1
|
Rizzello E, Pimpinella D, Pignataro A, Titta G, Merenda E, Saviana M, Porcheddu G, Paolantoni C, Malerba F, Giorgi C, Curia G, Middei S, Marchetti C. Lamotrigine rescues neuronal alterations and prevents seizure-induced memory decline in an Alzheimer's disease mouse model. Neurobiol Dis 2023; 181:106106. [PMID: 37001613 DOI: 10.1016/j.nbd.2023.106106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is a comorbidity associated with Alzheimer's disease (AD), often starting many years earlier than memory decline. Investigating this association in the early pre-symptomatic stages of AD can unveil new mechanisms of the pathology as well as guide the use of antiepileptic drugs to prevent or delay hyperexcitability-related pathological effects of AD. We investigated the impact of repeated seizures on hippocampal memory and amyloid-β (Aβ) load in pre-symptomatic Tg2576 mice, a transgenic model of AD. Seizure induction caused memory deficits and an increase in oligomeric Aβ42 and fibrillary species selectively in pre-symptomatic transgenic mice, and not in their wildtype littermates. Electrophysiological patch-clamp recordings in ex vivo CA1 pyramidal neurons and immunoblots were carried out to investigate the neuronal alterations associated with the behavioral outcomes of Tg2576 mice. CA1 pyramidal neurons exhibited increased intrinsic excitability and lower hyperpolarization-activated Ih current. CA1 also displayed lower expression of the hyperpolarization-activated cyclic nucleotide-gated HCN1 subunit, a protein already identified as downregulated in the AD human proteome. The antiepileptic drug lamotrigine restored electrophysiological alterations and prevented both memory deficits and the increase in extracellular Aβ induced by seizures. Thus our study provides evidence of pre-symptomatic hippocampal neuronal alterations leading to hyperexcitability and associated with both higher susceptibility to seizures and to AD-specific seizure-induced memory impairment. Our findings also provide a basis for the use of the antiepileptic drug lamotrigine as a way to counteract acceleration of AD induced by seizures in the early phases of the pathology.
Collapse
|
2
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Pathological and neurophysiological outcomes of seeding human-derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer's Disease. Acta Neuropathol Commun 2022; 10:92. [PMID: 35739575 PMCID: PMC9219251 DOI: 10.1186/s40478-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
The two main histopathological hallmarks that characterize Alzheimer’s Disease are the presence of amyloid plaques and neurofibrillary tangles. One of the current approaches to studying the consequences of amyloid pathology relies on the usage of transgenic animal models that incorporate the mutant humanized form of the amyloid precursor protein (hAPP), with animal models progressively developing amyloid pathology as they age. However, these mice models generally overexpress the hAPP protein to facilitate the development of amyloid pathology, which has been suggested to elicit pathological and neuropathological changes unrelated to amyloid pathology. In this current study, we characterized APP knock-in (APP-KI) animals, that do not overexpress hAPP but still develop amyloid pathology to understand the influence of protein overexpression. We also induced tau pathology via human-derived tau seeding material to understand the neurophysiological effects of amyloid and tau pathology. We report that tau-seeded APP-KI animals progressively develop tau pathology, exacerbated by the presence of amyloid pathology. Interestingly, older amyloid-bearing, tau-seeded animals exhibited more amyloid pathology in the entorhinal area, isocortex and hippocampus, but not thalamus, which appeared to correlate with impairments in gamma oscillations before seeding. Tau-seeded animals also featured immediate deficits in power spectra values and phase-amplitude indices in the hippocampus after seeding, with gamma power spectra deficits persisting in younger animals. Both deficits in hippocampal phase-amplitude coupling and gamma power differentiate tau-seeded, amyloid-positive animals from buffer controls. Based on our results, impairments in gamma oscillations appear to be strongly associated with the presence and development of amyloid and tau pathology, and may also be an indicator of neuropathology, network dysfunction, and even potential disposition to the future development of amyloid pathology.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Kaldun JC, Lone SR, Humbert Camps AM, Fritsch C, Widmer YF, Stein JV, Tomchik SM, Sprecher SG. Dopamine, sleep, and neuronal excitability modulate amyloid-β-mediated forgetting in Drosophila. PLoS Biol 2021; 19:e3001412. [PMID: 34613972 PMCID: PMC8523056 DOI: 10.1371/journal.pbio.3001412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/18/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aβ42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aβ42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aβ peptides.
Collapse
Affiliation(s)
- Jenifer C. Kaldun
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Shahnaz R. Lone
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Animal Sciences, Central University of Punjab, Bathinda, India
| | | | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Yves F. Widmer
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jens V. Stein
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Seth M. Tomchik
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Hippocampal synaptic and membrane function in the DBA/2J-mdx mouse model of Duchenne muscular dystrophy. Mol Cell Neurosci 2020; 104:103482. [PMID: 32171922 DOI: 10.1016/j.mcn.2020.103482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Dystrophin deficiency is associated with alterations in cell physiology. The functional consequences of dystrophin deficiency are particularly severe for muscle physiology, as observed in Duchenne muscle dystrophy (DMD). DMD is caused by the absence of a 427 kDa isoform of dystrophin. However, in addition to muscular dystrophy symptoms, DMD is frequently associated with memory and attention deficits and epilepsy. While this may be associated with a role for dystrophin in neuronal physiology, it is not clear what neuronal alterations are linked with DMD. Our work shows that CA1 pyramidal neurons from DBA/2J-mdx mice have increased afterhyperpolarization compared to WT controls. All the other electrotonic and electrogenic membrane properties were unaffected by this genotype. Finally, basal synaptic transmission, short-term and long-term synaptic plasticity at Schaffer collateral to CA1 glutamatergic synapses were unchanged between mdx and WT controls. These data show that the excitatory component of hippocampal activity is largely preserved in DBA/2J-mdx mice. Further studies, extending the investigation to the inhibitory GABAergic function, may provide a more complete picture of the functional, network alterations underlying impaired cognition in DMD. In addition, the investigation of changes in neuronal single conductance biophysical properties associated with this genotype, is required to identify the functional alterations associated with dystrophin deficiency and clarify its role in neuronal function.
Collapse
|
5
|
Walsh DA, Brown JT, Randall AD. Neurophysiological alterations in the nucleus reuniens of a mouse model of Alzheimer's disease. Neurobiol Aging 2019; 88:1-10. [PMID: 32065917 DOI: 10.1016/j.neurobiolaging.2019.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/30/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
Recently, increased neuronal activity in nucleus reuniens (Re) has been linked to hyperexcitability within hippocampal-thalamo-cortical networks in the J20 mouse model of amyloidopathy. Here in vitro whole-cell patch clamp recordings were used to compare old pathology-bearing J20 mice and wild-type controls to examine whether altered intrinsic electrophysiological properties could contribute to the amyloidopathy-associated Re hyperactivity. A greater proportion of Re neurons display hyperpolarized membrane potentials in J20 mice without changes to the incidence or frequency of spontaneous action potentials. Re neurons recorded from J20 mice did not exhibit increased action potential generation in response to depolarizing current stimuli but an increased propensity to rebound burst following hyperpolarizing current stimuli. Increased rebound firing did not appear to result from alterations to T-type Ca2+ channels. Finally, in J20 mice, there was an ~8% reduction in spike width, similar to what has been reported in CA1 pyramidal neurons from multiple amyloidopathy mice. We conclude that alterations to the intrinsic properties of Re neurons may contribute to hippocampal-thalmo-cortical hyperexcitability observed under pathological beta-amyloid load.
