1
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Lin J, Sun Y, Huang H, Yu C, Kuang W, Wang Y, Zhu L. P2Y6R Inhibition Induces Microglial M2 Polarization by Promoting PINK1/Parkin-Dependent Mitophagy After Spinal Cord Injury. Mol Neurobiol 2025; 62:7054-7074. [PMID: 39607640 DOI: 10.1007/s12035-024-04631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Secondary injury presents a significant hurdle to neural regeneration following spinal cord injury (SCI), primarily driven by inflammation in which microglial cells play a crucial role. Despite the growing interest in mitophagy, studies on its occurrence post-spinal cord injury, particularly within microglial cells, are scarce. While P2Y6R has been implicated in inflammation regulation in various neurological conditions, its specific role in SCI remains uncertain. Our study revealed an upregulation of P2Y6R expression following SCI notably in microglial cells. Treatment with the P2Y6R-specific inhibitor, MRS2578, in mice facilitated M2 polarization of microglial cells and alleviated secondary damage, ultimately enhancing neural regeneration and functional recovery. In an in vitro BV2 inflammation model, our findings indicate that P2Y6R inhibition induced M2 polarization of BV2 cells and reduced neuroinflammation through PINK/Parkin-dependent mitophagy activation. In summary, our results underscore the potential of P2Y6R inhibition in promoting mitophagy-induced M2 polarization of microglial cells, thereby ameliorating secondary injury following spinal cord injury.
Collapse
Affiliation(s)
- Jiezhao Lin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Spinal Surgery, Shantou Central Hospital, Shantou, 515031, China
| | - Yuanfang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Haoran Huang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Cheng Yu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenhao Kuang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Hou K, Pan W, Liu L, Yu Q, Ou J, Li Y, Yang X, Lin Z, Yuan JH, Fang M. Molecular mechanism of PANoptosis and programmed cell death in neurological diseases. Neurobiol Dis 2025; 209:106907. [PMID: 40204169 DOI: 10.1016/j.nbd.2025.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025] Open
Abstract
PANoptosis represents a highly coordinated inflammatory programmed cell death governed by the assembly and activation of PANoptosome, which strategically integrate core molecular elements from pyroptosis, apoptosis, and necroptosis. The triple-component cell death pathways set themselves apart from alternative regulated cell death mechanisms through their unique capacity to concurrently integrate and process molecular signals derived from multiple death-signaling modalities, thereby coordinating a multifaceted cellular defense system against diverse pathological insults. Pathogen-associated molecular patterns synergistically interact with cytokine storms, and oncogenic stress to active PANoptosis, establishing this programmed cell death pathway as a critical nexus in inflammatory pathogenesis and tumor immunomodulation. This molecular crosstalk highlights PANoptosis as a promising therapeutic target for managing immune-related disorders and malignant transformation. Emerging evidence links PANoptosis to neuroinflammatory disorders through dysregulated crosstalk between programmed death pathways (apoptosis, necroptosis, pyroptosis) and accidental necrosis, driving neuronal loss and neural damage. Single-cell transcriptomics reveals spatially resolved PANoptosis signatures in Alzheimer's hippocampal microenvironments and multiple sclerosis demyelinating plaques, with distinct molecular clusters correlating to quantifiable neuroinflammatory metrics. Emerging PANoptosis-targeted therapies show preclinical promise in alleviating neurovascular dysfunction while preserving physiological microglial surveillance functions. Accumulating evidence linking dysregulated cell death pathways (particularly PANoptosis) to neurological disorders underscores the urgency of deciphering its molecular mechanisms and developing precision modulators as next-generation therapies. This review systematically deciphers PANoptosome assembly mechanisms and associated cell death cascades, evaluates their pathological roles in neurological disorders through multiscale regulatory networks, and proposes PANoptosis-targeted therapeutic frameworks to advance precision neurology.
