1
|
Ciubotaru AD, Leferman CE, Ignat BE, Knieling A, Esanu IM, Salaru DL, Foia LG, Minea B, Hritcu LD, Dimitriu CD, Stoica L, Ciureanu IA, Ciobica AS, Neamtu A, Stoica BA, Ghiciuc CM. Behavioral and Biochemical Insights into the Therapeutic Potential of Mitocurcumin in a Zebrafish-Pentylenetetrazole (PTZ) Epilepsy Model. Pharmaceuticals (Basel) 2025; 18:382. [PMID: 40143158 PMCID: PMC11944435 DOI: 10.3390/ph18030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Epilepsy is a complex neurological disorder with a strong link to oxidative stress, which contributes to seizure susceptibility and neuronal damage. This study aims to investigate the effects of curcumin (Cur), sodium valproate (VPA), and mitocurcumin (MitoCur), a mitochondria-targeted curcumin, on behavioral and oxidative stress parameters in a zebrafish model of pentylenetetrazole (PTZ)-induced seizures. Methods: Adult zebrafish were exposed to two concentrations (0.25 and 0.5 µM for Cur and MitoCur; 0.25 and 0.5 mM for VPA). Behavioral assessments, including locomotion, spatial exploration, and directional movement, were conducted using EthoVision XT tracking software. Oxidative stress markers, including superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GPx), and total antioxidant status (TAS), were analyzed in brain homogenates. Results: Behavioral analyses indicated dose-dependent effects, with higher doses generally reducing activity. MitoCur at 0.25 µM enhanced antioxidant defenses and reduced oxidative damage, while higher doses exhibited a pro-oxidant shift. VPA at 0.25 mM improved TAS without significantly altering MDA levels. Conclusions: These findings emphasize the importance of dose optimization in antioxidant-based epilepsy treatments and highlight the potential of MitoCur as a targeted therapeutic option.
Collapse
Affiliation(s)
- Alin Dumitru Ciubotaru
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Discipline of Neurology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Carmen-Ecaterina Leferman
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
| | - Bogdan-Emilian Ignat
- Discipline of Neurology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Neurology Department, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa Street, 700661 Iasi, Romania
| | - Anton Knieling
- Discipline of Forensic Medicine, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Institute of Forensic Medicine, 4 Buna Vestire Street, 700455 Iasi, Romania
| | - Irina Mihaela Esanu
- Department of Medical Specialties I, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700111 Iasi, Romania;
| | - Delia Lidia Salaru
- Institute of Cardiovascular Diseases, 50 Carol I Avenue, 700503 Iasi, Romania;
| | - Liliana Georgeta Foia
- Discipline of Biochemistry, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Bogdan Minea
- Discipline of Biochemistry, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (L.G.F.); (B.M.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, Ion Ionescu de la Brad University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Cristina Daniela Dimitriu
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Laura Stoica
- Discipline of Cell and Molecular Biology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Ioan-Adrian Ciureanu
- Department of Medical Informatics and Biostatistics, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20A Carol I Avenue, 700505 Iasi, Romania;
- Center of Biomedical Research, Romanian Academy, Iasi Branch, 2 Teodor Codrescu Street, 700481 Iasi, Romania
- “Ioan Haulica” Institute, Apollonia University, 11 Păcurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Andrei Neamtu
- Department of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Bogdan Alexandru Stoica
- Discipline of Biochemistry, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Cristina Mihaela Ghiciuc
- Discipline of Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.D.C.); (C.-E.L.); (C.M.G.)
- St. Mary’s Emergency Children Hospital, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
2
|
van Staden C, Finger-Baier K, Weinshenker D, Botha TL, Brand L, Wolmarans DW. The number of conspecific alarm substance donors notably influences the behavioural responses of zebrafish subjected to a traumatic stress procedure. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:55. [PMID: 40009201 DOI: 10.1007/s10695-025-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Zebrafish (Danio rerio) represents a complementary pre-clinical model in stress and anxiety research. Conspecific alarm substance (CAS), an alarm pheromone secreted by injured fish, acts as a warning signal and modulates fear responses. Given their schooling nature and that injury precedes CAS release, varying fresh CAS concentrations extracted from different numbers of CAS-donating zebrafish may uniquely influence trauma-related behaviours. Thus, we investigated the behaviour of juvenile and adult zebrafish exposed to traumatic stress protocols, in the presence of CAS extracted from varying numbers of donating zebrafish. Juveniles were assessed for anxiety and boldness in the light-dark and open field tests (LDT and OFT), while adults were assessed in the novel tank test (NTT) and novel OFT (nOFT). We found that (1) trauma minimally impacted juvenile behaviour regardless of donor-derived CAS concentrations, (2) trauma-exposed adults displayed reduced exploration and heightened risk-taking behaviours in the NTT and nOFT compared to control-exposed fish, (3) NTT and nOFT freezing behaviours were distinctly emulated in adult fish and (4) post-trauma behaviour in adults was influenced by the number of donors. Therefore, CAS concentration as determined by donor number has age-related effects on anxiety- and risk-taking behaviours in trauma-exposed zebrafish, a valuable finding for studies utilising fresh CAS as a stress trigger. While we did not directly investigate CAS concentration through serial dilution, our data are of significant translational and ethological relevance, highlighting the importance of in-house method standardization in stress-related studies utilizing fresh CAS as an alarm cue.
Collapse
Affiliation(s)
- Cailin van Staden
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - Karin Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St., Whitehead 301, Atlanta, GA, 30322, USA
| | - Tarryn L Botha
- Department of Zoology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Linda Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, 11 Hoffman Street, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
4
|
Ireland D, Rabeler C, Rao S, Richardson RJ, Collins EMS. Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians. PLoS One 2025; 20:e0315394. [PMID: 39883642 PMCID: PMC11781733 DOI: 10.1371/journal.pone.0315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sagar Rao
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Amin MR, Khara L, Szaszkiewicz J, Kim AM, Hamilton TJ, Ali DW. Brief exposure to (-) THC affects zebrafish embryonic locomotion with effects that persist into the next generation. Sci Rep 2025; 15:2203. [PMID: 39820507 PMCID: PMC11739600 DOI: 10.1038/s41598-024-82353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common. Prenatal exposure to THC can alter neural and behavioral development, but it is unknown how exposure to (-) trans-THC ((-)THC) during very early stages of development impacts fetal growth and movement, and whether effects persist to adulthood, or into the next generation. Here we exposed zebrafish (Danio rerio) to a single exposure of (-)THC (0.001 mg/L (3.2 nM) to 20 mg/L (63.6 µM), for 5 h) during gastrulation (5.25 hpf to 10.75 hpf) when key neurons involved in locomotion such as the primary motor neurons and Mauthner cell first appear. We then examined the impact on embryo morphology and locomotion, adult behavior, and locomotion in the next (F1) generation. Embryos treated with (-)THC experienced changes in morphology, were shorter in length and experienced altered hatching and survival. Spontaneous coiling of 1 dpf embryos was reduced, swimming after touch-evoked responses was reduced and basal swimming in 5 dpf larvae was also reduced. Adult zebrafish tested in the open field test and novel object approach test demonstrated no differences in locomotion, anxiety-like behavior, nor boldness, compared to controls. The (-)THC F1 generation embryos at 1 dpf showed reduced coiling activity, while swimming after touch-evoked responses was reduced in 2 dpf animals but basal swimming at 5 dpf remained similar to controls. Taken together, exposure to (-)THC only once for 5 h during gastrulation has a significant impact on locomotion in embryos and larvae, a minimal impact on adult behavior, and effects that persist into the next generation.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Lakhan Khara
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | | | - Andrew M Kim
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, T5J 4S2, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
6
|
Robles V, Balaguer F, Maicas M, Martínez-Vázquez JM, Martorell P, Tortajada M, Ramón D, Valcarce DG. The Effect of the Combination of Two Postbiotics on Anxiety-like Behavior in Animal Models. Cells 2024; 13:2006. [PMID: 39682754 PMCID: PMC11640140 DOI: 10.3390/cells13232006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 ratio) of heat-treated Bifidobacterium longum subsp. longum ES1 (CECT7347) and Lacticaseibacillus rhamnosus BPL15 (CECT8361) as a dietary supplement. To examine the potential benefit of using this formulation to alleviate anxiety-like behavior, we employed two model species, Caenorhabditis elegans and adult Danio rerio. In C. elegans, the postbiotic supplementation reduced the anxiety-related behavior analyzed by means of the octanol avoidance test. In zebrafish, the novel tank test indicated a different swimming pattern 2 and 4 months after the animals were fed with the postbiotic combination. While fish did not exhibit any variance in their locomotion parameters such as pace and speed, they showed a statistically significant preference to spend more time in the upper zone of the water tank, a behavior that is correlated with a lower anxiety-like behavior in these species. Our aim with this study is to present evidence that can be used to develop whole-cell postbiotic-based novel and innovative dietary supplements for anxiety-related conditions.