Collapse
Affiliation(s)
- Darren A Walsh
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Jon T Brown
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK.
| |
Collapse
|
6
|
Imbalance in the response of pre- and post-synaptic components to amyloidopathy. Sci Rep 2019; 9:14837. [PMID: 31619689 PMCID: PMC6795896 DOI: 10.1038/s41598-019-50781-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD)-associated synaptic dysfunction drives the progression of pathology from its earliest stages. Amyloid β (Aβ) species, both soluble and in plaque deposits, have been causally related to the progressive, structural and functional impairments observed in AD. It is, however, still unclear how Aβ plaques develop over time and how they progressively affect local synapse density and turnover. Here we observed, in a mouse model of AD, that Aβ plaques grow faster in the earlier stages of the disease and if their initial area is >500 µm2; this may be due to deposition occurring in the outer regions of the plaque, the plaque cloud. In addition, synaptic turnover is higher in the presence of amyloid pathology and this is paralleled by a reduction in pre- but not post-synaptic densities. Plaque proximity does not appear to have an impact on synaptic dynamics. These observations indicate an imbalance in the response of the pre- and post-synaptic terminals and that therapeutics, alongside targeting the underlying pathology, need to address changes in synapse dynamics.
Collapse
|
7
|
Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018; 23:molecules23123305. [PMID: 30551603 PMCID: PMC6320789 DOI: 10.3390/molecules23123305] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
8
|
Garg N, Joshi R, Medhi B. Cracking novel shared targets between epilepsy and Alzheimer's disease: need of the hour. Rev Neurosci 2018; 29:425-442. [PMID: 29329108 DOI: 10.1515/revneuro-2017-0064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
Epilepsy and Alzheimer's disease (AD) are interconnected. It is well known that seizures are linked with cognitive impairment, and there are various shared etiologies between epilepsy and AD. The connection between hyperexcitability of neurons and cognitive dysfunction in the progression of AD or epileptogenesis plays a vital role for improving selection of treatment for both diseases. Traditionally, seizures occur less frequently and in later stages of age in patients with AD which in turn implies that neurodegeneration causes seizures. The role of seizures in early stages of pathogenesis of AD is still an issue to be resolved. So, it is well timed to analyze the common pathways involved in pathophysiology of AD and epilepsy. The present review focuses on similar potential underlying mechanisms which may be related to the causes of seizures in epilepsy and cognitive impairment in AD. The proposed review will focus on many possible newer targets like abnormal expression of various enzymes like GSK-3β, PP2A, PKC, tau hyperphosphorylation, MMPs, caspases, neuroinflammation and oxidative stress associated with number of neurodegenerative diseases linked with epilepsy. The brief about the prospective line of treatment of both diseases will also be discussed in the present review.
Collapse
Affiliation(s)
- Nitika Garg
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Rupa Joshi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 1600142, Punjab, India, e-mail:
| |
Collapse
|
9
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Synaptic vesicle cycle and amyloid β: Biting the hand that feeds. Alzheimers Dement 2018; 14:502-513. [PMID: 29494806 DOI: 10.1016/j.jalz.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid β production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aβ on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aβ interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Scullion SE, Barker GRI, Warburton EC, Randall AD, Brown JT. Muscarinic Receptor-Dependent Long Term Depression in the Perirhinal Cortex and Recognition Memory are Impaired in the rTg4510 Mouse Model of Tauopathy. Neurochem Res 2018; 44:617-626. [PMID: 29484523 PMCID: PMC6420433 DOI: 10.1007/s11064-018-2487-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 11/02/2022]
Abstract
Neurodegenerative diseases affecting cognitive dysfunction, such as Alzheimer's disease and fronto-temporal dementia, are often associated impairments in the visual recognition memory system. Recent evidence suggests that synaptic plasticity, in particular long term depression (LTD), in the perirhinal cortex (PRh) is a critical cellular mechanism underlying recognition memory. In this study, we have examined novel object recognition and PRh LTD in rTg4510 mice, which transgenically overexpress tauP301L. We found that 8-9 month old rTg4510 mice had significant deficits in long- but not short-term novel object recognition memory. Furthermore, we also established that PRh slices prepared from rTg4510 mice, unlike those prepared from wildtype littermates, could not support a muscarinic acetylcholine receptor-dependent form of LTD, induced by a 5 Hz stimulation protocol. In contrast, bath application of the muscarinic agonist carbachol induced a form of chemical LTD in both WT and rTg4510 slices. Finally, when rTg4510 slices were preincubated with the acetylcholinesterase inhibitor donepezil, the 5 Hz stimulation protocol was capable of inducing significant levels of LTD. These data suggest that dysfunctional cholinergic innervation of the PRh of rTg4510 mice, results in deficits in synaptic LTD which may contribute to aberrant recognition memory in this rodent model of tauopathy.
Collapse
Affiliation(s)
- Sarah E Scullion
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Gareth R I Barker
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - E Clea Warburton
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Andrew D Randall
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK.
| | - Jonathan T Brown
- School of Physiology and Pharmacology and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| |
Collapse
|
11
|
Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2017; 10:1742001. [PMID: 29151920 PMCID: PMC5687568 DOI: 10.1142/s1793545817420019] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.
Collapse
Affiliation(s)
- Sara Mattana
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesco Tamagnini
- Hatherly Laboratories, Medical School University of Exeter, Exeter EX4 4PS, UK
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
12
|
β-Amyloid and the Pathomechanisms of Alzheimer's Disease: A Comprehensive View. Molecules 2017; 22:molecules22101692. [PMID: 28994715 PMCID: PMC6151811 DOI: 10.3390/molecules22101692] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Protein dyshomeostasis is the common mechanism of neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is the key risk factor, as the capacity of the proteostasis network declines during aging. Different cellular stress conditions result in the up-regulation of the neurotrophic, neuroprotective amyloid precursor protein (APP). Enzymatic processing of APP may result in formation of toxic Aβ aggregates (β-amyloids). Protein folding is the basis of life and death. Intracellular Aβ affects the function of subcellular organelles by disturbing the endoplasmic reticulum-mitochondria cross-talk and causing severe Ca2+-dysregulation and lipid dyshomeostasis. The extensive and complex network of proteostasis declines during aging and is not able to maintain the balance between production and disposal of proteins. The effectivity of cellular pathways that safeguard cells against proteotoxic stress (molecular chaperones, aggresomes, the ubiquitin-proteasome system, autophagy) declines with age. Chronic cerebral hypoperfusion causes dysfunction of the blood-brain barrier (BBB), and thus the Aβ-clearance from brain-to-blood decreases. Microglia-mediated clearance of Aβ also declines, Aβ accumulates in the brain and causes neuroinflammation. Recognition of the above mentioned complex pathogenesis pathway resulted in novel drug targets in AD research.
Collapse
|
13
|
Tamagnini F, Walsh DA, Brown JT, Bondulich MK, Hanger DP, Randall AD. Hippocampal neurophysiology is modified by a disease-associated C-terminal fragment of tau protein. Neurobiol Aging 2017; 60:44-56. [PMID: 28917666 PMCID: PMC5654728 DOI: 10.1016/j.neurobiolaging.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023]
Abstract
The accumulation of cleaved tau fragments in the brain is associated with several tauopathies. For this reason, we recently developed a transgenic mouse that selectively accumulates a C-Terminal 35 kDa human tau fragment (Tau35). These animals develop progressive motor and spatial memory impairment, paralleled by increased hippocampal glycogen synthase kinase 3β activity. In this neurophysiological study, we focused on the CA1 subfield of the hippocampus, a brain area involved in memory encoding. The accumulation of Tau35 results in a significant increase of short-term facilitation of the synaptic response in the theta frequency range (10 Hz), without affecting basal synaptic transmission and long-term synaptic plasticity. Tau35 expression also alters the intrinsic excitability of CA1 pyramidal neurons. Thus, Tau35 presence is associated with increased and decreased excitability at hyperpolarized and depolarized potentials, respectively. These observations are paralleled by a hyperpolarization of the voltage-sensitivity of noninactivating K+ currents. Further investigation is needed to assess the causal link between such functional alterations and the cognitive and motor impairments previously observed in this model.