Collapse
Affiliation(s)
- Ketian Hou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhan Pan
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianhui Liu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianqian Yu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahao Ou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yueqi Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Yang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
| | - Jun Hui Yuan
- Department of Neonatology, Wenling Maternal and Child Health Care Hospital, Wenling, Zhejiang 317500, China.
| | - Mingchu Fang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yi G, Li M, Zhou J, Li J, Song X, Li S, Liu J, Zhang H, Chen Z. Novel pH-responsive lipid nanoparticles deliver UA-mediated mitophagy and ferroptosis for osteoarthritis treatment. Mater Today Bio 2025; 32:101697. [PMID: 40225130 PMCID: PMC11986606 DOI: 10.1016/j.mtbio.2025.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Synovial inflammation plays a crucial role in osteoarthritis (OA) development, leading to chronic inflammation and cartilage destruction. Although targeting synovitis can alleviate OA, clinical outcomes have been disappointing due to poor drug targeting and joint cavity heterogeneity. This study presents pH-responsive lipid nanoparticles (LNPs@UA), loaded with Urolithin A (UA), as a potential OA treatment. LNPs@UA showed uniform particle size, low zeta potential, and effective mitochondria-targeting and pH-responsive capabilities. In vitro, LNPs@UA reduced reactive oxygen species (ROS), pro-inflammatory factors (IL-1β, IL-6, TNF-α), and promoted M2 macrophage polarization. It improved mitochondrial structure, enhanced autophagy, and inhibited ferroptosis. In vivo, LNPs@UA alleviated OA progression in an ACLT-induced OA mouse model. Transcriptomic analysis revealed inhibition of NF-κB signaling and activation of repair pathways. These results suggest LNPs@UA could offer a promising therapeutic approach for OA.
Collapse
Affiliation(s)
- Guoliang Yi
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Guizhou Medical University, Guiyang, 550004, China
| | - Min Li
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiayi Zhou
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jinxin Li
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xizheng Song
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Siming Li
- Guizhou Medical University, Guiyang, 550004, China
- Department of Orthopedics, Guangzhou Red Cross Hospital, Guangzhou, 510220, China
| | - Jianghua Liu
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhiwei Chen
- Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
5
|
Hu Y, Zhao Y, Mao Z, Yang J, Huang B, Miao J, Miao M. Inhalation of Acori Tatarinowii Rhizoma essential oil alleviates dyskinesia in Parkinson's disease rats through the regulation of neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119705. [PMID: 40245967 DOI: 10.1016/j.jep.2025.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acorus tatarinowii Rhizoma, a traditional Chinese medicine known for opening the orifices and transforming phlegm, is used in the treatment of brain disorders. It is listed as the top grade in the famous herbal monograph Shennong Materia Medica Classic. Traditional Chinese medicine believes that Acorus tatarinowii Rhizoma has a good advantage in the treatment of nervous system diseases, and modern research has also found that the essential oil of Acorus tatarinowii Rhizoma is the main component that plays a neuroprotective role and plays an important role in the treatment of Parkinson's disease. AIM OF THE STUDY This study aims to explore the effects and mechanisms of essential oil of Acorus tatarinowii Rhizoma (EOAT) on LPS-induced BV2 cell damage and Rotenone-induced Parkinson's disease (PD) rat models. MATERIALS AND METHODS In this experiment, the components of EOAT were identified by GC-MS. LPS was used to induce the overactivation of BV2 microglia, and rotenone was injected subcutaneously to induce Parkinson's disease in rats. Then, the expression of inflammatory factors and IBA-1 in cell was evaluated, and the effects of EOAT treatment were assessed on motor function, inflammatory factors, neurotransmitters, TH, α-Syn, and pathways and inflammation-related mRNA in rats. RESULTS GC-MS analysis obtained 24 components, among which β-Asarone and α-Asarone had the highest contents. In vitro experiments showed that after 2 h of EOAT intervention, the inflammatory factors TNF-α and IL-6 in the supernatant of LPS-induced BV2 cells were significantly reduced. The IF results showed that after EOAT intervention, the expression of IBA-1 protein in BV2 cells was significantly reduced. In animal experiments, rotenone injection in model rats led to a decrease in motor function, while inhalation of EOAT improved the motor ability of Parkinson's rats. In addition, Madopar and EOAT inhalation increased the levels of BDNF and DA in brain tissue and reduced the levels of IL-Iβ, TNF-α, and IL-6. IHC, IF, and WB analyses showed that the expression of TH protein in brain tissue of the Madopar group and the EOAT group was significantly increased, and the expression level of α-syn was reduced. RT-qPCR results showed that compared with the Model group, the levels of TLR2, MyD88, NF-κB, IL-1β, TNF-α, α-syn, and Bax in the substantia nigra and striatum of the Madopar group and the EOAT group were significantly down-regulated, and the levels of TH and Bcl-2 were significantly up-regulated. CONCLUSION These findings suggest that EOAT can prevent LPS from damaging BV2 cells and significantly improve the motor function of PD rats and lessen neuroinflammation. The anti-Parkinson's mechanism of EOAT is primarily dependent on the regulation of the TLR2/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yilong Hu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Yinan Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Zhiguo Mao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jingying Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Baoling Huang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China.
