1
|
Wang B, Fu W, Ueda A, Shah H, Wu CF, Chi W, Zhuang X. Genetic vitamin B6 deficiency and alcohol interaction in behavior and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641947. [PMID: 40093095 PMCID: PMC11908246 DOI: 10.1101/2025.03.06.641947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Alcohol abuse is a leading cause of preventable deaths, affecting brain function and metabolism, including GABA transmission and vitamin B6 (VB6) levels. However, the interaction between genetic VB6 deficiency and alcohol consumption remains unexplored. Here, we utilized Drosophila models with mutations in pyridox(am)ine-5'-phosphate oxidase (PNPO), a key enzyme in VB6 metabolism, to examine this interaction at behavioral and biochemical levels. Our findings demonstrate that PNPO deficiency reduces alcohol aversion, increases consumption, and alters locomotor behavior. Biochemically, PNPO deficiency and alcohol exposure converge on amino acid metabolism, elevating inhibitory neurotransmitters GABA and glycine. Moreover, both PNPO deficiency and alcohol exposure lead to lethality with significant interaction, which can be rescued by VB6 supplementation. These results highlight a functional interaction between genetic VB6 deficiency and alcohol, suggesting potential therapeutic strategies for alcohol-related behaviors.
Collapse
Affiliation(s)
- Benjamin Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Wenqin Fu
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| | - Atsushi Ueda
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242
| | - Hardik Shah
- Biological Science Division, Metabolomics Platform, Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637
| | - Chun-Fang Wu
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242
| | - Wanhao Chi
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
- Present address: The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
2
|
Jovasevic V, Radulovic J. High ethanol preference and dissociated memory are co-occurring phenotypes associated with hippocampal GABA AR-δ receptor levels. Neurobiol Learn Mem 2021; 183:107459. [PMID: 34015441 DOI: 10.1016/j.nlm.2021.107459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022]
Abstract
Alcohol use disorder (AUD) frequently co-occurs with dissociative disorders and disorders with dissociative symptoms, suggesting a common neurobiological basis. It has been proposed that facilitated information processing under the influence of alcohol, resulting in the formation of dissociated memories, might be an important factor controlling alcohol use. Access to such memories is facilitated under the effect of alcohol, thus further reinforcing alcohol use. To interrogate possible mechanisms associated with these phenotypes, we used a mouse model of dissociative amnesia, combined with a high-alcohol preferring (HAP) model of AUD. Dissociated memory was induced by activation of hippocampal extrasynaptic GABA type A receptor delta subunits (GABAAR-δ), which control tonic inhibition and to which ethanol binds with high affinity. Increased ethanol preference was associated with increased propensity to form dissociated memories dependent on GABAAR-δ in the dorsal hippocampus (DH). Furthermore, the DH level of GABAAR-δ protein, but not mRNA, was increased in HAP mice, and was inversely correlated to the level of miR-365-3p, suggesting an miRNA-mediated post-transcriptional mechanism contributing to elevated GABAAR-δ. The observed changes of DH GABAAR-δ were associated with a severe reduction of excitatory projections stemming from GABAAR-δ-containing pyramidal neurons in the subiculum and terminating in the mammillary body. These results suggest that both molecular and circuit dysfunction involving hippocampal GABAAR-δ receptors might contribute to the co-occurrence of ethanol preference and dissociated information processing.
Collapse
Affiliation(s)
| | - Jelena Radulovic
- Department of Pharmacology, Northwestern University, Chicago, IL, USA; Department of Neuroscience and Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Bagley JR, Chesler EJ, Philip VM, Jentsch JD. Heritability of ethanol consumption and pharmacokinetics in a genetically diverse panel of collaborative cross mouse strains and their inbred founders. Alcohol Clin Exp Res 2021; 45:697-708. [PMID: 33619752 PMCID: PMC8441258 DOI: 10.1111/acer.14582] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Interindividual variation in voluntary ethanol consumption and ethanol response is partially influenced by genetic variation. Discovery of the genes and allelic variants that affect these phenotypes may clarify the etiology and pathophysiology of problematic alcohol use, including alcohol use disorder. Genetically diverse mouse populations, which demonstrate heritable variation in ethanol consumption, can be utilized to discover the genes and gene networks that influence this trait. The Collaborative Cross (CC) recombinant inbred strains, Diversity Outbred (DO) population and their 8 founder strains are complementary mouse resources that capture substantial genetic diversity and can demonstrate expansive phenotypic variation in heritable traits. These populations may be utilized to discover candidate genes and gene networks that moderate ethanol consumption and other ethanol-related traits. METHODS We characterized ethanol consumption, preference, and pharmacokinetics in the 8 founder strains and 10 CC strains in 12-hour drinking sessions during the dark phase of the circadian cycle. RESULTS Ethanol consumption was substantially heritable, both early in ethanol access and over a chronic intermittent access schedule. Ethanol pharmacokinetics were also heritable; however, no association between strain-level ethanol consumption and pharmacokinetics was detected. The PWK/PhJ strain was the highest drinking strain, with consumption substantially exceeding that of the C57BL/6J strain, which is commonly used as a model of "high" or "binge" drinking. Notably, we found strong evidence that sex moderated genetic effects on voluntary ethanol drinking. CONCLUSIONS Collectively, this research serves as a foundation for expanded genetic study of ethanol consumption in the CC/DO and related populations. Moreover, we identified reference strains with extreme consumption phenotypes that effectively represent polygenic models of excessive ethanol use.
Collapse
Affiliation(s)
- Jared R Bagley
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Elissa J Chesler
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - Vivek M Philip
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, USA
| | - James D Jentsch
- Department of Psychology, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
4
|
Radcliffe RA, Dowell R, Odell AT, Richmond PA, Bennett B, Larson C, Kechris K, Saba LM, Rudra P, Wen S. Systems genetics analysis of the LXS recombinant inbred mouse strains:Genetic and molecular insights into acute ethanol tolerance. PLoS One 2020; 15:e0240253. [PMID: 33095786 PMCID: PMC7584226 DOI: 10.1371/journal.pone.0240253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
We have been using the Inbred Long- and Short-Sleep mouse strains (ILS, ISS) and a recombinant inbred panel derived from them, the LXS, to investigate the genetic underpinnings of acute ethanol tolerance which is considered to be a risk factor for alcohol use disorders (AUDs). Here, we have used RNA-seq to examine the transcriptome of whole brain in 40 of the LXS strains 8 hours after a saline or ethanol "pretreatment" as in previous behavioral studies. Approximately 1/3 of the 14,184 expressed genes were significantly heritable and many were unique to the pretreatment. Several thousand cis- and trans-eQTLs were mapped; a portion of these also were unique to pretreatment. Ethanol pretreatment caused differential expression (DE) of 1,230 genes. Gene Ontology (GO) enrichment analysis suggested involvement in numerous biological processes including astrocyte differentiation, histone acetylation, mRNA splicing, and neuron projection development. Genetic correlation analysis identified hundreds of genes that were correlated to the behaviors. GO analysis indicated that these genes are involved in gene expression, chromosome organization, and protein transport, among others. The expression profiles of the DE genes and genes correlated to AFT in the ethanol pretreatment group (AFT-Et) were found to be similar to profiles of HDAC inhibitors. Hdac1, a cis-regulated gene that is located at the peak of a previously mapped QTL for AFT-Et, was correlated to 437 genes, most of which were also correlated to AFT-Et. GO analysis of these genes identified several enriched biological process terms including neuron-neuron synaptic transmission and potassium transport. In summary, the results suggest widespread genetic effects on gene expression, including effects that are pretreatment-specific. A number of candidate genes and biological functions were identified that could be mediating the behavioral responses. The most prominent of these was Hdac1 which may be regulating genes associated with glutamatergic signaling and potassium conductance.
Collapse
Affiliation(s)
- Richard A. Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder CO, United States of America
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States of America
| | - Aaron T. Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Phillip A. Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Laura M. Saba
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States of America
| | - Shi Wen
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
5
|
Mignogna KM, Bacanu SA, Riley BP, Wolen AR, Miles MF. Cross-species alcohol dependence-associated gene networks: Co-analysis of mouse brain gene expression and human genome-wide association data. PLoS One 2019; 14:e0202063. [PMID: 31017905 PMCID: PMC6481773 DOI: 10.1371/journal.pone.0202063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/07/2019] [Indexed: 01/06/2023] Open
Abstract
Genome-wide association studies on alcohol dependence, by themselves, have yet to account for the estimated heritability of the disorder and provide incomplete mechanistic understanding of this complex trait. Integrating brain ethanol-responsive gene expression networks from model organisms with human genetic data on alcohol dependence could aid in identifying dependence-associated genes and functional networks in which they are involved. This study used a modification of the Edge-Weighted Dense Module Searching for genome-wide association studies (EW-dmGWAS) approach to co-analyze whole-genome gene expression data from ethanol-exposed mouse brain tissue, human protein-protein interaction databases and alcohol dependence-related genome-wide association studies. Results revealed novel ethanol-responsive and alcohol dependence-associated gene networks in prefrontal cortex, nucleus accumbens, and ventral tegmental area. Three of these networks were overrepresented with genome-wide association signals from an independent dataset. These networks were significantly overrepresented for gene ontology categories involving several mechanisms, including actin filament-based activity, transcript regulation, Wnt and Syndecan-mediated signaling, and ubiquitination. Together, these studies provide novel insight for brain mechanisms contributing to alcohol dependence.
Collapse
Affiliation(s)
- Kristin M. Mignogna
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Center for Clinical & Translational Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Silviu A. Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Brien P. Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Aaron R. Wolen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Qiu B, Xu Y, Wang J, Liu M, Dou L, Deng R, Wang C, Williams KE, Stewart RB, Xie Z, Ren W, Zhao Z, Shou W, Liang T, Yong W. Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight. Neuroscience 2019; 402:23-36. [DOI: 10.1016/j.neuroscience.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
|
7
|
Dickson PE, Roy TA, McNaughton KA, Wilcox TD, Kumar P, Chesler EJ. Systems genetics of sensation seeking. GENES BRAIN AND BEHAVIOR 2018; 18:e12519. [PMID: 30221471 PMCID: PMC6399063 DOI: 10.1111/gbb.12519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023]
Abstract
Sensation seeking is a multifaceted, heritable trait which predicts the development of substance use and abuse in humans; similar phenomena have been observed in rodents. Genetic correlations among sensation seeking and substance use indicate shared biological mechanisms, but the genes and networks underlying these relationships remain elusive. Here, we used a systems genetics approach in the BXD recombinant inbred mouse panel to identify shared genetic mechanisms underlying substance use and preference for sensory stimuli, an intermediate phenotype of sensation seeking. Using the operant sensation seeking (OSS) paradigm, we quantified preference for sensory stimuli in 120 male and 127 female mice from 62 BXD strains and the C57BL/6J and DBA/2J founder strains. We used relative preference for the active and inactive levers to dissociate preference for sensory stimuli from locomotion and exploration phenotypes. We identified genomic regions on chromosome 4 (155.236‐155.742 Mb) and chromosome 13 (72.969‐89.423 Mb) associated with distinct behavioral components of OSS. Using publicly available behavioral data and mRNA expression data from brain regions involved in reward processing, we identified (a) genes within these behavioral QTL exhibiting genome‐wide significant cis‐eQTL and (b) genetic correlations among OSS phenotypes, ethanol phenotypes and mRNA expression. From these analyses, we nominated positional candidates for behavioral QTL associated with distinct OSS phenotypes including Gnb1 and Mef2c. Genetic covariation of Gnb1 expression, preference for sensory stimuli and multiple ethanol phenotypes suggest that heritable variation in Gnb1 expression in reward circuitry partially underlies the widely reported relationship between sensation seeking and substance use.
Collapse
Affiliation(s)
- Price E. Dickson
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Tyler A. Roy
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | | | - Troy D. Wilcox
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Padam Kumar
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of AddictionThe Jackson LaboratoryBar HarborMaine
| |
Collapse
|
8
|
Rudra P, Shi WJ, Russell P, Vestal B, Tabakoff B, Hoffman P, Kechris K, Saba L. Predictive modeling of miRNA-mediated predisposition to alcohol-related phenotypes in mouse. BMC Genomics 2018; 19:639. [PMID: 30157779 PMCID: PMC6114181 DOI: 10.1186/s12864-018-5004-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that bind messenger RNAs and promote their degradation or repress their translation. There is increasing evidence of miRNAs playing an important role in alcohol related disorders. However, the role of miRNAs as mediators of the genetic effect on alcohol phenotypes is not fully understood. We conducted a high-throughput sequencing study to measure miRNA expression levels in alcohol naïve animals in the LXS panel of recombinant inbred (RI) mouse strains. We then combined the sequencing data with genotype data, microarry gene expression data, and data on alcohol-related behavioral phenotypes such as 'Drinking in the dark', 'Sleep time', and 'Low dose activation' from the same RI panel. SNP-miRNA-gene triplets with strong association within the triplet that were also associated with one of the 4 alcohol phenotypes were selected and a Bayesian network analysis was used to aggregate results into a directed network model. RESULTS We found several triplets with strong association within the triplet that were also associated with one of the alcohol phenotypes. The Bayesian network analysis found two networks where a miRNA mediates the genetic effect on the alcohol phenotype. The miRNAs were found to influence the expression of protein-coding genes, which in turn influences the quantitative phenotypes. The pathways in which these genes are enriched have been previously associated with alcohol-related traits. CONCLUSION This work enhances association studies by identifying miRNAs that may be mediating the association between genetic markers (SNPs) and the alcohol phenotypes. It suggests a mechanism of how genetic variants are affecting traits of interest through the modification of miRNA expression.
Collapse
Affiliation(s)
- Pratyaydipta Rudra
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, 80045 CO USA
| | - Wen J. Shi
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045 CO USA
| | - Pamela Russell
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, 80045 CO USA
| | - Brian Vestal
- Center for Genes, Environment and Health, National Jewish Health, Denver, 80206 CO USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, 80045 CO USA
| | - Paula Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, 80045 CO USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, 80045 CO USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, 80045 CO USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, 80045 CO USA
| |
Collapse
|
9
|
Chandler CM, Overton JS, Rüedi-Bettschen D, Platt DM. GABA A Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handb Exp Pharmacol 2018; 248:3-27. [PMID: 29204713 DOI: 10.1007/164_2017_80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
10
|
Moreno-Moral A, Petretto E. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. Dis Model Mech 2016; 9:1097-1110. [PMID: 27736746 PMCID: PMC5087832 DOI: 10.1242/dmm.026104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease.
Collapse
Affiliation(s)
- Aida Moreno-Moral
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Enrico Petretto
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| |
Collapse
|
11
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
12
|
Dowell R, Odell A, Richmond P, Malmer D, Halper-Stromberg E, Bennett B, Larson C, Leach S, Radcliffe RA. Genome characterization of the selected long- and short-sleep mouse lines. Mamm Genome 2016; 27:574-586. [PMID: 27651241 PMCID: PMC5110614 DOI: 10.1007/s00335-016-9663-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
Abstract
The Inbred Long- and Short-Sleep (ILS, ISS) mouse lines were selected for differences in acute ethanol sensitivity using the loss of righting response (LORR) as the selection trait. The lines show an over tenfold difference in LORR and, along with a recombinant inbred panel derived from them (the LXS), have been widely used to dissect the genetic underpinnings of acute ethanol sensitivity. Here we have sequenced the genomes of the ILS and ISS to investigate the DNA variants that contribute to their sensitivity difference. We identified ~2.7 million high-confidence SNPs and small indels and ~7000 structural variants between the lines; variants were found to occur in 6382 annotated genes. Using a hidden Markov model, we were able to reconstruct the genome-wide ancestry patterns of the eight inbred progenitor strains from which the ILS and ISS were derived, and found that quantitative trait loci that have been mapped for LORR were slightly enriched for DNA variants. Finally, by mapping and quantifying RNA-seq reads from the ILS and ISS to their strain-specific genomes rather than to the reference genome, we found a substantial improvement in a differential expression analysis between the lines. This work will help in identifying and characterizing the DNA sequence variants that contribute to the difference in ethanol sensitivity between the ILS and ISS and will also aid in accurate quantification of RNA-seq data generated from the LXS RIs.
Collapse
Affiliation(s)
- Robin Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA. .,Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Aaron Odell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Phillip Richmond
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Daniel Malmer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Eitan Halper-Stromberg
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Beth Bennett
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Colin Larson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA
| | - Sonia Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Richard A Radcliffe
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Bennett B, Larson C, Richmond PA, Odell AT, Saba LM, Tabakoff B, Dowell R, Radcliffe RA. Quantitative trait locus mapping of acute functional tolerance in the LXS recombinant inbred strains. Alcohol Clin Exp Res 2016; 39:611-20. [PMID: 25833023 DOI: 10.1111/acer.12678] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/09/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND We previously reported that acute functional tolerance (AFT) to the hypnotic effects of alcohol was significantly correlated with drinking in the dark (DID) in the LXS recombinant inbred panel, but only in mice that had been pretreated with alcohol. Here, we have conducted quantitative trait locus (QTL) mapping for AFT. DNA sequencing of the progenitor ILS and ISS strains and microarray analyses were also conducted to identify candidate genes and functional correlates. METHODS LXS mice were given either saline or alcohol (5 g/kg) on day 1 and then tested for loss of righting reflex AFT on day 2. QTLs were mapped using standard procedures. Two microarray analyses from brain were conducted: (i) naïve LXS mice and (ii) an alcohol treatment time course in the ILS and ISS. The full genomes of the ILS and ISS were sequenced to a depth of approximately 30×. RESULTS A significant QTL for AFT in the alcohol pretreatment group was mapped to distal chromosome 4; numerous suggestive QTLs were also mapped. Preference drinking and DID have previously been mapped to the chromosome 4 locus. The credible interval of the significant chromosome 4 QTL spanned 23 Mb and included 716 annotated genes of which 150 had at least 1 nonsynonymous single nucleotide polymorphism or small indel that differed between the ILS and ISS; expression of 48 of the genes was cis-regulated. Enrichment analysis indicated broad functional categories underlying AFT, including proteolysis, transcription regulation, chromatin modification, protein kinase activity, and apoptosis. CONCLUSIONS The chromosome 4 QTL is a key region containing possibly pleiotropic genes for AFT and drinking behavior. Given that the region contains many viable candidates and a large number of the genes in the interval fall into 1 or more of the enriched functional categories, we postulate that many genes of varying effect size contribute to the observed QTL effect.
Collapse
Affiliation(s)
- Beth Bennett
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang B, Ni H, Chen R, Zhang T, Li X, Zhan W, Wang Z, Xu Y. Cytotoxicity effects of three-dimensional graphene in NIH-3T3 fibroblasts. RSC Adv 2016. [DOI: 10.1039/c6ra04018g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present an evaluation of the in vitro cytotoxicity of 3D graphene sheets fabricated by carbonization of polydopamine (PDA) films on a template of aligned nanopore arrays (NPAs) on a stainless steel surface.
Collapse
Affiliation(s)
- Bowei Zhang
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Hongwei Ni
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Rongsheng Chen
- School of Chemical Engineering and Technology
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Tongcun Zhang
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Xi Li
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Weiting Zhan
- The State Key Laboratory of Refractories and Metallurgy
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Zhenyu Wang
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| | - Yao Xu
- Institute of Biology and Medicine
- Wuhan University of Science and Technology
- Wuhan 430065
- China
| |
Collapse
|
15
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
16
|
Saba LM, Flink SC, Vanderlinden LA, Israel Y, Tampier L, Colombo G, Kiianmaa K, Bell RL, Printz MP, Flodman P, Koob G, Richardson HN, Lombardo J, Hoffman PL, Tabakoff B. The sequenced rat brain transcriptome--its use in identifying networks predisposing alcohol consumption. FEBS J 2015; 282:3556-78. [PMID: 26183165 DOI: 10.1111/febs.13358] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED A quantitative genetic approach, which involves correlation of transcriptional networks with the phenotype in a recombinant inbred (RI) population and in selectively bred lines of rats, and determination of coinciding quantitative trait loci for gene expression and the trait of interest, has been applied in the present study. In this analysis, a novel approach was used that combined DNA-Seq data, data from brain exon array analysis of HXB/BXH RI rat strains and six pairs of rat lines selectively bred for high and low alcohol preference, and RNA-Seq data (including rat brain transcriptome reconstruction) to quantify transcript expression levels, generate co-expression modules and identify biological functions that contribute to the predisposition of consuming varying amounts of alcohol. A gene co-expression module was identified in the RI rat strains that contained both annotated and unannotated transcripts expressed in the brain, and was associated with alcohol consumption in the RI panel. This module was found to be enriched with differentially expressed genes from the selected lines of rats. The candidate genes within the module and differentially expressed genes between high and low drinking selected lines were associated with glia (microglia and astrocytes) and could be categorized as being related to immune function, energy metabolism and calcium homeostasis, as well as glial-neuronal communication. The results of the present study show that there are multiple combinations of genetic factors that can produce the same phenotypic outcome. Although no single gene accounts for predisposition to a particular level of alcohol consumption in every animal model, coordinated differential expression of subsets of genes in the identified pathways produce similar phenotypic outcomes. DATABASE The datasets supporting the results of the present study are available at http://phenogen.ucdenver.edu.
Collapse
Affiliation(s)
- Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Flink
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA
| | - Yedy Israel
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lutske Tampier
- Laboratory of Pharmacogenetics of Alcoholism, Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Giancarlo Colombo
- Neuroscience Institute, National Research Council of Italy, Section of Cagliari, Monserrato, Italy
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, Helsinki, Finland
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Morton P Printz
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Pamela Flodman
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - George Koob
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Heather N Richardson
- Committee on the Neurobiology of Addiction Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Joseph Lombardo
- National Supercomputing Center for Energy and Environment, University of Nevada, Las Vegas, Nevada, USA
| | - Paula L Hoffman
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.,Department of Pharmacology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
17
|
Vanderlinden LA, Saba LM, Bennett B, Hoffman PL, Tabakoff B. Influence of sex on genetic regulation of "drinking in the dark" alcohol consumption. Mamm Genome 2015; 26:43-56. [PMID: 25559016 DOI: 10.1007/s00335-014-9553-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
The ILSXISS (LXS) recombinant inbred (RI) panel of mice is a valuable resource for genetic mapping studies of complex traits, due to its genetic diversity and large number of strains. Male and female mice from this panel were used to investigate genetic influences on alcohol consumption in the "drinking in the dark" (DID) model. Male mice (38 strains) and female mice (36 strains) were given access to 20% ethanol during the early phase of their circadian dark cycle for four consecutive days. The first principal component of alcohol consumption measures on days 2, 3, and 4 was used as a phenotype (DID phenotype) to calculate QTLs, using a SNP marker set for the LXS RI panel. Five QTLs were identified, three of which included a significant genotype by sex interaction, i.e., a significant genotype effect in males and not females. To investigate candidate genes associated with the DID phenotype, data from brain microarray analysis (Affymetrix Mouse Exon 1.0 ST Arrays) of male LXS RI strains were combined with RNA-Seq data (mouse brain transcriptome reconstruction) from the parental ILS and ISS strains in order to identify expressed mouse brain transcripts. Candidate genes were determined based on common eQTL and DID phenotype QTL regions and correlation of transcript expression levels with the DID phenotype. The resulting candidate genes (in particular, Arntl/Bmal1) focused attention on the influence of circadian regulation on the variation in the DID phenotype in this population of mice.
Collapse
Affiliation(s)
- Lauren A Vanderlinden
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E. Montview Blvd., Campus Box: C238, Aurora, CO, 80045, USA,
| | | | | | | | | |
Collapse
|
18
|
Hoffman PL, Saba LM, Flink S, Grahame NJ, Kechris K, Tabakoff B. Genetics of gene expression characterizes response to selective breeding for alcohol preference. GENES, BRAIN, AND BEHAVIOR 2014; 13:743-57. [PMID: 25160899 PMCID: PMC4241152 DOI: 10.1111/gbb.12175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 01/30/2023]
Abstract
Numerous selective breeding experiments have been performed with rodents, in an attempt to understand the genetic basis for innate differences in preference for alcohol consumption. Quantitative trait locus (QTL) analysis has been used to determine regions of the genome that are associated with the behavioral difference in alcohol preference/consumption. Recent work suggests that differences in gene expression represent a major genetic basis for complex traits. Therefore, the QTLs are likely to harbor regulatory regions (eQTLs) for the differentially expressed genes that are associated with the trait. In this study, we examined brain gene expression differences over generations of selection of the third replicate lines of high and low alcohol-preferring (HAP3 and LAP3) mice, and determined regions of the genome that control the expression of these differentially expressed genes (de eQTLs). We also determined eQTL regions (rv eQTLs) for genes that showed a decrease in variance of expression levels over the course of selection. We postulated that de eQTLs that overlap with rv eQTLs, and also with phenotypic QTLs, represent genomic regions that are affected by the process of selection. These overlapping regions controlled the expression of candidate genes (that displayed differential expression and reduced variance of expression) for the predisposition to differences in alcohol consumption by the HAP3/LAP3 mice.
Collapse
Affiliation(s)
- Paula L. Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephen Flink
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Nicholas J. Grahame
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN 46202
| | - Katerina Kechris
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
19
|
Abstract
Interindividual differences in many behaviors are partly due to genetic differences, but the identification of the genes and variants that influence behavior remains challenging. Here, we studied an F2 intercross of two outbred lines of rats selected for tame and aggressive behavior toward humans for >64 generations. By using a mapping approach that is able to identify genetic loci segregating within the lines, we identified four times more loci influencing tameness and aggression than by an approach that assumes fixation of causative alleles, suggesting that many causative loci were not driven to fixation by the selection. We used RNA sequencing in 150 F2 animals to identify hundreds of loci that influence brain gene expression. Several of these loci colocalize with tameness loci and may reflect the same genetic variants. Through analyses of correlations between allele effects on behavior and gene expression, differential expression between the tame and aggressive rat selection lines, and correlations between gene expression and tameness in F2 animals, we identify the genes Gltscr2, Lgi4, Zfp40, and Slc17a7 as candidate contributors to the strikingly different behavior of the tame and aggressive animals.
Collapse
|
20
|
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res 2014; 42:e133. [PMID: 25063298 PMCID: PMC4176155 DOI: 10.1093/nar/gku631] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 06/16/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
microRNAs (miRNAs) regulate expression by promoting degradation or repressing translation of target transcripts. miRNA target sites have been catalogued in databases based on experimental validation and computational prediction using various algorithms. Several online resources provide collections of multiple databases but need to be imported into other software, such as R, for processing, tabulation, graphing and computation. Currently available miRNA target site packages in R are limited in the number of databases, types of databases and flexibility. We present multiMiR, a new miRNA-target interaction R package and database, which includes several novel features not available in existing R packages: (i) compilation of nearly 50 million records in human and mouse from 14 different databases, more than any other collection; (ii) expansion of databases to those based on disease annotation and drug microRNAresponse, in addition to many experimental and computational databases; and (iii) user-defined cutoffs for predicted binding strength to provide the most confident selection. Case studies are reported on various biomedical applications including mouse models of alcohol consumption, studies of chronic obstructive pulmonary disease in human subjects, and human cell line models of bladder cancer metastasis. We also demonstrate how multiMiR was used to generate testable hypotheses that were pursued experimentally.
Collapse
Affiliation(s)
- Yuanbin Ru
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Aurora, CO 80045, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Paula Hoffman
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard A Radcliffe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Russell Bowler
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simona Rossi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A Calin
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynne Bemis
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth Campus, Duluth, MN 55812, USA
| | - Dan Theodorescu
- Department of Surgery, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA University of Colorado Comprehensive Cancer Center, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Identification of a QTL in Mus musculus for alcohol preference, withdrawal, and Ap3m2 expression using integrative functional genomics and precision genetics. Genetics 2014; 197:1377-93. [PMID: 24923803 DOI: 10.1534/genetics.114.166165] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations. Combinatorial integration of functional genomics experimental results revealed a single QTL positional candidate gene in one of the loci common to both preference and withdrawal. Functional validation studies in Ap3m2 knockout mice confirmed these relationships. Genetic validation involves confirming the existence of segregating polymorphisms that could account for the phenotypic effect. By exploiting recent advances in mouse genotyping, sequence, epigenetics, and phylogeny resources, we confirmed that Ap3m2 resides in an appropriately segregating genomic region. We have demonstrated genetic and alcohol-induced regulation of Ap3m2 expression. Although sequence analysis revealed no polymorphisms in the Ap3m2-coding region that could account for all phenotypic differences, there are several upstream SNPs that could. We have identified one of these to be an H3K4me3 site that exhibits strain differences in methylation. Thus, by making cross-species functional genomics readily computable we identified a common QTL candidate for two related bio-behavioral processes via functional evidence and demonstrate sufficiency of the genetic locus as a source of variation underlying two traits.
Collapse
|
22
|
Morozova TV, Mackay TFC, Anholt RRH. Genetics and genomics of alcohol sensitivity. Mol Genet Genomics 2014; 289:253-69. [PMID: 24395673 PMCID: PMC4037586 DOI: 10.1007/s00438-013-0808-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Alcohol abuse and alcoholism incur a heavy socioeconomic cost in many countries. Both genetic and environmental factors contribute to variation in the inebriating effects of alcohol and alcohol addiction among individuals within and across populations. From a genetics perspective, alcohol sensitivity is a quantitative trait determined by the cumulative effects of multiple segregating genes and their interactions with the environment. This review summarizes insights from model organisms as well as human populations that represent our current understanding of the genetic and genomic underpinnings that govern alcohol metabolism and the sedative and addictive effects of alcohol on the nervous system.
Collapse
Affiliation(s)
- Tatiana V. Morozova
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Trudy F. C. Mackay
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| | - Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State University, Box 7617, Raleigh, NC 27695-7617 USA
| |
Collapse
|
23
|
Lee C, Mayfield RD, Harris RA. Altered gamma-aminobutyric acid type B receptor subunit 1 splicing in alcoholics. Biol Psychiatry 2014; 75:765-73. [PMID: 24209778 PMCID: PMC3999301 DOI: 10.1016/j.biopsych.2013.08.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chronic alcohol exposure can change splice variant expression. The gamma-aminobutyric acid type B (GABAB) receptor undergoes splicing and is an alcoholism treatment target, but there is little information about splicing changes in this receptor in alcoholics. We studied GABAB receptor subunit 1 (GABAB1) splicing in alcoholic postmortem brains. METHODS To maximize GABAB1 splice junction identification, we combined gene specific libraries with RNA-seq. Splice junctions and mapped reads were also found from intronic and intergenic regions. We compared GABAB1 splice junctions in prefrontal cortices from 14 alcoholic and 15 control subjects and introduced new strategies, reads per kilobase of splice junction model per million mapped reads and reads per kilobase of gene model per million mapped reads, for quantitating splice junction and gene expression. RESULTS Novel splice junction detection indicated that the GABAB1 gene is at least two times longer than the previously reported gene length. GABAB1 exon and intron expression data showed low expression at the 5' end exons and exon grouping. This indicated that there are short splicing variants in addition to GABAB receptor subunit GABAB1a, the longest known major transcript. We found that chronic alcohol altered exon/intron expression and splice junction levels. Decreased expression of the gamma-aminobutyric acid binding site, a transmembrane domain and a microRNA binding site may decrease normal GABAB1 transcript population and thereby decrease normal signal transduction in alcoholics. CONCLUSIONS We discovered novel, complex splicing of GABAB1 in human brain and showed that chronic alcohol produces additional splicing complexity.
Collapse
Affiliation(s)
- Changhoon Lee
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
24
|
Crabbe JC, Metten P, Belknap JK, Spence SE, Cameron AJ, Schlumbohm JP, Huang LC, Barkley-Levenson AM, Ford MM, Phillips TJ. Progress in a replicated selection for elevated blood ethanol concentrations in HDID mice. GENES, BRAIN, AND BEHAVIOR 2014; 13:236-46. [PMID: 24219304 PMCID: PMC3923418 DOI: 10.1111/gbb.12105] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
Drinking in the dark (DID) is a limited access ethanol-drinking phenotype in mice. High Drinking in the Dark (HDID-1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol. A second replicate line (HDID-2) was started later from the same founder population and is currently in S20. An initial report of response to selection in HDID-1 was published after S11. This article reports genetic and behavioral characteristics of both lines in comparison with the HS controls. Heritability is low in both replicates (h(2) = 0.09) but the lines have shown 4-5 fold increases in BEC since S0; 80% of HDID-1 and 60% of HDID-2 mice reach BECs greater than 1.0 mg/ml. Several hours after a DID test, HDID mice show mild signs of withdrawal. Although not considered during selection, intake of ethanol (g/kg) during the DID test increased by approximately 80% in HDID-1 and 60% in HDID-2. Common genetic influences were more important than environmental influences in determining the similarity between BEC and intake for HDID mice. Analysis of the partitioning of intake showed that 60% of intake is concentrated in the last 2 h of the 4 h session. However, this has not changed during selection. Hourly BECs during the DID test reach peak levels after 3 or 4 h of drinking. HDID mice do not differ from HS mice in their rate of elimination of an acute dose of alcohol.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Pamela Metten
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - John K. Belknap
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Stephanie E. Spence
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Andy J. Cameron
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Jason P. Schlumbohm
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Lawrence C. Huang
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Amanda M. Barkley-Levenson
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| | - Matthew M. Ford
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Portland, Oregon USA
| | - Tamara J. Phillips
- Portland Alcohol Research Center Oregon Health & Science University Portland, Oregon USA
- Department of Behavioral Neuroscience Oregon Health & Science University Portland, Oregon USA
| |
Collapse
|
25
|
Hitzemann R, Darakjian P, Walter N, Iancu OD, Searles R, McWeeney S. Introduction to sequencing the brain transcriptome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:1-19. [PMID: 25172469 DOI: 10.1016/b978-0-12-801105-8.00001-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High-throughput next-generation sequencing is now entering its second decade. However, it was not until 2008 that the first report of sequencing the brain transcriptome appeared (Mortazavi, Williams, Mccue, Schaeffer, & Wold, 2008). These authors compared short-read RNA-Seq data for mouse whole brain with microarray results for the same sample and noted both the advantages and disadvantages of the RNA-Seq approach. While RNA-Seq provided exon level resolution, the majority of the reads were provided by a small proportion of highly expressed genes and the data analysis was exceedingly complex. Over the past 6 years, there have been substantial improvements in both RNA-Seq technology and data analysis. This volume contains 11 chapters that detail various aspects of sequencing the brain transcriptome. Some of the chapters are very methods driven, while others focus on the use of RNA-Seq to study such diverse areas as development, schizophrenia, and drug abuse. This chapter briefly reviews the transition from microarrays to RNA-Seq as the preferred method for analyzing the brain transcriptome. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, and can be used to extract genotype information, e.g., nonsynonymous coding single nucleotide polymorphisms. RNA-Seq embraces the complexity of the brain transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior-disease relationships is substantial.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA.
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Nikki Walter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA; Research Service, Veterans Affairs Medical Center, Portland, Oregon, USA
| | - Ovidiu Dan Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Searles
- Integrative Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA
| | - Shannon McWeeney
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Division of Biostatistics, Public Health & Preventative Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
26
|
Reisdorph N, Stearman R, Kechris K, Phang TL, Reisdorph R, Prenni J, Erle DJ, Coldren C, Schey K, Nesvizhskii A, Geraci M. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:368-77. [PMID: 24316330 PMCID: PMC4049090 DOI: 10.1016/j.gpb.2013.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 01/08/2023]
Abstract
Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications.
Collapse
Affiliation(s)
- Nichole Reisdorph
- Department of Immunology, National Jewish Health, Denver, CO 80206, USA.
| | - Robert Stearman
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Tzu Lip Phang
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Richard Reisdorph
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Jessica Prenni
- Department of Biochemistry and Molecular Biology, Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO 80523, USA
| | - David J Erle
- Lung Biology Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Christopher Coldren
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin Schey
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt School of Medicine, Nashville, TN 37027, USA
| | - Alexey Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mark Geraci
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
27
|
McBride WJ, Kimpel MW, McClintick JN, Ding ZM, Hyytia P, Colombo G, Liang T, Edenberg HJ, Lumeng L, Bell RL. Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol 2013; 47:517-29. [PMID: 24157127 DOI: 10.1016/j.alcohol.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
The objectives of this study were to determine innate differences in gene expression in 2 regions of the extended amygdala between 5 different pairs of lines of male rats selectively bred for high or low ethanol consumption: a) alcohol-preferring (P) vs. alcohol-non-preferring (NP) rats, b) high-alcohol-drinking (HAD) vs. low-alcohol-drinking (LAD) rats (replicate line-pairs 1 and 2), c) ALKO alcohol (AA) vs. nonalcohol (ANA) rats, and d) Sardinian alcohol-preferring (sP) vs. Sardinian alcohol-nonpreferring (sNP) rats, and then to determine if these differences are common across the line-pairs. Microarray analysis revealed up to 1772 unique named genes in the nucleus accumbens shell (AcbSh) and 494 unique named genes in the central nucleus of the amygdala (CeA) that significantly differed [False Discovery Rate (FDR) = 0.10; fold-change at least 1.2] in expression between the individual line-pairs. Analysis using Gene Ontology (GO) and Ingenuity Pathways information indicated significant categories and networks in common for up to 3 or 4 line-pairs, but not for all 5 line-pairs. However, there were almost no individual genes in common within these categories and networks. ANOVAs of the combined data for the 5 line-pairs indicated 1014 and 731 significant (p < 0.01) differences in expression of named genes in the AcbSh and CeA, respectively. There were 4-6 individual named genes that significantly differed across up to 3 line-pairs in both regions; only 1 gene (Gsta4 in the CeA) differed in as many as 4 line-pairs. Overall, the findings suggest that a) some biological categories or networks (e.g., cell-to-cell signaling, cellular stress response, cellular organization, etc.) may be in common for subsets of line-pairs within either the AcbSh or CeA, and b) regulation of different genes and/or combinations of multiple biological systems may be contributing to the disparate alcohol drinking behaviors of these line-pairs.
Collapse
|
28
|
Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics 2013; 14:725. [PMID: 24148570 PMCID: PMC3924350 DOI: 10.1186/1471-2164-14-725] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023] Open
Abstract
Background Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. Results miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. Conclusions This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.
Collapse
|
29
|
Darlington TM, Ehringer MA, Larson C, Phang TL, Radcliffe RA. Transcriptome analysis of Inbred Long Sleep and Inbred Short Sleep mice. GENES BRAIN AND BEHAVIOR 2013; 12:263-74. [PMID: 23433184 DOI: 10.1111/gbb.12018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/26/2012] [Accepted: 12/27/2012] [Indexed: 11/28/2022]
Abstract
Many studies have utilized the Inbred Long Sleep and Inbred Short Sleep mouse strains to model the genetic influence on initial sensitivity to ethanol. The mechanisms underlying this divergent phenotype are still not completely understood. In this study, we attempt to identify genes that are differentially expressed between these two strains and to identify baseline networks of co-expressed genes, which may provide insight regarding their phenotypic differences. We examined the whole brain and striatal transcriptomes of both strains, using next generation RNA sequencing techniques. Many genes were differentially expressed between strains, including several in chromosomal regions previously shown to influence initial sensitivity to ethanol. These results are in concordance with a similar sample of striatal transcriptomes measured using microarrays. In addition to the higher dynamic range, RNA-Seq is not hindered by high background noise or polymorphisms in probesets as with microarray technology, and we are able to analyze exome sequence of abundant genes. Furthermore, utilizing Weighted Gene Co-expression Network Analysis, we identified several modules of co-expressed genes corresponding to strain differences. Several candidate genes were identified, including protein phosphatase 1 regulatory unit 1b (Ppp1r1b), prodynorphin (Pdyn), proenkephalin (Penk), ras association (RalGDS/AF-6) domain family member 2 (Rassf2), myosin 1d (Myo1d) and transthyretin (Ttr). In addition, we propose a role for potassium channel activity as well as map kinase signaling in the observed phenotypic differences between the two strains.
Collapse
Affiliation(s)
- T M Darlington
- Institute for Behavioral Genetics, University of Colorado, Boulder, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
30
|
Radcliffe RA, Larson C, Bennett B. Genetic studies of acute tolerance, rapid tolerance, and drinking in the dark in the LXS recombinant inbred strains. Alcohol Clin Exp Res 2013; 37:2019-28. [PMID: 23889059 DOI: 10.1111/acer.12188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/30/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND We hypothesized that rapid tolerance (1-day tolerance) for the duration of the loss of righting reflex ("sleep time" [ST]) was mediated by an increase in acute functional tolerance (AFT). We also hypothesized that increased AFT would correspond to increased drinking. These questions were addressed using the LXS recombinant inbred mouse strain panel. METHODS Mice were given a pretreatment dose of either saline or 5 g/kg alcohol on day 1. On day 2, mice were tested for ST (4.1 g/kg) using a method with which it is possible to accurately assess AFT. Genetic correlation analysis was conducted among the ST-related variables and also with "drinking in the dark" (DID) which was previously measured by Saba and colleagues (2011). RESULTS Saline-pretreated mice showed a continuous distribution of ST ranging from ~40 minutes to over 3 hours. Of the 43 strains tested, 9 showed significantly decreased ST after alcohol pretreatment, while in 3 strains, ST was significantly increased. AFT scores ranged from 0 to over 200 mg% in the saline group, and in the alcohol group, 8 strains showed a significant increase in AFT and 2 strains showed significant decrease in AFT. In the saline group, AFT was significantly correlated with ST (r = -0.47), but not in the alcohol group (r = -0.22). DID was significantly correlated with only AFT in the alcohol pretreated group (r = 0.64). CONCLUSIONS The results suggest that AFT is an important component of the overall ST response, but that the alcohol pretreatment-induced change in AFT does not contribute to rapid ST tolerance. The significant correlation between DID and AFT in the alcohol group suggests that AFT may be a more relevant predictor of drinking behavior than the static measurement of ST. Moreover, preexposure to alcohol seems to change AFT in a way that makes it an even stronger predictor of drinking behavior.
Collapse
Affiliation(s)
- Richard A Radcliffe
- Department of Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus, Aurora, Colorado; Institute for Behavioral Genetics , University of Colorado, Boulder, Colorado
| | | | | |
Collapse
|
31
|
Iancu OD, Oberbeck D, Darakjian P, Metten P, McWeeney S, Crabbe JC, Hitzemann R. Selection for drinking in the dark alters brain gene coexpression networks. Alcohol Clin Exp Res 2013; 37:1295-303. [PMID: 23550792 DOI: 10.1111/acer.12100] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/18/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2. The mechanisms through which genetic differences influence DID are currently unclear. Therefore, the current study examines the transcriptome, the first stage at which genetic variability affects neurobiology. Rather than focusing solely on differential expression (DE), we also examine changes in the ways that gene transcripts collectively interact with each other, as revealed by changes in coexpression patterns. METHODS Naïve mice (N = 48/group) were genotyped using the Mouse Universal Genotyping Array, which provided 3,683 informative markers. Quantitative trait locus (QTL) analysis used a marker-by-marker strategy with the threshold for a significant logarithm of odds (LOD) set at 10.6. Gene expression in the ventral striatum was measured using the Illumina Mouse 8.2 array. Differential gene expression and the weighted gene coexpression network analysis (WGCNA) were implemented largely as described elsewhere. RESULTS Significant QTLs for elevated BECs after DID were detected on chromosomes 4, 14, and 16; the latter 2 were associated with gene-poor regions. None of the QTLs overlapped with known QTLs for EtOH preference drinking. Ninety-four transcripts were detected as being differentially expressed in both selected lines versus HS controls; there was no overlap with known preference genes. The WGCNA revealed 2 modules as showing significant effects of both selections on intramodular connectivity. A number of genes known to be associated with EtOH phenotypes (e.g., Gabrg1, Glra2, Grik1, Npy2r, and Nts) showed significant changes in connectivity. CONCLUSIONS We found marked and consistent effects of selection on coexpression patterns; DE changes were more modest and less concordant. The QTLs and differentially expressed genes detected here are distinct from the preference phenotype. This is consistent with behavioral data and suggests that the DID and preference phenotypes are markedly different genetically.
Collapse
Affiliation(s)
- Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hitzemann R, Bottomly D, Darakjian P, Walter N, Iancu O, Searles R, Wilmot B, McWeeney S. Genes, behavior and next-generation RNA sequencing. GENES, BRAIN, AND BEHAVIOR 2013; 12:1-12. [PMID: 23194347 PMCID: PMC6050050 DOI: 10.1111/gbb.12007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/31/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
Advances in next-generation sequencing suggest that RNA-Seq is poised to supplant microarray-based approaches for transcriptome analysis. This article briefly reviews the use of microarrays in the brain-behavior context and then illustrates why RNA-Seq is a superior strategy. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, detects allele specific expression and can be used to extract genotype information, e.g. nonsynonymous coding single nucleotide polymorphisms. Examples of where RNA-Seq has been used to assess brain gene expression are provided. Despite the advantages of RNA-Seq, some disadvantages remain. These include the high cost of RNA-Seq and the computational complexities associated with data analysis. RNA-Seq embraces the complexity of the transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior relationship is substantial.
Collapse
Affiliation(s)
- R Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Crabbe JC, Kendler KS, Hitzemann RJ. Modeling the diagnostic criteria for alcohol dependence with genetic animal models. Curr Top Behav Neurosci 2013; 13:187-221. [PMID: 21910077 PMCID: PMC3371181 DOI: 10.1007/7854_2011_162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A diagnosis of alcohol dependence (AD) using the DSM-IV-R is categorical, based on an individual's manifestation of three or more symptoms from a list of seven. AD risk can be traced to both genetic and environmental sources. Most genetic studies of AD risk implicitly assume that an AD diagnosis represents a single underlying genetic factor. We recently found that the criteria for an AD diagnosis represent three somewhat distinct genetic paths to individual risk. Specifically, heavy use and tolerance versus withdrawal and continued use despite problems reflected separate genetic factors. However, some data suggest that genetic risk for AD is adequately described with a single underlying genetic risk factor. Rodent animal models for alcohol-related phenotypes typically target discrete aspects of the complex human AD diagnosis. Here, we review the literature derived from genetic animal models in an attempt to determine whether they support a single-factor or multiple-factor genetic structure. We conclude that there is modest support in the animal literature that alcohol tolerance and withdrawal reflect distinct genetic risk factors, in agreement with our human data. We suggest areas where more research could clarify this attempt to align the rodent and human data.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
34
|
Wahlsten D. The hunt for gene effects pertinent to behavioral traits and psychiatric disorders: from mouse to human. Dev Psychobiol 2012; 54:475-92. [PMID: 22674524 DOI: 10.1002/dev.21043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of behavioral genetics was reviewed in the classic 1960 text by Fuller and Thompson. Since then, there has been remarkable progress in the genetic analysis of animal behavior. Many molecular genetic methods in common use today were not even anticipated in 1960. Animal models for many human psychiatric disorders have been discovered or created. In human behavior genetics, however, powerful new methods have failed to reveal even one bona fide, replicable gene effect pertinent to the normal range of variation in intelligence and personality. There is no explanatory or predictive value in that genetic information. For several psychiatric disorders, including autism and schizophrenia, many large genetic effects arise from de novo mutations. Genetically, the disorders are heterogeneous; different cases with the same diagnosis have different causes. The promises of the molecular genetic revolution have not been fulfilled in behavioral domains of most interest to human psychology.
Collapse
Affiliation(s)
- Douglas Wahlsten
- Department of Psychology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
35
|
Bell RL, Franklin KM, Hauser SR, Zhou FC. Introduction to the special issue "Pharmacotherapies for the treatment of alcohol abuse and dependence" and a summary of patents targeting other neurotransmitter systems. RECENT PATENTS ON CNS DRUG DISCOVERY 2012; 7:93-112. [PMID: 22574678 PMCID: PMC3868366 DOI: 10.2174/157488912800673155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/13/2012] [Indexed: 12/19/2022]
Abstract
This paper introduces the Special Section: Pharmacotherapies for the Treatment of Alcohol Abuse and Dependence and provides a summary of patents targeting neurotransmitter systems not covered in the other four chapters. The World Health Organization notes that alcoholic-type drinking results in 2.5 million deaths per year, and these deaths occur to a disproportionately greater extent among adolescents and young adults. Developing a pharmacological treatment targeting alcohol abuse and dependence is complicated by (a) the heterogeneous nature of the disease(s), (b) alcohol affecting multiple neurotransmitter and neuromodulator systems, and (c) alcohol affecting multiple organ systems which in turn influence the function of the central nervous system. Presently, the USA Federal Drug Administration has approved three pharmacotherapies for alcoholism: disulfiram, naltrexone, and acamprosate. This chapter provides a summary of the following systems, which are not covered in the accompanying chapters; alcohol and acetaldehyde metabolism, opioid, glycinergic, GABA-A, neurosteroid, dopaminergic, serotonergic, and endocannabinoid, as well as patents targeting these systems for the treatment of alcoholism. Finally, an overview is presented on the use of pharmacogenetics and pharmacogenomics in tailoring treatments for certain subpopulations of alcoholics, which is expected to continue in the future.
Collapse
Affiliation(s)
- Richard L. Bell
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Kelle M. Franklin
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Sheketha R. Hauser
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, Indiana, 46202, USA
| | - Feng C. Zhou
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, 635 Barnhill Drive MS-508, Indian-apolis, Indiana, 46202, USA
| |
Collapse
|
36
|
de Jong S, Boks MPM, Fuller TF, Strengman E, Janson E, de Kovel CGF, Ori APS, Vi N, Mulder F, Blom JD, Glenthøj B, Schubart CD, Cahn W, Kahn RS, Horvath S, Ophoff RA. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS One 2012; 7:e39498. [PMID: 22761806 PMCID: PMC3384650 DOI: 10.1371/journal.pone.0039498] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 05/21/2012] [Indexed: 01/20/2023] Open
Abstract
Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.
Collapse
Affiliation(s)
- Simone de Jong
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marco P. M. Boks
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tova F. Fuller
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eric Strengman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Esther Janson
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Anil P. S. Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nancy Vi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Flip Mulder
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Dirk Blom
- Parnassia Bravo Group, The Hague, The Netherlands
- Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| | - Birte Glenthøj
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Psychiatric University Center Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Chris D. Schubart
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René S. Kahn
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roel A. Ophoff
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Acewicz A, Mierzejewski P, Jastrzebska A, Kolaczkowski M, Wesolowska A, Korkosz I, Samochowiec J, Bienkowski P. Acoustic Startle Responses and Prepulse Inhibition of Acoustic Startle Responses in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) Rats. Alcohol Alcohol 2012; 47:386-9. [DOI: 10.1093/alcalc/ags039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Nunez YO, Mayfield RD. Understanding Alcoholism Through microRNA Signatures in Brains of Human Alcoholics. Front Genet 2012; 3:43. [PMID: 22514554 PMCID: PMC3322338 DOI: 10.3389/fgene.2012.00043] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/09/2012] [Indexed: 01/05/2023] Open
Abstract
Advances in the fields of genomics and genetics in the last decade have identified a large number of genes that can potentially influence alcohol-drinking behavior in humans as well as animal models. Consequently, the task of identifying efficient molecular targets that could be used to develop effective therapeutics against the disease has become increasingly daunting. One of the reasons for this is the fact that each of the many alcohol-responsive genes only contributes a small effect to the overall mechanism and disease phenotype, as is characteristic of complex traits. Current research trends are hence shifting toward the analysis of gene networks rather than emphasizing individual genes. The discovery of microRNAs and their mechanisms of action on regulation of transcript level and protein translation have made evident the utility of these small non-coding RNA molecules that act as central coordinators of multiple cross-communicating cellular pathways. Cells exploit the fact that a single microRNA can target hundreds of mRNA transcripts and that a single mRNA transcript can be simultaneously targeted by distinct microRNAs, to ensure fine-tuned and/or redundant control over a large number of cellular functions. By the same token, we can use these properties of microRNAs to develop novel, targeted strategies to combat complex disorders. In this review, we will focus on recent discoveries of microRNA signatures in brain of human alcoholics supporting the hypothesis that changes in gene expression and regulation by microRNAs are responsible for long-term neuroadaptations occurring during development of alcoholism. We also discuss insights into the potential modulation of epigenetic regulators by a subset of microRNAs. Taken together, microRNA activity may be controlling many of the cellular mechanisms already known to be involved in the development of alcoholism, and suggests potential targets for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yury O Nunez
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin Austin, TX, USA
| | | |
Collapse
|
39
|
Enoch MA, Zhou Z, Kimura M, Mash DC, Yuan Q, Goldman D. GABAergic gene expression in postmortem hippocampus from alcoholics and cocaine addicts; corresponding findings in alcohol-naïve P and NP rats. PLoS One 2012; 7:e29369. [PMID: 22253714 PMCID: PMC3258238 DOI: 10.1371/journal.pone.0029369] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/27/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND By performing identical studies in humans and rats, we attempted to distinguish vulnerability factors for addiction from neurobiological effects of chronic drug exposure. We focused on the GABAergic system within the hippocampus, a brain region that is a constituent of the memory/conditioning neuronal circuitry of addiction that is considered to be important in drug reinforcement behaviors in animals and craving and relapse in humans. METHODOLOGY Using RNA-Seq we quantified mRNA transcripts in postmortem total hippocampus from alcoholics, cocaine addicts and controls and also from alcohol-naïve, alcohol preferring (P) and non-preferring (NP) rats selectively bred for extremes of alcohol-seeking behavior that also show a general addictive tendency. A pathway-targeted analysis of 25 GABAergic genes encoding proteins implicated in GABA synthesis, metabolism, synaptic transmission and re-uptake was undertaken. PRINCIPAL FINDINGS Directionally consistent and biologically plausible overlapping and specific changes were detected: 14/25 of the human genes and 12/25 of the rat genes showed nominally significant differences in gene expression (global p values: 9×10⁻¹⁴, 7×10⁻¹¹ respectively). Principal FDR-corrected findings were that GABBR1 was down-regulated in alcoholics, cocaine addicts and P rats with congruent findings in NSF, implicated in GABAB signaling efficacy, potentially resulting in increased synaptic GABA. GABRG2, encoding the gamma2 subunit required for postsynaptic clustering of GABAA receptors together with GPHN, encoding the associated scaffolding protein gephryin, were both down-regulated in alcoholics and cocaine addicts but were both up-regulated in P rats. There were also expression changes specific to cocaine addicts (GAD1, GAD2), alcoholics (GABRA2) and P rats (ABAT, GABRG3). CONCLUSIONS/SIGNIFICANCE Our study confirms the involvement of the GABAergic system in alcoholism but also reveals a hippocampal GABA input in cocaine addiction. Congruent findings in human addicts and P rats provide clues to predisposing factors for alcohol and drug addiction. Finally, the results of this study have therapeutic implications.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
40
|
Li MD, van der Vaart AD. MicroRNAs in addiction: adaptation's middlemen? Mol Psychiatry 2011; 16:1159-68. [PMID: 21606928 PMCID: PMC4251867 DOI: 10.1038/mp.2011.58] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/15/2011] [Accepted: 04/20/2011] [Indexed: 02/07/2023]
Abstract
A central question in addiction is how drug-induced changes in synaptic signaling are converted into long-term neuroadaptations. Emerging evidence reveals that microRNAs (miRNAs) have a distinct role in this process through rapid response to cellular signals and dynamic regulation of local mRNA transcripts. Because each miRNA can target hundreds of mRNAs, relative changes in the expression of miRNAs can greatly impact cellular responsiveness, synaptic plasticity and transcriptional events. These diverse consequences of miRNA action occur through coordination with genes implicated in addictions, the most compelling of these being the neurotrophin BDNF, the transcription factor cAMP-responsive element-binding protein (CREB) and the DNA-binding methyl CpG binding protein 2 (MeCP2). In this study, we review the recent progress in the understanding of miRNAs in general mechanisms of plasticity and neuroadaptation and then focus on specific examples of miRNA regulation in the context of addiction. We conclude that miRNA-mediated gene regulation is a conserved means of converting environmental signals into neuronal response, which holds significant implications for addiction and other psychiatric illnesses.
Collapse
Affiliation(s)
- M D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA.
| | | |
Collapse
|