1
|
Shan S, Cheng D, Li H, Yao W, Kou R, Ji J, Liu N, Zeng T, Zhao X. Short-term PS-NP exposure in early adulthood induces neuronal damage in middle-aged mice via microglia-mediated neuroinflammation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137615. [PMID: 39978191 DOI: 10.1016/j.jhazmat.2025.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Nanoplastics (NPs) are ubiquitous environmental pollutants that have garnered considerable attention for their potential adverse health effects. In this study, male C57BL/6 J mice were orally treated with a mixture of 50-nm and 200-nm polystyrene (PS)-NPs for one week followed by measurements of their neurobehavioral performance and neuronal damage 10 months later. Notably, PS-NPs were detected in the brains of the mice by transmission electron microscopy (TEM) and a nanoscale hyperspectral microscope imaging system 10 months after the PS-NP exposure. The mice exposed to short-term PS-NPs exhibited cognitive dysfunction and anxiety-like symptoms, neuronal damage and synapse loss, and an increase in the number of M1-polarized microglia and A1-reactive astrocytes. Interestingly, the inhibition of microglial activation by minocycline significantly mitigated the PS-NP-induced synapse loss and neuron damage. In vitro studies showed that PS-NPs could be readily internalized by three types of neurovascular unit (NVU) cells, including microglia, astrocytes, and brain microvascular endothelial cells, via multiple pathways. RNA-seq analysis confirmed that microglia-mediated neuronal injury was associated with disturbances in synapse and cell death signaling pathways. Collectively, these findings suggest that short-term PS-NP exposure-induced neuroinflammation in early adulthood may not be resolved naturally but may deteriorate under the interaction of microglia and astrocytes, leading to synapse loss, neuron degeneration, and cognitive dysfunction in middle age. The results of the present study provide important insights into the potential neurological impacts of NPs and suggest that targeting microglia to suppress inflammation might be a potential intervention strategy for neurodegeneration induced by NPs.
Collapse
Affiliation(s)
- Shan Shan
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Hui Li
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Wenhuan Yao
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Ruirui Kou
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Ji
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Na Liu
- Experimental Center, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Jia Y, Song Y, Xue H, Li X, Zhang Y, Fan S, Yang X, Ding Z, Qiu Y, Wu Z, Zhao P. Sevoflurane postconditioning mitigates neuronal hypoxic-ischemic injury via regulating reactive astrocytic STAT3 protein modification. Chem Biol Interact 2025; 405:111308. [PMID: 39536892 DOI: 10.1016/j.cbi.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Astrocyte activation plays a pivotal role in accelerating the cascade of neuroinflammation associated with the development of hypoxic-ischemic brain injury. This study aimed to investigate the mechanism by which sevoflurane postconditioning mitigates neuronal damage through astrocytes by regulating reactive astrocytic Signal Transducer and Activator of Transcription 3 (STAT3) modifications. A modified Rice‒Vannucci model in rats and a conditioned culture system established by subjecting primary astrocytes to oxygen glucose deprivation, followed by using the conditioned medium to culture the neuron cell line SH-SY5Y were used to simulate HI insult in vivo and in vitro, respectively. These models were followed by 30 min of 2.5 % sevoflurane treatment. Stattic was used to inhibit STAT3 phosphorylation, and (Z)-PUGNAc or OSMI-1 was added to regulate O-linked-β-N-acetylglucosamine modification (O-GlcNAcylation) in primary astrocytes in vitro. Neurobehavioral tests, Nissl staining, CCK8 assay, and flow cytometry for apoptosis were used to assess neuronal function. Immunofluorescence staining was used to detect astrocyte reactivity and the intracellular distribution of STAT3. Immunoprecipitation combined with Western blotting was used to evaluate the O-GlcNAcylation of STAT3. Protein expression and phosphorylation levels were detected by Western blotting. ELISA was conducted to detect the detrimental cytokines IL-6 and IL-1β in astrocyte-conditioned medium. Sevoflurane postconditioning enhanced the O-GlcNAcylation of astrocytic STAT3 following HI insult via the manner of OGT. Crosstalk between O-GlcNAcylation and phosphorylation of STAT3 showed that O-GlcNAcylation inhibited STAT3 phosphorylation. The inhibitory effect on astrocytes suppressed STAT3 nuclear translocation, reduced astrocyte reactivity, decreased the release of the inflammatory cytokines IL6 and IL-1β, attenuated neuronal apoptosis following HI insult, and improved neuron viability. Sevoflurane postconditioning increased astrocytic STAT3 O-GlcNAcylation level to competitively inhibit STAT3 phosphorylation. This deactivated downstream inflammation pathways and reduced astrocyte reactivity, thereby mitigating HI insult in neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shiyue Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yue Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Li H, Yu W, Zheng X, Zhu Z. TREM1-Microglia crosstalk: Neurocognitive disorders. Brain Res Bull 2025; 220:111162. [PMID: 39645047 DOI: 10.1016/j.brainresbull.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
Collapse
Affiliation(s)
- Huashan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China.
| | - Wanqiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Xue Zheng
- Department of Anesthesiology, Zunyi Maternal And Child Health Care Hospital, Zunyi 563000, China
| | - Zhaoqiong Zhu
- Early Clinical Research Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
4
|
De La Monte SM, Yang Y, Tong M. Brain and Serum Membrane Vesicle (Exosome) Profiles in Experimental Alcohol-Related Brain Degeneration: Forging the Path to Non-Invasive Liquid Biopsy Diagnostics. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:360-384. [PMID: 39931524 PMCID: PMC11810071 DOI: 10.3390/jmp5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Alcohol-related brain degeneration (ARBD) is associated with cognitive-motor impairments that can progress to disability and dementia. White matter (WM) is prominently targeted in ARBD due to chronic neurotoxic and degenerative effects on oligodendrocytes and myelin. Early detection and monitoring of WM pathology in ARBD could lead to therapeutic interventions. Objective This study examines the potential utility of a non-invasive strategy for detecting WM ARBD using exosomes isolated from serum. Comparative analyses were made with paired tissue (Tx) and membrane vesicles (MVs) from the temporal lobe (TL). Methods Long Evans rats were fed for 8 weeks with isocaloric liquid diets containing 37% or 0% caloric ethanol (n = 8/group). TL-Tx, TL-MVs, and serum exosomes (S-EVs) were used to examine ethanol's effects on oligodendrocyte glycoprotein, astrocyte, and oxidative stress markers. Results Ethanol significantly decreased the TL-Tx expression of platelet-derived growth factor receptor alpha (PDGFRA), 2',3'-cyclic nucleotide 3' phosphodiesterase (CNPase), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), glial fibrillary acidic protein (GFAP), and 8-OHdG, whereas in the TL-MVs, ethanol increased CNPase, PDGFRA, and 8-OHdG, but decreased MOG and GFAP concordantly with TL-Tx. Ethanol modulated the S-EV expression by reducing PLP, nestin, GFAP, and 4-hydroxynonenal (HNE). Conclusion Chronic ethanol exposures differentially alter the expression of oligodendrocyte/myelin, astrocyte, and oxidative stress markers in the brain, brain MVs, and S-EVs. However, directionally concordant effects across all three compartments were limited. Future studies should advance these efforts by characterizing the relationship between ABRD and molecular pathological changes in brain WM-specific exosomes in serum.
Collapse
Affiliation(s)
- Suzanne M. De La Monte
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
- Departments of Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women & Infants Hospital, and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Yiwen Yang
- Graduate Program in Biotechnology, Brown University, Providence, RI 02912, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital and the Alpert Medical School of Brown University, Providence, RI 02908, USA
| |
Collapse
|
5
|
Davis GH, Zaya A, Pearce MMP. Impairment of the Glial Phagolysosomal System Drives Prion-Like Propagation in a Drosophila Model of Huntington's Disease. J Neurosci 2024; 44:e1256232024. [PMID: 38589228 PMCID: PMC11097281 DOI: 10.1523/jneurosci.1256-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H Davis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Aprem Zaya
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Margaret M Panning Pearce
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey 08028
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104
| |
Collapse
|
6
|
Davis GH, Zaya A, Pearce MMP. Impairment of the glial phagolysosomal system drives prion-like propagation in a Drosophila model of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560952. [PMID: 38370619 PMCID: PMC10871239 DOI: 10.1101/2023.10.04.560952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative diseases pathogenesis. Phagocytic glia are responsible for regulating the load of pathogenic protein aggregates in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. Finally, a forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings reveal new mechanisms that enhance our understanding of the beneficial and potentially harmful effects of phagocytic glia in HD and potentially other neurodegenerative diseases.
Collapse
Affiliation(s)
- Graham H. Davis
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Aprem Zaya
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Margaret M. Panning Pearce
- Rowan University, Department of Biological and Biomedical Sciences, Glassboro, NJ 08028
- Saint Joseph’s University, Department of Biology, Philadelphia, PA 19131
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| |
Collapse
|
7
|
Nanclares C, Noriega-Prieto JA, Labrada-Moncada FE, Cvetanovic M, Araque A, Kofuji P. Altered calcium signaling in Bergmann glia contributes to spinocerebellar ataxia type-1 in a mouse model of SCA1. Neurobiol Dis 2023; 187:106318. [PMID: 37802154 PMCID: PMC10624966 DOI: 10.1016/j.nbd.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by an abnormal expansion of glutamine (Q) encoding CAG repeats in the ATAXIN1 (ATXN1) gene and characterized by progressive cerebellar ataxia, dysarthria, and eventual deterioration of bulbar functions. SCA1 shows severe degeneration of cerebellar Purkinje cells (PCs) and activation of Bergmann glia (BG), a type of cerebellar astroglia closely associated with PCs. Combining electrophysiological recordings, calcium imaging techniques, and chemogenetic approaches, we have investigated the electrical intrinsic and synaptic properties of PCs and the physiological properties of BG in SCA1 mouse model expressing mutant ATXN1 only in PCs. PCs of SCA1 mice displayed lower spontaneous firing rate and larger slow afterhyperpolarization currents (sIAHP) than wildtype mice, whereas the properties of the synaptic inputs were unaffected. BG of SCA1 mice showed higher calcium hyperactivity and gliotransmission, manifested by higher frequency of NMDAR-mediated slow inward currents (SICs) in PC. Preventing the BG calcium hyperexcitability of SCA1 mice by loading BG with the calcium chelator BAPTA restored sIAHP and spontaneous firing rate of PCs to similar levels of wildtype mice. Moreover, mimicking the BG hyperactivity by activating BG expressing Gq-DREADDs in wildtype mice reproduced the SCA1 pathological phenotype of PCs, i.e., enhancement of sIAHP and decrease of spontaneous firing rate. These results indicate that the intrinsic electrical properties of PCs, but not their synaptic properties, were altered in SCA1 mice and that these alterations were associated with the hyperexcitability of BG. Moreover, preventing BG hyperexcitability in SCA1 mice and promoting BG hyperexcitability in wildtype mice prevented and mimicked, respectively, the pathological electrophysiological phenotype of PCs. Therefore, BG plays a relevant role in the dysfunction of the electrical intrinsic properties of PCs in SCA1 mice, suggesting that they may serve as potential targets for therapeutic approaches to treat the spinocerebellar ataxia type 1.