| | - Jinxin Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Mingsan Miao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, China; Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Xu H, Lv D, Guan Y. Appeal of Urolithins from Synthesis to Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11477-11494. [PMID: 40300072 DOI: 10.1021/acs.jafc.5c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Urolithins (Uros), a series of natural polyphenols derived from ellagic acid through gut bacteria metabolism, have gathered significant attention due to their diverse bioactivities such as maintaining mitochondrial health and anti-inflammatory and antioxidative effects. However, the ability to metabolize Uros varies among individuals. This Review provides a comprehensive insight into the synthesis, encapsulation and bioactivities of Uros, focusing on their biotransformation in vivo. We highlight the critical role of gut microbiota in the biotransformation of urolithins, including primary bacterial species such as Gordonibacter urolithinfaciens, Enterocloster bolteae and Enterococcus faecium. Furthermore, the therapeutic potential of Uros in alleviating neurodegenerative diseases, cancer, and Duchenne muscular dystrophy is discussed. Finally, several encapsulation strategies for enhancing the solubility and bioavailability of Uros are summarized. Future research direction includes identifying key genes involved in Uros biotransformation, elucidating the bioactive mechanisms of Uros, and improving their bioavailability. In conclusion, we synthesized biosynthetic pathways and bioactive properties of Uros for better utilization in health management.
Collapse
Affiliation(s)
- Huanyu Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Danyu Lv
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongguang Guan
- Department of Food Science, Foshan University, Foshan 528000, China
| |
Collapse
|
7
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Jiang P, Luo YM, Li XY, Zhang SJ, Guan W, Anam-Naseem, Fan YH, Chen QS, Zhang LL, Yao HY, He XX, Kuang HX, Yang BY, Liu Y. Discovery of undescribed schinortriterpenoids from Schisandra chinensis by molecular networking and their neuroprotective effects. PHYTOCHEMISTRY 2025; 237:114524. [PMID: 40306533 DOI: 10.1016/j.phytochem.2025.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/23/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
The dried, ripe fruit of Schisandra chinensis (Turcz.) Baill has significant nutritional as well as medicinal value and has been used in traditional Chinese medicine for centuries. Schinortriterpenoids (SNTs) are a distinct class of highly oxygenated and rearranged terpenoids exclusively derived from plants belonging to the Schisandraceae family. In this study, nine previously undescribed (1-9) and 20 known SNTs (10-29) were isolated from a Schisandra chinensis extract using the molecular networking technique. The structures of these compounds were elucidated using NMR, HR-ESI-MS, X-ray diffraction analysis, and quantum chemical calculations. Compounds 8, 11, 16, 18, and 24 exhibited significant anti-neuroinflammatory activity in LPS-stimulated microglial BV-2 cells, with IC50 values of 3.28 ± 0.86, 0.63 ± 0.32, 1.57 ± 0.27, 1.55 ± 0.50, and 1.86 ± 0.41 μM, respectively. Notably, the anti-neuroinflammatory activity of compound 11 was associated with the inhibition of the TLR4/NF-κB/NLRP3 signalling pathway.
Collapse
Affiliation(s)
- Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Yu-Meng Luo
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Xin-Yuan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Shu-Jun Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Anam-Naseem
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Yu-Hang Fan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Qing-Shan Chen
- Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China; College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Li-Li Zhang
- Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China; College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Hong-Yan Yao
- HeiLongJiang Ji Ren Pharmaceutical Co.,Ltd, Harbin, 150025, China
| | - Xiao-Xue He
- HeiLongJiang Ji Ren Pharmaceutical Co.,Ltd, Harbin, 150025, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150040, China; Traditional Chinese Medicine Biological Genetics, Heilongjiang Province Double First-Class Construction Interdiscipline, Harbin, 150040, China.