Collapse
Affiliation(s)
- Francesco Tamagnini
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK.
| | - Darren A Walsh
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jon T Brown
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Marie K Bondulich
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Diane P Hanger
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Andrew D Randall
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Li CZ, Grajales S, Shuang S, Dong C, Nair M. β-Amyloid Biomarker Detection for Alzheimer’s Disease. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0014-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Zhang D, Qi Y, Klyubin I, Ondrejcak T, Sarell CJ, Cuello AC, Collinge J, Rowan MJ. Targeting glutamatergic and cellular prion protein mechanisms of amyloid β-mediated persistent synaptic plasticity disruption: Longitudinal studies. Neuropharmacology 2017; 121:231-246. [PMID: 28390893 DOI: 10.1016/j.neuropharm.2017.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease amyloid-β (Aβ) oligomers are synaptotoxic, inappropriately increasing extracellular glutamate concentration and glutamate receptor activation to thereby rapidly disrupt synaptic plasticity. Thus, acutely promoting brain glutamate homeostasis with a blood-based scavenging system, glutamate-oxaloacetate transaminase (GOT), and blocking metabotropic glutamate 5 (mGlu5) receptor or its co-receptor cellular prion protein (PrP), prevent the acute inhibition of long-term potentiation (LTP) by exogenous Aβ. Here, we evaluated the time course of the effects of such interventions in the persistent disruptive effects of Aβ oligomers, either exogenously injected in wild type rats or endogenously generated in transgenic rats that model Alzheimer's disease amyloidosis. We report that repeated, but not acute, systemic administration of recombinant GOT type 1, with or without the glutamate co-substrate oxaloacetate, reversed the persistent deleterious effect of exogenous Aβ on synaptic plasticity. Moreover, similar repetitive treatment reversibly abrogated the inhibition of LTP monitored longitudinally in freely behaving transgenic rats. Remarkably, brief repeated treatment with an mGlu5 receptor antagonist, basimglurant, or an antibody that prevents Aβ oligomer binding to PrP, ICSM35, also had similar reversible ameliorative effects in the transgenic rat model. Overall, the present findings support the ongoing development of therapeutics for early Alzheimer's disease based on these complementary approaches.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Claire J Sarell
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, Department of Neurology and Neurosurgery, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
16
|
Schaefers ATU, Teuchert-Noodt G. Developmental neuroplasticity and the origin of neurodegenerative diseases. World J Biol Psychiatry 2016; 17:587-599. [PMID: 23705632 DOI: 10.3109/15622975.2013.797104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Neurodegenerative diseases like Alzheimer's and Parkinson's Disease, marked by characteristic protein aggregations, are more and more accepted to be synaptic disorders and to arise from a combination of genetic and environmental factors. In this review we propose our concept that neuroplasticity might constitute a link between early life challenges and neurodegeneration. METHODS After introducing the general principles of neuroplasticity, we show how adverse environmental stimuli during development impact adult neuroplasticity and might lead to neurodegenerative processes. RESULTS There are significant overlaps between neurodevelopmental and neurodegenerative processes. Proteins that represent hallmarks of neurodegeneration are involved in plastic processes under physiological conditions. Brain regions - particularly the hippocampus - that retain life-long plastic capacities are the key targets of neurodegeneration. Neuroplasticity is highest in young age making the brain more susceptible to external influences than later in life. Impacts during critical periods have life-long consequences on neuroplasticity and structural self-organization and are known to be common risk factors for neurodegenerative diseases. CONCLUSIONS Several lines of evidence support a link between developmental neuroplasticity and neurodegenerative processes later in life. A deeper insight into these processes is necessary to design strategies to mitigate or even prevent neurodegenerative pathologies.
Collapse
|
17
|
Fanutza T, Del Prete D, Ford MJ, Castillo PE, D’Adamio L. APP and APLP2 interact with the synaptic release machinery and facilitate transmitter release at hippocampal synapses. eLife 2015; 4:e09743. [PMID: 26551565 PMCID: PMC4755753 DOI: 10.7554/elife.09743] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The amyloid precursor protein (APP), whose mutations cause familial Alzheimer's disease, interacts with the synaptic release machinery, suggesting a role in neurotransmission. Here we mapped this interaction to the NH2-terminal region of the APP intracellular domain. A peptide encompassing this binding domain -named JCasp- is naturally produced by a γ-secretase/caspase double-cut of APP. JCasp interferes with the APP-presynaptic proteins interaction and, if linked to a cell-penetrating peptide, reduces glutamate release in acute hippocampal slices from wild-type but not APP deficient mice, indicating that JCasp inhibits APP function.The APP-like protein-2 (APLP2) also binds the synaptic release machinery. Deletion of APP and APLP2 produces synaptic deficits similar to those caused by JCasp. Our data support the notion that APP and APLP2 facilitate transmitter release, likely through the interaction with the neurotransmitter release machinery. Given the link of APP to Alzheimer's disease, alterations of this synaptic role of APP could contribute to dementia.
Collapse
Affiliation(s)
- Tomas Fanutza
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | - Dolores Del Prete
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| | | | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Luciano D’Adamio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
18
|
Tamagnini F, Novelia J, Kerrigan TL, Brown JT, Tsaneva-Atanasova K, Randall AD. Altered intrinsic excitability of hippocampal CA1 pyramidal neurons in aged PDAPP mice. Front Cell Neurosci 2015; 9:372. [PMID: 26528126 PMCID: PMC4604241 DOI: 10.3389/fncel.2015.00372] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/07/2015] [Indexed: 12/28/2022] Open
Abstract
Amyloidopathy involves the accumulation of insoluble amyloid β (Aβ) species in the brain's parenchyma and is a key histopathological hallmark of Alzheimer's disease (AD). Work on transgenic mice that overexpress Aβ suggests that elevated Aβ levels in the brain are associated with aberrant epileptiform activity and increased intrinsic excitability (IE) of CA1 hippocampal neurons. In this study we examined if similar changes could be observed in hippocampal CA1 pyramidal neurons from aged PDAPP mice (20-23 month old, Indiana mutation: V717F on APP gene) compared to their age-matched wild-type littermate controls. Whole-cell current clamp recordings revealed that sub-threshold intrinsic properties, such as input resistance, resting membrane potential and hyperpolarization activated "sag" were unaffected, but capacitance was significantly decreased in the transgenic animals. No differences between genotypes were observed in the overall number of action potentials (AP) elicited by 500 ms supra-threshold current stimuli. PDAPP neurons, however, exhibited higher instantaneous firing frequencies after accommodation in response to high intensity current injections. The AP waveform was narrower and shorter in amplitude in PDAPP mice: these changes, according to our in silico model of a CA1/3 pyramidal neuron, depended on the respective increase and reduction of K(+) and Na(+) voltage-gated channels maximal conductances. Finally, the after-hyperpolarization, seen after the first AP evoked by a +300 pA current injection and after 50 Hz AP bursts, was more pronounced in PDAPP mice. These data show that Aβ-overexpression in aged mice altered the capacitance, the neuronal firing and the AP waveform of CA1 pyramidal neurons. Some of these findings are consistent with previous work on younger PDAPP; they also show important differences that can be potentially ascribed to the interaction between amyloidopathy and ageing. Such a change of IE properties over time underlies that the increased incidence of seizure observed in AD patients might rely on different mechanistic pathways during progression of the disease.
Collapse
Affiliation(s)
- Francesco Tamagnini
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Janet Novelia
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter, UK
| | - Talitha L Kerrigan
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Jon T Brown
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter, UK
| | - Andrew D Randall
- Medical School, University of Exeter Exeter, UK ; School of Physiology and Pharmacology, University of Bristol Bristol, UK
| |
Collapse
|
19
|
Tamagnini F, Scullion S, Brown JT, Randall AD. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide. Hippocampus 2015; 25:786-97. [PMID: 25515596 PMCID: PMC4791149 DOI: 10.1002/hipo.22403] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francesco Tamagnini
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Sarah Scullion
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Jon T Brown
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Andrew D Randall
- Medical School, University of Exeter, Hatherly Building, Streatham Campus, Exeter, EX4 4PS, United Kingdom.,School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, United Kingdom
| |
Collapse
|
20
|
The full-length form of the Drosophila amyloid precursor protein is involved in memory formation. J Neurosci 2015; 35:1043-51. [PMID: 25609621 DOI: 10.1523/jneurosci.2093-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APPα in memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the impact on memory of the Drosophila α-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces secreted APPLα. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes.