Collapse
Affiliation(s)
- Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Lietzau G, Sienkiewicz W, Karwacki Z, Dziewiątkowski J, Kaleczyc J, Kowiański P. The Effect of Simvastatin on the Dynamics of NF-κB-Regulated Neurodegenerative and Neuroprotective Processes in the Acute Phase of Ischemic Stroke. Mol Neurobiol 2023; 60:4935-4951. [PMID: 37204689 PMCID: PMC10415422 DOI: 10.1007/s12035-023-03371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Statins are lipid-lowering drugs that act by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A reductase, a rate-limiting enzyme in cholesterol biosynthesis. Animal studies have shown neuroprotective effects of statins in cerebral stroke. However, the underlying mechanisms are not fully understood. The nuclear factor-kappa B (NF-κB) transcription factor is involved in the regulation of apoptosis in stroke. Different dimers of NF-κB regulate the gene expression of proteins involved in both neurodegeneration and neuroprotection. We aimed to determine whether simvastatin improves stroke outcome via inhibition of the RelA/p65-containing subunit and downregulation of stroke-induced pro-apoptotic genes or via activation of NF-κB dimers containing the c-Rel subunit and upregulation of anti-apoptotic genes during the acute stroke phase. Eighteen-month-old Wistar rats, subjected to permanent MCAO or sham surgery, were administered simvastatin (20 mg/kg b.w.) or saline for 5 days before the procedure. Stroke outcome was determined by measuring cerebral infarct and assessing motor functions. The expression of NF-κB subunits in various cell populations was investigated using immunofluorescence/confocal microscopy. RelA and c-Rel were detected by WB. The NF-κB-DNA binding activity was investigated using EMSA, and expression of Noxa, Puma, Bcl-2, and Bcl-x genes was analyzed by qRT-PCR. Results showed a 50% infarct size reduction and significant motor function improvement in the simvastatin-treated animals which correlated with a decrease in RelA and a transient increase in the c-Rel level in the nucleus, normalization of the NF-κB-DNA binding activity, and downregulation of the NF-κB-regulated genes. Our results provide new insights into the statin-mediated neuroprotective action against stroke based on NF-κB pathway inhibition.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Waldemar Sienkiewicz
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Zbigniew Karwacki
- Department of Neuroanaesthesiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland
| | - Jerzy Dziewiątkowski
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
- Institute of Health Sciences, Pomeranian University in Słupsk, Bohaterów Westerplatte 64, 76-200 Słupsk, Poland
| |
Collapse
|
9
|
Sun M, You H, Hu X, Luo Y, Zhang Z, Song Y, An J, Lu H. Microglia-Astrocyte Interaction in Neural Development and Neural Pathogenesis. Cells 2023; 12:1942. [PMID: 37566021 PMCID: PMC10417796 DOI: 10.3390/cells12151942] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The interaction between microglia and astrocytes exhibits a relatively balanced state in order to maintain homeostasis in the healthy central nervous system (CNS). Disease stimuli alter microglia-astrocyte interaction patterns and elicit cell-type-specific responses, resulting in their contribution to various pathological processes. Here, we review the similarities and differences in the activation modes between microglia and astrocytes in various scenarios, encompassing different stages of neural development and a wide range of neural disorders. The aim is to provide a comprehensive understanding of their roles in neural development and regeneration and guiding new strategies for restoring CNS homeostasis.
Collapse
Affiliation(s)
- Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Hongli You
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yujia Luo
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yiqun Song
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (M.S.); (H.Y.); (X.H.); (Y.L.); (Z.Z.); (Y.S.)
| |
Collapse
|
10
|
Huang S, Ren C, Luo Y, Ding Y, Ji X, Li S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol Dis 2023:106200. [PMID: 37321419 DOI: 10.1016/j.nbd.2023.106200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system, are integral to axonal integrity and function. Hypoxia-ischemia episodes can cause severe damage to these vulnerable cells through excitotoxicity, oxidative stress, inflammation, and mitochondrial dysfunction, leading to axonal dystrophy, neuronal dysfunction, and neurological impairments. OLs damage can result in demyelination and myelination disorders, severely impacting axonal function, structure, metabolism, and survival. Adult-onset stroke, periventricular leukomalacia, and post-stroke cognitive impairment primarily target OLs, making them a critical therapeutic target. Therapeutic strategies targeting OLs, myelin, and their receptors should be given more emphasis to attenuate ischemia injury and establish functional recovery after stroke. This review summarizes recent advances on the function of OLs in ischemic injury, as well as the present and emerging principles that serve as the foundation for protective strategies against OL deaths.
Collapse
Affiliation(s)
- Shuangfeng Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China; Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Sijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Department of Emergency, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Yawoot N, Sengking J, Govitrapong P, Tocharus C, Tocharus J. Melatonin modulates the aggravation of pyroptosis, necroptosis, and neuroinflammation following cerebral ischemia and reperfusion injury in obese rats. Biochim Biophys Acta Mol Basis Dis 2023:166785. [PMID: 37302429 DOI: 10.1016/j.bbadis.2023.166785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Obesity is well-established as a common comorbidity in ischemic stroke. The increasing evidence has revealed that it also associates with the exacerbation of brain pathologies, resulting in increasingly severe neurological outcomes following cerebral ischemia and reperfusion (I/R) damage. Mechanistically, pyroptosis and necroptosis are novel forms of regulated death that relate to the propagation of inflammatory signals in case of cerebral I/R. Previous studies noted that pyroptotic and necroptotic signaling were exacerbated in I/R brain of obese animals and led to the promotion of brain tissue injury. This study aimed to investigate the roles of melatonin on pyroptosis, necroptosis, and pro-inflammatory pathways occurring in the I/R brain of obese rats. Male Wistar rats were given a high-fat diet for 16 weeks to induce the obese condition, and then were divided into 4 groups: Sham-operated, I/R treated with vehicle, I/R treated with melatonin (10 mg/kg), and I/R treated with glycyrrhizic acid (10 mg/kg). All drugs were administered via intraperitoneal injection at the onset of reperfusion. The development of neurological deficits, cerebral infarction, histological changes, neuronal death, and glial cell hyperactivation were investigated. This study revealed that melatonin effectively improved these detrimental parameters. Furthermore, the processes of pyroptosis, necroptosis, and inflammation were all diminished by melatonin treatment. A summary of the findings is that melatonin effectively reduces ischemic brain pathology and thereby improves post-stroke outcomes in obese rats by modulating pyroptosis, necroptosis, and inflammation.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok 10210, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Schaufler D, Manthou ME, Theotokis P, Rink-Notzon S, Angelov DN. Effects of Whole-Body Vibration and Manually Assisted Locomotor Therapy on Neurotrophin-3 Expression and Microglia/Macrophage Mobilization Following Thoracic Spinal Cord Injury in Rats. Curr Issues Mol Biol 2023; 45:3238-3254. [PMID: 37185735 PMCID: PMC10137282 DOI: 10.3390/cimb45040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Microglial cells play an important role in neuroinflammation and secondary damages after spinal cord injury (SCI). Progressive microglia/macrophage inflammation along the entire spinal axis follows SCI, and various factors may determine the microglial activation profile. Neurotrophin-3 (NT-3) is known to control the survival of neurons, the function of synapses, and the release of neurotransmitters, while also stimulating axon plasticity and growth. We examined the effects of whole-body vibration (WBV) and forms of assisted locomotor therapy, such as passive flexion-extension (PFE) therapy, at the neuronal level after SCI, with a focus on changes in NT-3 expression and on microglia/macrophage reaction, as they play a major role in the reconstitution of CNS integrity after injury and they may critically account for the observed structural and functional benefits of physical therapy. More specifically, the WBV therapy resulted in the best overall functional recovery when initiated at day 14, while inducing a decrease in Iba1 and the highest increase in NT-3. Therefore, the WBV therapy at the 14th day appeared to be superior to the PFE therapy in terms of recovery. Functional deficits and subsequent rehabilitation depend heavily upon the inflammatory processes occurring caudally to the injury site; thus, we propose that increased expression of NT-3, especially in the dorsal horn, could potentially be the mediator of this favorable outcome.