| |
Collapse
|
9
|
Devi A, Munagalasetty S, Kumar P, Kumar R, Bhandari V, Dandekar MP. Urolithin improves α-synuclein aggregation and DNMT1 expression in rotenone model of Parkinson's disease. Neurotoxicology 2025; 108:246-262. [PMID: 40280244 DOI: 10.1016/j.neuro.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
α-synuclein aggregation is a key hallmark of Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). We examined the multi-targeting effects of urolithin (UA, UB, UC, UD, UE, UM5, and UM6) against α-synuclein aggregation using an in-silico and in-vitro approach. For in-silico analysis, several potential targets were selected like 1XQ8 (α-synuclein monomer), 1H1D (catechol-o-methyltransferase), 2BK3 (monoamine oxidase-B), 3IAM (NADH dehydrogenase), 4I5I (Sirtuin-1), and 5WVO [DNA methyltransferase-1], which play key role in α-synuclein aggregation, levodopa degradation, and mitochondrial dysfunction. In protein-protein docking analysis, 5HF9 (acetylcholinesterase, AChE) was found to interact with 1XQ8 dimer, forming a more stable complex with two additional H-bonds and one salt bridge, which indicates AChE's role as a nucleator in α-synuclein aggregation. In ligand docking and molecular dynamic studies, urolithin-A (UA) formed a more stable complex with 1XQ8, 4I5I, and 5WVO compared to specific inhibitor 1XQ8-ZPD2 and specific activator 4I5I-resveratrol. While other urolithins (UE, UM5, UC, and UD) displayed a more stable complex with 5HF9, 2BK3, 1H1D, and 3IAM compared to specific inhibitor 5HF9-physostigmine, 2BK3-selegiline, 1H1D-BIA, and specific activator 3IAM-resveratrol complexes, respectively. The blood-brain barrier permeability of UA (QPlogBB: -0.97) was predicted to be more than levodopa (QPlogBB: -1.44) and less than rotenone (QPlogBB: 0.08). DNMT1 inhibitor (5-Aza-dC) and rotenone robustly decreased the DNMT1 and α-synuclein expression in Neuro 2 A cells which was significantly reversed by UA treatment at 31.25 µM concentration. These findings indicate the potential of urolithins, specifically UA, UC, UD, UE, and UM5 against α-synuclein aggregation.
Collapse
Affiliation(s)
- Ankita Devi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sharon Munagalasetty
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Pardeep Kumar
- Department of Medicinal chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
10
|
Huang Z, Chen G, Ren Z, Xiao L, Chen Z, Xie Y, Wang G, Zhou B. Urolithin A ameliorates schizophrenia-like behaviors and cognitive impairments in female rats by modulating NLRP3 signaling. Int Immunopharmacol 2025; 151:114336. [PMID: 39987632 DOI: 10.1016/j.intimp.2025.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
The management of cognitive impairments in schizophrenia presents a considerable challenge, with a strong association between neuroinflammation and its progression. Urolithin A (UA) demonstrates important anti-inflammatory properties in multiple neurological disease models, contributing to the enhancement of cognitive deficits. However, it remains uncertain if UA can produce comparable neuroregulatory effects in female rat models of schizophrenia. Eight-week-old female Sprague Dawley rats received either 0.1 mg/kg of MK801 or volume-matched saline via intraperitoneal injection for 5 consecutive days. Furthermore, they were administered 150 mg/kg of UA through oral gavage for 4 weeks. Behavioral assessments were performed to evaluate cognitive function and behavior after UA treatment. Immunofluorescence staining was employed to assess microglial activity in the hippocampus, while Western blot analysis was conducted to investigate the expression of neuroinflammation-associated proteins. Prolonged exposure to MK801 induces schizophrenia-like behaviors and cognitive deficits in female rats. It also elevates the expression of NLRP3, Caspase-1, IL-1β, and IL-18 proteins in the hippocampus, accompanied by the activation of microglial cells. However, UA treatment can reverse the expression of these inflammatory proteins and the activation of microglial cells induced by MK801. This is the first study to evaluate the effects of UA on behavior and cognition in a female rat model of schizophrenia. The findings indicate that UA mitigates MK-801-induced cognitive deficits in female rats by inhibiting neuroinflammation and microglial activation via modulation of the NLRP3 signaling pathway. These findings offer preclinical data endorsing the possible application of UA as a dietary supplement to prevent cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Zhengyuan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyu Ren
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziyue Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yinping Xie
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Taikang center for life and medical sciences, Wuhan University, Wuhan, 430071, China.
