliation(s)
- Jordan Allan Piper
- School of Health Sciences, College of Health and Medicine, University of Tasmania (Sydney), Sydney, NSW 2040, Australia;
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical & Biotechnological Sciences, Anatomy, Histology & Movement Sciences, University of Catania, 95123 Catania, Italy;
| | - Alessandro Castorina
- Laboratory of Cellular & Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Sydney, NSW 2007, Australia
| |
Collapse
|
48
|
MINAMIMOTO T, NAGAI Y, OYAMA K. Imaging-based chemogenetics for dissecting neural circuits in nonhuman primates. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:476-489. [PMID: 39401901 PMCID: PMC11535006 DOI: 10.2183/pjab.100.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/08/2024]
Abstract
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.
Collapse
Affiliation(s)
- Takafumi MINAMIMOTO
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji NAGAI
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kei OYAMA
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
49
|
Zhang CK, Wang P, Ji YY, Zhao JS, Gu JX, Yan XX, Fan HW, Zhang MM, Qiao Y, Liu XD, Li BJ, Wang MH, Dong HL, Li HH, Huang PC, Li YQ, Hou WG, Li JL, Chen T. Potentiation of the lateral habenula-ventral tegmental area pathway underlines the susceptibility to depression in mice with chronic pain. SCIENCE CHINA. LIFE SCIENCES 2024; 67:67-82. [PMID: 37864083 DOI: 10.1007/s11427-023-2406-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 10/22/2023]
Abstract
Chronic pain often develops severe mood changes such as depression. However, how chronic pain leads to depression remains elusive and the mechanisms determining individuals' responses to depression are largely unexplored. Here we found that depression-like behaviors could only be observed in 67.9% of mice with chronic neuropathic pain, leaving 32.1% of mice with depression resilience. We determined that the spike discharges of the ventral tegmental area (VTA)-projecting lateral habenula (LHb) glutamatergic (Glu) neurons were sequentially increased in sham, resilient and susceptible mice, which consequently inhibited VTA dopaminergic (DA) neurons through a LHbGlu-VTAGABA-VTADA circuit. Furthermore, the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner. Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain. Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.
Collapse
Affiliation(s)
- Chun-Kui Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Pan Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-Yuan Ji
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
- Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian-Shuai Zhao
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun-Xiang Gu
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
- Department of Neurosurgery, the Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Xian-Xia Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Hong-Wei Fan
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Ming Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu Qiao
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Die Liu
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Bao-Juan Li
- School of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Hui Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hai-Long Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao-Hong Li
- Affiliated Mental Health Centre and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
- The MOE Frontier Research Center of Brain & Brain-machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, 310058, China
| | - Peng-Cheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wu-Gang Hou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jin-Lian Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, 710069, China.
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
50
|
Ryu H, Kim M, Park H, Choi HK, Chung C. Stress-induced translation of KCNB1 contributes to the enhanced synaptic transmission of the lateral habenula. Front Cell Neurosci 2023; 17:1278847. [PMID: 38193032 PMCID: PMC10773861 DOI: 10.3389/fncel.2023.1278847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/05/2023] [Indexed: 01/10/2024] Open
Abstract
The lateral habenula (LHb) is a well-established brain region involved in depressive disorders. Synaptic transmission of the LHb neurons is known to be enhanced by stress exposure; however, little is known about genetic modulators within the LHb that respond to stress. Using recently developed molecular profiling methods by phosphorylated ribosome capture, we obtained transcriptome profiles of stress responsive LHb neurons during acute physical stress. Among such genes, we found that KCNB1 (Kv2.1 channel), a delayed rectifier and voltage-gated potassium channel, exhibited increased expression following acute stress exposure. To determine the roles of KCNB1 on LHb neurons during stress, we injected short hairpin RNA (shRNA) against the kcnb1 gene to block its expression prior to stress exposure. We observed that the knockdown of KCNB1 altered the basal firing pattern of LHb neurons. Although KCNB1 blockade did not rescue despair-like behaviors in acute learned helplessness (aLH) animals, we found that KCNB1 knockdown prevented the enhancement of synaptic strength in LHb neuron after stress exposure. This study suggests that KCNB1 may contribute to shape stress responses by regulating basal firing patterns and neurotransmission intensity of LHb neurons.
Collapse
Affiliation(s)
- Hakyun Ryu
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Kyoung Choi
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|