Collapse
Affiliation(s)
- Diana Schaufler
- Department I of Internal Medicine, Lung Cancer Group Cologne, University Hospital Cologne, 50931 Cologne, Germany
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
| | - Maria Eleni Manthou
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
- Department of Histology and Embryology, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology and Embryology, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54124 Thessaloniki, Greece
| | - Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, 50931 Cologne, Germany
| | - Doychin N Angelov
- Anatomical Institute II, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
13
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
14
|
EPO has multiple positive effects on astrocytes in an experimental model of ischemia. Brain Res 2023; 1802:148207. [PMID: 36549360 DOI: 10.1016/j.brainres.2022.148207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Erythropoietin (EPO) has neuroprotective effects in central nervous system injury models. In clinical trials EPO has shown beneficial effects in traumatic brain injury (TBI) as well as in ischemic stroke. We have previously shown that EPO has short-term effects on astrocyte glutamatergic signaling in vitro and that administration of EPO after experimental TBI decreases early cytotoxic brain edema and preserves structural and functional properties of the blood-brain barrier. These effects have been attributed to preserved or restored astrocyte function. Here we explored the effects of EPO on astrocytes undergoing oxygen-glucose-deprivation, an in vitro model of ischemia. Measurements of glutamate uptake, intracellular pH, intrinsic NADH fluorescence, Na,K-ATPase activity, and lactate release were performed. We found that EPO within minutes caused a Na,K-ATPase-dependent increase in glutamate uptake, restored intracellular acidification caused by glutamate and increased lactate release. The effects on intracellular pH were dependent on the sodium/hydrogen exchanger NHE. In neuron-astrocyte co-cultures, EPO increased NADH production both in astrocytes and neurons, however the increase was greater in astrocytes. We suggest that EPO preserves astrocyte function under ischemic conditions and thus may contribute to neuroprotection in ischemic stroke and brain ischemia secondary to TBI.
Collapse
|
15
|
Liang C, Liu L, Bao S, Yao Z, Bai Q, Fu P, Liu X, Zhang JH, Wang G. Neuroprotection by Nrf2 via modulating microglial phenotype and phagocytosis after intracerebral hemorrhage. Heliyon 2023; 9:e13777. [PMID: 36852060 PMCID: PMC9957781 DOI: 10.1016/j.heliyon.2023.e13777] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Activated microglia are divided into pro-inflammatory and anti-inflammatory functional states. In anti-inflammatory state, activated microglia contribute to phagocytosis, neural repair and anti-inflammation. Nrf2 as a major endogenous regulator in hematoma clearance after intracerebral hemorrhage (ICH) has received much attention. This study aims to investigate the mechanism underlying Nrf2-mediated regulation of microglial phenotype and phagocytosis in hematoma clearance after ICH. In vitro experiments, BV-2 cells were assigned to normal group and administration group (Nrf2-siRNA, Nrf2 agonists Monascin and Xuezhikang). In vivo experiments, mice were divided into 5 groups: sham, ICH + vehicle, ICH + Nrf2-/-, ICH + Monascin and ICH + Xuezhikang. In vitro and in vivo, 72 h after administration of Monascin and Xuezhikang, the expression of Nrf2, inflammatory-associated factors such as Trem1, TNF-α and CD80, anti-inflammatory, neural repair and phagocytic associated factors such as Trem2, CD206 and BDNF were analyzed by the Western blot method. In vitro, fluorescent latex beads or erythrocytes were uptaken by BV-2 cells in order to study microglial phagocytic ability. In vivo, hemoglobin levels reflect the hematoma volume. In this study, Nrf2 agonists (Monascin and Xuezhikang) upregulated the expression of Trem2, CD206 and BDNF while decreased the expression of Trem1, TNF-α and CD80 both in vivo and in vitro. At the same time, after Monascin and Xuezhikang treatment, the phagocytic capacity of microglia increased in vitro, neurological deficits improved and hematoma volume lessened in vivo. These results were reversed in the Nrf2-siRNA or the Nrf2-/- mice. All these results indicated that Nrf2 enhanced hematoma clearance and neural repair, improved neurological outcomes through enhancing microglial phagocytosis and alleviating neuroinflammation.
Collapse
Key Words
- BDNF, Brain-derived neurotrophic factor
- CNS, Central nervous system
- DAMPs, Danger-associated molecular patterns
- HO-1,Heme oxygenase-1, Hp,Haptoglobin
- Hematoma clearance
- ICH, Intracerebral hemorrhage
- IFNγ,Interferon-gamma, IL-1β,Interleukin 1β
- Intracerebral hemorrhage
- MMP, Matrix metalloproteasesNF-κB,Nuclear factor-kappa light chain enhancer of activated B cells
- Microglial phenotype
- NO, Nitric oxide
- Nrf2
- Nrf2, Nuclear factor erythroid 2-related factor 2
- PPAR-ɤ, Peroxidase proliferator-activated receptor gamma
- Phagocytosis
- TLR4, Toll-like receptor 4
- TNFα, Tumor necrosis factor-α
- Trem1, Triggering receptors I expressed on myeloid cells
- Trem2, Triggering receptors II expressed on myeloid cells
Collapse
Affiliation(s)
- Chuntian Liang
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Lirong Liu
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China.,People's Hospital of Yaodu District, Linfen 041000, China
| | - Shuangjin Bao
- Department of Pathology and Pathophysiology, Basic Medical College, Shanxi Medical University, Taiyuan 030000, China
| | - Zhenjia Yao
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Qinqin Bai
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China
| | - Pengcheng Fu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Xiangyu Liu
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Gaiqing Wang
- Department of Neurology, Shanxi Medical University, Taiyuan 030000, China.,Department of Neurology, Sanya Central Hospital (Haian Third People's Hospital), Hainan Medical University, Sanya 572000, China
| |
Collapse
|
16
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
17
|
Yilmazer-Hanke D, Ouali Alami N, Fang L, Klotz S, Kovacs GG, Pankratz H, Weis J, Katona I, Scheuerle A, Streit WJ, Del Tredici K. Differential Glial Chitotriosidase 1 and Chitinase 3-like Protein 1 Expression in the Human Primary Visual Cortex and Cerebellum after Global Hypoxia-Ischemia. Neuroscience 2022; 506:91-113. [PMID: 36332693 DOI: 10.1016/j.neuroscience.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Here, we studied the neuroinflammation- and ischemia-related glial markers chitotriosidase 1 (CHIT1) and chitinase-3-like protein 1 (CHI3L1, alias YKL-40) in the human striate cortex and cerebellum at different time points after global hypoxic-ischemic brain injury (HIBI). Both regions differ considerably in their glial cell population but are supplied by the posterior circulation. CHIT1 and CHI3L1 expression was compared to changes in microglial (IBA1, CD68), astrocytic (GFAP, S100β), and neuronal markers (H&E, neurofilament heavy chain, NfH; calretinin, CALR) using immunohistochemistry and multiple-label immunofluorescence. Initial striatal cortical and cerebellar Purkinje cell damage, detectable already 1/2 d after HIBI, led to delayed neuronal death, whereas loss of cerebellar NfH-positive stellate and CALR-positive granule cells was variable. During the first week post-HIBI, a transient reduction of IBA1-positive microglia was observed in both regions, and fragmented/clasmatodendritic cerebellar Bergmann glia appeared. In long-term survivors, both brain regions displayed high densities of activated IBA1-positive cells and CD68-positive macrophages, which showed CHIT1 co-localization in the striate cortex. Furthermore, enlarged GFAP- and S100β-positive astroglia emerged in both regions around 9-10 d post-HIBI, i.e., along with clearance of dead neurons from the neuropil, although GFAP-/S100β-positive gemistocytic astrocytes that co-expressed CHI3L1 were found only in the striate cortex. Thus, only GFAP-/S100β-positive astrocytes in the striate cortex, but not cerebellar Bergmann glia, differentiated into CHI3L1-positive gemistocytes. CHIT1 was co-expressed almost entirely in macrophages in the striate cortex and not cerebellum of long-term survivors, thereby indicating that CHIT1 and CHI3L1 could be valuable biomarkers for monitoring the outcome of global HIBI.
Collapse
Affiliation(s)
- Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany.
| | - Najwa Ouali Alami
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Lubin Fang
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Sigried Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Helmut Pankratz
- Institute of Forensic Medicine, Medical Faculty, Ludwig-Maximilian University Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Scheuerle
- Department of Pathology, Section Neuropathology, University Hospital, Ulm, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, College of Medicine, University of Florida, FL, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
18
|
Gualou Guizhi Decoction Improves Glucose Metabolism and Alleviates Microglia-Associated Inflammation after Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9438250. [PMID: 36317102 PMCID: PMC9617704 DOI: 10.1155/2022/9438250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Background The classical prescription Gualou Guizhi decoction (GL), a mixture of Radix Trichosanthis, Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Zingiberis Rhizoma Recens, and Fructus Ziziphus Jujuba, was clinically used in the treatment of limb spasms after stroke and has achieved remarkable therapeutic effects. However, the underlying mechanism still needs to be further explored. Methods Cerebral ischemia/reperfusion (CI/R) in Sprague-Dawley rats was induced by middle cerebral artery occlusion followed by filament removal. GL was intragastrically administered once daily for 7 or 14 consecutive days. The effect of GL on neurobehavioral impairment was evaluated. 18F-FDG micro-PET imaging was used to detect the effects of GL on glucose utilization in neural cells after CI/R. Immunohistochemical staining of glucose transporter 1 (Glut-1), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule-1 (Iba-1) was further performed to show the effects of GL on cerebral glucose transport and the activation of inflammatory-related glial cells. Markers related to the microglial subtype were also assessed to investigate the effects of GL on microglia polarization. Results Neurological deficits induced by CI/R were significantly improved by GL administration. GL restored the glucose uptake in the ischemic hemisphere. Glut-1, the major glucose transporter in the brain, was significantly increased after GL treatment. Moreover, GL mitigated the activation of astrocytes and microglia after CI/R. Furthermore, GL significantly decreased proinflammatory M1-type microglial markers TNF-α and iNOS, while increasing anti-inflammatory M2 microglial markers CD206 and Arg-1. Conclusion GL enhanced the uptake and utilization of glucose in neural cells after CI/R. It exerted significant anti-inflammatory effects by regulating the polarization of microglia. These results provided further evidence supporting the clinical application of GL in the treatment of cerebral ischemic stroke.
Collapse
|
19
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Magaki SD, Vinters HV, Williams CK, Mareninov S, Khanlou N, Said J, Nemanim N, Gonzalez J, Morales JG, Singer EJ, Yong WH. Neuropathologic Findings in Elderly HIV-Positive Individuals. J Neuropathol Exp Neurol 2022; 81:565-576. [PMID: 35656871 DOI: 10.1093/jnen/nlac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The elderly HIV-positive population is growing due to the widespread use of combination antiretroviral therapy (cART), but the effects of longstanding HIV infection on brain aging are unknown. A significant proportion of HIV-positive individuals develop HIV-associated neurocognitive disorder (HAND) even on cART, but the pathogenesis of HAND is unknown. Although neuroinflammation is postulated to play an important role in aging and neurodegenerative diseases such as Alzheimer disease (AD), it is unclear whether HIV accelerates aging or increases the risk for AD. We examined the brains of 9 elderly HIV-positive subjects on cART without co-infection by hepatitis C virus compared to 7 elderly HIV-negative subjects. Microglial and astrocyte activation and AD pathologic change in association with systemic comorbidities and neurocognitive assessment were evaluated. There was no difference in microglial or astrocyte activation between our HIV-positive and HIV-negative cohorts. One HIV-positive subject and 2 HIV-negative subjects demonstrated significant amyloid deposition, predominantly in the form of diffuse senile plaques, but these individuals were cognitively normal. Neurofibrillary tangles were sparse in the HIV-positive cohort. There was a high prevalence of cardiovascular comorbidities in all subjects. These findings suggest that multiple factors likely contribute to aging and cognitive impairment in elderly HIV-positive individuals on cART.
Collapse
Affiliation(s)
- Shino D Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Harry V Vinters
- Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Christopher K Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Sergey Mareninov
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Negar Khanlou
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jonathan Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Natasha Nemanim
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jessica Gonzalez
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Jose G Morales
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - Elyse J Singer
- Department of Neurology, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| | - William H Yong
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center and David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
21
|
Topography of neurotrophins in the rat neocortex and their role in neuron apoptosis after experimental ischemic stroke. J Chem Neuroanat 2022; 124:102122. [PMID: 35718293 DOI: 10.1016/j.jchemneu.2022.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Neuronal loss due to apoptosis after ischemic injury depends on the trophic support of neurons and cytoprotective effects of neurotrophins (NTs). Different NTs may activate both pro- and antiapoptotic factors. Their distribution in the ischemic core (IC) and penumbra (IP) has been poorly studied. The available data on the localization of NTs in the ischemic brain are contradictory and depend to a certain degree on the pathogenetic model used. The distribution of NTs in different layers of the ischemic cortex is also largely unknown hindering our understanding of their exact effects and targets in different zones of the ischemic brain. We examined the immunolocalization of brain-derived neurotrophic factor (BDNF), neurotrophin-3, and glial cell line-derived neurotrophic factor (GDNF) in the parietal cortex using a rat model of ischemic stroke due to permanent occlusion of the middle cerebral artery. The spatial density of immunoreactive (IR) cells varied across the cortical layers and changed with time after ischemic injury. Their distribution in the IC differed considerably from that in the IP. The immunolocalization of neurotrophins in the contralateral hemisphere was similar to that in IP. We also studied the distribution of pro- and anti-apoptotic factors in IC and IP with and without intravenous BDNF administration. In the model without BDNF administration, the proportions of Bcl-2-, p53-, caspase-3-, and Mdm2-IR cells showed different dynamics during the ischemic period. In the model with BDNF administration, Mdm2 immunoreactivity was mainly observed in pyramidal cells of layers V/VI, and Bcl-2, in interneurons of layers II and III. The dynamics of p53 immunoreactivity was opposite to that of caspase-3 throughout the ischemic period. The present results suggest that after ischemic injury, 1) the number of neurotrophin-positive cells increases in the early ischemic period and decreases afterwards; 2) there is a close metabolic relationship between astrocytes and neurons contributing to their adaptation to ischemic conditions; 3) the IP borders undergo constant changes; 4) in the IP, neuronal loss occurs mainly by apoptotic pathway throughout the ischemic period; 5) BDNF may enhance considerably antiapoptotic mechanisms with a predominance of Mdm-2 activity in pyramidal neurons.
Collapse
|
22
|
Pregnolato S, Sabir H, Luyt K, Rienecker KDA, Isles AR, Chakkarapani E. Regulation of glutamate transport and neuroinflammation in a term newborn rat model of hypoxic–ischaemic brain injury. Brain Neurosci Adv 2022; 6:23982128221097568. [PMID: 35615059 PMCID: PMC9125068 DOI: 10.1177/23982128221097568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
In the newborn brain, moderate-severe hypoxia–ischaemia induces glutamate excitotoxicity and inflammation, possibly via dysregulation of candidate astrocytic glutamate transporter ( Glt1) and pro-inflammatory cytokines (e.g. Tnfα, Il1β, Il6). Epigenetic mechanisms may mediate dysregulation. Hypotheses: (1) hypoxia–ischaemia dysregulates mRNA expression of these candidate genes; (2) expression changes in Glt1 are mediated by DNA methylation changes; and (3) methylation values in brain and blood are correlated. Seven-day-old rat pups ( n = 42) were assigned to nine groups based on treatment (for each timepoint: naïve ( n = 3), sham ( n = 3), hypoxia–ischaemia ( n = 8) and timepoint for tissue collection (6, 12 and 24 h post-hypoxia). Moderate hypoxic–ischemic brain injury was induced via ligation of the left common carotid artery followed by 100 min hypoxia (8% O2, 36°C). mRNA was quantified in cortex and hippocampus for the candidate genes, myelin ( Mbp), astrocytic ( Gfap) and neuronal ( Map2) markers (qPCR). DNA methylation was measured for Glt1 in cortex and blood (bisulphite pyrosequencing). Hypoxia–ischaemia induced pro-inflammatory cytokine upregulation in both brain regions at 6 h. This was accompanied by gene expression changes potentially indicating onset of astrogliosis and myelin injury. There were no significant changes in expression or promoter DNA methylation of Glt1. This pilot study supports accumulating evidence that hypoxia–ischaemia causes neuroinflammation in the newborn brain and prioritises further expression and DNA methylation analyses focusing on this pathway. Epigenetic blood biomarkers may facilitate identification of high-risk newborns at birth, maximising chances of neuroprotective interventions.
Collapse
Affiliation(s)
- Silvia Pregnolato
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Bonn, Germany
- Department of Pediatrics I/Neonatology, University Hospital Essen, University Duisburg Essen, Essen, Germany
| | - Karen Luyt
- Department of Neonatal Neurology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kira DA Rienecker
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
23
|
Filchenko I, Korostovtseva L, Bochkarev M, Sviryaev Y. Brain damage in sleep-disordered breathing: the role of glia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:15-22. [DOI: 10.17116/jnevro202212201115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Evaluation of Traumatic Spinal Cord Injury in a Rat Model Using 99mTc-GA-5 as a Potential In Vivo Tracer. Molecules 2021; 26:molecules26237138. [PMID: 34885718 PMCID: PMC8658927 DOI: 10.3390/molecules26237138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) refers to the damage suffered in the spinal cord by any trauma or pathology. The purpose of this work was to determine whether 99mTc-GA-5, a radiotracer targeting Glial Fibrillary Acidic Protein (GFAP), can reveal in vivo the reactivation of astrocytes in a murine model with SCI. A method for the 99mTc radiolabeling of the mouse anti-GFAP monoclonal antibody GA-5 was implemented. Radiochemical characterization was performed, and radioimmunohistochemistry assays were used to evaluate the integrity of 99mTc-GA-5. MicroSPECT/CT was used for in vivo imaging to trace SCI in the rats. No alterations in the GA-5’s recognition/specificity ability were observed after the radiolabeling. The GA-5’s radiolabeling procedure implemented in this work offers a practical method to allow the in vivo following of this monoclonal antibody to evaluate its biodistribution and specificity for GFAP receptors using SPECT/CT molecular imaging.
Collapse
|
25
|
Yawoot N, Sengking J, Wicha P, Govitrapong P, Tocharus C, Tocharus J. Melatonin attenuates reactive astrogliosis and glial scar formation following cerebral ischemia and reperfusion injury mediated by GSK-3β and RIP1K. J Cell Physiol 2021; 237:1818-1832. [PMID: 34825376 DOI: 10.1002/jcp.30649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/06/2022]
Abstract
Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3β) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3β and RIP1K activities.
Collapse
Affiliation(s)
- Nuttapong Yawoot
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyawadee Wicha
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Department of Physiology, Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021; 9:732820. [PMID: 34646826 PMCID: PMC8502923 DOI: 10.3389/fcell.2021.732820] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John Greenwood
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
27
|
Yuan X, Guo L, Wang J, Wang D, Yang S, Guo F. Serum glial fibrillary acidic protein and S100 calcium-binding protein B correlates cerebral vessel reactivity following carotid artery stenting. Sci Rep 2021; 11:16366. [PMID: 34381130 PMCID: PMC8358004 DOI: 10.1038/s41598-021-95867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Using detection markers in serum has the advantages of simplicity, repeatability and the capability. This study combined the use of serum glial fibrillary acidic protein (GFAP) and S100B protein (S100B) with imaging tools to confirm the role of serum biomarkers in evaluating the cerebral vessel reactivity after carotid artery stenting (CAS). After CAS, the serum concentrations of GFAP and S100B increased to the peak at 24 h after operation, and then gradually decreased. The mean flow velocity (MFV) (pre-operation, post-operation, 30 days follow-up: 47.65 ± 17.24 cm/s, 62.37 ± 18.25 cm/s, 70.29 ± 16.89 cm/s; P < 0.05) and pulsatility index (PI) (pre-operation, post-operation, 30 days follow-up: 0.78 ± 0.21, 0.98 ± 0.19, 1.02 ± 0.20; P < 0.05) increased significantly in the ipsilateral middle cerebral artery after CAS. At the 30-day follow-up, the cerebrovascular reserve (CVR) (post-operation, 30 days follow-up: 27.47 ± 12.13 cm/s, 31.92 ± 10.94 cm/s; P < 0.05) improved significantly. In patients with different degrees of stenosis, the more severe the stenosis in the carotid artery, the more obvious the improvement of CVR at the 30 days of follow-up (CVR changes: 11.08 ± 7.95 cm/s, Kendall’s tau-b = 0.645, P < 0.001). And the serum concentrations of GFAP (r = − 0.629, P < 0.0001) and S100B (r = − 0.604, P < 0.0001) correlated negatively with CVR at 30 days after CAS. Therefore, we recommend using the biomarkers GFAP and S100B associated with imaging tools such as transcranial Doppler (TCD) and Magnetic resonance imaging (MRI) to evaluate the cerebral vessel reactivity following CAS.
Collapse
Affiliation(s)
- Xiaofan Yuan
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Lei Guo
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jianhong Wang
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Duozi Wang
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Shu Yang
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Fuqiang Guo
- Neurology Department, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
28
|
Kirdajova D, Valihrach L, Valny M, Kriska J, Krocianova D, Benesova S, Abaffy P, Zucha D, Klassen R, Kolenicova D, Honsa P, Kubista M, Anderova M. Transient astrocyte-like NG2 glia subpopulation emerges solely following permanent brain ischemia. Glia 2021; 69:2658-2681. [PMID: 34314531 PMCID: PMC9292252 DOI: 10.1002/glia.24064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3‐month‐old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single‐cell RT‐qPCR and self‐organizing Kohonen map analysis of tdTomato‐positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury‐dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte‐like NG2 glia, we used single‐cell RNA‐sequencing analysis and to disclose their basic membrane properties, the patch‐clamp technique was employed. Overall, we have proved that astrocyte‐like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte‐like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.
Collapse
Affiliation(s)
- Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Martin Valny
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Krocianova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.,Faculty of Chemical Technology, Laboratory of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Ruslan Klassen
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Denisa Kolenicova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Honsa
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
29
|
Nanclares C, Baraibar AM, Araque A, Kofuji P. Dysregulation of Astrocyte-Neuronal Communication in Alzheimer's Disease. Int J Mol Sci 2021; 22:7887. [PMID: 34360652 PMCID: PMC8346080 DOI: 10.3390/ijms22157887] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recent studies implicate astrocytes in Alzheimer's disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this "active" role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.
Collapse
Affiliation(s)
| | | | | | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; (C.N.); (A.M.B.); (A.A.)
| |
Collapse
|
30
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Shindo A, Takase H, Hamanaka G, Chung KK, Mandeville ET, Egawa N, Maki T, Borlongan M, Takahashi R, Lok J, Tomimoto H, Lo EH, Arai K. Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neurosci Ther 2020; 27:60-70. [PMID: 33314664 PMCID: PMC7804900 DOI: 10.1111/cns.13510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent clinical studies suggest that pentraxin 3 (PTX3), which is known as an acute-phase protein that is produced rapidly at local sites of inflammation, may be a new biomarker of disease risk for central nervous system disorders, including stroke. However, the effects of PTX3 on cerebrovascular function in the neurovascular unit (NVU) after stroke are mostly unknown, and the basic research regarding the roles of PTX3 in NVU function is still limited. In this reverse translational study, we prepared mouse models of white matter stroke by vasoconstrictor (ET-1 or L-Nio) injection into the corpus callosum region to examine the roles of PTX3 in the pathology of cerebral white matter stroke. PTX3 expression was upregulated in GFAP-positive astrocytes around the affected region in white matter for at least 21 days after vasoconstrictor injection. When PTX3 expression was reduced by PTX3 siRNA, blood-brain barrier (BBB) damage at day 3 after white matter stroke was exacerbated. In contrast, when PTX3 siRNA was administered at day 7 after white matter stroke, compensatory angiogenesis at day 21 was promoted. In vitro cell culture experiments confirmed the inhibitory effect of PTX3 in angiogenesis, that is, recombinant PTX3 suppressed the tube formation of cultured endothelial cells in a Matrigel-based in vitro angiogenesis assay. Taken together, our findings may support a novel concept that astrocyte-derived PTX3 plays biphasic roles in cerebrovascular function after white matter stroke; additionally, it may also provide a proof-of-concept that PTX3 could be a therapeutic target for white matter-related diseases, including stroke.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mia Borlongan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
32
|
Hadzic A, Nguyen TD, Hosoyamada M, Tomioka NH, Bergersen LH, Storm-Mathisen J, Morland C. The Lactate Receptor HCA 1 Is Present in the Choroid Plexus, the Tela Choroidea, and the Neuroepithelial Lining of the Dorsal Part of the Third Ventricle. Int J Mol Sci 2020; 21:E6457. [PMID: 32899645 PMCID: PMC7554735 DOI: 10.3390/ijms21186457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
The volume, composition, and movement of the cerebrospinal fluid (CSF) are important for brain physiology, pathology, and diagnostics. Nevertheless, few studies have focused on the main structure that produces CSF, the choroid plexus (CP). Due to the presence of monocarboxylate transporters (MCTs) in the CP, changes in blood and brain lactate levels are reflected in the CSF. A lactate receptor, the hydroxycarboxylic acid receptor 1 (HCA1), is present in the brain, but whether it is located in the CP or in other periventricular structures has not been studied. Here, we investigated the distribution of HCA1 in the cerebral ventricular system using monomeric red fluorescent protein (mRFP)-HCA1 reporter mice. The reporter signal was only detected in the dorsal part of the third ventricle, where strong mRFP-HCA1 labeling was present in cells of the CP, the tela choroidea, and the neuroepithelial ventricular lining. Co-labeling experiments identified these cells as fibroblasts (in the CP, the tela choroidea, and the ventricle lining) and ependymal cells (in the tela choroidea and the ventricle lining). Our data suggest that the HCA1-containing fibroblasts and ependymal cells have the ability to respond to alterations in CSF lactate in body-brain signaling, but also as a sign of neuropathology (e.g., stroke and Alzheimer's disease biomarker).
Collapse
Affiliation(s)
- Alena Hadzic
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway; (A.H.); (T.D.N.)
| | - Teresa D. Nguyen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway; (A.H.); (T.D.N.)
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan; (M.H.); (N.H.T.)
| | - Naoko H. Tomioka
- Department of Human Physiology and Pathology, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan; (M.H.); (N.H.T.)
| | - Linda H. Bergersen
- The Brain and Muscle Energy Group, Institute of Oral Biology, Faculty of Dentistry, University of Oslo, NO-0318 Oslo, Norway;
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jon Storm-Mathisen
- Amino Acid Transporter Laboratory, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, Healthy Brain Aging Centre, University of Oslo, NO-0317 Oslo, Norway;
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, NO-0316 Oslo, Norway; (A.H.); (T.D.N.)
| |
Collapse
|
33
|
Götz S, Bribian A, López-Mascaraque L, Götz M, Grothe B, Kunz L. Heterogeneity of astrocytes: Electrophysiological properties of juxtavascular astrocytes before and after brain injury. Glia 2020; 69:346-361. [PMID: 32809228 DOI: 10.1002/glia.23900] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
Abstract
Astrocyte heterogeneity is increasingly recognized, but still little is known about juxtavascular astrocytes with their somata directly adjacent to blood vessels, despite their importance after brain injury. As juxtavascular astrocytes originate from common progenitor cells, that is, have a clonal origin, they may intrinsically differ from other, non-juxtavascular astrocytes. To explore this, we examined the electrophysiological properties of these groups of astrocytes and the underlying ion channels. Using brain slices of BAC Aldh1l1-eGFP transgenic mice with astrocytes labeled by GFP expression, we compared juxtavascular and non-juxtavascular astrocytes in the somatosensory cortex by means of whole-cell patch-clamp recordings and immunohistochemical staining. Prior to injury, juxta- and non-juxtavascular astrocytes exhibit comparable electrophysiological properties with characteristic mostly passive conductance and a typical negative resting membrane potential. Immunohistochemical analysis of K+ channels showed that all astrocytes were Kir 4.1+ , but revealed an intriguing difference for Kv 4.3. The expression of Kv 4.3 in sibling astrocytes (non-juxtavascular, juxtavascular and pial) was dependent on their ontogenetic origin with lowest levels in juxtavascular astrocytes located in upper cortical layers. After traumatic brain injury (TBI), we found profound changes in the electrophysiological type of astrocytes with a predominance of non-passive properties and this pattern was significantly enriched in juxtavascular astrocytes. This was accompanied by pronounced down-regulation of Kir 4.1 in proliferating astrocytes, which was significantly more in juxtavascular compared to non-juxtavascular astrocytes. Taken together, TBI induces profound differences in electrophysiological properties between juxtavascular and non-juxtavascular astrocytes that might be related to the preponderance of juxtavascular astrocyte proliferation.
Collapse
Affiliation(s)
- Stefanie Götz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Ana Bribian
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, Madrid, Spain
| | - Laura López-Mascaraque
- Instituto Cajal-CSIC, Molecular, Cellular and Developmental Neurobiology Department, Madrid, Spain
| | - Magdalena Götz
- Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany.,Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany.,Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU) Munich, SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet (LMU) Munich, Martinsried, Germany
| |
Collapse
|
34
|
Souza Monteiro de Araújo D, De Logu F, Adembri C, Rizzo S, Janal MN, Landini L, Magi A, Mattei G, Cini N, Pandolfo P, Geppetti P, Nassini R, Calaza KDC. TRPA1 mediates damage of the retina induced by ischemia and reperfusion in mice. Cell Death Dis 2020; 11:633. [PMID: 32801314 PMCID: PMC7429961 DOI: 10.1038/s41419-020-02863-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is implicated in retinal cell injury associated with glaucoma and other retinal diseases. However, the mechanism by which oxidative stress leads to retinal damage is not completely understood. Transient receptor potential ankyrin 1 (TRPA1) is a redox-sensitive channel that, by amplifying the oxidative stress signal, promotes inflammation and tissue injury. Here, we investigated the role of TRPA1 in retinal damage evoked by ischemia (1 hour) and reperfusion (I/R) in mice. In wild-type mice, retinal cell numbers and thickness were reduced at both day-2 and day-7 after I/R. By contrast, mice with genetic deletion of TRPA1 were protected from the damage seen in their wild-type littermates. Daily instillation of eye drops containing two different TRPA1 antagonists, an oxidative stress scavenger, or a NADPH oxidase-1 inhibitor also protected the retinas of C57BL/6J mice exposed to I/R. Mice with genetic deletion of the proinflammatory TRP channels, vanilloid 1 (TRPV1) or vanilloid 4 (TRPV4), were not protected from I/R damage. Surprisingly, genetic deletion or pharmacological blockade of TRPA1 also attenuated the increase in the number of infiltrating macrophages and in the levels of the oxidative stress biomarker, 4-hydroxynonenal, and of the apoptosis biomarker, active caspase-3, evoked by I/R. These findings suggest that TRPA1 mediates the oxidative stress burden and inflammation that result in murine retinal cell death. We also found that TRPA1 (both mRNA and protein) is expressed by human retinal cells. Thus, it is possible that inhibition of a TRPA1-dependent pathway could also attenuate glaucoma-related retinal damage.
Collapse
Affiliation(s)
- Daniel Souza Monteiro de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil.,Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Chiara Adembri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Stanislao Rizzo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), Division of Ophthalmology, University of Florence, Florence, Italy
| | - Malvin N Janal
- Department of Epidemiology and Health Promotion, New York University College of Dentistry, New York, NY, USA
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Nicoletta Cini
- General Laboratory, Careggi University Hospital, Florence, Italy
| | - Pablo Pandolfo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Karin da Costa Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Brazil
| |
Collapse
|
35
|
Steliga A, Kowiański P, Czuba E, Waśkow M, Moryś J, Lietzau G. Neurovascular Unit as a Source of Ischemic Stroke Biomarkers-Limitations of Experimental Studies and Perspectives for Clinical Application. Transl Stroke Res 2020; 11:553-579. [PMID: 31701356 PMCID: PMC7340668 DOI: 10.1007/s12975-019-00744-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
Abstract
Cerebral stroke, which is one of the most frequent causes of mortality and leading cause of disability in developed countries, often leads to devastating and irreversible brain damage. Neurological and neuroradiological diagnosis of stroke, especially in its acute phase, is frequently uncertain or inconclusive. This results in difficulties in identification of patients with poor prognosis or being at high risk for complications. It also makes difficult identification of these stroke patients who could benefit from more aggressive therapies. In contrary to the cardiovascular disease, no single biomarker is available for the ischemic stroke, addressing the abovementioned issues. This justifies the need for identifying of effective diagnostic measures characterized by high specificity and sensitivity. One of the promising avenues in this area is studies on the panels of biomarkers characteristic for processes which occur in different types and phases of ischemic stroke and represent all morphological constituents of the brains' neurovascular unit (NVU). In this review, we present the current state of knowledge concerning already-used or potentially applicable biomarkers of the ischemic stroke. We also discuss the perspectives for identification of biomarkers representative for different types and phases of the ischemic stroke, as well as for different constituents of NVU, which concentration levels correlate with extent of brain damage and patients' neurological status. Finally, a critical analysis of perspectives on further improvement of the ischemic stroke diagnosis is presented.
Collapse
Affiliation(s)
- Aleksandra Steliga
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Przemysław Kowiański
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland.
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland.
| | - Ewelina Czuba
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Monika Waśkow
- Faculty of Health Sciences, Pomeranian University of Slupsk, 64 Bohaterów Westerplatte St., 76-200, Slupsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
| | - Grażyna Lietzau
- Department of Anatomy and Neurobiology, Medical University of Gdansk, 1 Debinki St., 80-211, Gdansk, Poland
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol 2020; 11:1024. [PMID: 32733433 PMCID: PMC7362712 DOI: 10.3389/fimmu.2020.01024] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022] Open
Abstract
The interaction between microglia and astrocytes significantly influences neuroinflammation. Microglia/astrocytes, part of the neurovascular unit (NVU), are activated by various brain insults. The local extracellular and intracellular signals determine their characteristics and switch of phenotypes. Microglia and astrocytes are activated into two polarization states: the pro-inflammatory phenotype (M1 and A1) and the anti-inflammatory phenotype (M2 and A2). During neuroinflammation, induced by stroke or lipopolysaccharides, microglia are more sensitive to pathogens, or damage; they are thus initially activated into the M1 phenotype and produce common inflammatory signals such as IL-1 and TNF-α to trigger reactive astrocytes into the A1 phenotype. These inflammatory signals can be amplified not only by the self-feedback loop of microglial activation but also by the unique anatomy structure of astrocytes. As the pathology further progresses, resulting in local environmental changes, M1-like microglia switch to the M2 phenotype, and M2 crosstalk with A2. While astrocytes communicate simultaneously with neurons and blood vessels to maintain the function of neurons and the blood-brain barrier (BBB), their subtle changes may be identified and responded by astrocytes, and possibly transferred to microglia. Although both microglia and astrocytes have different functional characteristics, they can achieve immune "optimization" through their mutual communication and cooperation in the NVU and build a cascaded immune network of amplification.
Collapse
Affiliation(s)
- Li-Rong Liu
- Shanxi Medical University, Taiyuan, China.,People's Hospital of Yaodu District, Linfen, China
| | - Jia-Chen Liu
- Xiangya Medical College, Central South University, Changsha, China
| | | | | | - Gai-Qing Wang
- Shanxi Medical University, Taiyuan, China.,SanYa Central Hospital, The Third People's Hospital of HaiNan Province, SanYa, China
| |
Collapse
|
37
|
Mi XS, Feng Q, Lo ACY, Chang RCC, Chung SK, So KF. Lycium barbarum polysaccharides related RAGE and Aβ levels in the retina of mice with acute ocular hypertension and promote maintenance of blood retinal barrier. Neural Regen Res 2020; 15:2344-2352. [PMID: 32594059 PMCID: PMC7749484 DOI: 10.4103/1673-5374.284998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our previous study verified the protective effects of Lycium barbarum polysaccharides (LBP) on retinal neurons and blood vessels in acute ocular hypertension (AOH) mice. To investigate the effect of LBP on the reactivity of retinal glial cells, an AOH mouse model was established in one eye by maintaining ocular hypertension of 90 mmHg for 60 minutes. Either LBP solution (1 mg/kg) or phosphate-buffered saline was administrated to the mice by gavage daily, starting 7 days before the AOH insult and continuing until the mice were sacrificed for specimen collection on day 4 post-insult. After AOH insult, increased numbers of astrocytes and microglia were observed, together with decreased expression of the following glial cell biomarkers in the retinal ganglion cells of AOH mice: glial fibrillary acidic protein, glutamine synthetase, aquaporin-4, S-100 proteins, ionized calcium-binding adaptor molecule 1, amyloid precursor protein and receptor of advanced glycosylation end-products. After intervention with LBP, the above changes were significantly reduced. Remarkably, morphological remodeling of blood vessel-associated retinal astrocytes, marked by glial fibrillary acidic protein, was also observed. These results, taken together, suggest that LBP regulated the production of amyloid-β and expression of receptor of advanced glycosylation end-products, as well as mediating the activity of retinal glial cells, which may lead to the promotion of better maintenance of the blood-retinal barrier and improved neuronal survival in AOH insult. This study was approved by the Committee for the Use of Live Animals in Teaching and Research (approval No. CULTRA-#1664-08).
Collapse
Affiliation(s)
- Xue-Song Mi
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province; Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, Hunan Province, China
| | - Qian Feng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region; School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond Chuen-Chung Chang
- State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region; School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administrative Region; School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Changsha Academician Expert Workstation, Aier Eye Hospital Group, Changsha, Hunan Province; State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region; Department of Ophthalmology, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
38
|
Yue Y, Zhao J, Li X, Zhang L, Su Y, Fan H. Involvement of Shh/Gli1 signaling in the permeability of blood-spinal cord barrier and locomotion recovery after spinal cord contusion. Neurosci Lett 2020; 728:134947. [PMID: 32276104 DOI: 10.1016/j.neulet.2020.134947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/10/2020] [Accepted: 03/29/2020] [Indexed: 11/18/2022]
Abstract
Shh/Gli1 signaling plays important roles in development of spinal cord. How it is involved in spinal cord injury (SCI) remains unclear. In this study, we explored the roles of Shh/Gli1 signaling in SCI by using Shh signaling reporter Gli1lz mice and Gli1 mutant Gli1lz/lz mice. For detecting the Shh/Gli1 signaling after SCI, X-gal staining and double-immunostaining of Shh/PDGFR-β, Shh/GFAP and LacZ/GFAP was conducted at 3 days post injury (dpi) on Gli1lz mice. To investigate the effects of Gli1 mutation on pathological changes after SCI, astrocytic proliferation and the content of intra-parenchymal Evans Blue were evaluated at 7dpi in wild-type and Gli1lz/lz mice. Furthermore, locomotor recovery was assessed by BMS scoring at 1, 3, 5 and 7dpi. The results of X-gal staining and immunohistochemistry showed that Shh/Gli1 signaling was mainly activated in reactive astrocytes after SCI. The 5-bromo-2-deoxyuridine (BrdU) incorporation assay showed that mutation of Gli1 did not affect the proliferation of astrocytes. However, the leakage of Evans Blue was significantly increased in the injured cord of Gli1lz/lz mice compared to wild-type mice. In addition, locomotor recovery was significantly impaired in the Gli1lz/lz mice. The findings demonstrated that Shh/Gli1 signaling could be induced in reactive astrocytes by SCI, and plays important role in permeability of blood-spinal cord barrier (BSCB) and locomotor recovery after SCI.
Collapse
Affiliation(s)
- Yili Yue
- Department of Pathophysiology, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Jiqian Zhao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, 051330, China.
| | - Xiaoji Li
- Department of Pathophysiology, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, China.
| | - Li Zhang
- Institute of Basic Medical Sciences, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, No. 1 Xin Wang Road, Xi'an, Shaanxi, 710021, China.
| | - Yuhong Su
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, 051330, China.
| | - Hong Fan
- Department of Neurobiology and Institute of Neurosciences, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
39
|
Mascarenhas DD. Transcriptional re-programming in rat central nervous system two weeks after burn trauma: the impact of nephrilin treatment on the expression of oxidative stress-related genes. Scars Burn Heal 2020; 6:2059513120939443. [PMID: 32850134 PMCID: PMC7425318 DOI: 10.1177/2059513120939443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Survivors of severe burns suffer lifetime neuroinflammatory consequences manifested by higher incidence of major depression and neurodegenerative disease. In a scald model, nephrilin peptide has previously been shown to protect rats from loss of lean body mass, kidney function and glycaemic control, complications that have also been shown to endure in burn patient populations. Nephrilin's mechanism of action has been suggested to involve protection from excessive oxidative stress. METHODS Using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) amplification of transcripts in total RNA extracted from dorsal root ganglia of male rats 14 days after exposure to thermal insult, we query the relative levels of expression of 34 genes believed to be associated with oxidative stress biology in the central nervous system (CNS). We use these data to explore the central role of oxidative stress in astrogliosis, immunosuppression and mitochondrial homeostasis. RESULTS AND DISCUSSION Rats that received nephrilin treatment (4 mg/kg by subcutaneous bolus injection once daily for seven days after scald injury) showed significantly reduced elevations in gene expression of some key genes such as NOX2, GFAP, AQP4 and RAC1, but not of others such as NOX4, STEAP4, ARG1 and CCL2. CONCLUSION The implications of these data with reference to nephrilin's potential clinical utility for mitigating the enduring effects of burn trauma on the CNS are discussed. Nephrilin reduces the expression of some genes implicated in neurodegeneration after burn insult. LAY SUMMARY Nephrilin peptide is a novel treatment for short- and long-term systemic effects of burn trauma. This study measures the capability of nephrilin to address post-traumatic neurodegenerative disease by looking at the expression of genes in the central nervous system, in a rat scald model. Nephrilin appears to have beneficial effects by reducing the expression of some key genes known to be relevant in neurodegenerative processes, but not others.
Collapse
Affiliation(s)
- Desmond D Mascarenhas
- Mayflower Organization for Research & Education, Sunnyvale, CA, USA
- Transporin, Inc., Sunnyvale, CA, USA
| |
Collapse
|
40
|
Hausburg MA, Banton KL, Roman PE, Salgado F, Baek P, Waxman MJ, Tanner A, Yoder J, Bar-Or D. Effects of propofol on ischemia-reperfusion and traumatic brain injury. J Crit Care 2019; 56:281-287. [PMID: 32001426 DOI: 10.1016/j.jcrc.2019.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/07/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022]
Abstract
Oxidative stress exacerbates brain damage following ischemia-reperfusion and traumatic brain injury (TBI). Management of TBI and critically ill patients commonly involves use of propofol, a sedation medication that acts as a general anesthetic with inherent antioxidant properties. Here we review available evidence from animal model systems and clinical studies that propofol protects against ischemia-reperfusion injury. However, evidence of propofol toxicity in humans exists and manifests as a rare complication, "propofol infusion syndrome" (PRIS). Evidence in animal models suggests that brain injury induces expression of the p75 neurotrophin receptor (p75NTR), which is associated with proapoptotic signaling. p75NTR-mediated apoptosis of neurons is further exacerbated by propofol's superinduction of p75NTR and concomitant inhibition of neurotrophin processing. Propofol is toxic to neurons but not astrocytes, a type of glial cell. Evidence suggests that propofol protects astrocytes from oxidative stress and stimulates astroglial-mediated protection of neurons. One may speculate that in brain injury patients under sedation/anesthesia, propofol provides brain tissue protection or aids in recovery by enhancing astrocyte function. Nevertheless, our understanding of neurologic recovery versus long-term neurological sequelae leading to neurodegeneration is poor, and it is also conceivable that propofol plays a partial as yet unrecognized role in long-term impairment of the injured brain.
Collapse
Affiliation(s)
- Melissa A Hausburg
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA
| | - Kaysie L Banton
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA
| | - Phillip E Roman
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - Fernando Salgado
- Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Anesthesiology, Wesley Medical Center, Wichita, KS 67214, USA
| | - Peter Baek
- Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Department of Anesthesiology, Medical City Plano, Plano, TX 75075, USA
| | - Michael J Waxman
- Department of Critical Care, Research Medical Center, Kansas City, MO 64132, USA
| | - Allen Tanner
- Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA
| | - Jeffrey Yoder
- Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Department of Anesthesiology, St. Anthony Hospital, Lakewood, CO 80228, USA
| | - David Bar-Or
- Trauma Research Department, Swedish Medical Center, 501 E Hampden, Englewood, CO 80113, USA; Trauma Research Department, St. Anthony Hospital, 11600 W 2nd Pl, Lakewood, CO 80228, USA; Trauma Research Department, Medical City Plano, 3901 W 15th St, Plano, TX 75075, USA; Trauma Research Department, Penrose Hospital, 2222 N Nevada Ave, Colorado Springs, CO 80907, USA; Trauma Research Department, Research Medical Center, 2316 E Meyer Blvd, Kansas City, MO 64132, USA; Trauma Research Department, Wesley Medical Center, 550 N Hillside St, Wichita, KS 67214, USA; Department of Molecular Biology, Rocky Vista University, 8401 S Chambers Rd, Parker, CO 80134, USA.
| |
Collapse
|
41
|
Castillo C, Fernández-Mendívil C, Buendia I, Saavedra P, Meza C, Parra NC, Lopez MG, Toledo JR, Fuentealba J. Neuroprotective effects of EpoL against oxidative stress induced by soluble oligomers of Aβ peptide. Redox Biol 2019; 24:101187. [PMID: 30965198 PMCID: PMC6454060 DOI: 10.1016/j.redox.2019.101187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022] Open
Abstract
Erythropoietin is a glycoproteic hormone that regulates hematopoiesis by acting on its specific receptor (EpoR). The expression of EpoR in the central nervous system (CNS) suggests a role for this hormone in the brain. Recently, we developed a new Epo variant without hematopoietic activity called EpoL, which showed marked neuroprotective effects against oxidative stress in brain ischemia related models. In this study, we have evaluated the neuroprotective effects of EpoL against oxidative stress induced by chronic treatment with Aβ. Our results show that EpoL was neuroprotective against Aβ-induced toxicity by a mechanism that implicates EpoR, reduction in reactive oxygen species, and reduction in astrogliosis. Furthermore, EpoL treatment improved calcium handling and SV2 levels. Interestingly, the neuroprotective effect of EpoL against oxidative stress induced by chronic Aβ treatment was achieved at a concentration 10 times lower than that of Epo. In conclusion, EpoL, a new variant of Epo without hematopoietic activity, is of potential interest for the treatment of diseases related to oxidative stress in the CNS such as Alzheimer disease.
Collapse
Affiliation(s)
- C Castillo
- Laboratorio de Biotecnología y Biofarmacos, Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile
| | - C Fernández-Mendívil
- Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - I Buendia
- Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - P Saavedra
- Laboratorio de Biotecnología y Biofarmacos, Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile
| | - C Meza
- Laboratorio de Biotecnología y Biofarmacos, Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile
| | - N C Parra
- Laboratorio de Biotecnología y Biofarmacos, Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile
| | - M G Lopez
- Departamento de Farmacología y Terapéutica, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - J R Toledo
- Laboratorio de Biotecnología y Biofarmacos, Departamento de Fisiopatologia, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile.
| | - J Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepcion, Chile.
| |
Collapse
|
42
|
Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019; 10:153. [PMID: 30890934 PMCID: PMC6411824 DOI: 10.3389/fphar.2019.00153] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/08/2019] [Indexed: 12/28/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and long-term disability worldwide; however, effective clinical approaches are still limited. The transcriptional factor Nrf2 is a master regulator in cellular and organismal defense against endogenous and exogenous stressors by coordinating basal and stress-inducible activation of multiple cytoprotective genes. The Nrf2 network not only tightly controls redox homeostasis but also regulates multiple intermediary metabolic processes. Therefore, targeting Nrf2 has emerged as an attractive therapeutic strategy for the prevention and treatment of CNS diseases including stroke. Here, the current understanding of the Nrf2 regulatory network is critically examined to present evidence for the contribution of Nrf2 pathway in rodent ischemic stroke models. This review outlines the literature for Nrf2 studies in preclinical stroke and focuses on the in vivo evidence for the role of Nrf2 in primary and secondary brain injuries. The dynamic change and functional importance of Nrf2 signaling, as well as Nrf2 targeted intervention, are revealed in permanent, transient, and global cerebral ischemia models. In addition, key considerations, pitfalls, and future potentials for Nrf2 studies in preclinical stroke investigation are discussed.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Logan M Locascio
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
43
|
Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, Kong W, Liu Q, Yang X. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:651-664. [PMID: 30829545 DOI: 10.1080/21691401.2019.1575843] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qiuju Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Yue Ma
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun TX, PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| |
Collapse
|
44
|
Zhang X, Zhao HH, Li D, Li HP. Neuroprotective effects of matrix metalloproteinases in cerebral ischemic rats by promoting activation and migration of astrocytes and microglia. Brain Res Bull 2019; 146:136-142. [DOI: 10.1016/j.brainresbull.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
|
45
|
Liu SM, Cao XM, Qu XH, Cai W, Hu F, Cao WF, Wu LF, Wu XM. Effects of remote ischemic preconditioning on astrocyte proliferation and glial scars after cerebral infarction. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219846325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to investigate whether remote ischemic preconditioning (RIPC) can promote neurological function recovery after middle cerebral artery occlusion (MCAO) in rats and its possible mechanism. A total of 32 Sprague Dawley (SD) rats were randomly divided into RIPC group (n = 16) and MCAO group (n = 16). In the RIPC group, 1 h before induction of MCAO, the rats received bilateral femoral artery ischemic preconditioning (10 min/time), followed by 10 min of relaxation, and a total of three cycles were carried out. Then, the MCAO-2h model was established. In the MCAO group, the MCAO-2h model was established at 1 h after the separation of bilateral femoral arteries. The modified neurological severity score (mNSS) was assessed. At postmodeling day 7, triphenyltetrazolium chloride (TTC) staining and immunohistochemistry were conducted, and neurological function recovery, infarct size, and the expression levels of glial fibrillary acidic protein (GFAP), synaptophysin (SYN), and neurite outgrowth inhibitor A (Nogo-A) were observed. At postmodeling day 7, the difference in mNSS was statistically significant ( P < 0.05). Infarct size was significantly smaller in the RIPC group than in the MCAO group ( P < 0.05). The number of GFAP+ cells was significantly lesser in the RIPC group than in the MCAO group ( P < 0.05). The difference in thickness of the glial scar was not statistically significant ( P = 0.091). At postmodeling day 7, the expression level of SYN integrated optical density (IOD) was significantly higher in the RIPC group than in the MCAO group ( P < 0.05). The number of Nogo-A+ cells was significantly lesser in the RIPC group than in the MCAO group ( P < 0.05). At day 7 after MCAO, RIPC can promote neurological function recovery in rats and reduce infarct size. The mechanism may be that after 7 days, RIPC reduces GFAP expression, inhibits the trend of glial scar formation and Nogo-A expression, and increases SYN expression.
Collapse
Affiliation(s)
- Shi-Min Liu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Xian-Min Cao
- Jiangxi University of Finance and Economics, Nanchang, China
| | - Xin-Hui Qu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Wen Cai
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Fan Hu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Wen-Feng Cao
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Lin-Feng Wu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| | - Xiao-Mu Wu
- Department of Neurology, People’s Hospital of Jiangxi Province, Nanchang, China
| |
Collapse
|
46
|
Zang J, Liu AX, Qi L. The cytological mechanism and effects of hypertensive cerebral hemorrhage treatment by citicoline on serum GFAP and copeptin level. EUR J INFLAMM 2019. [DOI: 10.1177/2058739219867244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, 102 patients with hypertensive intracerebral hemorrhage (52 patients in the citicoline treatment group and 50 patients in the routine treatment group) were analyzed and compared. It was found that citicoline-assisted treatment of hypertensive intracerebral hemorrhage could inhibit the release of serum glial fibrillary acidic protein (GFAP) and peptides ( P < 0.05) and improve the prognosis and neurological and daily living ability of patients ( P < 0.05). In addition, CDP-choline reduced the mortality of neurons, inhibited inflammatory factors, and improved the prognosis of patients ( P < 0.05). A high dose of CDP-choline was also significantly effective in protecting neurons.
Collapse
Affiliation(s)
- Jun Zang
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, P.R. China
| | - Ai-xian Liu
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, P.R. China
| | - Lin Qi
- Neurological Rehabilitation Center, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, P.R. China
| |
Collapse
|
47
|
Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Buzanska L, Sypecka J. Directed glial differentiation and transdifferentiation for neural tissue regeneration. Exp Neurol 2018; 319:112813. [PMID: 30171864 DOI: 10.1016/j.expneurol.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Glial cells which are indispensable for the central nervous system development and functioning, are proven to be vulnerable to a harmful influence of pathological cues and tissue misbalance. However, they are also highly sensitive to both in vitro and in vivo modulation of their commitment, differentiation, activity and even the fate-switch by different types of bioactive molecules. Since glial cells (comprising macroglia and microglia) are an abundant and heterogeneous population of neural cells, which are almost uniformly distributed in the brain and the spinal cord parenchyma, they all create a natural endogenous reservoir of cells for potential neurogenerative processes required to be initiated in response to pathophysiological cues present in the local tissue microenvironment. The past decade of intensive investigation on a spontaneous and enforced conversion of glial fate into either alternative glial (for instance from oligodendrocytes to astrocytes) or neuronal phenotypes, has considerably extended our appreciation of glial involvement in restoring the nervous tissue cytoarchitecture and its proper functions. The most effective modulators of reprogramming processes have been identified and tested in a series of pre-clinical experiments. A list of bioactive compounds which are potent in guiding in vivo cell fate conversion and driving cell differentiation includes a selection of transcription factors, microRNAs, small molecules, exosomes, morphogens and trophic factors, which are helpful in boosting the enforced neuro-or gliogenesis and promoting the subsequent cell maturation into desired phenotypes. Herein, an issue of their utility for a directed glial differentiation and transdifferentiation is discussed in the context of elaborating future therapeutic options aimed at restoring the diseased nervous tissue.
Collapse
Affiliation(s)
- Justyna Janowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Justyna Gargas
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Teresa Zalewska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Stem Cell Bioengineering Unit, 5, Pawinskiego str., 02-106 Warsaw, Poland
| | - Joanna Sypecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, NeuroRepair Department, 5, Pawinskiego str., 02-106 Warsaw, Poland.
| |
Collapse
|
48
|
Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol 2018; 74:121-132. [PMID: 30092283 DOI: 10.1016/j.matbio.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 12/16/2022]
Abstract
Despite the crucial role of perineuronal nets (PNNs) in neural plasticity and neurological disorders, their ultrastructural organization remains largely unresolved. We have developed a novel approach combining superresolution structured illumination microscopy (SR-SIM) and mathematical reconstruction that allows for quantitative analysis of PNN topology. Since perineuronal matrix is capable to restrict neural plasticity but at the same time is necessary to maintain synapses, we hypothesized that a beneficial post stroke recovery requires a reversible loosening of PNNs. Our results indicated that focal cerebral ischemia induces partial depletion of PNNs and that mild hypoperfusion not associated with ischemic injury can induce ultra-structural rearrangements in visually intact meshworks. In line with the activation of neural plasticity under mild stress stimuli, we provide evidence that topological conversion of PNNs can support post stroke neural rewiring.
Collapse
|
49
|
Cai XJ, Zhao JJ, Lu Y, Zhang JP, Ren BY, Cao TT, Xi GJ, Li ZW. The microenvironment following oxygen glucose deprivation/re-oxygenation-induced BSCB damage in vitro. Brain Res Bull 2018; 143:171-180. [PMID: 30086352 DOI: 10.1016/j.brainresbull.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the microenvironment following blood-spinal cord barrier (BSCB) damage and to evaluate the role of BSCB disruption in secondary damage of spinal cord injury (SCI). METHODS A model of BSCB damage was established by co-culture of primary microvascular endothelial cells and glial cells obtained from rat spinal cord tissue followed by oxygen glucose deprivation/re-oxygenation (OGD/R). Permeability was evaluated by measuring the transendothelial electrical resistance (TEER) and the leakage test of Fluorescein isothiocyanate-dextran (FITC-dextran). The expression of tight junction (TJ) proteins (occludin and zonula occludens-1 (ZO-1) were evaluated by Western blot and immunofluorescence microscopy. Proinflammatory factors (TNF-α, iNOS, COX-2 and IL-1β), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were detected in the culture medium under different conditions by enzyme-linked immuno sorbent assay (ELISA). RESULTS The model of BSCB damage induced by OGD/R was successfully constructed. The maximum BSCB permeability occurred 6-12 hours but not within the first 3 h after OGD/R-induced damage. Likewise, the most significant period of TJ protein loss was also detected 6-12 hours after induction. During the hyper-acute period (3 h) following OGD/R-induced damage of BSCB, leukocyte chemotactic factors and leukocyte adhesion factors were significantly increased in the BSCB model. Pro-inflammation factors (TNF-α, IL-1β, iNOS, COX-2), leukocyte chemotactic factors (MIP-1α, MIP-1β) and leukocyte adhesion factors (ICAM-1, VCAM-1) were also sharply produced during the acute period (3-6 hours) and maintained plateau levels 6-12 hours following OGD/R-induced damage, which overlapped with the period of BSCB permeability maximum. A negative linear correlation was observed between the abundance of proinflammatory factors and the expression of TJ proteins (ZO-1 and occludin) and transepithelial electrical resistance (TEER), and a positive linear correlation was found with transendothelial FITC-dextran. CONCLUSIONS Secondary damage continues after primary BSCB damage induced by OGD/R, exhibiting close ties with inflammation injury.
Collapse
Affiliation(s)
- Xiao-Jun Cai
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China; Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, PR China
| | - Jing-Jing Zhao
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Yi Lu
- Department of Pharmacy, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Jian-Ping Zhang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Bing-Yan Ren
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Ting-Ting Cao
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Guang-Jun Xi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China
| | - Zai-Wang Li
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, PR China.
| |
Collapse
|
50
|
Roy-O’Reilly M, McCullough LD. Age and Sex Are Critical Factors in Ischemic Stroke Pathology. Endocrinology 2018; 159:3120-3131. [PMID: 30010821 PMCID: PMC6963709 DOI: 10.1210/en.2018-00465] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a devastating brain injury resulting in high mortality and substantial loss of function. Understanding the pathophysiology of ischemic stroke risk, mortality, and functional loss is critical to the development of new therapies. Age and sex have a complex and interactive effect on ischemic stroke risk and pathophysiology. Aging is the strongest nonmodifiable risk factor for ischemic stroke, and aged stroke patients have higher mortality and morbidity and poorer functional recovery than their young counterparts. Importantly, patient age modifies the influence of patient sex in ischemic stroke. Early in life, the burden of ischemic stroke is higher in men, but stroke becomes more common and debilitating for women in elderly populations. The profound effects of sex and age on clinical ischemic stroke are mirrored in the results of experimental in vivo and in vitro studies. Here, we review current knowledge on the influence of age and sex in the incidence, mortality, and functional outcome of ischemic stroke in clinical populations. We also discuss the experimental evidence for sex and age differences in stroke pathophysiology and how a better understanding of these biological variables can improve clinical care and enhance development of novel therapies.
Collapse
Affiliation(s)
- Meaghan Roy-O’Reilly
- Department of Neurology, University of Texas Health Science Center, Houston, Texas
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, Texas
- Correspondence: Louise D. McCullough, MD, PhD, Department of Neurology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030. E-mail:
| |
Collapse
|