| | - Benhong Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
11
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2025; 62:5273-5296. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
12
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
13
|
Li L, Xu N, He Y, Tang M, Yang B, Du J, Chen L, Mao X, Song B, Hua Z, Tang B, Lee SMY. Dehydroervatamine as a promising novel TREM2 agonist, attenuates neuroinflammation. Neurotherapeutics 2025; 22:e00479. [PMID: 39609160 PMCID: PMC12014313 DOI: 10.1016/j.neurot.2024.e00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Microglia play a dual role in neuroinflammatory disorders that affect millions of people worldwide. These specialized cells are responsible for the critical clearance of debris and toxic proteins through endocytosis. However, activated microglia can secrete pro-inflammatory mediators, potentially exacerbating neuroinflammation and harming adjacent neurons. TREM2, a cell surface receptor expressed by microglia, is implicated in the modulation of neuroinflammatory responses. In this study, we investigated if and how Dehydroervatamine (DHE), a natural alkaloid, reduced the inflammatory phenotype of microglia and suppressed neuroinflammation. Our findings revealed that DHE was directly bound to and activated TREM2. Moreover, DHE effectively suppressed the production of pro-inflammatory cytokines, restored mitochondrial function, and inhibited NLRP3 inflammasome activation via activating the TREM2/DAP12 signaling pathway in LPS-stimulated BV2 microglial cells. Notably, silencing TREM2 abolished the suppression effect of DHE on the neuroinflammatory response, mitochondrial dysfunction, and NF-κB/NLRP3 pathways in vitro. Additionally, DHE pretreatment exhibited remarkable neuroprotective effects, as evidenced by increased neuronal viability and reduced apoptotic cell numbers in SH-SY5Y neuroblastoma cells co-cultured with LPS-stimulated BV2 microglia. Furthermore, in our zebrafish model, DHE pretreatment effectively alleviated behavioral impairments, reduced neutrophil aggregation, and suppressed neuroinflammation in the brain by regulating TREM2/NF-κB/NLRP3 pathways after intraventricular LPS injection. These findings provide novel insights into the potent protective effects of DHE as a promising novel TREM2 agonist against LPS-induced neuroinflammation, revealing its potential therapeutic role in the treatment of central nervous system diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yulin He
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Mingsui Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co, Ltd, Shanghai, China
| | - Xiaowen Mao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhou Hua
- Chinese Medicine Guangdong Laboratory (Hengqin Laboratory), Guangdong-Macao ln-Depth Cooperation Zone in Hengqin, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Benqin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Ocean Resource, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
14
|
Lu Y, Gao L, Yang Y, Shi D, Zhang Z, Wang X, Huang Y, Wu J, Meng J, Li H, Yan D. Protective role of mitophagy on microglia-mediated neuroinflammatory injury through mtDNA-STING signaling in manganese-induced parkinsonism. J Neuroinflammation 2025; 22:55. [PMID: 40022162 PMCID: PMC11869743 DOI: 10.1186/s12974-025-03396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/23/2025] [Indexed: 03/03/2025] Open
Abstract
Manganese (Mn), the third most abundant transition metal in the earth's crust, has widespread applications in the emerging field of organometallic catalysis and traditional industries. Excessive Mn exposure causes neurological syndrome resembling Parkinson's disease (PD). The pathogenesis of PD is thought to involve microglia-mediated neuroinflammatory injury, with mitochondrial dysfunction playing a role in aberrant microglial activation. In the early stages of PD, PINK1/Parkin-mediated mitophagy contributes to the microglial inflammatory response via the cGAS/STING signaling pathway. Suppression of PINK1/Parkin-mediated mitophagy due to excessive Mn exposure exacerbates neuronal injury. Moreover, excessive Mn exposure leads to neuroinflammatory damage via the microglial cGAS-STING pathway. However, the precise role of microglial mitophagy in modulating neuroinflammation in Mn-induced parkinsonism and its underlying molecular mechanism remains unclear. Here, we observed that Mn-exposed mice exhibited neurobehavioral abnormalities and detrimental microglial activation, along with increased apoptosis of nerve cells, proinflammatory cytokines, and intracellular ROS. Furthermore, in vivo and in vitro experiments showed that excessive Mn exposure resulted in microglial mitochondrial dysfunction, manifested by increased mitochondrial ROS, decreased mitochondrial mass, and membrane potential. Additionally, with the escalating Mn dose, PINK1/Parkin-mediated mitophagy changed from activation to suppression. This was evidenced by decreased levels of LC3-II, PINK1, p-Parkin/Parkin, and increased levels of p62 protein expression level, as well as the colocalization between ATPB and LC3B due to excessive Mn exposure. Upregulation of mitophagy by urolithin A could mitigate Mn-induced mitochondrial dysfunction, as indicated by decreased mitochondrial ROS, increased mitochondrial mass, and membrane potential, along with improvements in neurobehavioral deficits and attenuated detrimental microglial activation. Using single-nucleus RNA-sequencing (snRNA-seq) analysis in the Mn-exposed mouse model, we identified the microglial cGAS-STING signaling pathway as a potential mechanism underlying Mn-induced neuroinflammation. This pathway is associated with an increase in cytosolic mtDNA levels, which activate STING signaling. These findings point to the induction of microglial mitophagy as a viable strategy to alleviate Mn-induced neuroinflammation through mtDNA-STING signaling.
Collapse
Affiliation(s)
- Yang Lu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Dihang Shi
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Zhipeng Zhang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China
| | - Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China.
- Collaborative Innovation Center For Health Promotion of Children and Adolescents of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
15
|
Yang P, Shuai W, Wang X, Hu X, Zhao M, Wang A, Wu Y, Ouyang L, Wang G. Mitophagy in Neurodegenerative Diseases: Mechanisms of Action and the Advances of Drug Discovery. J Med Chem 2025; 68:3970-3994. [PMID: 39908485 DOI: 10.1021/acs.jmedchem.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), are devastating brain diseases and are incurable at the moment. Increasing evidence indicates that NDDs are associated with mitochondrial dysfunction. Mitophagy removes defective or redundant mitochondria to maintain cell homeostasis, whereas deficient mitophagy accelerates the accumulation of damaged mitochondria to mediate the pathologies of NDDs. Therefore, targeting mitophagy has become a valuable therapeutic pathway for the treatment of NDDs. Several mitophagy modulators have been shown to ameliorate neurodegeneration in PD and AD. However, it remains to be further investigated for other NDDs. Here, we describe the mechanism and key signaling pathway of mitophagy and summarize the roles of defective mitophagy on the pathogenesis of NDDs. Further, we underline the development advances of mitophagy modulators for PD and AD therapy, discuss the therapeutic challenges and limitations of the existing modulators, and provide guidelines for mitophagy mechanism exploration and drug design.
Collapse
Affiliation(s)
- Panpan Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Yang Y, Chen H, Huang S, Chen H, Verkhratsky A, Niu J, Qu Y, Yi C. BOK-engaged mitophagy alleviates neuropathology in Alzheimer's disease. Brain 2025; 148:432-447. [PMID: 39054908 DOI: 10.1093/brain/awae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial malfunction associated with impaired mitochondrial quality control and self-renewal machinery, known as mitophagy, is an under-appreciated mechanism precipitating synaptic loss and cognitive impairments in Alzheimer's disease. Promoting mitophagy has been shown to improve cognitive function in Alzheimer's disease animals. However, the regulatory mechanism was unclear, which formed the aim of this study. Here, we found that a neuron-specific loss of Bcl-2 family member BOK in patients with Alzheimer's disease and APPswe/PS1dE9 (APP/PS1) mice is closely associated with mitochondrial damage and mitophagy defects. We further revealed that BOK is the key to the Parkin-mediated mitophagy through competitive binding to the MCL1/Parkin complex, resulting in Parkin release and translocation to damaged mitochondria to initiate mitophagy. Furthermore, overexpressing bok in hippocampal neurons of APP/PS1 mice alleviated mitophagy and mitochondrial malfunction, resulting in improved cognitive function. Conversely, the knockdown of bok worsened the aforementioned Alzheimer's disease-related changes. Our findings uncover a novel mechanism of BOK signalling through regulating Parkin-mediated mitophagy to mitigate amyloid pathology, mitochondrial and synaptic malfunctions, and cognitive decline in Alzheimer's disease, thus representing a promising therapeutic target.
Collapse
Affiliation(s)
- Yang Yang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuwen Huang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Hao Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao 48011, Spain
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius 01102, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
| | - Yibo Qu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 50630, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| |
Collapse
|
17
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
18
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2025; 32:25-45. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Xiong Y, Cheng Z, Zhang Y, Liu T, Wan Z, Xia C, Zhou B, Shan C, Song D, Miao F. Ellagic acid alleviates DSS-induced ulcerative colitis by inhibiting ROS/NLRP3 pathway activation and modulating gut microbiota in mice. Eur J Nutr 2025; 64:64. [PMID: 39775279 DOI: 10.1007/s00394-024-03577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Ulcerative colitis (UC) can cause severe oxidative stress in the colon, which can lead to tissue damage and an imbalance in the normal gut microbiota. Ellagic acid (EA) is one of the main types of plant polyphenols with improved pharmacological effects such as antioxidant, anti-inflammatory, and antibacterial properties. However, currently, the studies on the impact of EA on the gut microbiota and its potential to alleviate UC in mice through the ROS/NLRP3 pathway are limited. In this study, dextran sodium sulfate (DSS) was used to construct a UC mouse model, which was then treated with EA as an intervention for UC. The results revealed that EA alleviated the trend of liver, spleen, and weight changes in UC mice and improved colon oxidative stress, inflammation, and pathological damage. Mechanistically, DSS-induced UC indicated a significant increase in ROS/NLRP3 pathway-related factors, whereas EA intervention activated the Nrf2 pathway to reduce these factors. Furthermore, the DSS group had a reduced abundance of Firmicutes (59.02%) and an increased abundance of Bacteroides and Proteobacterium by 1.8 times and 10.16%; however, EA intervention reversed these changes, thus alleviating UC. The findings of this study revealed that EA could significantly enhance the composition of gut microbiota in UC and reduce the inflammatory response, colonic damage as well as oxidative stress caused by DSS by regulating the ROS/NLRP3 pathway. These results provide novel perspectives on the prevention and treatment strategies of UC and highlight the therapeutic benefits of EA in managing colitis.
Collapse
Affiliation(s)
- Yanling Xiong
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Yangzi Zhang
- Guizhou Academy of Agricultural Sciences, Guiyang, 550001, People's Republic of China
| | - Ting Liu
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Zhiling Wan
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Cuiyun Xia
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Binlan Zhou
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China
| | - Chunlan Shan
- College of Animal Science, Guizhou University, Guiyang, 550000, People's Republic of China.
| | - Derong Song
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, 551700, People's Republic of China.
| | - Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, People's Republic of China.
| |
Collapse
|
20
|
Di Menna L, Alborghetti M, De Bartolo MI, Borro M, Gentile G, Zinni M, Bologna M, Cutrona C, D'Errico G, Imbriglio T, Bucci D, Merlo S, Ginerete RP, Orlando R, Carrillo F, Fortunato G, Cannella M, Sortino MA, Pansiot J, Baud O, Nicoletti F, Bruno V, Simmaco M, Pontieri FE, Bianchini E, Rinaldi D, de Curtis A, De Gaetano G, Iacoviello L, Esposito T, Berardelli A, Battaglia G. Preclinical and clinical study on type 3 metabotropic glutamate receptors in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:9. [PMID: 39755677 DOI: 10.1038/s41531-024-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/22/2024] [Indexed: 01/06/2025] Open
Abstract
Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3-/- mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Expression of genes encoding anti-inflammatory proteins and neuroprotective factors was reduced in the striatum of MPTP-treated mGlu3-/- mice. We also examined polymorphic variants of GRM3 (the mGlu3 receptor encoding gene) in 723 PD patients and 826 healthy controls. Two GRM3 haplotypes were associated with PD, and gene variants correlated with motor and non-motor signs. Interestingly, PD patients carrying each of the two haplotypes showed an impaired cortical plasticity in the paired associated stimulation paradigm of magnetic transcranial stimulation. These findings suggest that mGlu3 receptors are neuroprotective in mouse models of parkinsonism and shape mechanisms of cortical plasticity in PD.
Collapse
Grants
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- RF-2018-123-68289 Ministero della Salute (Ministry of Health, Italy)
- E64117000190001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- E64117000190001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- E64117000190001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- E64117000190001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- E64117000190001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
- Luisa Di Menna
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
| | - Marika Alborghetti
- Departments of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | | | - Marina Borro
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Gentile
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | - Manuela Zinni
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Matteo Bologna
- Departments of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Clinical Neurophysiology, IRCCS Neuromed, Pozzilli, Italy
| | - Carolina Cutrona
- Departments of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Domenico Bucci
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
| | - Sara Merlo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | | | - Federica Carrillo
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso, National Research Council, Naples, Italy
| | - Giorgio Fortunato
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso, National Research Council, Naples, Italy
| | - Milena Cannella
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Julien Pansiot
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
| | - Olivier Baud
- Inserm UMR1141 NeuroDiderot, Université Paris Cité, Paris, France
- Department of Neonatal Medicine, Cochin-Port Royal Hospital, FHU PREMA, AP-HP Centre, Paris, France
- Université Paris Cite, CRESS, Obstetrical Perinatal and Pediatric Epidemiology Research Team, EPOPE, French Institute for Medical Research and Health INSERM, INRAE, 75014, Paris, France
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | - Francesco Ernesto Pontieri
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | - Edoardo Bianchini
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Domiziana Rinaldi
- Neuroscience, Mental Health, and Sensory Organs Clinical Neurophysiology, Sapienza University of Rome, Rome, Italy
| | - Amalia de Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Giovanni De Gaetano
- Department of Epidemiology and Prevention, IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, 86077, Pozzilli, Italy
- Department of Medicine and Surgery, LUM University, 70010, Casamassima, Bari, Italy
| | - Teresa Esposito
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Institute of Genetics and Biophysics, Adriano Buzzati-Traverso, National Research Council, Naples, Italy
| | - Alfredo Berardelli
- Departments of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
- Department of Clinical Neurophysiology, IRCCS Neuromed, Pozzilli, Italy.
| | - Giuseppe Battaglia
- Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
Siwach A, Patel H, Khairnar A, Parekh P. Molecular Symphony of Mitophagy: Ubiquitin-Specific Protease-30 as a Maestro for Precision Management of Neurodegenerative Diseases. CNS Neurosci Ther 2025; 31:e70192. [PMID: 39840724 PMCID: PMC11751875 DOI: 10.1111/cns.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Mitochondrial dysfunction stands as a pivotal feature in neurodegenerative disorders, spurring the quest for targeted therapeutic interventions. This review examines Ubiquitin-Specific Protease 30 (USP30) as a master regulator of mitophagy with therapeutic promise in Alzheimer's disease (AD) and Parkinson's disease (PD). USP30's orchestration of mitophagy pathways, encompassing PINK1-dependent and PINK1-independent mechanisms, forms the crux of this exploration. METHOD A systematic literature search was conducted in PubMed, Scopus, and Web of Science, selecting studies that investigated USP's function, inhibitor design, or therapeutic efficacy in AD and PD. Inclusion criteria encompassed mechanistic and preclinical/clinical data, while irrelevant or duplicate references were excluded. Extracted findings were synthesized narratively. RESULTS USP30 modulates interactions with translocase of outer mitochondrial membrane (TOM) 20, mitochondrial E3 ubiquitin protein ligase 1 (MUL1), and Parkin, thus harmonizing mitochondrial quality control. Emerging novel USP30 inhibitors, racemic phenylalanine derivatives, N-cyano pyrrolidine, and notably, benzosulphonamide class compounds, restore mitophagy, and reduce neurodegenerative phenotypes across diverse models with minimal off-target effects. Modulation of other USPs also influences neurodegenerative disease pathways, offering additional therapeutic avenues. CONCLUSIONS In highlighting the nuanced regulation of mitophagy by USP30, this work heralds a shift toward more precise and effective treatments, paving the way for a new era in the clinical management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Siwach
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
- School of Pharmaceutical SciencesJaipur National UniversityJaipurRajasthanIndia
| | - Harit Patel
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
| | - Amit Khairnar
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER)AhmedabadGujaratIndia
- Department of Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center (ICRC)St. Anne's University HospitalBrnoCzech Republic
- International Clinical Research Center (ICRC), Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Pathik Parekh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on AgingNational Institutes of HealthBaltimoreUSA
| |
Collapse
|
22
|
Xu S, Wang Z, Guo F, Zhang Y, Peng H, Zhang H, Liu Z, Cao C, Xin G, Chen YY, Fu J. Mitophagy in ischemic heart disease: molecular mechanisms and clinical management. Cell Death Dis 2024; 15:934. [PMID: 39737905 DOI: 10.1038/s41419-024-07303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease. We conclude that mitophagy affects ischemic heart disease by promoting cardiomyocyte hypertrophy and fibrosis, the progression of oxidative stress, the development of inflammation, and cardiomyocyte death, and that the specific mechanisms of mitophagy are worthy of further investigation.
Collapse
Affiliation(s)
- Shujuan Xu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, China
| | - Fan Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yehao Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Han Peng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Huiyu Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zixin Liu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Ce Cao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Gaojie Xin
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yuan Yuan Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jianhua Fu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
23
|
Peng X, Ji HY, Gao JW, Hong SH, Zhang T, Yang G, Wu X, