1
|
Uccella S, Marazzotta V, Preiti D, Battaglini M, Burlando G, Roascio M, Rossi A, Arnulfo G, Ramenghi LA, Nobili L. Sleep architecture correlates with neurological and neurobehavioral short- and mid-term outcome in a sample of very preterm infants. A pilot study. Sleep Med 2025; 131:106538. [PMID: 40288251 DOI: 10.1016/j.sleep.2025.106538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Newborns spend most of their time sleeping. This activity fosters neurodevelopment. Prematurity, defined by birth occurring prior the 37th week of gestation, disrupts normal brain in-utero programming, with long-lasting consequences that carry a high social burden. Sleep alterations may contribute to these sequelae. In this pilot study we aimed to describe the 24-h distribution of sleep states among very preterm infants (VPI), and to correlate it with neurobehavioral assessment up to 6 months of corrected age (CA). Secondly, we aimed to assess if the presence of a brain lesion detected at MRI could affect sleep duration, architecture, and quality. Ten VPI were assessed at 32 weeks postmenstrual age (PMA) with a 24-h video-polysomnography and received a neurobehavioral examination at the time of the recording, at term equivalent age (TEA), and at 6 months CA. Analysis of sleep stages distribution and transitions, and power spectra were conducted. Total sleep time and amount of quiet sleep positively correlated with neurological, and neurobehavioral assessment at 32 weeks PMA, at TEA, and at 6 months CA, while Sleep Onset Active Sleep (SOAS) had a negative association. Infants carrying brain lesions showed lower QS time accompanied by a higher prevalence of AS + SOAS and showed a gradient for higher power of posterior slow activity (slow δ and δ) during SOAS in the left hemisphere posterior regions. Understanding sleep dynamics among preterm infants might provide future therapeutic/management strategies, which need to encompass sleep care.
Collapse
Affiliation(s)
- Sara Uccella
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Neuropsichiatria Infantile, Istituto Giannina Gaslini, Genova, Italy.
| | | | - Deborah Preiti
- Unità di Psicologia Clinica, Istituto Giannina Gaslini, Genova, Italy
| | | | - Gaia Burlando
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Monica Roascio
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Andrea Rossi
- Unità Neuroradiologia, Istituto Giannina Gaslini, Genova, Italy
| | - Gabriele Arnulfo
- Università degli Studi di Genova, Dipartimento di informatica, bioingegneria, robotica e ingegneria dei sistemi, DIBRIS, Genova, Italy
| | - Luca Antonio Ramenghi
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Patologia Neonatale, Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili DINOGMI, Genova, Italy; Unità di Neuropsichiatria Infantile, Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
2
|
Ocana-Santero G, Warming H, Munday V, MacKay HA, Gibeily C, Hemingway C, Stacey JA, Saha A, Lazarte IP, Bachetta A, Deng F, Li Y, Packer AM, Sharp T, Butt SJB. Perinatal serotonin signalling dynamically influences the development of cortical GABAergic circuits with consequences for lifelong sensory encoding. Nat Commun 2025; 16:5203. [PMID: 40467568 PMCID: PMC12137630 DOI: 10.1038/s41467-025-59659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/24/2025] [Indexed: 06/11/2025] Open
Abstract
Serotonin plays a prominent role in neurodevelopment, regulating processes from cell division to synaptic connectivity. Clinical studies suggest that alterations in serotonin signalling such as genetic polymorphisms or antidepressant exposure during pregnancy are risk factors for neurodevelopmental disorders. However, an understanding of how dysfunctional neuromodulation alters systems level activity over neocortical development is lacking. Here, we use a longitudinal imaging approach to investigate how genetics, pharmacology, and aversive experience disrupt state-dependent serotonin signalling with pathological consequences for sensory processing. We find that all three factors lead to increased neocortical serotonin levels during the initial postnatal period. Genetic deletion of the serotonin transporter or antidepressant dosing results in a switch from hypo- to hyper-cortical activity that arises as a consequence of altered cortical GABAergic microcircuitry. However, the trajectories of these manipulations differ with postnatal exposure to antidepressants having effects on adult sensory encoding. The latter is not seen in the genetic model despite a similar early phenotype, and a distinct influence of maternal genotype on the development of supragranular layers. These results reveal the dynamics and critical nature of serotonin signalling during perinatal life; pharmacological targeting of which can have profound life-long consequences for cognitive development of the offspring.
Collapse
Affiliation(s)
- Gabriel Ocana-Santero
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
- Dept. of Pharmacology, Oxford University, Oxford, UK
| | - Hannah Warming
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Veronica Munday
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Heather A MacKay
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Caius Gibeily
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | | | | | - Abhishek Saha
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Ivan P Lazarte
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Anjali Bachetta
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Adam M Packer
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| | - Trevor Sharp
- Dept. of Pharmacology, Oxford University, Oxford, UK
| | - Simon J B Butt
- Dept. of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| |
Collapse
|
3
|
Quercia P, Chavet K, Gaveau J. Ocular and General Proprioception in Dyslexic Children: A Review of Their Diurnal and Nocturnal Dysfunctions and Their Repercussions. Vision (Basel) 2025; 9:44. [PMID: 40407626 PMCID: PMC12101306 DOI: 10.3390/vision9020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/26/2025] Open
Abstract
We provide a summary of the research conducted in our laboratory on the relationship between ocular proprioception, general proprioception, and dyslexia. Dyslexic children show a marked proprioceptive deficit which affects motor control, attention and spatial perception. The spatial disturbances are expressed by the presence of a vertical microheterophoria which has very specific characteristics. It is associated with abnormal tone of the oblique muscles and can be modified by means of very low powered prisms and/or remote sensory stimulation. When ocular proprioception is modified, sounds cause stochastic visual losses. This may interfere with the association between phonemes and graphemes, which is necessary for learning to read. The effects of a generalized nocturnal proprioceptive disorder may play a role in the abnormal brain development that has been observed in dyslexic children.
Collapse
Affiliation(s)
- Patrick Quercia
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000 Dijon, France;
| | - Kalvin Chavet
- UFR des Sciences du Sport, Université de Bourgogne, F-21000 Dijon, France;
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000 Dijon, France;
| |
Collapse
|
4
|
Mohamed Z, Ponsonby AL, Wakhlu A, Thomson S, Love C, Symeonides C, Ranganathan S, O'Hely M, Vuillermin PJ, Drummond K. Infant sleep characteristics in children with autism spectrum disorder: a population-derived Australian birth cohort study. Arch Dis Child 2025:archdischild-2024-328393. [PMID: 40350243 DOI: 10.1136/archdischild-2024-328393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/06/2025] [Indexed: 05/14/2025]
Abstract
OBJECTIVES To examine the prospective associations between infant sleep patterns and subsequent autism characteristics and diagnosis in a population-derived sample. DESIGN, SETTING AND PARTICIPANTS Population-derived birth cohort study in Victoria, Australia's Barwon region, with 1074 mother-infant pairs recruited from June 2010 to 2013. MAIN OUTCOME MEASURES Infant sleep characteristics via the Brief Infant Sleep Questionnaire at 6 months (n=925) and 12 months (n=885). Parent-reported autism characteristics measured using the Child Behaviour Checklist for Ages 1½-5 (CBCL/1½-5; n=676) at 2 years and Strengths and Difficulties Questionnaire for report for ages 4-10 (SDQ/P4-10; n=791) at 4 years. Autism Diagnostic and Statistical Manual for Mental Disorders fifth edition (DSM-5) diagnoses (n=64) were confirmed by 11.5 years. RESULTS At 6 months, each 10% increase (~1 hour) in night sleep duration was associated with fewer autism characteristics at 2 years (4.5% decrease, CBCL/1½-5) and 4 years (4.5% decrease, SDQ/P4-10) and 22% lower autism DSM-5 diagnosis odds by 11.5 years (adjusted mean difference (AMD): -0.02, 95% CI: -0.04 to -0.01; AMD: -0.02, 95% CI: -0.03 to -0.007; adjusted OR (AOR): 0.78, 95% CI: 0.65 to 0.94). At 12 months, each 25% increase in sleep latency (~5 min) was associated with more autism characteristics (1.5% increase, CBCL/1½-5, AMD: 0.006, 95% CI: 0.002 to 0.01) and 7.7% higher autism diagnosis odds (AOR: 1.08, 95% CI: 1.03 to 1.13). Among diagnosed school-aged children, 42% used melatonin in the past month. CONCLUSIONS Poor infant sleep quality was linked to increased autism characteristics and diagnosis odds in a population-derived Australian sample. The extent to which this reflects common determinants of poor sleep and autism is not known. These findings suggest early monitoring of sleep issues as a potential autism indicator.
Collapse
Affiliation(s)
- Zaynab Mohamed
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne-Louise Ponsonby
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | | | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Chloe Love
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Victoria, Australia
- Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- The University of Melbourne Department of Paediatrics, Melbourne, Victoria, Australia
| | - Sarath Ranganathan
- The University of Melbourne Department of Paediatrics, Melbourne, Victoria, Australia
- Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Victoria, Australia
| | - Peter J Vuillermin
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Victoria, Australia
- Child Health Research Unit, Barwon Health, Geelong, Victoria, Australia
| | - Katherine Drummond
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Simor P, Lilla RZ, Szalárdy O, Jordán Z, Halász L, Erőss L, Fabó D, Bódizs R. Heartbeat-related activity in the anterior thalamus differs between phasic and tonic REM sleep. J Physiol 2025; 603:2839-2855. [PMID: 40231737 PMCID: PMC12072251 DOI: 10.1113/jp287802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Rapid eye movement (REM) sleep is a fundamental sleep state associated with diverse functions from elemental physiological processes to higher order neurocognitive functions. A growing body of research indicates that REM sleep with eye movements (phasic REM) differs from REM periods without ocular activity (tonic) in terms of spontaneous and evoked neural responses. Studies using auditory stimulation consistently observed enhanced evoked responses in tonic versus phasic REM, indicating that external processing is largely diminished when the eyes move during REM sleep. Whereas exteroceptive processing during sleep is widely studied, investigations on interoception (the processing of bodily signals) during sleep are scarce, and limited to scalp electroencephalographic recordings. Here we studied interoceptive processing in a group of epileptic patients (N = 11) by measuring their heartbeat-related neural activity in the anterior nuclei of the thalamus (ANT) during phasic and tonic REM sleep and resting wakefulness. Evoked potentials and beta-low gamma spectral power locked to the heartbeat were significantly different in phasic REM compared with tonic REM and wakefulness. Heartbeat-related neural signals exhibited pronounced inter-trial phase synchronization at lower (7-20 Hz) oscillatory activity in all vigilance states, but reduced gamma synchronization at later time points in phasic REM only. Tonic REM and wakefulness did not show significant differences in heartbeat-related activity in the ANT. Our findings indicate that heartbeat-related neural activity is detectable at the level of the ANT, showing distinct signatures of interoceptive processing in phasic REM compared with tonic REM and wakefulness. KEY POINTS: We studied interoceptive processing in the anterior the thalamus (ANT). The ANT tracks cardiac signals during wakefulness and rapid eye movement (REM) sleep. Phasic REM shows distinct patterns of heartbeat-related oscillatory activity. Interoceptive processing might be attenuated during REM periods with eye movements.
Collapse
Affiliation(s)
- Péter Simor
- Institute of Psychology, ELTEEötvös Loránd UniversityBudapestHungary
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| | - Róka Zita Lilla
- Institute of Psychology, ELTEEötvös Loránd UniversityBudapestHungary
- HUN‐REN Institute for Computer Science and ControlBudapestHungary
| | - Orsolya Szalárdy
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| | - Zsófia Jordán
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - László Halász
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Loránd Erőss
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Dániel Fabó
- Department of Neurosurgery, Faculty of MedicineSemmelweis UniversityBudapestHungary
| | - Róbert Bódizs
- Institute of Behavioural SciencesSemmelweis UniversityBudapestHungary
| |
Collapse
|
6
|
Ma Q, Sahakian BJ, Zhang B, Li Z, Yu JT, Li F, Feng J, Cheng W. Neural correlates of device-based sleep characteristics in adolescents. Cell Rep 2025; 44:115565. [PMID: 40244849 DOI: 10.1016/j.celrep.2025.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/24/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Understanding the brain mechanisms underlying adolescent sleep patterns and their impact on psychophysiological development is complex. We applied sparse canonical correlation analysis (sCCA) to data from 3,222 adolescents in the Adolescent Brain Cognitive Development (ABCD) study, integrating sleep characteristics with multimodal imaging. This reveals two key sleep-brain dimensions: one linking later sleep onset and shorter duration to decreased subcortical-cortical connectivity and another associating a higher heart rate and shorter light sleep with lower brain volumes and connectivity. Hierarchical clustering identifies three biotypes: biotype 1 has delayed, shorter sleep with a higher heart rate; biotype 3 has earlier, longer sleep with a lower heart rate; and biotype 2 is intermediate. These biotypes also differ in cognitive performance and brain structure and function. Longitudinal analysis confirms these differences from ages 9 to 14, with biotype 3 showing consistent cognitive advantages. Our findings offer insights into optimizing sleep routines for better cognitive development.
Collapse
Affiliation(s)
- Qing Ma
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Bei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zeyu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Fei Li
- Department of Developmental and Behavioral Pediatric & Child Primary Care/MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Zhangjiang Fudan International Innovation Center, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Zhejiang, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| |
Collapse
|
7
|
Warm D, Bassetti D, Gellèrt L, Yang JW, Luhmann HJ, Sinning A. Spontaneous mesoscale calcium dynamics reflect the development of the modular functional architecture of the mouse cerebral cortex. Neuroimage 2025; 309:121088. [PMID: 39954874 DOI: 10.1016/j.neuroimage.2025.121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The mature cerebral cortex operates through the segregation and integration of specialized functions to generate complex cognitive states. In the mouse, the anatomical and functional correlates of this organization arise during the perinatal period and are critically shaped by neural activity. Understanding how early activity patterns distribute, interact, and generate large-scale cortical dynamics is essential to elucidate the proper development of the cortex. Here, we investigate spontaneous mesoscale cortical dynamics during the first two postnatal weeks by performing wide-field calcium imaging in GCaMP6s transgenic mice. Our results demonstrate a marked change in the spatiotemporal features of spontaneous cortical activity across fine stages of postnatal development. Already after birth, the cortical hemisphere presents a primordial macroscopic organization, which undergoes a steady refinement based on the parcellation of the cortex. As calcium activity transitions from large, widespread events to swift waves between the first and second postnatal week, significant topographic differences emerge across different cortical regions. Functional connectivity profiles of the cortex gradually segregate into main subnetworks and give rise to a highly modular network topology at the end of the second postnatal week. Overall, spontaneous mesoscale activity reflects the maturation of cortical networks, and reveals critical breakpoints in the development of the functional architecture of the cortex.
Collapse
Affiliation(s)
- Davide Warm
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Levente Gellèrt
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Abstract
Since one of its first descriptions 70 years ago, rapid eye movement sleep has continually inspired and excited new generations of sleep researchers. Despite significant advancements in understanding its neurocircuitry, underlying mechanisms and microstates, many questions regarding its function, especially beyond the early neurodevelopment, remain unanswered. This opinion review delves into some of the unresolved issues in rapid eye movement sleep research, highlighting the ongoing need for comprehensive exploration in this fascinating field.
Collapse
Affiliation(s)
- Liborio Parrino
- Sleep Medicine CenterUniversity of ParmaParmaItaly
- Neurology UnitParma University HospitalParmaItaly
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of PsychiatryPsychology and Neuroscience (IoPPN), King's College LondonLondonUK
- Sleep Disorders CentreGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
9
|
Yuan Q, Yue X, Wang M, Yang F, Fu M, Liu M, Hu C. Association between pain, sleep and intrinsic capacity in Chinese older adults: Evidence from CHARLS. J Nutr Health Aging 2025; 29:100466. [PMID: 39742576 DOI: 10.1016/j.jnha.2024.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025]
Abstract
OBJECTIVES To examine the relationship between pain, sleep, and intrinsic capacity (IC). DESIGN A cohort study. SETTING AND PARTICIPANTS Data were obtained from participants in China Health and Retirement Longitudinal Study (CHARLS) 2011-2015. The study population consisted of older adults who completed assessments on pain, sleep duration, sleep quality and IC at baseline. MEASUREMENTS Pain, sleep duration, and sleep quality were assessed through self-reports from participants. The total IC score was derived from five domains: psychological, sensory, cognitive, locomotor, and vitality. The relationships between pain, sleep duration, sleep quality and IC were analyzed using linear mixed models. The relationship between sleep duration and IC was analyzed using quadratic analysis. Stratified analyses by gender and age were also performed. RESULTS A total of 3517 participants were included in the analysis. After adjusting for all covariates, single-site pain (β = -0.29, 95% confidence interval [CI] = -0.38 to -0.20) and multisite pain (β = -0.41, 95% CI = -0.48 to -0.34) were significantly associated with a decrease in IC compared with older adults without pain; long sleep duration (β = -0.15, 95% CI = -0.24 to -0.06) was significantly associated with a decrease in IC compared with older adults with moderate sleep duration; and poor sleep quality (β = -0.63, 95% CI = -0.71 to -0.55) and fair sleep quality (β = -0.33, 95% CI = -0.40 to -0.27) were significantly associated with a decrease in IC compared with older adults with good sleep quality. CONCLUSION To maintain IC, it is important to ensure approximately 7.5 h of sleep duration, improve sleep quality, and manage pain. Interventions should begin as early as possible.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China
| | - Xiao Yue
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China
| | - Mei Wang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Nursing Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China
| | - Fenghua Yang
- Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Maoling Fu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China
| | - Mengwan Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China
| | - Cuihuan Hu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, WuHan, China.
| |
Collapse
|
10
|
Lüthi A, Nedergaard M. Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions. Neuron 2025; 113:509-523. [PMID: 39809276 DOI: 10.1016/j.neuron.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow. MAs are hence part of healthy sleep dynamics, raising questions about their biological roles. We propose that MAs bolster NREM sleep's benefits associated with NA fluctuations, according to an inverted U-shaped curve. Weakened noradrenergic fluctuations, as may occur in neurodegenerative diseases or with sleep aids, reduce MAs, whereas exacerbated fluctuations caused by stress fragment NREM sleep and collapse NA signaling. We suggest that MAs are crucial for the restorative and plasticity-promoting functions of sleep and advance our insight into normal and pathological arousal dynamics from sleep.
Collapse
Affiliation(s)
- Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
11
|
Bellemare S, López-Arango G, Deguire F, Knoth IS, Lippé S. The Impact of Sleep on Sensory Processing in Typically Developing Children: Insights from Cross-Sectional and Longitudinal Data. CHILDREN (BASEL, SWITZERLAND) 2025; 12:153. [PMID: 40003255 PMCID: PMC11854149 DOI: 10.3390/children12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND/OBJECTIVES Previous research suggests that sleep quality and duration may significantly impact sensory experiences, yet the specific relationships in healthy early childhood remain unclear. This study explores the relationship between sleep parameters and sensory processing outcomes in typically developing children followed longitudinally from 3 to 12 months to 4 years of age. METHODS We assessed sleep problems, sleep duration, sleep onset latency, parasomnias, and sensory processing in a sample of typically developing children (N = 85). Sleep parameters were reported by parents, and sensory processing was evaluated using the Sensory Processing Measure-Parent version (SPM-P). Cross-sectional and longitudinal analyses examined predictors of sensory outcomes based on sleep patterns at 3-12 months, 18 months, 2 years, and 4 years of age. RESULTS Our findings indicate that greater sleep problems correlate with heightened sensory sensitivity across modalities, including touch and vision, as well as higher-order cognitive functions such as planning and social interactions. Specifically, sleep problems at 18 months were significant predictors of sensory processing at 4 years, while sleep duration at 2 years predicted planning skills. Additionally, longer sleep duration during infancy (3-12 months) positively influenced social participation at 4 years. CONCLUSIONS This study underscores the critical role of sleep in shaping sensory processing outcomes in early childhood. Promoting healthy sleep habits may mitigate sensory processing difficulties, ultimately supporting emotional and social development.
Collapse
Affiliation(s)
- Sophie Bellemare
- Department of Psychology, University of Montreal, Marie-Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada
- CHU Sainte-Justine Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Gabriela López-Arango
- CHU Sainte-Justine Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Florence Deguire
- Department of Psychology, University of Montreal, Marie-Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada
- CHU Sainte-Justine Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Inga S. Knoth
- CHU Sainte-Justine Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Marie-Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada
- CHU Sainte-Justine Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
12
|
Shuster AE, Morehouse A, McDevitt EA, Chen PC, Whitehurst LN, Zhang J, Sattari N, Uzoigwe T, Ekhlasi A, Cai D, Simon K, Niethard N, Mednick SC. REM refines and rescues memory representations: a new theory. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf004. [PMID: 40161405 PMCID: PMC11954447 DOI: 10.1093/sleepadvances/zpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Indexed: 04/02/2025]
Abstract
Despite extensive evidence on the roles of nonrapid eye movement (NREM) and REM sleep in memory processing, a comprehensive model that integrates their complementary functions remains elusive due to a lack of mechanistic understanding of REM's role in offline memory processing. We present the REM Refining and Rescuing (RnR) Hypothesis, which posits that the principal function of REM sleep is to increase the signal-to-noise ratio within and across memory representations. As such, REM sleep selectively enhances essential nodes within a memory representation while inhibiting the majority (Refine). Additionally, REM sleep modulates weak and strong memory representations so they fall within a similar range of recallability (Rescue). Across multiple NREM-REM cycles, tuning functions of individual memory traces get sharpened, allowing for integration of shared features across representations. We hypothesize that REM sleep's unique cellular, neuromodulatory, and electrophysiological milieu, marked by greater inhibition and a mixed autonomic state of both sympathetic and parasympathetic activity, underpins these processes. The RnR Hypothesis offers a unified framework that explains diverse behavioral and neural outcomes associated with REM sleep, paving the way for future research and a more comprehensive model of sleep-dependent cognitive functions.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Pin-Chun Chen
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | | | - Jing Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Negin Sattari
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Tracy Uzoigwe
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ali Ekhlasi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Khalki H, Lacerda DC, Karoutchi C, Delcour M, Dupuis O, Kochmann M, Brezun J, Dupont E, Amin M, Darnaudéry M, Canu M, Barbe MF, Coq J. Early movement restriction impairs the development of sensorimotor integration, motor skills and memory in rats: Towards a preclinical model of developmental coordination disorder? Eur J Neurosci 2024; 60:6830-6850. [PMID: 39523702 PMCID: PMC11612839 DOI: 10.1111/ejn.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
Children with neurodevelopmental disorders, such as developmental coordination disorder (DCD), exhibit gross to fine sensorimotor impairments, reduced physical activity and interactions with the environment and people. This disorder co-exists with cognitive deficits, executive dysfunctions and learning impairments. Previously, we demonstrated in rats that limited amounts and atypical patterns of movements and somatosensory feedback during early movement restriction manifested in adulthood as degraded postural and locomotor abilities, and musculoskeletal histopathology, including muscle atrophy, hyperexcitability within sensorimotor circuitry and maladaptive cortical plasticity, leading to functional disorganization of the primary somatosensory and motor cortices in the absence of cortical histopathology. In this study, we asked how this developmental sensorimotor restriction (SMR) started to impact the integration of multisensory information and the emergence of sensorimotor reflexes in rats. We also questioned the enduring impact of SMR on motor activities, pain and memory. SMR led to deficits in the emergence of swimming and sensorimotor reflexes, the development of pain and altered locomotor patterns and posture with toe-walking, adult motor performance and night spontaneous activity. In addition, SMR induced exploratory hyperactivity, short-term impairments in object-recognition tasks and long-term deficits in object-location tasks. SMR rats displayed minor alterations in histological features of the hippocampus, entorhinal, perirhinal and postrhinal cortices yet no obvious changes in the prefrontal cortex. Taken all together, these results show similarities with the symptoms observed in children with DCD, although further exploration seems required to postulate whether developmental SMR corresponds to a rat model of DCD.
Collapse
Affiliation(s)
- Hanane Khalki
- Aix Marseille UniversitéMarseilleFrance
- B2DRN, Polydisciplinary Faculty of Béni MellalSultan Moulay Slimane UniversityMorocco
| | - Diego Cabral Lacerda
- Aix Marseille UniversitéMarseilleFrance
- Post Graduate Program in NutritionFederal University of PernambucoRecifePernambucoBrazil
- Present address:
Studies in Nutrition and Phenotypic Plasticity Unit, Department of NutritionFederal University of PernambucoRecifeBrazil
| | - Corane Karoutchi
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
- Present address:
Centre d'Investigation Clinique (CIC 1407), Hôpital Cardiologique Louis PradelBronFrance
| | - Maxime Delcour
- Aix Marseille UniversitéMarseilleFrance
- Present address:
Cégep de Saint LaurentMontréalCanada
| | - Orlane Dupuis
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Marine Kochmann
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
| | - Jean‐Michel Brezun
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS), UMR7287 Institut des Sciences du Mouvement (ISM)MarseilleFrance
| | - Erwan Dupont
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Mamta Amin
- Aging + Cardiovascular Discovery Center, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Muriel Darnaudéry
- Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), UMR1286 NutriNeuroUniversité de BordeauxBordeauxFrance
| | - Marie‐Hélène Canu
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Jacques‐Olivier Coq
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
- Centre National de la Recherche Scientifique (CNRS), UMR7287 Institut des Sciences du Mouvement (ISM)MarseilleFrance
| |
Collapse
|
14
|
Dooley JC, van der Heijden ME. More Than a Small Brain: The Importance of Studying Neural Function during Development. J Neurosci 2024; 44:e1367242024. [PMID: 39603806 PMCID: PMC11604142 DOI: 10.1523/jneurosci.1367-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
The nervous system contains complex circuits comprising thousands of cell types and trillions of connections. Here, we discuss how the field of "developmental systems neuroscience" combines the molecular and genetic perspectives of developmental neuroscience with the (typically adult-focused) functional perspective of systems neuroscience. This combination of approaches is critical to understanding how a handful of cells eventually produce the wide range of behaviors necessary for survival. Functional circuit development typically lags behind neural connectivity, leading to intermediate stages of neural activity that are either not seen in adults or, if present, are considered pathophysiological. Developmental systems neuroscience examines these intermediate stages of neural activity, mapping out the critical phases and inflection points of neural circuit function to understand how neural activity and behavior emerge across development. Beyond understanding typical development, this approach provides invaluable insight into the pathophysiology of neurodevelopmental disorders by identifying when and how functional development diverges between health and disease. We argue that developmental systems neuroscience will identify important periods of neural development, reveal novel therapeutic windows for treatment, and set the stage to answer fundamental questions about the brain in health and disease.
Collapse
Affiliation(s)
- James C Dooley
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Meike E van der Heijden
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- Center for Neurobiology Research, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24016
| |
Collapse
|
15
|
Huizer K, Banga IK, Kumar RM, Muthukumar S, Prasad S. Dynamic Real-Time Biosensing Enabled Biorhythm Tracking for Psychiatric Disorders. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2021. [PMID: 39654328 DOI: 10.1002/wnan.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 01/12/2025]
Abstract
This review article explores the transformative potential of dynamic, real-time biosensing in biorhythm tracking for psychiatric disorders. Psychiatric diseases, characterized by a complex, heterogeneous, and multifactorial pathophysiology, pose challenges in both diagnosis and treatment. Common denominators in the pathophysiology of psychiatric diseases include disruptions in the stress response, sleep-wake cycle, energy metabolism, and immune response: all of these are characterized by a strong biorhythmic regulation (e.g., circadian), leading to dynamic changes in the levels of biomarkers involved. Technological and practical limitations have hindered the analysis of such dynamic processes to date. The integration of biosensors marks a paradigm shift in psychiatric research. These advanced technologies enable multiplex, non-invasive, and near-continuous analysis of biorhythmic biomarkers in real time, overcoming the constraints of conventional approaches. Focusing on the regulation of the stress response, sleep/wake cycle, energy metabolism, and immune response, biosensing allows for a deeper understanding of the heterogeneous and multifactorial pathophysiology of psychiatric diseases. The potential applications of nanobiosensing in biorhythm tracking, however, extend beyond observation. Continuous monitoring of biomarkers can provide a foundation for personalized medicine in Psychiatry, and allow for the transition from syndromal diagnostic entities to pathophysiology-based psychiatric diagnoses. This evolution promises enhanced disease tracking, early relapse prediction, and tailored disease management and treatment strategies. As non-invasive biosensing continues to advance, its integration into biorhythm tracking holds promise not only to unravel the intricate etiology of psychiatric disorders but also for ushering in a new era of precision medicine, ultimately improving the outcomes and quality of life for individuals grappling with these challenging conditions.
Collapse
Affiliation(s)
- Karin Huizer
- Parnassia Academy, Parnassia Psychiatric Institute, Hague, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
de Groot ER, Dudink J, Austin T. Sleep as a driver of pre- and postnatal brain development. Pediatr Res 2024; 96:1503-1509. [PMID: 38956219 PMCID: PMC11624135 DOI: 10.1038/s41390-024-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In 1966, Howard Roffwarg proposed the ontogenic sleep hypothesis, relating neural plasticity and development to rapid eye movement (REM) sleep, a hypothesis that current fetal and neonatal sleep research is still exploring. Recently, technological advances have enabled researchers to automatically quantify neonatal sleep architecture, which has caused a resurgence of research in this field as attempts are made to further elucidate the important role of sleep in pre- and postnatal brain development. This article will review our current understanding of the role of sleep as a driver of brain development and identify possible areas for future research. IMPACT: The evidence to date suggests that Roffwarg's ontogenesis hypothesis of sleep and brain development is correct. A better understanding of the relationship between sleep and the development of functional connectivity is needed. Reliable, non-invasive tools to assess sleep in the NICU and at home need to be tested in a real-world environment and the best way to promote healthy sleep needs to be understood before clinical trials promoting and optimizing sleep quality in neonates could be undertaken.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Topun Austin
- NeoLab, Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
17
|
Fitzgerald M. On the relation of injury to pain-an infant perspective. Pain 2024; 165:S33-S38. [PMID: 39560413 DOI: 10.1097/j.pain.0000000000003366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Forty-five years ago, Patrick Wall published his John J Bonica lecture "On the relation of injury to pain."90 In this lecture, he argued that pain is better classified as an awareness of a need-state than as a sensation. This need state, he argued, serves more to promote healing than to avoid injury. Here I reframe Wall's prescient proposal to pain in early life and propose a set of different need states that are triggered when injury occurs in infancy. This paper, and my own accompanying Bonica lecture, is dedicated to his memory and to his unique contribution to the neuroscience of pain. The IASP definition of pain includes a key statement, "through their life experiences, individuals learn the concept of pain."69 But the relation between injury and pain is not fixed from birth. In early life, the links between nociception (the sense) and pain (the need state) are very different from those of adults, although no less important. I propose that injury evokes three pain need states in infancy, all of which depend on the state of maturity of the central nervous system: (1) the need to attract maternal help; (2) the need to learn the concept of pain; and (3) the need to maintain healthy activity dependent brain development.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharamcology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Senzai Y, Scanziani M. The brain simulates actions and their consequences during REM sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607810. [PMID: 39211157 PMCID: PMC11361194 DOI: 10.1101/2024.08.13.607810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vivid dreams mostly occur during a phase of sleep called REM 1-5 . During REM sleep, the brain's internal representation of direction keeps shifting like that of an awake animal moving through its environment 6-8 . What causes these shifts, given the immobility of the sleeping animal? Here we show that the superior colliculus of the mouse, a motor command center involved in orienting movements 9-15 , issues motor commands during REM sleep, e.g. turn left, that are similar to those issued in the awake behaving animal. Strikingly, these motor commands, despite not being executed, shift the internal representation of direction as if the animal had turned. Thus, during REM sleep, the brain simulates actions by issuing motor commands that, while not executed, have consequences as if they had been. This study suggests that the sleeping brain, while disengaged from the external world, uses its internal model of the world to simulate interactions with it.
Collapse
|
19
|
Nwabudike I, Che A. Early-life maturation of the somatosensory cortex: sensory experience and beyond. Front Neural Circuits 2024; 18:1430783. [PMID: 39040685 PMCID: PMC11260818 DOI: 10.3389/fncir.2024.1430783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Early life experiences shape physical and behavioral outcomes throughout lifetime. Sensory circuits are especially susceptible to environmental and physiological changes during development. However, the impact of different types of early life experience are often evaluated in isolation. In this mini review, we discuss the specific effects of postnatal sensory experience, sleep, social isolation, and substance exposure on barrel cortex development. Considering these concurrent factors will improve understanding of the etiology of atypical sensory perception in many neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ijeoma Nwabudike
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Alicia Che
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
20
|
Borjon JI, Abney DH, Yu C, Smith LB. Infant vocal productions coincide with body movements. Dev Sci 2024; 27:e13491. [PMID: 38433472 PMCID: PMC11161311 DOI: 10.1111/desc.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Producing recognizable words is a difficult motor task; a one-syllable word can require the coordination of over 80 muscles. Thus, it is not surprising that the development of word productions in infancy lags considerably behind receptive language and is a known limiting factor in language development. A large literature has focused on the vocal apparatus, its articulators, and language development. There has been limited study of the relations between non-speech motor skills and the quality of early speech productions. Here we present evidence that the spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements and that the temporal precision of the co-activation of vocal and extraneous muscle groups tightens with age and improved recognizability of speech. These results implicate an interaction between the muscle groups that produce speech and other body movements and provide new empirical pathways for understanding the role of motor development in language acquisition. RESEARCH HIGHLIGHTS: The spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements. The temporal precision of these hand and head movements during vocal production tighten with age and improved speech recognition. These results implicate an interaction between the muscle groups producing speech with other body movements. These results provide new empirical pathways for understanding the role of motor development in language acquisition.
Collapse
Affiliation(s)
- Jeremy I. Borjon
- Department of Psychology, University of Houston, Houston, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, USA
- Texas Center for Learning Disorders, University of Houston, Houston, USA
| | - Drew H. Abney
- Department of Psychology, University of Georgia, Athens, USA
| | - Chen Yu
- Department of Psychology, University of Texas, Austin, USA
| | - Linda B. Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| |
Collapse
|
21
|
Yrjölä P, Vanhatalo S, Tokariev A. Neuronal Coupling Modes Show Differential Development in the Early Cortical Activity Networks of Human Newborns. J Neurosci 2024; 44:e1012232024. [PMID: 38769006 PMCID: PMC11211727 DOI: 10.1523/jneurosci.1012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
22
|
Richardson AM, Sokoloff G, Blumberg MS. Developmentally Unique Cerebellar Processing Prioritizes Self- over Other-Generated Movements. J Neurosci 2024; 44:e2345232024. [PMID: 38589230 PMCID: PMC11079960 DOI: 10.1523/jneurosci.2345-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e., corollary discharges), which are compared with reafference in the cerebellum to compute predictive or internal models of movement. Internal models emerge gradually over the first three postnatal weeks in rats through a process that is not yet fully understood. Previously, we demonstrated in postnatal day (P) 8 and P12 rats that precerebellar nuclei convey corollary discharge and reafference to the cerebellum during active (REM) sleep when pups produce limb twitches. Here, recording from a deep cerebellar nucleus (interpositus, IP) in P12 rats of both sexes, we compared reafferent and exafferent responses with twitches and limb stimulations, respectively. As expected, most IP units showed robust responses to twitches. However, in contrast with other sensory structures throughout the brain, relatively few IP units showed exafferent responses. Upon finding that exafferent responses occurred in pups under urethane anesthesia, we hypothesized that urethane inhibits cerebellar cortical cells, thereby disinhibiting exafferent responses in IP. In support of this hypothesis, ablating cortical tissue dorsal to IP mimicked the effects of urethane on exafference. Finally, the results suggest that twitch-related corollary discharge and reafference are conveyed simultaneously and in parallel to cerebellar cortex and IP. Based on these results, we propose that twitches provide opportunities for the nascent cerebellum to integrate somatotopically organized corollary discharge and reafference, thereby enabling the development of closed-loop circuits and, subsequently, internal models.
Collapse
Affiliation(s)
- Angela M Richardson
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
| | - Greta Sokoloff
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
23
|
Schoch SF, Jaramillo V, Markovic A, Huber R, Kohler M, Jenni OG, Lustenberger C, Kurth S. Bedtime to the brain: how infants' sleep behaviours intertwine with non-rapid eye movement sleep electroencephalography features. J Sleep Res 2024; 33:e13936. [PMID: 37217191 DOI: 10.1111/jsr.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Adequate sleep is critical for development and facilitates the maturation of the neurophysiological circuitries at the basis of cognitive and behavioural function. Observational research has associated early life sleep problems with worse later cognitive, psychosocial, and somatic health outcomes. Yet, the extent to which day-to-day sleep behaviours (e.g., duration, regularity) in early life relate to non-rapid eye movement (NREM) neurophysiology-acutely and the long-term-remains to be studied. We measured sleep behaviours in 32 healthy 6-month-olds assessed with actimetry and neurophysiology with high-density electroencephalography (EEG) to investigate the association between NREM sleep and habitual sleep behaviours. Our study revealed four findings: first, daytime sleep behaviours are related to EEG slow-wave activity (SWA). Second, night-time movement and awakenings from sleep are connected with spindle density. Third, habitual sleep timing is linked to neurophysiological connectivity quantified as delta coherence. And lastly, delta coherence at 6 months predicts night-time sleep duration at 12 months. These novel findings widen our understanding that infants' sleep behaviours are closely intertwined with three particular levels of neurophysiology: sleep pressure (determined by SWA), the maturation of the thalamocortical system (spindles), and the maturation of cortical connectivity (coherence). The crucial next step is to extend this concept to clinical groups to objectively characterise infants' sleep behaviours 'at risk' that foster later neurodevelopmental problems.
Collapse
Affiliation(s)
- Sarah F Schoch
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Valeria Jaramillo
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, UK
| | - Andjela Markovic
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Reto Huber
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital Zürich, University of Zürich (UZH), Zürich, Switzerland
| | - Caroline Lustenberger
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Salome Kurth
- Department of Pulmonology, University Hospital Zürich, Zürich, Switzerland
- Center of Competence Sleep and Health Zürich, University of Zürich, Zürich, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
25
|
Ungurean G, Rattenborg NC. A mammal and bird's-eye-view of the pupil during sleep and wakefulness. Eur J Neurosci 2024; 59:584-594. [PMID: 37038095 DOI: 10.1111/ejn.15983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Besides regulating the amount of light that reaches the retina, fluctuations in pupil size also occur in isoluminant conditions during accommodation, during movement and in relation to cognitive workload, attention and emotion. Recent studies in mammals and birds revealed that the pupils are also highly dynamic in the dark during sleep. However, despite exhibiting similar sleep states (rapid eye movement [REM] and non-REM [NREM] sleep), wake and sleep state-dependent changes in pupil size are opposite between mammals and birds, due in part to differences in the type (striated vs. smooth) and control of the iris muscles. Given the link between pupil dynamics and cognitive processes occurring during wakefulness, sleep-related changes in pupil size might indicate when related processes are occurring during sleep. Moreover, the divergent pupillary behaviour observed between mammals and birds raises the possibility that changes in pupil size in birds are a readout of processes not reflected in the mammalian pupil.
Collapse
Affiliation(s)
- Gianina Ungurean
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | |
Collapse
|
26
|
Wang X, de Groot ER, Tataranno ML, van Baar A, Lammertink F, Alderliesten T, Long X, Benders MJNL, Dudink J. Machine Learning-Derived Active Sleep as an Early Predictor of White Matter Development in Preterm Infants. J Neurosci 2024; 44:e1024232023. [PMID: 38124010 PMCID: PMC10860564 DOI: 10.1523/jneurosci.1024-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/23/2023] Open
Abstract
White matter dysmaturation is commonly seen in preterm infants admitted to the neonatal intensive care unit (NICU). Animal research has shown that active sleep is essential for early brain plasticity. This study aimed to determine the potential of active sleep as an early predictor for subsequent white matter development in preterm infants. Using heart and respiratory rates routinely monitored in the NICU, we developed a machine learning-based automated sleep stage classifier in a cohort of 25 preterm infants (12 females). The automated classifier was subsequently applied to a study cohort of 58 preterm infants (31 females) to extract active sleep percentage over 5-7 consecutive days during 29-32 weeks of postmenstrual age. Each of the 58 infants underwent high-quality T2-weighted magnetic resonance brain imaging at term-equivalent age, which was used to measure the total white matter volume. The association between active sleep percentage and white matter volume was examined using a multiple linear regression model adjusted for potential confounders. Using the automated classifier with a superior sleep classification performance [mean area under the receiver operating characteristic curve (AUROC) = 0.87, 95% CI 0.83-0.92], we found that a higher active sleep percentage during the preterm period was significantly associated with an increased white matter volume at term-equivalent age [β = 0.31, 95% CI 0.09-0.53, false discovery rate (FDR)-adjusted p-value = 0.021]. Our results extend the positive association between active sleep and early brain development found in animal research to human preterm infants and emphasize the potential benefit of sleep preservation in the NICU setting.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Anneloes van Baar
- Child and Adolescent Studies, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Femke Lammertink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
27
|
Durkin J, Poe AR, Belfer SJ, Rodriguez A, Tang SH, Walker JA, Kayser MS. Neurofibromin 1 regulates early developmental sleep in Drosophila. Neurobiol Sleep Circadian Rhythms 2023; 15:100101. [PMID: 37593040 PMCID: PMC10428071 DOI: 10.1016/j.nbscr.2023.100101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including Drosophila, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene Neurofibromin 1 (Nf1) in sleep during numerous developmental periods. Mutations in Neurofibromin 1 (Nf1) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that Nf1 acts to regulate sleep across the lifespan, beginning during larval stages. Nf1 is required in neurons for this function, as is signaling via the Alk pathway. These findings identify Nf1 as one of a small number of genes positioned to regulate sleep across developmental periods.
Collapse
Affiliation(s)
- Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel J. Belfer
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
28
|
Glanz RM, Sokoloff G, Blumberg MS. Neural decoding reveals specialized kinematic tuning after an abrupt cortical transition. Cell Rep 2023; 42:113119. [PMID: 37690023 PMCID: PMC10591925 DOI: 10.1016/j.celrep.2023.113119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/08/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
The primary motor cortex (M1) exhibits a protracted period of development, including the development of a sensory representation long before motor outflow emerges. In rats, this representation is present by postnatal day (P) 8, when M1 activity is "discontinuous." Here, we ask how the representation changes upon the transition to "continuous" activity at P12. We use neural decoding to predict forelimb movements from M1 activity and show that a linear decoder effectively predicts limb movements at P8 but not at P12; instead, a nonlinear decoder better predicts limb movements at P12. The altered decoder performance reflects increased complexity and uniqueness of kinematic information in M1. We next show that M1's representation at P12 is more susceptible to "lesioning" of inputs and "transplanting" of M1's encoding scheme from one pup to another. Thus, the emergence of continuous M1 activity signals the developmental onset of more complex, informationally sparse, and individualized sensory representations.
Collapse
Affiliation(s)
- Ryan M Glanz
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Greta Sokoloff
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mark S Blumberg
- Department of Psychological & Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Santos JL, Petsidou E, Saraogi P, Bartsch U, Gerber AP, Seibt J. Effect of Acute Enriched Environment Exposure on Brain Oscillations and Activation of the Translation Initiation Factor 4E-BPs at Synapses across Wakefulness and Sleep in Rats. Cells 2023; 12:2320. [PMID: 37759542 PMCID: PMC10528220 DOI: 10.3390/cells12182320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localised mRNA translation is important for the structural changes at synapses supporting brain plasticity consolidation. The translation mTOR pathway, via phosphorylation of 4E-BPs, is known to be activate during sleep and contributes to brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BP phosphorylation at cortical and cerebellar synapses with Western blot analyses. Sleep significantly increased the conversion of 4E-BPs to their hyperphosphorylated forms at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band during active exploration and in the theta-to-beta (4-30 Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BP hyperphosphorylation at synapses. Hence, our results suggest a functional link between EEG and molecular markers of plasticity across wakefulness and sleep.
Collapse
Affiliation(s)
- José Lucas Santos
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Evlalia Petsidou
- Undergraduate Programme in Biological Science, University of Surrey, Guildford GU2 7XH, UK
- Postgraduate Programme in Neuroscience (MSc), Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Egkomi 2371, Cyprus
| | - Pallavi Saraogi
- Undergraduate Programme in Biological Science, University of Surrey, Guildford GU2 7XH, UK
| | - Ullrich Bartsch
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
- UK Dementia Research Institute, Care Research & Technology Centre at Imperial College London and University of Surrey, Guildford GU2 7XH, UK
| | - André P. Gerber
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Julie Seibt
- Surrey Sleep Research Centre, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK; (J.L.S.); (U.B.)
| |
Collapse
|
30
|
Milman NE, Tinsley CE, Raju RM, Lim MM. Loss of sleep when it is needed most - Consequences of persistent developmental sleep disruption: A scoping review of rodent models. Neurobiol Sleep Circadian Rhythms 2023; 14:100085. [PMID: 36567958 PMCID: PMC9768382 DOI: 10.1016/j.nbscr.2022.100085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is an essential component of development. Developmental sleep disruption (DSD) impacts brain maturation and has been associated with significant consequences on socio-emotional development. In humans, poor sleep during infancy and adolescence affects neurodevelopmental outcomes and may be a risk factor for the development of autism spectrum disorder (ASD) or other neuropsychiatric illness. Given the wide-reaching and enduring consequences of DSD, identifying underlying mechanisms is critical to best inform interventions with translational capacity. In rodents, studies have identified some mechanisms and neural circuits by which DSD causes later social, emotional, sensorimotor, and cognitive changes. However, these studies spanned methodological differences, including different developmental timepoints for both sleep disruption and testing, different DSD paradigms, and even different rodent species. In this scoping review on DSD in rodents, we synthesize these various studies into a cohesive framework to identify common neural mechanisms underlying DSD-induced dysfunction in brain and behavior. Ultimately, this review serves the goal to inform the generation of novel translational interventions for human developmental disorders featuring sleep disruption.
Collapse
Affiliation(s)
- Noah E.P. Milman
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Carolyn E. Tinsley
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Miranda M. Lim
- Oregon Health and Science University, Dept. of Behavioral and Systems Neuroscience, Portland, OR, 97214, USA
- Veterans Affairs Portland Health Care System, Portland, OR, 97214, USA
| |
Collapse
|
31
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
33
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|