Collapse
Affiliation(s)
- Vanesa Robles
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
| | - Ferran Balaguer
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Miren Maicas
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Juan Manuel Martínez-Vázquez
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| | - Patricia Martorell
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Marta Tortajada
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
| | - Daniel Ramón
- Archer Daniels Midland, Nutrition, Health & Wellness, Biopolis S.L. Parc Científic Universitat de València, C/Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain; (F.B.); (M.M.); (M.T.); (D.R.)
- Animal Health and Production, Veterinary Public Health and Food Science and Technology Department Faculty of Veterinary Medicine, University Cardenal Herrera CEU, C/Tirant lo Blanc 7, 46115 Alfara del Patriarca, Spain
| | - David G. Valcarce
- Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain;
- Instituto Español de Oceanografía, Centro Oceanográfico de Santander (COST-IEO), CSIC, Calle Severiano Ballesteros 16, 39004 Santander, Spain;
| |
Collapse
|
7
|
Muralidharan A, Swaminathan A, Poulose A. Deep learning dives: Predicting anxiety in zebrafish through novel tank assay analysis. Physiol Behav 2024; 287:114696. [PMID: 39293590 DOI: 10.1016/j.physbeh.2024.114696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Behavior is fundamental to neuroscience research, providing insights into the mechanisms underlying thoughts, actions and responses. Various model organisms, including mice, flies, and fish, are employed to understand these mechanisms. Zebrafish, in particular, serve as a valuable model for studying anxiety-like behavior, typically measured through the novel tank diving (NTD) assay. Traditional methods for analyzing NTD assays are either manually intensive or costly when using specialized software. To address these limitations, it is useful to develop methods for the automated analysis of zebrafish NTD assays using deep-learning models. In this study, we classified zebrafish based on their anxiety levels using DeepLabCut. Subsequently, based on a training dataset of image frames, we compared deep-learning models to identify the model best suited to classify zebrafish as anxious or non anxious and found that specific architectures, such as InceptionV3, are able to effectively perform this classification task. Our findings suggest that these deep learning models hold promise for automated behavioral analysis in zebrafish, offering an efficient and cost-effective alternative to traditional methods.
Collapse
Affiliation(s)
- Anagha Muralidharan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Amrutha Swaminathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| | - Alwin Poulose
- School of Data Science, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, Kerala, India.
| |
Collapse
|
8
|
Galstyan DS, Lebedev AS, Ilyin NP, Papulova MS, Golushko NI, Tishkina VV, Saklakova DK, Martynov D, Kolesnikova TO, Rosemberg DB, De Abreu MS, Demin KA, Kalueff AV. Acute Behavioral and Neurochemical Effects of Sulpiride in Adult Zebrafish. Neurochem Res 2024; 50:11. [PMID: 39549192 DOI: 10.1007/s11064-024-04268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/18/2024]
Abstract
Affective and psychotic disorders are highly prevalent and severely debilitating mental illnesses that often remain untreated or treatment-resistant. Sulpiride is a common antipsychotic (neuroleptic) drug whose well-established additional (e.g., antidepressant) therapeutic effects call for further studies of a wider spectrum of its CNS effects. Here, we examined effects of acute 20-min exposure to sulpiride (50-200 mg/L) on anxiety- and depression-like behaviors, as well as on brain monoamines, in adult zebrafish (Danio rerio). Overall, sulpiride exerted overt anxiolytic-like effects in the novel tank test and showed tranquilizing-like effects in the zebrafish tail immobilization test, accompanied by lowered whole-brain dopamine and its elevated turnover, without affecting serotonin or norepinephrine levels and their turnover. Taken together, these findings support complex behavioral pharmacology of sulpiride in vivo and reconfirm high sensitivity of zebrafish-based screens to this and, likely, other related clinically active neuroleptics.
Collapse
Affiliation(s)
- David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey S Lebedev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria S Papulova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Valeria V Tishkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daryna K Saklakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daniil Martynov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Dennis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Department of Biolosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
9
|
Martins ML, Pinheiro EF, Saito GA, Lima CACD, Leão LKR, Batista EDJO, Passos ADCF, Gouveia A, Oliveira KRHM, Herculano AM. Distinct acute stressors produce different intensity of anxiety-like behavior and differential glutamate release in zebrafish brain. Front Behav Neurosci 2024; 18:1464992. [PMID: 39508031 PMCID: PMC11537853 DOI: 10.3389/fnbeh.2024.1464992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Anxiety disorder is one of the most well-characterized behavioral disorders in individuals subjected to acute or chronic stress. However, few studies have demonstrated how different types of stressors can modulate the neurochemical alterations involved in the generation of anxiety. In this study, we hypothesize that subjects exposed to different aversive stimuli (mechanical, chemical, and spatial restriction) present varied intensities of anxiety-like responses associated with distinct patterns of gamma-aminobutyric acid (GABA) and glutamate release in the brain. Adult zebrafish, Danio rerio (n = 60), were randomly divided into four experimental groups; control, acute restraint stress (ARS), conspecific alarm substance (CAS), and chasing with net (CN). After the stress protocols, the animals were individually transferred to a novel tank diving test for behavioral analysis. Subsequently, their brains were collected and subjected to GABA and glutamate release assay for quantification by HPLC. Our behavioral results showed that all aversive stimuli were capable of inducing anxiety-like behavior. However, the impact of anxiogenic behavior was more prominent in the CN and CAS groups when compared to ARS. This phenomenon was evident in all analyzed behavioral parameters (time on top, freezing, mean speed, maximum speed, and erratic swimming). Our data also showed that all aversive stimuli significantly decreased GABA release compared to the control group. Only animals exposed to CN and CAS presented an increase in extracellular glutamate levels. Different acute stressors induced different levels of anxiety-like behavior in zebrafish as well as specific alterations in GABAergic and glutamatergic release in the brain. These results demonstrate the complexity of anxiety disorders, highlighting that both behavioral and neurochemical responses are highly context-dependent.
Collapse
Affiliation(s)
- Milena Letícia Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Emerson Feio Pinheiro
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Geovanna Ayami Saito
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | | | - Luana Ketlen Reis Leão
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
| | - Evander de Jesus Oliveira Batista
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, UFPA, Belém, Brazil
- Laboratory of Protozoology, Tropical Medicine Nucleus, UFPA, Belém, Brazil
| | | | - Amauri Gouveia
- Laboratory of Neuroscience and Behavior, UFPA, Belém, Brazil
| | | | | |
Collapse
|
10
|
Johnson AL, Hurd PL, Hamilton TJ. Sex, drugs, and zebrafish: Acute exposure to anxiety-modulating compounds in a modified novel tank dive test. Pharmacol Biochem Behav 2024; 243:173841. [PMID: 39074564 DOI: 10.1016/j.pbb.2024.173841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
This study investigated the effects of anxiogenic and anxiolytic drugs on zebrafish (Danio rerio) behaviour using a modified novel tank dive test with higher walls and a narrower depth. Zebrafish were administered chondroitin sulfate, beta-carboline, delta-9-tetrahydrocannabinol (THC), ethanol, and beta-caryophyllene, and their behaviours were evaluated for geotaxis, swimming velocity, and immobility. Both anxiogenic and anxiolytic compounds generally increased bottom-dwelling behaviour, suggesting that the tank's modified dimensions significantly influence zebrafish responses. EC50 values for ethanol showed a lower threshold for velocity reduction compared to zone preference. Chondroitin sulfate uniquely caused a sex-specific increase in male swimming velocity, whereas no other sex-differences were observed with any compound. Interestingly, the presence of drug-treated fish did not alter the behaviour of observer fish, suggesting limited social buffering effects. The findings underscore the complexity of zebrafish behavioural phenotypes and highlight the need for considering tank dimensions and multiple behavioural parameters to accurately assess the effects of anxiety-modulating drugs. This study demonstrates the utility of the modified novel tank dive test in providing nuanced insights into the behavioural effects of different pharmacological agents in zebrafish.
Collapse
Affiliation(s)
- Andréa L Johnson
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1; Department of Psychology, University of Alberta, P217 Biological Sciences Building, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2E9
| | - Trevor J Hamilton
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research, Edmonton, Alberta, Canada, T6G 2E1; Department of Psychology, MacEwan University, 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta, Canada, T5J 4S2.
| |
Collapse
|
11
|
Jabri NA, Abed RMM, Habsi AA, Ansari A, Barry MJ. The impacts of microplastics on zebrafish behavior depend on initial personality state. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104561. [PMID: 39233253 DOI: 10.1016/j.etap.2024.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microplastic pollution is associated with inflammation, gut dysbiosis and behavioral changes in fish. Fish have distinct personality traits but the role of personality in behavioral toxicology is rarely considered. We classified zebrafish on four behavioral axes: boldness, anxiety, sociability and exploration tendency then exposed them to low- or high- concentrations of two types of polyethylene microplastics (low- and high-density) for 28 days. Behaviors, antioxidant enzymes (catalase and superoxide dismutase), and gut microbiome were then measured. There were direct effects of microplastics on boldness, anxiety and sociability. However, fish retained their initial behavioral tendencies. Exposure to all microplastic treatments reduced average swimming speed and decreased the time spent motionless. Microplastic exposure did not affect antioxidant enzymes but did cause significant changes in the composition of the gut microbiome. This study demonstrates that environmentally realistic concentrations of microplastics can alter fish behavior, but much of the variance in response can be explained by personality.
Collapse
Affiliation(s)
- Nawal Al Jabri
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Raeid M M Abed
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aliya Ansari
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
12
|
Bouabdallah S, Ibrahim MH, Brinza I, Boiangiu RS, Honceriu I, Amin A, Ben-Attia M, Hritcu L. Anxiolytic and Antidepressant Effects of Tribulus terrestris Ethanolic Extract in Scopolamine-Induced Amnesia in Zebrafish: Supported by Molecular Docking Investigation Targeting Monoamine Oxidase A. Pharmaceuticals (Basel) 2024; 17:1208. [PMID: 39338370 PMCID: PMC11434784 DOI: 10.3390/ph17091208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Plants of the genus Tribulus have been used in folk medicine for wound healing, alleviating liver, stomach, and rheumatism pains, and as cognitive enhancers, sedatives, antiseptics, tonics, and stimulants. The present work aimed to evaluate whether Tribulus terrestris (Tt) administered for 15 days attenuated cognitive deficits and exhibited anxiolytic and antidepressant profiles in scopolamine-induced amnesia in zebrafish. Animals were randomly divided into six groups (eight animals per group): (1)-(3) Tt treatment groups (1, 3 and 6 mg/L), (4) control, (5) scopolamine (SCOP, 0.7 mg/kg), and (6) galantamine (Gal, 1 mg/L). Exposure to SCOP (100 µM) resulted in anxiety in zebrafish, as assessed by the novel tank diving test (NTT) and novel approach test (NAT). When zebrafish were given SCOP and simultaneously given Tt (1, 3, and 6 mg/L once daily for 10 days), the deficits were averted. Molecular interactions of chemical compounds from the Tt fractions with the monoamine oxidase A (MAO-A) were investigated via molecular docking experiments. Using behavioral experiments, we showed that administration of Tt induces significant anxiolytic-antidepressant-like effects in SCOP-treated zebrafish. Our result indicated that flavonoids of Tt, namely kaempferol, quercetin, luteolin, apigetrin, and epigallocatechin, could act as promising phytopharmaceuticals for improving anxiety-related disorders.
Collapse
Affiliation(s)
- Salwa Bouabdallah
- Environmental Biomonitoring Laboratory, Bizerte Faculty of Sciences, Carthage University, Zarzouna 7021, Tunisia
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azha University, Cairo 11884, Egypt
| | - Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Iasmina Honceriu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mossadok Ben-Attia
- Environmental Biomonitoring Laboratory, Bizerte Faculty of Sciences, Carthage University, Zarzouna 7021, Tunisia
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| |
Collapse
|
13
|
Li Y, Yan Z, Lu Z, Li K. Zebrafish gender-specific anxiety-like behavioral and physiological reactions elicited by caffeine. Behav Brain Res 2024; 472:115151. [PMID: 39019091 DOI: 10.1016/j.bbr.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Caffeine exerts a biphasic effect on zebrafish behavior. High doses of caffeine have been associated with increased stress and anxiety, whereas low doses have been found to enhance performance on tasks requiring focus and attention. However, the sex-specific nature of these biphasic effects on behavior and physiology remains unclear. This study assessed the behavioral responses and hormone levels in male and female zebrafish after acute exposure to caffeine ranging from 0.3 to 600 mg/L. The results showed no significant difference in caffeine intake between males and females after acute exposure at each concentration. Caffeine-induced behavioral and physiological responses indicated a threshold dosage existed between 30 and 300 mg/L. Female fish displayed increased anxiety-like behavioral phenotypes, i.e., latency to upper and freezing, whereas males exhibited more erratic movement following acute exposure to a high-dose treatment. In addition, females exhibited a significant increase in whole-body cortisol levels, while males experienced a testosterone elevation at 300 mg/L of caffeine acute exposure. There was a significant decrease in the duration of erratic movements in males treated with the androgen receptor antagonist flutamide compared to the control group. The transcriptome analysis uncovered 511 and 592 up-regulated and 761 and 922 down-regulated differential expression genes in males and females, respectively, compared to the control. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis revealed that caffeine has the potential to impact various pathways in zebrafish, including phototransduction and steroid hormone biosynthesis. Our findings demonstrate that testosterone and cortisol play a combined role in regulating stress responses in both behavior and physiology. Furthermore, our study highlights the significance of encompassing both male and female zebrafish as a model system.
Collapse
Affiliation(s)
- Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 264005, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
14
|
Kareklas K, Oliveira RF. Emotional contagion and prosocial behaviour in fish: An evolutionary and mechanistic approach. Neurosci Biobehav Rev 2024; 163:105780. [PMID: 38955311 DOI: 10.1016/j.neubiorev.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this review, we consider the definitions and experimental approaches to emotional contagion and prosocial behaviour in mammals and explore their evolutionary conceptualisation for studying their occurrence in the evolutionarily divergent vertebrate group of ray-finned fish. We present evidence for a diverse set of fish phenotypes that meet definitional criteria for prosocial behaviour and emotional contagion and discuss conserved mechanisms that may account for some preserved social capacities in fish. Finally, we provide some considerations on how to address the question of interdependency between emotional contagion and prosocial response, highlighting the importance of recognition processes, decision-making systems, and ecological context for providing evolutionary explanations.
Collapse
Affiliation(s)
- Kyriacos Kareklas
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal
| | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, Oeiras 2780-156, Portugal; ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal.
| |
Collapse
|
15
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
16
|
Rojoni SA, Ahmed MT, Rahman M, Hossain MMM, Ali MS, Haq M. Advances of microplastics ingestion on the morphological and behavioral conditions of model zebrafish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106977. [PMID: 38820743 DOI: 10.1016/j.aquatox.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.
Collapse
Affiliation(s)
- Suraiya Alam Rojoni
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tanvir Ahmed
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mostafizur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
17
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
18
|
Salahinejad A, Meuthen D, Attaran A, Niyogi S, Chivers DP, Ferrari MCO. Maternal exposure to bisphenol S reduces anxiety and impairs collective antipredator behavior of male zebrafish (Danio rerio) offspring through dysregulation of their serotonergic system. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106800. [PMID: 38183773 DOI: 10.1016/j.aquatox.2023.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Bisphenol S (BPS) is a common endocrine-disrupting chemical globally used in several consumer and industrial products. Although previous studies suggested that BPS induces multiple effects in exposed organisms, very little is known about its intergenerational effect on offspring behavior and/or the potential underlying mechanisms. To this end, adult female zebrafish Danio rerio were exposed to BPS (0, 10, 30 µg/L) and 1 µg/L of 17-β-estradiol (E2) as a positive control for 60 days. Afterwards, female fish were bred with untreated males, and their offspring were raised to 6 months old in control water. Maternal exposure to BPS decreased male offspring anxiety and antipredator behaviors while boldness remained unaffected. Specifically, maternal exposure to 10 and 30 µg/L BPS and 1 µg/L E2 were found to impact male offspring anxiety levels as they decreased the total time that individuals spent in the dark zone in the light/dark box test and increased the total track length in the center of the open field test. In addition, maternal exposure to all concentrations of BPS and E2 disrupted antipredator responses of male offspring by decreasing shoal cohesion in the presence of chemical alarm cues derived from conspecifics, which communicated high risk. To elucidate the possible molecular mechanism underlying these neuro-behavioral effects of BPS, we assessed the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter and monoamine oxidase (MAO). The impaired anxiety and antipredator responses were associated with reduced levels of 5-HT1A subtype and MAO mRNA expression within the brain of adult male offspring. Collectively, the results of this study demonstrate that maternal exposure to environmental concentrations of BPS can interfere with the serotonergic signaling pathway in the developing brain, subsequently leading to the onset of a suite of behavioral deficits in adult offspring.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
19
|
Lebel A, Zhang L, Gonçalves D. Chemical and Visual Cues as Modulators of the Stress Response to Social Isolation in the Marine Medaka, Oryzias melastigma. Zebrafish 2024; 21:15-27. [PMID: 38377346 DOI: 10.1089/zeb.2023.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The marine medaka is emerging as a potential behavioral model organism for ocean studies, namely on marine ecotoxicology. However, not much is known on the behavior of the species and behavioral assays lack standardization. This study assesses the marine medaka as a potential model for chemical communication. We investigated how short exposure to visual and chemical cues mediated the stress response to social isolation with the light/dark preference test (LDPT) and the open field test (OFT). After a 5-day isolation period, and 1 h before testing, isolated fish were randomly assigned to one of four groups: (1) placed in visual contact with conspecifics; (2) exposed to a flow of holding water from a group of conspecifics; (3) exposed to both visual and chemical cues from conspecifics; or (4) not exposed to any stimuli (controls). During the LDPT, the distance traveled and transitions between zones were more pronounced in animals exposed to the conspecific's chemical stimuli. The time spent in each area did not differ between the groups, but a clear preference for the bright area in all animals indicates robust phototaxis. During the OFT, animals exposed only to chemical cues initially traveled more than those exposed to visual or both stimuli, and displayed lower thigmotaxis. Taken together, results show that chemical cues play a significant role in exploratory behavior in this species and confirm the LDPT and OFT as suitable tests for investigating chemical communication in this species.
Collapse
Affiliation(s)
- Alexandre Lebel
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| |
Collapse
|
20
|
Horka P, Langova V, Hubeny J, Vales K, Chrtkova I, Horacek J. Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish. Front Behav Neurosci 2024; 17:1280608. [PMID: 38268794 PMCID: PMC10806096 DOI: 10.3389/fnbeh.2023.1280608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.
Collapse
Affiliation(s)
- Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Langova
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Hubeny
- National Institute of Mental Health, Klecany, Czechia
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czechia
| | - Ivana Chrtkova
- National Institute of Mental Health, Klecany, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
21
|
Johnson AL, Verbitsky R, Hudson J, Dean R, Hamilton TJ. Cannabinoid type-2 receptors modulate terpene induced anxiety-reduction in zebrafish. Biomed Pharmacother 2023; 168:115760. [PMID: 37865998 DOI: 10.1016/j.biopha.2023.115760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Terpenes are the most extensive and varied group of naturally occurring compounds mostly found in plants, including cannabis, and have an array of potential therapeutic benefits for pathological conditions. The endocannabinoid system can potently modulate anxiety in humans, rodents, and zebrafish. The 'entourage effect' suggests terpenes may target cannabinoid CB1 and CB2 receptors, among others, but this requires further investigation. In this study we first tested for anxiety-altering effects of the predominant 'Super-Class' terpenes, bisabolol (0.001%, 0.0015%, and 0.002%) and terpinolene (TPL; 0.01%, 0.05%, and 0.1%), in zebrafish with the open field test. Bisabolol did not have an effect on zebrafish behaviour or locomotion. However, TPL caused a significant increase in time spent in the inner zone and decrease in time spent in the outer zone of the arena indicating an anxiolytic (anxiety decreasing) effect. Next, we assessed whether CB1 and CB2 receptor antagonists, rimonabant and AM630 (6-Iodopravadoline) respectively, could eliminate or reduce the anxiolytic effects of TPL (0.1%) and β-caryophyllene (BCP; 4%), another super-class terpene previously shown to be anxiolytic in zebrafish. Rimonabant and AM630 were administered prior to terpene exposure and compared to controls and fish exposed to only the terpenes. AM630, but not rimonabant, eliminated the anxiolytic effects of both BCP and TPL. AM630 modulated locomotion on its own, which was potentiated by terpenes. These findings suggest the behavioural effects of TPL and BCP on zebrafish anxiety-like behaviour are mediated by a selective preference for CB2 receptor sites. Furthermore, the CB2 pathways mediating the anxiolytic response are likely different from those altering locomotion.
Collapse
Affiliation(s)
- Andréa L Johnson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan Verbitsky
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - James Hudson
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Rachel Dean
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University 6-329 City Centre Campus, 10700 - 104 Avenue, Edmonton, Alberta T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Braida D, Ponzoni L, Dellarole I, Morara S, Sala M. Fluoxetine rescues the depressive-like behaviour induced by reserpine and the altered emotional behaviour induced by nicotine withdrawal in zebrafish: Involvement of tyrosine hydroxylase. J Psychopharmacol 2023; 37:1132-1148. [PMID: 37593958 DOI: 10.1177/02698811231191103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND Nicotine cessation leads to anxiety and depression. AIMS The suitability of the zebrafish model of anhedonia using reserpine and fluoxetine was evaluated. Fluoxetine was also used to reduce nicotine withdrawal-induced anhedonic state. METHODS Zebrafish were exposed to reserpine (40 mg/l) and then to fluoxetine (0.1 mg/l) for 1 week. Anhedonia was evaluated in the Novel Tank Diving and Compartment Preference tests. Another group was exposed to nicotine (1 mg/l/2 weeks) and then exposed to fluoxetine. Anxiety and anhedonia were evaluated 2-60 days after. Tyrosine hydroxylase (TH) immunoreactivity and microglial morphology (labelled by 4C4 monoclonal antibody) in the parvocellular pretectal nucleus (PPN), dorsal part, and of calcitonin gene-related peptide (CGRP) in the hypothalamus were also analysed. RESULTS Less time in the top and increased latency to the top in reserpine compared to a drug-free group was found. Fluoxetine rescued reserpine-induced the reduced time in the top. Seven and 30 days after nicotine withdrawal more time in the bottom and similar time in the Compartment Preference test, rescued by fluoxetine, were shown. In the PPN, 30-day withdrawal induced an increase in TH immunoreactivity, but fluoxetine induced a further significant increase. No changes in PPN microglia morphology and hypothalamic CGRP were detected. CONCLUSIONS Our findings validate the suitability of the zebrafish model of anhedonia using the reserpine-induced depression-like behaviour and the predictivity using fluoxetine. Fluoxetine rescued nicotine withdrawal-induced anhedonic state, opening the possibility to screen new drugs to alleviate anxiety and depression in smokers during abstinence.
Collapse
Affiliation(s)
- Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
23
|
Adongo DW, Benneh CK, Tandoh A, Biney RP, Kukuia KKE, Mante PK, Harley BK, Oteng D, Appiah EA, Anorbor EC, Woode E. Anxiolytic-like effects of Pseudospondias microcarpa hydroethanolic leaf extract in zebrafish: Possible involvement of GABAergic and serotonergic pathways. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:33. [PMID: 37789217 PMCID: PMC10547670 DOI: 10.1007/s13659-023-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Pseudospondias microcarpa is used in ethnomedicine to manage central nervous system diseases. The hydroethanolic extract (PME) from the leaves of the plant has shown anxiolytic-like properties in mice anxiety models. However, its effects in chronic anxiety models and possible mechanism(s) of action were not studied. Therefore, the current study evaluated the anxiolytic-like mechanisms of PME in zebrafish models of anxiety. The zebrafish light dark test (LDT) and novel tank test (NTT) were employed to assess the anxiolytic-like effects of PME (0.1, 0.3, 1.0 mg mL-1), fluoxetine (3 × 10-5 mg mL-1) and diazepam (1.5 × 10-7 mg mL-1). The chronic unpredictable stress (CUS) test was used to further evaluate the extract's anxiolytic-like properties. The potential mechanisms of anxiolytic action of the extract was evaluated after pre-treated with flumazenil, granisetron, methysergide, or pizotifen, all at 1 × 10-3 mg mL-1. The extract significantly decreased anxiety behaviours in the NT and LD tests. These observed effects of the extract were however counteracted by flumazenil, granisetron, methysergide and pizotifen pre-treatment. In addition, PME treatment significantly reversed CUS-induced anxiety behaviours in zebrafish. Results show that PME possesses anxiolytic-like effects possibly through interaction with serotonergic and gamma-aminobutyric acid mediated pathways.
Collapse
Affiliation(s)
- Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana.
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Augustine Tandoh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Robert Peter Biney
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Priscilla Kolibea Mante
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Benjamin Kingsley Harley
- Department of Pharmacognosy and Herbal Medicine, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - David Oteng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Emmanuel Aduboffour Appiah
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Ernest Cudjoe Anorbor
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
24
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
25
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
26
|
Lopes AR, Leandro LP, Mariano MVT, Posser T, Franco J. Assessment of alcohol-induced aggressive behavior in zebrafish (Danio rerio): A practical class. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:455-460. [PMID: 37078473 DOI: 10.1002/bmb.21730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 04/21/2023]
Abstract
Ethanol (EtOH) is among the most consumed drugs in the world. The behavior of humans after ingestion of this drug is characteristic: At low doses it may be excitatory and at higher doses, it may induce depressant/sedative effects. Similar effects are observed in the zebrafish experimental model (Danio rerio), which has about 70% genetic similarity with humans and has been widely used in numerous research. With the objective of improving the learning of biochemistry students, this work aimed to develop a practical exercise in the laboratory for students to observe the behavioral repertoire of zebrafish under the effects of exposure to ethanol. Through this practical class, the students were able to observe the similarity of the behavior of the animal model with that of humans, showing its importance for the consolidation of knowledge, awakening in the students an interest in science and its applications in everyday life.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Post graduate Program in Physiological Sciences, Institute of Biological Sciences, Universidade Federal do Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Maria Vitória Takemura Mariano
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Oxidative Stress and Cell Signaling Research Group (GPEOSCEL), Universidade Federal do Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|
27
|
Sarangi P, Pradhan LK, Sahoo PK, Chauhan NR, Das SK. Di-2-ethylhexyl phthalate-induced neurobehavioural transformation is associated with altered glutathione biosynthesis and neurodegeneration in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:501-514. [PMID: 37131059 DOI: 10.1007/s10695-023-01197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
The contamination of life-sustaining environments with synthetic pollutants such as plastic-derived compounds has increased at an alarming rate in recent decades. Among such contaminants, di-2-ethylhexyl phthalate (DEHP) is an extensively used compound in plastics and plastic products to make them flexible. DEHP causes several adverse effects such as reproductive toxicity leading to infertility, miscarriage and litter size reduction, disruption of the thyroid endocrine system, oxidative stress, neurodevelopmental defect and cognitive impairment. An aquatic environment is a fragile site, where the accumulation of DEHP poses a significant threat to living organisms. In this context, the present study focused on whether the neurobehavioural transformation following exposure to DEHP is an outcome of augmented oxidative stress and neuromorphological alteration in the zebrafish brain. Our preliminary findings advocate that DEHP acts as a typical neurotoxicant in inducing neurobehavioural transformation in zebrafish. Furthermore, our study also supports the idea that DEHP itself acts as a potent neurotoxicant by altering the glutathione biosynthetic pathway through the induction of oxidative stress in the zebrafish brain. Similarly, our findings also link the abovementioned neurobehavioural transformation and oxidative stress with augmented neuronal pyknosis and chromatin condensation in the periventricular grey zone of the zebrafish brain following chronic exposure to DEHP. Therefore, the overall conclusion of the present study advocates the potential role of DEHP in inducing neuropathological manifestation in the zebrafish brain. Future research directed towards elucidating the neuroprotective efficacy of natural compounds against DEHP-induced neurotoxicity may provide a new line of intervention.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
- P.G. Department of Life Sciences, Sri Krushna Chandra Gajapati (Autonomous) College, Paralakhemundi, Gajapati, 761200, India.
| |
Collapse
|
28
|
Xiang J, Guo RY, Wang T, Zhang N, Chen XR, Li EC, Zhang JL. Brain metabolite profiles provide insight into mechanisms for behavior sexual dimorphisms in zebrafish (Danio rerio). Physiol Behav 2023; 263:114132. [PMID: 36801416 DOI: 10.1016/j.physbeh.2023.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The zebrafish (Danio rerio) has historically been a useful model for research in genetics, ecology, biology, toxicology, and neurobehavior. Zebrafish have been demonstrated to have brain sexual dimorphism. However, the sexual dimorphism of zebrafish behavior demands our attention, particularly. To evaluate the behavior and brain sexual dimorphisms in zebrafish, this study assessed sex differences in adult D. rerio in four behavioral domains, including aggression, fear, anxiety, and shoaling, and further compared with metabolites in the brain tissue of females and males. Our findings showed that aggression, fear, anxiety and shoaling behaviors were significantly sexually dimorphic. Interestingly, we also show through a novel data analysis method, that the female zebrafish exhibited significantly increased shoaling behavior when shoaled with male zebrafish groups and, for the first time, we offer evidence that male shoals are beneficial in dramatically alleviating anxiety in zebrafish. In addition, there were significant changes in metabolites in zebrafish brain tissue between the sexes. Furthermore, zebrafish behavioral sexual dimorphism may be associated with brain sexual dimorphism, with significant differences in brain metabolites. Therefore, to prevent the influence or even bias of behavioral sex differences on results, it is suggested that behavioral studies or behavioral-based other relevant investigations consider sexual dimorphism of behavior and brain.
Collapse
Affiliation(s)
- Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ting Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xian-Rui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
29
|
Naija A, Yalcin HC. Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish. Toxicol Rep 2023; 10:498-508. [PMID: 37396852 PMCID: PMC10313869 DOI: 10.1016/j.toxrep.2023.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Chemicals are at the top of public health concerns and metals have received much attention in terms of toxicological studies. Cadmium (Cd) and mercury (Hg) are among the most toxic heavy metals and are widely distributed in the environment. They are considered important factors involved in several organ disturbances. Heart and brain tissues are not among the first exposure sites to Cd and Hg but they are directly affected and may manifest intoxication reactions leading to death. Many cases of human intoxication with Cd and Hg showed that these metals have potential cardiotoxic and neurotoxic effects. Human exposure to heavy metals is through fish consumption which is considered as an excellent source of human nutrients. In the current review, we will summarize the most known cases of human intoxication with Cd and Hg, highlight their toxic effects on fish, and investigate the common signal pathways of both Cd and Hg to affect heart and brain tissues. Also, we will present the most common biomarkers used in the assessment of cardiotoxicity and neurotoxicity using Zebrafish model.
Collapse
|
30
|
Chavali LNM, Yddal I, Bifulco E, Mannsåker S, Røise D, Law JO, Frøyset AK, Grellscheid SN, Fladmark KE. Progressive Motor and Non-Motor Symptoms in Park7 Knockout Zebrafish. Int J Mol Sci 2023; 24:ijms24076456. [PMID: 37047429 PMCID: PMC10094626 DOI: 10.3390/ijms24076456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
DJ-1 is a redox sensitive protein with a wide range of functions related to oxidative stress protection. Mutations in the park7 gene, which codes for DJ-1 are associated with early onset familial Parkinson’s disease and increased astrocytic DJ-1 levels are found in pathologic tissues from idiopathic Parkinson’s disease. We have previously established a DJ-1 knockout zebrafish line that developed normally, but with aging the DJ-1 null fish had a lowered level of tyrosine hydroxylase, respiratory mitochondrial failure and a lower body mass. Here we have examined the DJ-1 knockout from the early adult stage and show that loss of DJ-1 results in a progressive, age-dependent increase in both motoric and non-motoric symptoms associated to Parkinson’s disease. These changes coincide with changes in mitochondrial and mitochondrial associated proteins. Recent studies have suggested that a decline in NAD+ can contribute to Parkinson’s disease and that supplementation of NAD+ precursors may delay disease progression. We found that the brain NAD+/NADH ratio decreased in aging zebrafish but did not correlate with DJ-1 induced altered behavior. Differences were first observed at the late adult stage in which NAD+ and NADPH levels were decreased in DJ-1 knockouts. Considering the experimental power of zebrafish and the development of Parkinson’s disease-related symptoms in the DJ-1 null fish, this model can serve as a useful tool both to understand the progression of the disease and the effect of suggested treatments.
Collapse
|
31
|
Examining behavioural test sensitivity and locomotor proxies of anxiety-like behaviour in zebrafish. Sci Rep 2023; 13:3768. [PMID: 36882472 PMCID: PMC9992706 DOI: 10.1038/s41598-023-29668-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
This study assessed the sensitivity of four anxiety-like behaviour paradigms in zebrafish: the novel tank dive test, shoaling test, light/dark test, and the less common shoal with novel object test. A second goal was to measure the extent to which the main effect measures are related to locomotor behaviours to determine whether swimming velocity and freezing (immobility) are indicative of anxiety-like behaviour. Using the well-established anxiolytic, chlordiazepoxide, we found the novel tank dive to be most sensitive followed by the shoaling test. The light/dark test and shoaling plus novel object test were the least sensitive. A principal component analysis and a correlational analysis also showed the locomotor variables, velocity and immobility, did not predict the anxiety-like behaviours across all behaviour tests.
Collapse
|
32
|
Bayingana K, Ireland D, Rosenthal E, Rabeler C, Collins EMS. Adult and regenerating planarians respond differentially to chronic drug exposure. Neurotoxicol Teratol 2023; 96:107148. [PMID: 36539103 DOI: 10.1016/j.ntt.2022.107148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
There is a lack of data on the effects of chronic exposure to common drugs and stimulants on the developing nervous system. Freshwater planarians have emerged as a useful invertebrate model amenable to high-throughput behavioral phenotyping to assay chemical safety in adult and developing brains. Here, we leverage the unique strength of the system to test in parallel for effects on the adult and developing nervous system, by screening ten common drugs and stimulants (forskolin, clenbuterol, LRE-1, MDL-12,330A, adenosine, caffeine, histamine, mianserin, fluoxetine and sertraline) using the asexual freshwater planarian Dugesia japonica. The compounds were tested up to 100 μM nominal concentration for their effects on planarian morphology and behavior. Quantitative phenotypic assessments were performed on days 7 and 12 of exposure using an automated screening platform. The antidepressants sertraline and fluoxetine were the most potent to induce lethality, with significant lethality observed at 10 μM. All ten compounds caused sublethal morphological and/or behavioral effects, with the most effects, in terms of potency and breadth of endpoints affected, seen with mianserin and fluoxetine. Four of the compounds (forskolin, clenbuterol, mianserin, and fluoxetine) were developmentally selective, causing effects at lower concentrations in regenerating planarians. Of these, fluoxetine showed the greatest differences between the two developmental stages, inducing many behavioral endpoints in regenerating planarians but only a few in adult planarians. While some of these behavioral effects may be due to neuroefficacy, these results substantiate the need for better evaluation of the safety of these common drugs on the developing nervous system.
Collapse
Affiliation(s)
- Kevin Bayingana
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Elizabeth Rosenthal
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America
| | - Eva-Maria S Collins
- Department of Biology, Swarthmore College, Swarthmore, PA, United States of America; Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA, United States of America; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Department of Physics, University of California San Diego, La Jolla, CA, United States of America.
| |
Collapse
|
33
|
Olorocisimo JP, Diaz LA, Co DE, Carag HM, Ibana JA, Velarde MC. Lactobacillus delbrueckii reduces anxiety-like behavior in zebrafish through a gut microbiome - brain crosstalk. Neuropharmacology 2023; 225:109401. [PMID: 36565853 DOI: 10.1016/j.neuropharm.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Certain bacteria possess the ability to reduce anxiety- and stress-related behaviors through the gut microbiome-brain axis. Such bacteria are called psychobiotics, and can be used to improve mood and cognition. However, only a few bacteria have been characterized as psychobiotics, and their exact mechanism of action remains unclear. Hence, in this study we analyzed three different species under the Lactobacillacea family, namely, Lactobacillus delbrueckii, Lacticaseibacillus casei, and Lacticaseibacillus paracasei for their potential psychobiotic activities. L. delbrueckii treatment reduced anxiety-like behavior and increased brain and gut glutamic acid decarboxylase (gad) gene expression in zebrafish. It also altered zebrafish gut microbial community as determined by PCR-DGGE and 16S rRNA-based metagenomics analysis. Overall, this paper showed that L. delbrueckii but not L. paracasei and L. casei, induced a consistent improvement in anxiety-like behavior in zebrafish, implicating its potential role as a psychobiotic to reduce anxiety. This article is part of the Special Issue on 'Microbiome & the Brain: Mechanisms & Maladies'.
Collapse
Affiliation(s)
- Joshua P Olorocisimo
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Leomir A Diaz
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines; Career Incentive Program Scholarship Division, Science Education Institute, Department of Science and Technology, Bicutan Taguig City, Philippines.
| | - Daniel E Co
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Harold M Carag
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Joyce A Ibana
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Philippines.
| |
Collapse
|
34
|
Zebrafish, a biological model for pharmaceutical research for the management of anxiety. Mol Biol Rep 2023; 50:3863-3872. [PMID: 36757551 DOI: 10.1007/s11033-023-08263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
The zebrafish (Danio rerio) is a valuable animal model rapidly becoming more commonly used in pharmaceutical studies. Due to its low-cost maintenance and high breeding potential, the zebrafish is a suitable substitute for most adult rodents (mice and rats) in neuroscience research. It is widely used in various anxiety models. This species has been used to develop a conceptual framework for anxiety behavior studies with broad applications in the laboratory, including the study of herbal and chemical drugs. This review discusses the latest studies of anxiety-related behavior in the zebrafish model.
Collapse
|
35
|
Tian D, Shi W, Yu Y, Zhou W, Tang Y, Zhang W, Huang L, Han Y, Liu G. Enrofloxacin exposure induces anxiety-like behavioral responses in zebrafish by affecting the microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160094. [PMID: 36372168 DOI: 10.1016/j.scitotenv.2022.160094] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous presence of antibiotic residues in aqueous environments poses a great potential threat to aquatic organisms. Nevertheless, the behavioral effects of environmentally realistic levels of antibiotics remain poorly understood in fish species. In this study, the behavioral impacts of enrofloxacin, one of typical fluoroquinolone antibiotics that is frequently detected in aquatic environments, were evaluated by the classic light-dark test (LDT) and novel tank task (NTT) in zebrafish. Furthermore, the effects of enrofloxacin exposure on the microbiota-gut-brain axis were also assessed to reveal potential affecting mechanisms underlying the behavioral abnormality observed. Our results demonstrated that zebrafish exposed to 60 μg/L enrofloxacin for 28 days took significantly longer to enter the stressful area of the testing tank and spent significantly less time there in both the LDT and NTT, indicating abnormal anxiety-like behaviors induced by the exposure. In addition, exposure to enrofloxacin at 6 and 60 μg/L resulted in a significant elevation in Bacteroidetes and a marked decline in the Firmicutes/Bacteroidetes ratio of the gut microbiota. Moreover, the intestinal contents of interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), glucagon-like peptide 1 (GLP-1), and 5-hydroxytryptamine (5-HT) in zebrafish were significantly upregulated, whereas those of plasma adrenocorticotropic hormone (ACTH) and cortisol (COR) were markedly downregulated upon enrofloxacin exposure. Incubation of zebrafish with a high dose of enrofloxacin (60 μg/L) also resulted in evident increases in the contents of corticotropin-releasing hormone (CRH), brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) in the brain. Fortunately, no significant alteration in the expression of glial fibrillary acidic protein (GFAP) was detected in the brain after enrofloxacin exposure. Our findings suggest that the disruption of the microbiota-gut-brain axis may account for enrofloxacin-induced anxiety-like behaviors in zebrafish. Since the disruption of microbiota-gut-brain axis may give rise to various clinical symptoms, the health risk of antibiotic exposure deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Mendes FRS, da Silva AW, Ferreira MKA, Rebouças EDL, Moura Barbosa I, da Rocha MN, Henrique Ferreira Ribeiro W, Menezes RRPPBD, Magalhães EP, Marinho EM, Marinho MM, Bandeira PN, de Menezes JESA, Marinho ES, Dos Santos HS. GABA A and serotonergic receptors participation in anxiolytic effect of chalcones in adult zebrafish. J Biomol Struct Dyn 2023; 41:12426-12444. [PMID: 36644862 DOI: 10.1080/07391102.2023.2167116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | | | - Italo Moura Barbosa
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
| | - Matheus Nunes da Rocha
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | | | | | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Emanuelle Machado Marinho
- Department of Analytical and Physical Chemistry, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | | - Emmanuel Silva Marinho
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Department of Chemistry, Limoeiro do Norte, State University of Ceara, Limoeiro do Norte, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
- Graduate Program of Biotechnology, State University of Ceara, Fortaleza, Ceará, Brazil
- Graduate Program in Natural Sciences, State University of Ceara, Fortaleza, Ceará, Brazil
- Chemistry Course, State University of Vale do Acaraú, Sobral, Ceará, Brazil
| |
Collapse
|
37
|
Scatterty KR, Pitman T, Eckersley T, Schmaltz R, Hamilton TJ. Zebrafish aversion to infrasound in an open field test. Front Behav Neurosci 2023; 16:1019368. [PMID: 36688130 PMCID: PMC9852910 DOI: 10.3389/fnbeh.2022.1019368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/24/2022] [Indexed: 01/07/2023] Open
Abstract
Aquatic species are capable of detecting infrasound (sub-20 Hz frequencies) which may be a source of anthropogenic pollution and have a detrimental impact on the environmental fitness of fish. Infrasound is generated by infrastructure, producing acoustic frequency peaks that are not discernible by humans. The presence of these frequencies may therefore impact the environmental wellbeing of aquatic laboratory animals, which are often housed in spaces adjacent to facilities producing infrasound. To investigate the potential impact of infrasound, we used wild-type zebrafish (Danio rerio) and exposed them to short periods of infrasound at either 5, 10, 15, or 20 Hz, or 0 Hz as a control group. A motion-tracking software system was used to monitor fish movement in an open field test and arena location, distance moved, and immobility were quantified. There was a significant effect of 15 Hz which caused the fish to spend more time away from the infrasound source. The 20 Hz group also spent significantly less time in the zone closest to the speaker. There were no differences in distance moved or immobility between infrasound and control groups. These findings demonstrate that 15 Hz infrasound has aversive effects on zebrafish, causing them to move away from the sound source. To enhance environmental enrichment and wellbeing of aquatic laboratory animals, sources of infrasound pollution should be investigated and mitigated.
Collapse
|
38
|
Pradhan LK, Sahoo PK, Sarangi P, Chauhan NR, Das SK. Suppression of Chronic Unpredictable Stress-Persuaded Increased Monoamine Oxidase Activity by Taurine Promotes Significant Neuroprotection in Zebrafish Brain. Neurochem Res 2023; 48:82-95. [PMID: 36001190 DOI: 10.1007/s11064-022-03724-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
Neuropsychiatric upshots following chronic exposure to unpredictable adverse stressors have been well documented in the literature. Considering the significant impact of chronic unpredictable stress (CUS), the literature is elusive regarding the neuroprotective efficacy of taurine against CUS-induced oxidative stress and chromatin condensation in the zebrafish brain. In this study, to ameliorate CUS-persuaded neurological outcomes, waterborne treatment of taurine as a prophylactic intervention was undertaken. Further, our approach also focused on the gross neurobehavioral response of zebrafish, oxidative stress indices and neuromorphology of the zebrafish brain following CUS exposure with taurine treatment. Because taurine provides significant neuroprotection against oxidative insult, the cytosolic level of monoamine oxidase (MAO) in the zebrafish brain following CUS exposure is worth investigating. Further, as heightened MAO activity is associated with augmented oxidative and chromatin condensation, the focus of this study was on whether taurine provides neuroprotection by downregulating MAO levels in the brain. Our findings show that CUS-persuaded altered neurobehavioral response was significantly rescued by taurine. Moreover, our findings firmly support the hypothesis that taurine acts as a radical neuroprotector by restoring glutathione biosynthesis in the zebrafish brain subsequent to CUS exposure. Additionally, the rising level of brain MAO following chronic exposure to CUS is ameliorated by taurine treatment. These findings strongly advocate the role of taurine as a natural MAO inhibitor through the neuroprotection it provides against CUS-instigated oxidative stress in zebrafish. However, the fundamental neuroprotective mechanism of such natural compounds needs to be elucidated to determine their neuroprotective efficacy against stress regimens.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
| |
Collapse
|
39
|
Schmieg H, Krais S, Kübler K, Ruhl AS, Schmidgall IM, Zwiener C, Köhler HR, Triebskorn R. Effects of the Antidepressant Amitriptyline on Juvenile Brown Trout and Their Modulation by Microplastics. TOXICS 2022; 10:763. [PMID: 36548596 PMCID: PMC9787892 DOI: 10.3390/toxics10120763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals such as antidepressants are designed to be bioactive at low concentrations. According to their mode of action, they can also influence non-target organisms due to the phylogenetic conservation of molecular targets. In addition to the pollution by environmental chemicals, the topic of microplastics (MP) in the aquatic environment came into the focus of scientific and public interest. The aim of the present study was to investigate the influence of the antidepressant amitriptyline in the presence and absence of irregularly shaped polystyrene MP as well as the effects of MP alone on juvenile brown trout (Salmo trutta f. fario). Fish were exposed to different concentrations of amitriptyline (nominal concentrations between 1 and 1000 µg/L) and two concentrations of MP (104 and 105 particles/L; <50 µm) for three weeks. Tissue cortisol concentration, oxidative stress, and the activity of two carboxylesterases and of acetylcholinesterase were assessed. Furthermore, the swimming behavior was analyzed in situations with different stress levels. Exposure to amitriptyline altered the behavior and increased the activity of acetylcholinesterase. Moreover, nominal amitriptyline concentrations above 300 µg/L caused severe acute adverse effects in fish. MP alone did not affect any of the investigated endpoints. Co-exposure caused largely similar effects such as the exposure to solely amitriptyline. However, the effect of amitriptyline on the swimming behavior during the experiment was alleviated by the higher MP concentration.
Collapse
Affiliation(s)
- Hannah Schmieg
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Stefanie Krais
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Kathrin Kübler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Aki S. Ruhl
- Water Treatment, Technische Universität Berlin, KF 4, Str. des 17. Juni 135, 10623 Berlin, Germany
- German Environment Agency (UBA), Section II 3.3 (Water Treatment), Schichauweg 58, 12307 Berlin, Germany
| | - Isabelle M. Schmidgall
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstr. 94–96, 72076 Tübingen, Germany
| | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Steinbeis Transfer Center for Ecotoxicology and Ecophysiology, Blumenstr. 13, 72108 Rottenburg, Germany
| |
Collapse
|
40
|
Rao C, Cao X, Li L, Zhou J, Sun D, Li B, Guo S, Yuan R, Cui H, Chen J. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106345. [PMID: 36351319 DOI: 10.1016/j.aquatox.2022.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
As common environmental endocrine-disrupting chemicals (EDCs), bisphenol AF (BPAF) raises potential concerns for aquatic organisms due to its widespread presence and continued release in the aquatic environment. This research aimed to use zebrafish embryos and adult fish to explore the effects of environmentally relevant concentrations (5 μg/L), 50 μg/L and 500 μg/L of BPAF on zebrafish embryonic development, behavioral alterations, and the potential mechanisms driving these effects. The results showed that 500 μg/L of BPAF severely affected the growth and development of embryos. In behavioral experiments, all concentrations of BPAF significantly inhibited the locomotor activity of larvae, 50 and 500 μg/L BPAF significantly altered the anxiety-like and aggressive behavior of adult zebrafish. Furthermore, environmentally relevant concentrations and higher concentrations of BPAF induced varying degrees of oxidative stress in both embryonic and adult fish. The most significant histopathological changes and decreased acetylcholinesterase (AChE) activity were observed in the brain at 50 and 500 μg/L of BPAF. We hypothesized that oxidative stress is an important cause of behavioral disturbances in larvae and adult fish. To our best knowledge, the present experiment is a pioneer in studying the effects of BPAF on a variety of complex behaviors (swimming performance, anxiety-like, social behavior, aggression) in zebrafish, which emphasizes the potential health risk of higher concentrations of BPAF in terms of induced neurotoxicity.
Collapse
Affiliation(s)
- Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Baohua Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
41
|
Xu C, Su L, Qiu N, Hou M, Yu F, Zou X, Wang J. The Effect of Unpredictable Chronic Stress on Rare Minnow ( Gobiocypris rarus): Growth, Behaviour and Physiology. BIOLOGY 2022; 11:1755. [PMID: 36552265 PMCID: PMC9775413 DOI: 10.3390/biology11121755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Fishes often adjust their behaviour patterns and physiological responses to cope with changing environments, and different life experiences affect them differently. Fishes might adapt to short-term stress, whereas long-term unpredictable stress may lead to various adverse effects. Although some studies have constructed unpredictable stress models of fish, the effect of unpredictable chronic stress (UCS) in the laboratory is poorly understood in fishes. In the current study, we exposed adult rare minnow to an unpredictable chronic stress protocol over 7 and 14 days and measured their response in terms of growth performance, cortisol, neurotransmitter levels (DA, 5-HT, and related metabolites), and behaviour patterns to comprehensively assess the effects of UCS on laboratory rare minnow. We discovered that specific growth rates were significantly decreased, and cortisol levels were lowered in both 7-days and 14-days stress groups. In the behaviour test, the activity level of the 14-days stress group increased, but there was no significant difference in the number of crossings to the center areas, time spent in the center areas, or the speed. In addition, the levels of DA and 5-HT did not change in the stress groups, but the DOPAC and 5-HIAA levels in the 14 days stress group were significantly higher than those in the control group. These results suggested that UCS influences rare minnow growth performance, behaviour patterns, and cortisol levels, and similar stress should be minimised in the laboratory.
Collapse
Affiliation(s)
- Chunsen Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangxia Su
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ning Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Miaomiao Hou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fandong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhua Zou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, China
| |
Collapse
|
42
|
The Tapping Assay: A Simple Method to Induce Fear Responses in Zebrafish. Behav Res Methods 2022; 54:2693-2706. [PMID: 34918220 DOI: 10.3758/s13428-021-01753-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The zebrafish is increasingly employed in behavioral neuroscience as a translationally relevant model organism for human central nervous system disorders. One of the most prevalent CNS disorders representing an unmet medical need is the disorder cluster defined under the umbrella term anxiety disorders. Zebrafish have been shown to respond to a variety of anxiety and fear inducing stimuli and have been suggested for modeling human anxiety. Here, we describe a simple method with which we intend to induce fear/anxiety responses in this species. The method allows us to deliver a visual and lateral line stimulus (vibration or "tapping") to the fish with the use of a moving object, a ball colliding with the side glass of the experimental tank. We describe the hardware construction of the apparatus and the procedure of the behavioral paradigm. We also present data on how zebrafish respond to the tapping. Our results demonstrate that the method induces significant fear/anxiety responses. We argue that the simplicity of the method and the efficiency of the paradigm should make it popular among those who plan to use zebrafish as a tool in anxiety research.
Collapse
|
43
|
Lombana DAB, Porfiri M. Collective response of fish to combined manipulations of illumination and flow. Behav Processes 2022; 203:104767. [DOI: 10.1016/j.beproc.2022.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
44
|
Anwer H, O'Dea RE, Mason D, Zajitschek S, Klinke A, Reid M, Hesselson D, Noble DWA, Morris MJ, Lagisz M, Nakagawa S. The effects of an obesogenic diet on behavior and cognition in zebrafish ( Danio rerio): Trait average, variability, repeatability, and behavioral syndromes. Ecol Evol 2022; 12:e9511. [PMID: 36407899 PMCID: PMC9666915 DOI: 10.1002/ece3.9511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The obesity epidemic, largely driven by the accessibility of ultra-processed high-energy foods, is one of the most pressing public health challenges of the 21st century. Consequently, there is increasing concern about the impacts of diet-induced obesity on behavior and cognition. While research on this matter continues, to date, no study has explicitly investigated the effect of obesogenic diet on variance and covariance (correlation) in behavioral traits. Here, we examined how an obesogenic versus control diet impacts means and (co-)variances of traits associated with body condition, behavior, and cognition in a laboratory population of ~160 adult zebrafish (Danio rerio). Overall, an obesogenic diet increased variation in several zebrafish traits. Zebrafish on an obesogenic diet were significantly heavier and displayed higher body weight variability; fasting blood glucose levels were similar between control and treatment zebrafish. During behavioral assays, zebrafish on the obesogenic diet displayed more exploratory behavior and were less reactive to video stimuli with conspecifics during a personality test, but these significant differences were sex-specific. Zebrafish on an obesogenic diet also displayed repeatable responses in aversive learning tests whereas control zebrafish did not, suggesting an obesogenic diet resulted in more consistent, yet impaired, behavioral responses. Where behavioral syndromes existed (inter-class correlations between personality traits), they did not differ between obesogenic and control zebrafish groups. By integrating a multifaceted, holistic approach that incorporates components of (co-)variances, future studies will greatly benefit by quantifying neglected dimensions of obesogenic diets on behavioral changes.
Collapse
Affiliation(s)
- Hamza Anwer
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Rose E. O'Dea
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dominic Mason
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Susanne Zajitschek
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Liverpool John Moores UniversitySchool of Biological and Environmental SciencesLiverpoolUK
| | - Annabell Klinke
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Madeleine Reid
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Daniel Hesselson
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- Centenary Institute and Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Daniel W. A. Noble
- Division of Ecology and Evolution, Research School of BiologyThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Diabetes and Metabolism DivisionGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
| |
Collapse
|
45
|
Fortuna M, Soares SM, Pompermaier A, Freddo N, Nardi J, Mozzato MT, Varela ACC, Costa VC, Siqueira L, Menegasso AS, da Costa Maffi V, Barcellos LJG. Exposure to levonorgestrel-based birth control pill in early life and its persistent effects in zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104006. [PMID: 36328330 DOI: 10.1016/j.etap.2022.104006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The consumption of progestins has increased considerably in recent decades, as has their disposal into the environment. These substances can negatively affect the reproduction, physiology, and behavior of non-target organisms, such as fish. We aimed to evaluate the effects of exposure to environmentally relevant concentrations of levonorgestrel-control birth based (1.3, 13.3, 133, and 1330 ng/L) on the development and behavior of zebrafish (Danio rerio) in terms of mortality, hatching, spontaneous movement, and larval and adult behavioral tests. Exposure caused anxiogenic-like behavior in larvae, which persisted in adults, as demonstrated by the light-dark test. In contrast, it caused anxiolytic-like behavior in the novel tank test. There was a high mortality rate at all tested concentrations and increases in the hormone cortisol at 13.3 ng/L that affected the sex ratio. These changes may lead to an ecological imbalance, emphasizing the risk of early exposure to progestins in the environment.
Collapse
Affiliation(s)
- Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Jéssica Nardi
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vitória Cadore Costa
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lisiane Siqueira
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Aloma Santin Menegasso
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria da Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
46
|
Johnson A, Stewart A, El-Hakim I, Hamilton TJ. Effects of super-class cannabis terpenes beta-caryophyllene and alpha-pinene on zebrafish behavioural biomarkers. Sci Rep 2022; 12:17250. [PMID: 36241680 PMCID: PMC9568608 DOI: 10.1038/s41598-022-21552-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Terpenes possess a wide range of medicinal properties and are potential therapeutics for a variety of pathological conditions. This study investigated the acute effects of two cannabis terpenes, β-caryophyllene and α-pinene, on zebrafish locomotion, anxiety-like, and boldness behaviour using the open field exploration and novel object approach tests. β-caryophyllene was administered in 0.02%, 0.2%, 2.0%, and 4% doses. α-pinene was administered in 0.01%, 0.02%, and 0.1% doses. As α-pinene is a racemic compound, we also tested its (+) and (-) enantiomers to observe any differential effects. β-caryophyllene had only a sedative effect at the highest dose tested. α-pinene had differing dose-dependent effects on anxiety-like and motor variables. Specifically, (+)-α-pinene and (-)-α-pinene had significant effects on anxiety measures, time spent in the thigmotaxis (outer) or center zone, in the open field test, as well as locomotor variables, swimming velocity and immobility. (+ /-)-α-pinene showed only a small effect on the open field test on immobility at the 0.1% dose. This study demonstrates that α-pinene can have a sedative or anxiolytic effect in zebrafish and may have different medicinal properties when isolated into its (+) or (-) enantiomers.
Collapse
Affiliation(s)
- Andréa Johnson
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Alycia Stewart
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Ismaeel El-Hakim
- Department of Psychology, MacEwan University, Edmonton, AB, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
47
|
Yoshida M. Incorporating ventilatory activity into a novel tank test for evaluating drug effects on zebrafish. Physiol Behav 2022; 257:113978. [PMID: 36183853 DOI: 10.1016/j.physbeh.2022.113978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
Abstract
The effects of ethanol and caffeine exposure on zebrafish, Danio rerio, were investigated using a combination of measurements of behavioral and physiologic responses in a novel tank situation. Ventilation activity as a physiologic measure was measured remotely by monitoring ventilation-related bioelectric signals from freely moving zebrafish in the test tank. The directions of the behavioral responses, except for outer area preference, were substantially the same in both ethanol- and caffeine-treated fish and qualitatively indistinguishable, suggesting that relying solely on behavioral measures may lead to inappropriate interpretation of drug effects when depending on limited behavioral parameters. By incorporating ventilation activity-related physiologic measures into the quantification of drug effects in novel tank tests, more-accurate evaluations of differences in the effects of moderate doses of anxiolytic ethanol and anxiogenic caffeine were possible. Here, we propose that combining physiologic measures such as ventilation rate and its variability with behavioral measures makes it possible to characterize the effects of environmental challenges on zebrafish in a multi-dimensional and more-detailed manner.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
| |
Collapse
|
48
|
Velkey AJ, Koon CH, Danstrom IA, Wiens KM. Female zebrafish (Danio rerio) demonstrate stronger preference for established shoals over newly-formed shoals in the three-tank open-swim preference test. PLoS One 2022; 17:e0265703. [PMID: 36129935 PMCID: PMC9491588 DOI: 10.1371/journal.pone.0265703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Zebrafish (Danio rerio) share a considerable amount of biological similarity with mammals, including identical or homologous gene expression pathways, neurotransmitters, hormones, and cellular receptors. Zebrafish also display complex social behaviors like shoaling and schooling, making them an attractive model for investigating normal social behavior as well as exploring impaired social function conditions such as autism spectrum disorders. Newly-formed and established shoals exhibit distinct behavior patterns and inter-member interactions that can convey the group's social stability. We used a three-chamber open-swim preference test to determine whether individual zebrafish show a preference for an established shoal over a newly-formed shoal. Results indicated that both sexes maintained greater proximity to arena zones nearest to the established shoal stimulus. In addition, we report the novel application of Shannon entropy to discover sex differences in systematicity of responses not revealed by unit-based measurements; male subjects spent more time investigating between the two shoals than female subjects. This novel technique using established versus newly-formed shoals can be used in future studies testing transgenics and pharmacological treatments that mimic autism spectrum disorder and other disorders that affect social interaction.
Collapse
Affiliation(s)
- Andrew J. Velkey
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Caroline H. Koon
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Isabel A. Danstrom
- Neuroscience Program, Christopher Newport University, Newport News, VA, United States of America
| | - Katie M. Wiens
- Science Department, Bay Path University, Longmeadow, MA, United States of America
| |
Collapse
|
49
|
Chowdhury S, Saikia SK. Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review. Zebrafish 2022; 19:165-176. [PMID: 36049069 DOI: 10.1089/zeb.2021.0083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
Collapse
Affiliation(s)
- Sabarna Chowdhury
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
50
|
Sabadin GR, Biasuz E, Canzian J, Adedara IA, Rosemberg DB. A novel behavioral paradigm to measure anxiety-like behaviors in zebrafish by the concomitant assessment of geotaxis and scototaxis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110579. [PMID: 35618149 DOI: 10.1016/j.pnpbp.2022.110579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Pathological anxiety is a set of diseases characterized by specific clinical manifestations and the use of alternative models may provide novel insights in translational neurobehavioral research. In zebrafish, the separate performance of novel tank and light dark tests in different order to assess anxiety using a same animal may provide conflicting data due to the battery effect and/or time-drug-response and variability across tests. To improve data reliability, we aimed to characterize a novel behavioral paradigm to measure geotaxis and scototaxis as anxiety-like responses in the same trial. The novel apparatus consisted of four colored-compartments, with specific white- and black sections delimited in both bottom and upper areas of the tank. The main baseline responses of zebrafish in the novel apparatus were measured and animals were further exposed to modulators of anxiety. Zebrafish showed robust habituation to novelty stress during the 6-min trial with preference for the black section while exploring the top area. Fluoxetine (100 μg/L, 15 min) reduced geotaxis and scototaxis and ketamine (20 mg/L, 20 min) decreased geotaxis and increased the distance traveled in the black section while exploring the top, possibly due to the increased circling behavior. As anxiogenic modulators, conspecific alarm substance (3.5 mL/L, 5 min) exacerbated risk assessment, geotaxis, and scototaxis, whereas caffeine (10 mg/L, 15 min) increased geotaxis and exploration in the black section of the top area. Since important correlations were also found for relevant anxiety-like behaviors, our findings support the predictive validity of this novel paradigm to simultaneously assess geotaxis and scototaxis in zebrafish. Moreover, it fully adheres to the 3Rs principle of animal experimentation of reducing the number of subjects tested, execution time, also minimizing a potential battery effect.
Collapse
Affiliation(s)
- Giovana R Sabadin
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|