Collapse
|
21
|
Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr Biol 2015; 25:702-712. [PMID: 25754641 PMCID: PMC4366315 DOI: 10.1016/j.cub.2015.01.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Emerging data suggest an important relationship between sleep and Alzheimer's disease (AD), but how poor sleep promotes the development of AD remains unclear. RESULTS Here, using a Drosophila model of AD, we provide evidence suggesting that changes in neuronal excitability underlie the effects of sleep loss on AD pathogenesis. β-amyloid (Aβ) accumulation leads to reduced and fragmented sleep, while chronic sleep deprivation increases Aβ burden. Moreover, enhancing sleep reduces Aβ deposition. Increasing neuronal excitability phenocopies the effects of reducing sleep on Aβ, and decreasing neuronal activity blocks the elevated Aβ accumulation induced by sleep deprivation. At the single neuron level, we find that chronic sleep deprivation, as well as Aβ expression, enhances intrinsic neuronal excitability. Importantly, these data reveal that sleep loss exacerbates Aβ-induced hyperexcitability and suggest that defects in specific K(+) currents underlie the hyperexcitability caused by sleep loss and Aβ expression. Finally, we show that feeding levetiracetam, an anti-epileptic medication, to Aβ-expressing flies suppresses neuronal excitability and significantly prolongs their lifespan. CONCLUSIONS Our findings directly link sleep loss to changes in neuronal excitability and Aβ accumulation and further suggest that neuronal hyperexcitability is an important mediator of Aβ toxicity. Taken together, these data provide a mechanistic framework for a positive feedback loop, whereby sleep loss and neuronal excitation accelerate the accumulation of Aβ, a key pathogenic step in the development of AD.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shahnaz R Lone
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sha Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Zhang
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Adam P Spira
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Planque SA, Nishiyama Y, Sonoda S, Lin Y, Taguchi H, Hara M, Kolodziej S, Mitsuda Y, Gonzalez V, Sait HBR, Fukuchi KI, Massey RJ, Friedland RP, O'Nuallain B, Sigurdsson EM, Paul S. Specific amyloid β clearance by a catalytic antibody construct. J Biol Chem 2015; 290:10229-41. [PMID: 25724648 DOI: 10.1074/jbc.m115.641738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/06/2022] Open
Abstract
Classical immunization methods do not generate catalytic antibodies (catabodies), but recent findings suggest that the innate antibody repertoire is a rich catabody source. We describe the specificity and amyloid β (Aβ)-clearing effect of a catabody construct engineered from innate immunity principles. The catabody recognized the Aβ C terminus noncovalently and hydrolyzed Aβ rapidly, with no reactivity to the Aβ precursor protein, transthyretin amyloid aggregates, or irrelevant proteins containing the catabody-sensitive Aβ dipeptide unit. The catabody dissolved preformed Aβ aggregates and inhibited Aβ aggregation more potently than an Aβ-binding IgG. Intravenous catabody treatment reduced brain Aβ deposits in a mouse Alzheimer disease model without inducing microgliosis or microhemorrhages. Specific Aβ hydrolysis appears to be an innate immune function that could be applied for therapeutic Aβ removal.
Collapse
Affiliation(s)
- Stephanie A Planque
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yasuhiro Nishiyama
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Sari Sonoda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yan Lin
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hiroaki Taguchi
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Mariko Hara
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Steven Kolodziej
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Yukie Mitsuda
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030
| | - Veronica Gonzalez
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Hameetha B R Sait
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ken-ichiro Fukuchi
- the Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, Illinois 61605
| | | | - Robert P Friedland
- the Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky 40202, and
| | - Brian O'Nuallain
- the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Einar M Sigurdsson
- the Departments of Neuroscience, Physiology, and Psychiatry, New York University School of Medicine, New York, New York 10016,
| | - Sudhir Paul
- From the Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, Texas 77030,
| |
Collapse
|
23
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
24
|
Pourbadie HG, Naderi N, Mehranfard N, Janahmadi M, Khodagholi F, Motamedi F. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology. PLoS One 2015; 10:e0117555. [PMID: 25689857 PMCID: PMC4331091 DOI: 10.1371/journal.pone.0117555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.
Collapse
Affiliation(s)
- Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Naderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mehranfard
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Scala F, Fusco S, Ripoli C, Piacentini R, Li Puma DD, Spinelli M, Laezza F, Grassi C, D'Ascenzo M. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K(+) current inhibition mediated by activation of caspases and GSK-3. Neurobiol Aging 2015; 36:886-900. [PMID: 25541422 PMCID: PMC4801354 DOI: 10.1016/j.neurobiolaging.2014.10.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022]
Abstract
Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K(+) currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K(+) currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer's mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Federico Scala
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Salvatore Fusco
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | - Matteo Spinelli
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| | - Marcello D'Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy.
| |
Collapse
|
26
|
Witton J, Staniaszek LE, Bartsch U, Randall AD, Jones MW, Brown JT. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia. J Physiol 2015; 594:4615-30. [PMID: 25480798 DOI: 10.1113/jphysiol.2014.282889] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS High frequency (100-250 Hz) neuronal oscillations in the hippocampus, known as sharp-wave ripples (SWRs), synchronise the firing behaviour of groups of neurons and play a key role in memory consolidation. Learning and memory are severely compromised in dementias such as Alzheimer's disease; however, the effects of dementia-related pathology on SWRs are unknown. The frequency and temporal structure of SWRs was disrupted in a transgenic mouse model of tauopathy (one of the major hallmarks of several dementias). Excitatory pyramidal neurons were more likely to fire action potentials in a phase-locked manner during SWRs in the mouse model of tauopathy; conversely, inhibitory interneurons were less likely to fire phase-locked spikes during SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may underlie the cognitive impairments in this model of dementia. ABSTRACT Neurons within the CA1 region of the hippocampus are co-activated during high frequency (100-250 Hz) sharp-wave ripple (SWR) activity in a manner that probably drives synaptic plasticity and promotes memory consolidation. In this study we have used a transgenic mouse model of dementia (rTg4510 mice), which overexpresses a mutant form of tau protein, to examine the effects of tauopathy on hippocampal SWRs and associated neuronal firing. Tetrodes were used to record simultaneous extracellular action potentials and local field potentials from the dorsal CA1 pyramidal cell layer of 7- to 8-month-old wild-type and rTg4510 mice at rest in their home cage. At this age point these mice exhibit neurofibrillary tangles, neurodegeneration and cognitive deficits. Epochs of sleep or quiet restfulness were characterised by minimal locomotor activity and a low theta/delta ratio in the local field potential power spectrum. SWRs detected off-line were significantly lower in amplitude and had an altered temporal structure in rTg4510 mice. Nevertheless, the average frequency profile and duration of the SWRs were relatively unaltered. Putative interneurons displayed significantly less temporal and phase locking to SWRs in rTg4510 mice, whilst putative pyramidal neurons showed increased temporal and phase locking to SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may contribute to impairments in memory consolidation in this model of dementia.
Collapse
Affiliation(s)
- Jonathan Witton
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Lydia E Staniaszek
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Ullrich Bartsch
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Andrew D Randall
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK.,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jonathan T Brown
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK.,Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| |
Collapse
|
27
|
Qi Y, Klyubin I, Harney SC, Hu N, Cullen WK, Grant MK, Steffen J, Wilson EN, Do Carmo S, Remy S, Fuhrmann M, Ashe KH, Cuello AC, Rowan MJ. Longitudinal testing of hippocampal plasticity reveals the onset and maintenance of endogenous human Aß-induced synaptic dysfunction in individual freely behaving pre-plaque transgenic rats: rapid reversal by anti-Aß agents. Acta Neuropathol Commun 2014; 2:175. [PMID: 25540024 PMCID: PMC4293804 DOI: 10.1186/s40478-014-0175-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 11/26/2022] Open
Abstract
Long before synaptic loss occurs in Alzheimer’s disease significant harbingers of disease may be detected at the functional level. Here we examined if synaptic long-term potentiation is selectively disrupted prior to extracellular deposition of Aß in a very complete model of Alzheimer’s disease amyloidosis, the McGill-R-Thy1-APP transgenic rat. Longitudinal studies in freely behaving animals revealed an age-dependent, relatively rapid-onset and persistent inhibition of long-term potentiation without a change in baseline synaptic transmission in the CA1 area of the hippocampus. Thus the ability of a standard 200 Hz conditioning protocol to induce significant NMDA receptor-dependent short- and long-term potentiation was lost at about 3.5 months of age and this deficit persisted for at least another 2–3 months, when plaques start to appear. Consistent with in vitro evidence for a causal role of a selective reduction in NMDA receptor-mediated synaptic currents, the deficit in synaptic plasticity in vivo was associated with a reduction in the synaptic burst response to the conditioning stimulation and was overcome using stronger 400 Hz stimulation. Moreover, intracerebroventricular treatment for 3 days with an N-terminally directed monoclonal anti- human Aß antibody, McSA1, transiently reversed the impairment of synaptic plasticity. Similar brief treatment with the BACE1 inhibitor LY2886721 or the γ-secretase inhibitor MRK-560 was found to have a comparable short-lived ameliorative effect when tracked in individual rats. These findings provide strong evidence that endogenously generated human Aß selectively disrupts the induction of long-term potentiation in a manner that enables potential therapeutic options to be assessed longitudinally at the pre-plaque stage of Alzheimer’s disease amyloidosis.
Collapse
|
28
|
Heier MS, Skinningsrud A, Paus E, Gautvik KM. Increased cerebrospinal fluid levels of nerve cell biomarkers in narcolepsy with cataplexy. Sleep Med 2014; 15:614-8. [PMID: 24784789 DOI: 10.1016/j.sleep.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND The association between narcolepsy with cataplexy and the hypocretinergic system in the central nervous system is strong since up to 75-90% of all patients have cerebrospinal fluid (CSF) hypocretin-1 deficiency. The predominant occurrence of HLADQB1*0602 tissue type in narcolepsy patients and recent results from genome-wide association studies suggest an underlying immunological mechanism. The present study was initiated to clarify whether measurement of nerve cell biomarkers in CSF could give additional knowledge of the pathophysiological mechanisms causing narcolepsy with cataplexy. METHODS Two patient groups with narcolepsy, comprising 18 patients with low CSF hypocretin-1 concentrations and typical cataplexy, and 18 patients with normal CSF hypocretin-1 levels and mild cataplexy-like symptoms, were compared to 17 controls. We measured the nerve cell biomarkers beta-amyloid (Aβ42), total tau protein (T-tau), phosphorylated tau (P-tau) and neuron-specific enolase (NSE) in CSF. RESULTS The concentrations of all biomarkers were significantly elevated in both patient groups compared to the controls. The concentration of beta-amyloid was significantly higher in the patient group with normal CSF hypocretin-1 concentration than in those with low concentrations, whereas the other biomarkers showed no difference between the patient groups. CONCLUSION The findings of elevated levels of CSF biomarkers independent of CSF hypocretin-1 reduction may reflect alterations in cell metabolism. The results suggest a more extensive affection of the sleep regulating cellular network, affecting other neuronal sites important in the regulation of sleep, in addition to the hypocretin-producing neurons.
Collapse
Affiliation(s)
- M S Heier
- Norwegian Resource Center for AD/HD, Tourette's Syndrome and Narcolepsy, Oslo University Hospital, Oslo, Norway.
| | - A Skinningsrud
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway
| | - E Paus
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - K M Gautvik
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Kerrigan TL, Brown JT, Randall AD. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse. Neuropharmacology 2014; 79:515-24. [PMID: 24055500 PMCID: PMC3989024 DOI: 10.1016/j.neuropharm.2013.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/21/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Abstract
Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9-10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled 'Neurodevelopment Disorder'.
Collapse
Affiliation(s)
- T L Kerrigan
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - J T Brown
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, The Hatherly Building, Exeter EX4 4PS, UK
| | - A D Randall
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, The Hatherly Building, Exeter EX4 4PS, UK.
| |
Collapse
|
30
|
Stefanova NA, Kozhevnikova OS, Vitovtov AO, Maksimova KY, Logvinov SV, Rudnitskaya EA, Korbolina EE, Muraleva NA, Kolosova NG. Senescence-accelerated OXYS rats: a model of age-related cognitive decline with relevance to abnormalities in Alzheimer disease. Cell Cycle 2014; 13:898-909. [PMID: 24552807 DOI: 10.4161/cc.28255] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Senescence-accelerated OXYS rats are an experimental model of accelerated aging that was established from Wistar stock via selection for susceptibility to cataractogenic effects of a galactose-rich diet and via subsequent inbreeding of highly susceptible rats. Currently, we have the 102nd generation of OXYS rats with spontaneously developing cataract and accelerated senescence syndrome, which means early development of a phenotype similar to human geriatric disorders, including accelerated brain aging. In recent years, our group found strong evidence that OXYS rats are a promising model for studies of the mechanisms of brain aging and neurodegenerative processes similar to those seen in Alzheimer disease (AD). The manifestation of behavioral alterations and learning and memory deficits develop since the fourth week of age, i.e., simultaneously with first signs of neurodegeneration detectable on magnetic resonance imaging and under a light microscope. In addition, impaired long-term potentiation has been demonstrated in OXYS rats by the age of 3 months. With age, neurodegenerative changes in the brain of OXYS rats become amplified. We have shown that this deterioration happens against the background of overproduction of amyloid precursor protein (AβPP), accumulation of β-amyloid (Aβ), and hyperphosphorylation of the tau protein in the hippocampus and cortex. The development of AMD-like retinopathy in OXYS rats is also accompanied by increased accumulation of Aβ in the retina. These published data suggest that the OXYS strain may serve as a spontaneous rat model of AD-like pathology and could help to decipher the pathogenesis of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nataliya G Kolosova
- Institute of Cytology and Genetics; Novosibirsk, Russia; Institute of Mitoengineering; Moscow, Russia
| |
Collapse
|
31
|
Klyubin I, Ondrejcak T, Hayes J, Cullen WK, Mably AJ, Walsh DM, Rowan MJ. Neurotransmitter receptor and time dependence of the synaptic plasticity disrupting actions of Alzheimer's disease Aβ in vivo. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130147. [PMID: 24298149 PMCID: PMC3843879 DOI: 10.1098/rstb.2013.0147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many endogenous factors influence the time course and extent of the detrimental effects of amyloid β-protein (Aβ) on synaptic function. Here, we assessed the impact of varying endogenous glutamatergic and cholinergic transmission by pharmacological means on the disruption of plasticity at hippocampal CA3-to-CA1 synapses in the anaesthetized rat. NMDA receptors (NMDARs) are considered critical in mediating Aβ-induced inhibition of long-term potentiation (LTP). However, intracerebroventricular injection of Aβ1-42 inhibited not only NMDAR-dependent LTP but also voltage-activated Ca(2+)-dependent LTP induced by strong conditioning stimulation during NMDAR blockade. On the other hand, another form of NMDAR-independent synaptic plasticity, endogenous acetylcholine-induced muscarinic receptor-dependent long-term enhancement, was not hindered by Aβ1-42. Interestingly, augmenting endogenous acetylcholine activation of nicotinic receptors prior to the injection of Aβ1-42 prevented the inhibition of NMDAR-dependent LTP, whereas the same intervention when introduced after the infusion of Aβ was ineffective. We also examined the duration of action of Aβ, including water soluble Aβ from Alzheimer's disease (AD) brain. Remarkably, the inhibition of LTP induction caused by a single injection of sodium dodecyl sulfate-stable Aβ dimer-containing AD brain extract persisted for at least a week. These findings highlight the need to increase our understanding of non-NMDAR mechanisms and of developing novel means of overcoming, rather than just preventing, the deleterious synaptic actions of Aβ.
Collapse
Affiliation(s)
- Igor Klyubin
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Jennifer Hayes
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - William K. Cullen
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| | - Alexandra J. Mably
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institute of Medicine, 77-Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institute of Medicine, 77-Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael J. Rowan
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College, Biotechnology Building, Dublin 2, Republic ofIreland
| |
Collapse
|
32
|
|
33
|
Buskila Y, Crowe SE, Ellis-Davies GCR. Synaptic deficits in layer 5 neurons precede overt structural decay in 5xFAD mice. Neuroscience 2013; 254:152-9. [PMID: 24055684 DOI: 10.1016/j.neuroscience.2013.09.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/20/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022]
Abstract
Synaptic decay and neurodegeneration are hallmarks of Alzheimer's disease that are thought to precede dementia. Recently, we have reported that the first signs of neuritic dystrophy in a new transgenic mouse model of familial Alzheimer's disease (FAD) called the "5xFAD" are axonal dystrophy followed by loss of spines on basal dendrites. The 5xFAD mouse has profound loss of layer 5 neurons by 12months, and these initial structural insults appear between 4 and 6months of age. Here, we test, for the first time, if synaptic failure of layer 5 neurons in the 5xFAD mouse precedes these structural changes. We used longitudinal, in vivo two-photon fluorescence imaging of bigenic 5xFAD/YFP mice to assess the overall structural stability of layer 5 neurons in young mice (age less than 14weeks). We found these neurons to be structurally and morphologically sound. In parallel, we used in vitro, whole-cell patch clamp electrophysiology of layer 5 pyramidal neurons, from mice aged 8-12weeks, to reveal significant pre- and postsynaptic defects in these cells. Thus our data suggest that layer 5 neurons in the 5xFAD mouse model have synaptic deficits at an early time point, before any overt structural dystrophy, and that such synaptic failure, with co-temporal biochemical changes, may be an early step in neuronal loss.
Collapse
Affiliation(s)
- Y Buskila
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA; Bioelectronics and Neuroscience Group, The MARCS Institute, University of Western Sydney, NSW 2560, Australia
| | | | | |
Collapse
|
34
|
Toneff T, Funkelstein L, Mosier C, Abagyan A, Ziegler M, Hook V. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters. Peptides 2013; 46:126-35. [PMID: 23747840 PMCID: PMC3842158 DOI: 10.1016/j.peptides.2013.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 01/03/2023]
Abstract
Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.
Collapse
Affiliation(s)
- Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Lydiane Funkelstein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
| | - Armen Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | - Michael Ziegler
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, United States
- Department and Pharmacology, University of California, San Diego, La Jolla, CA 92093, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
- Corresponding author at: Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive MC0744, La Jolla, CA 92093-0744, United States. Tel.: +1 858 822 6682; fax: +1 858 822 6681. (V. Hook)
| |
Collapse
|
35
|
Vagnoni A, Glennon EBC, Perkinton MS, Gray EH, Noble W, Miller CCJ. Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production. Hum Mol Genet 2013; 22:4646-52. [PMID: 23825109 PMCID: PMC3889811 DOI: 10.1093/hmg/ddt313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-β peptide (Aβ) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on kinesin-1 motors. One favoured route for attachment of APP to kinesin-1 involves the scaffolding protein c-Jun N-terminal kinase-interacting protein-1 (JIP1), which has been shown to bind both APP and kinesin-1 light chain (KLC). However, direct experimental evidence to support a role of JIP1 in APP transport is lacking. Notably, the effect of loss of JIP1 on movement of APP through axons of living neurons, and the impact of such loss on APP processing and Aβ production has not been reported. To address these issues, we monitored how siRNA mediated loss of JIP1 influenced transport of enhanced green fluorescent protein (EGFP)-tagged APP through axons and production of endogenous Aβ in living neurons. Surprisingly, we found that knockdown of JIP1 did not affect either APP transport or Aβ production. These results have important implications for our understanding of APP trafficking in Alzheimer's disease.
Collapse
Affiliation(s)
- Alessio Vagnoni
- Departments of Neuroscience and Clinical Neurosciences, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
36
|
Chin J, Scharfman HE. Shared cognitive and behavioral impairments in epilepsy and Alzheimer's disease and potential underlying mechanisms. Epilepsy Behav 2013; 26:343-51. [PMID: 23321057 PMCID: PMC3924321 DOI: 10.1016/j.yebeh.2012.11.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/17/2012] [Indexed: 01/27/2023]
Abstract
Seizures in patients with Alzheimer's disease (AD) have been examined by many investigators over the last several decades, and there are diverse opinions about their potential relevance to AD pathophysiology. Some studies suggest that seizures appear to be a fairly uncommon co-morbidity, whereas other studies report a higher incidence of seizures in patients with AD. It was previously thought that seizures play a minor role in AD pathophysiology because of their low frequency, and also because they may only be noticed during late stages of AD, suggesting that seizures are likely to be a consequence of neurodegeneration rather than a contributing factor. However, clinical reports indicate that seizures can occur early in the emergence of AD symptoms, particularly in familial AD. In this case, seizures may be an integral part of the emerging pathophysiology. This view has been supported by evidence of recurrent spontaneous seizures in transgenic mouse models of AD in which familial AD is simulated. Additional data from transgenic animals suggest that there may be a much closer relationship between seizures and AD than previously considered. There is also evidence that seizures facilitate production of amyloid β (Aβ) and can cause impairments in cognition and behavior in both animals and humans. However, whether seizures play a role in the early stages of AD pathogenesis is still debated. Therefore, it is timely to review the similarities and differences between AD and epilepsy, as well as data suggesting that seizures may contribute to cognitive and behavioral dysfunction in AD. Here we focus on AD and temporal lobe epilepsy (TLE), a particular type of epilepsy that involves the temporal lobe, a region that influences behavior and is critical to memory. We also consider potential neurobiological mechanisms that support the view that the causes of seizures in TLE may be related to the causes of cognitive dysfunction in AD. We suggest that similar underlying mechanisms may exist for at least some of the aspects of AD that are also found in TLE.
Collapse
Affiliation(s)
- Jeannie Chin
- Department of Neuroscience and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Helen E. Scharfman
- Child & Adolescent Psychiatry, Physiology & Neuroscience, Psychiatry, New York University Langone Medical Center, New York, NY, USA,Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA,Correspondence to: H.E. Scharfman, Child & Adolescent Psychiatry, Physiology & Neuroscience, Psychiatry, New York University Langone Medical Center, New York, NY, USA. (H.E. Scharfman)
| |
Collapse
|
37
|
Alzheimer's disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory. Mol Brain 2012; 5:25. [PMID: 22805374 PMCID: PMC3502131 DOI: 10.1186/1756-6606-5-25] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/22/2012] [Indexed: 01/24/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by episodic memory impairment that often precedes clinical diagnosis by many years. Probing the mechanisms of such impairment may provide much needed means of diagnosis and therapeutic intervention at an early, pre-dementia, stage. Prior to the onset of significant neurodegeneration, the structural and functional integrity of synapses in mnemonic circuitry is severely compromised in the presence of amyloidosis. This review examines recent evidence evaluating the role of amyloid-ß protein (Aβ) in causing rapid disruption of synaptic plasticity and memory impairment. We evaluate the relative importance of different sizes and conformations of Aβ, including monomer, oligomer, protofibril and fibril. We pay particular attention to recent controversies over the relevance to the pathophysiology of AD of different water soluble Aβ aggregates and the importance of cellular prion protein in mediating their effects. Current data are consistent with the view that both low-n oligomers and larger soluble assemblies present in AD brain, some of them via a direct interaction with cellular prion protein, cause synaptic memory failure. At the two extremes of aggregation, monomers and fibrils appear to act in vivo both as sources and sinks of certain metastable conformations of soluble aggregates that powerfully disrupt synaptic plasticity. The same principle appears to apply to other synaptotoxic amyloidogenic proteins including tau, α-synuclein and prion protein.
Collapse
|
38
|
Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, Huang X. N-methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer's disease, vascular dementia and Parkinson's disease. Curr Alzheimer Res 2012; 9:746-58. [PMID: 21875407 PMCID: PMC5002349 DOI: 10.2174/156720512801322564] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/21/2011] [Accepted: 08/03/2011] [Indexed: 01/07/2023]
Abstract
Memantine, a partial antagonist of N-methyl-D-aspartate receptor (NMDAR), approved for moderate to severe Alzheimer's disease (AD) treatment within the U.S. and Europe under brand name Namenda (Forest), Axura and Akatinol (Merz), and Ebixa and Abixa (Lundbeck), may have potential in alleviating additional neurological conditions, such as vascular dementia (VD) and Parkinson's disease (PD). In various animal models, memantine has been reported to be a neuroprotective agent that positively impacts both neurodegenerative and vascular processes. While excessive levels of glutamate result in neurotoxicity, in part through the over-activation of NMDARs, memantine-as a partial NMDAR antagonist, blocks the NMDA glutamate receptors to normalize the glutamatergic system and ameliorate cognitive and memory deficits. The key to memantine's therapeutic action lies in its uncompetitive binding to the NMDAR through which low affinity and rapid off-rate kinetics of memantine at the level of the NMDAR-channel preserves the physiological function of the receptor, underpinning memantine's tolerability and low adverse event profile. As the biochemical pathways evoked by NMDAR antagonism also play a role in PD and since no other drug is sufficiently effective to substitute for the first-line treatment of L-dopa despite its side effects, memantine may be useful in PD treatment with possibly fewer side effects. In spite of the relative modest nature of its adverse effects, memantine has been shown to provide only a moderate decrease in clinical deterioration in AD and VD, and hence efforts are being undertaken in the design of new and more potent memantine-based drugs to hopefully provide greater efficacy.
Collapse
Affiliation(s)
- David Olivares
- Service of Clinical Pharmacology, Hospital Clinico San Carlos, C/Professor Martin Lagos s/n, 28040, Madrid, Spain
| | - Varun K. Deshpande
- Conjugate and Medicinal Chemistry Laboratory, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ying Shi
- Conjugate and Medicinal Chemistry Laboratory, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Debomoy K. Lahiri
- Departments of Psychiatry and of Medical & Molecular Genetics, Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202, USA
| | - Nigel H. Greig
- Laboratory of Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Xudong Huang
- Conjugate and Medicinal Chemistry Laboratory, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
Brunholz S, Sisodia S, Lorenzo A, Deyts C, Kins S, Morfini G. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp Brain Res 2012; 217:353-64. [PMID: 21960299 PMCID: PMC3670699 DOI: 10.1007/s00221-011-2870-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/07/2011] [Indexed: 12/12/2022]
Abstract
Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.
Collapse
Affiliation(s)
- Silke Brunholz
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Millan Sanchez M, Heyn SN, Das D, Moghadam S, Martin KJ, Salehi A. Neurobiological elements of cognitive dysfunction in down syndrome: exploring the role of APP. Biol Psychiatry 2012; 71:403-9. [PMID: 21945306 DOI: 10.1016/j.biopsych.2011.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/05/2011] [Accepted: 08/25/2011] [Indexed: 02/02/2023]
Abstract
Down syndrome (DS) is the most common cause of cognitive dysfunction in children. Additionally, most adults with DS will eventually show both clinical and neuropathologic hallmarks of Alzheimer's disease (AD). The hippocampal formation constitutes the primary target for degeneration in both AD and DS. Over the past few years, we have studied the molecular mechanisms behind degeneration of this region and its major inputs in mouse models of DS. Our investigation has suggested that the loss of hippocampal inputs, particularly cholinergic and noradrenergic terminals, leads to de-afferentation of this region in the Ts65Dn mouse model of DS. Interestingly, we were able to link the overexpression of amyloid precursor protein (App) gene to degeneration of cholinergic and noradrenergic neurons in DS mouse models. We examined the underlying mechanisms of degeneration of multiple systems with extensive projections to the hippocampus in DS and its mouse models and the role of App overexpression in neurodegeneration. Understanding mechanisms behind hippocampal dysfunction has helped us to test several therapeutic strategies successfully in mouse models of DS. Here we review these strategies and mechanisms and discuss ways to translate our findings into possible interventions in humans.
Collapse
Affiliation(s)
- Martha Millan Sanchez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, California, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer's disease: Update on recent advances. Pharmacol Biochem Behav 2012; 100:855-62. [DOI: 10.1016/j.pbb.2011.04.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/05/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023]
|
42
|
Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-β peptide in synaptic plasticity and memory. Neurobiol Aging 2012; 33:1484.e15-24. [PMID: 22284988 DOI: 10.1016/j.neurobiolaging.2011.12.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 11/23/2011] [Accepted: 12/19/2011] [Indexed: 02/09/2023]
Abstract
One of the hot topics in Alzheimer's disease research field is the "amyloid hypothesis" postulating that the increase and deposition of beta-amyloid peptides (Aβ) is the main pathogenetic factor. However, antiamyloid-based therapies have so far been a failure and, most importantly, growing evidences suggest that Aβ has important physiologic functions. Based on our previous findings demonstrating that low concentrations of Aβ enhanced both synaptic plasticity and memory, whereas high concentrations induced the well-known impairment of cognition, here we show that Aβ acts on hippocampal long-term potentiation and reference memory drawing biphasic dose-response curves. This phenomenon, characterized by low-dose stimulation and high-dose inhibition and represented by a U-shaped or inverted-U-shaped curve, resembles the characteristics of hormesis. The Aβ double role raises important issues on the use of Aβ level reducing agents in Alzheimer's disease.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Catania, Italy.
| | | | | |
Collapse
|
43
|
Scott L, Feng J, Kiss T, Needle E, Atchison K, Kawabe TT, Milici AJ, Hajós-Korcsok E, Riddell D, Hajós M. Age-dependent disruption in hippocampal θ oscillation in amyloid-β overproducing transgenic mice. Neurobiol Aging 2012; 33:1481.e13-23. [PMID: 22227005 DOI: 10.1016/j.neurobiolaging.2011.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 12/05/2011] [Indexed: 01/25/2023]
Abstract
Transgenic mice are used to model increased brain amyloid-β (Aβ) and amyloid plaque formation reflecting Alzheimer's disease pathology. In our study hippocampal network oscillations, population spikes, and long-term potentiation (LTP) were recorded in APPswe/PS1dE9 (APP/PS1) and presenilin1 (PS1) transgenic and wild type mice at 2, 4, and 8 months of age under urethane anesthesia. Hippocampal theta oscillations elicited by brainstem stimulation were similar in wild type and PS1 mice at all age groups. In contrast, APP/PS1 mice showed an age-dependent decrease in hippocampal activity, characterized by a significant decline in elicited theta power and frequency at 4 and 8 months. Magnitudes of population spikes and long-term potentiation in the dentate gyrus were similar across groups at both 4 and 8 months. In APP/PS1 mice, soluble and insoluble Aβ, and hippocampal and cortical plaque load increased with age, and the disruption in hippocampal theta oscillation showed a significant correlation with plaque load. Our study shows that, using in vivo electrophysiological methods, early Aβ-related functional deficits can be robustly detected in the brainstem-hippocampus multisynaptic network.
Collapse
Affiliation(s)
- Liam Scott
- Pfizer Global Research and Development, Groton, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Archer T, Kostrzewa RM, Beninger RJ, Palomo T. Staging neurodegenerative disorders: structural, regional, biomarker, and functional progressions. Neurotox Res 2011; 19:211-34. [PMID: 20393891 DOI: 10.1007/s12640-010-9190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/02/2010] [Accepted: 03/30/2010] [Indexed: 12/11/2022]
Abstract
The notion of staging in the neurodegenerative disorders is modulated by the constant and progressive loss of several aspects of brain structural integrity, circuitry, and neuronal processes. These destructive processes eventually remove individuals' abilities to perform at sufficient and necessary functional capacity at several levels of disease severity. The classification of (a) patients on the basis of diagnosis, risk prognosis, and intervention outcome, forms the basis of clinical staging, and (b) laboratory animals on the basis of animal model of brain disorder, extent of insult, and dysfunctional expression, provides the components for the clinical staging and preclinical staging, respectively, expressing associated epidemiological, biological, and genetic characteristics. The major focus of clinical staging in the present account stems from the fundamental notions of Braak staging as they describe the course and eventual prognosis for Alzheimer's disease, Lewy Body dementia, and Parkinson's disease. Mild cognitive impairment, which expresses the decline in episodic and semantic memory performance below the age-adjusted normal range without marked loss of global cognition or activities of daily living, and the applications of longitudinal magnetic resonance imaging, major instruments for the monitoring of either disease progression in dementia, present important challenges for staging concepts. Although Braak notions present the essential basis for further developments, current staging conceptualizations seem inadequate to comply with the massive influx of information dealing with neurodegenerative processes in brain, advanced both under clinical realities, and discoveries in the laboratory setting. The contributions of various biomarkers of disease progression, e.g., amyloid precursor protein, and neurotransmitter system imbalances, e.g., dopamine receptor supersensitivity and interactive propensities, await their incorporation into the existing staging models thereby underlining the ongoing, dynamic feature of the staging of brain disorders.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, SE-405 30 Gothenburg, Sweden.
| | | | | | | |
Collapse
|
45
|
Clinical and neurobiological correlates of soluble amyloid precursor proteins in the cerebrospinal fluid. Alzheimers Dement 2011; 8:304-11. [PMID: 22055653 DOI: 10.1016/j.jalz.2011.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/14/2011] [Accepted: 04/27/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND According to a widely accepted hypothesis, the amyloid precursor protein (APP) is processed by two competing pathways: the amyloidogenic β-secretase-mediated pathway or the nonamyloidogenic α-secretase-mediated pathway. APP is cleaved preferentially through the nonamyloidogenic pathway in normal brain, whereas the balance shifts to the amyloidogenic pathway in Alzheimer's disease (AD). The levels of the α-secretase-cleaved soluble APP (sAPPα) and β-secretase-cleaved soluble APP (sAPPβ) in cerebrospinal fluid (CSF) are likely to reflect these competing mechanisms. METHODS We investigated the levels and the relationship between sAPPα and sAPPβ in the CSF of 64 patients with mild AD, 76 patients with mild cognitive impairment, and 12 cognitively healthy control subjects, as well as the effect of apolipoprotein E genotype and sex on soluble APP levels. RESULTS There was a significant positive correlation between sAPPα and sAPPβ levels in all three groups. sAPPα and sAPPβ concentrations were higher in patients with mild cognitive impairment compared with patients with AD. In the AD group, females exhibited higher sAPPα and sAPPβ levels than males. No influence of the apolipoprotein E genotype on soluble APP concentrations was detected. DISCUSSION The positive correlation between sAPPα and sAPPβ challenges the hypothesis that AD is caused by an imbalance of the α- and β-secretase APP proteolysis through competing mechanisms. Moreover, the differences in CSF levels of sAPPα and sAPPβ between male and female patients with AD may reflect a "sexual dimorphism" in the activity of the two APP processing pathways in AD.
Collapse
|
46
|
Brown JT, Chin J, Leiser SC, Pangalos MN, Randall AD. Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer's disease. Neurobiol Aging 2011; 32:2109.e1-14. [PMID: 21794952 DOI: 10.1016/j.neurobiolaging.2011.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/20/2011] [Accepted: 05/30/2011] [Indexed: 01/13/2023]
Abstract
Transgenic mice that overproduce beta-amyloid (Aβ) peptides can exhibit central nervous system network hyperactivity. Patch clamp measurements from CA1 pyramidal cells of PSAPP and wild type mice were employed to investigate if altered intrinsic excitability could contribute to such network hyperfunction. At approximately 10 months, when PSAPP mice have a substantial central nervous system Aβ load, resting potential and input resistance were genotype-independent. However, PSAPP mice exhibited a substantially more prominent action potential (AP) burst close to the onset of weak depolarizing current stimuli. The spike afterdepolarization (ADP) was also larger in PSAPP mice. The rate of rise, width and height of APs were reduced in PSAPP animals; AP threshold was unaltered. Voltage-clamp recordings from nucleated macropatches revealed that somatic Na(+) current density was depressed by approximately 50% in PSAPP mice. K(+) current density was unaltered. All genotype-related differences were absent in PSAPP mice aged 5-7 weeks which lack a substantial Aβ load. We conclude that intrinsic neuronal hyperexcitability and changes to AP waveforms may contribute to neurophysiological deficits that arise as a consequence of Aβ accumulation.
Collapse
Affiliation(s)
- Jon T Brown
- Pfizer Applied Neurophysiology Group, University of Bristol School of Physiology and Pharmacology, Bristol, UK
| | | | | | | | | |
Collapse
|
47
|
Witton J, Brown JT, Jones MW, Randall AD. Altered synaptic plasticity in the mossy fibre pathway of transgenic mice expressing mutant amyloid precursor protein. Mol Brain 2010; 3:32. [PMID: 21040543 PMCID: PMC2988062 DOI: 10.1186/1756-6606-3-32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/01/2010] [Indexed: 01/05/2023] Open
Abstract
Aβ peptides derived from the cleavage of amyloid precursor protein are widely believed to play an important role in the pathophysiology of Alzheimer's disease. A common way to study the impact of these molecules on CNS function is to compare the physiology of transgenic mice that overproduce Aβ with non-transgenic animals. In the hippocampus, this approach has been frequently applied to the investigation of synaptic transmission and plasticity in the perforant and Schaffer collateral commissural pathways, the first and third components of the classical hippocampal trisynaptic circuit, respectively. Similar studies however have not been carried out on the remaining component of the trisynaptic circuit, the mossy fibre pathway. Using transverse hippocampal slices prepared from ~2 year old animals we have compared mossy fibre synaptic function in wild-type mice and their Tg2576 littermates which age-dependently overproduce Aβ. Input-output curves were not altered in slices from Tg2576 mice, but these animals exhibited a significant loss of the prominent frequency-facilitation expressed by the mossy fibre pathway. In addition to this change in short term synaptic plasticity, high frequency stimulation-induced, NMDA-receptor-independent LTP was absent in slices from the transgenic mice. These data represent the first description of functional deficits in the mossy fibre pathway of Aβ-overproducing transgenic mice.
Collapse
Affiliation(s)
- Jonathan Witton
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
48
|
Palacios-Pelaez R, Lukiw WJ, Bazan NG. Omega-3 Essential Fatty Acids Modulate Initiation and Progression of Neurodegenerative Disease. Mol Neurobiol 2010; 41:367-74. [DOI: 10.1007/s12035-010-8139-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 04/12/2010] [Indexed: 01/29/2023]
|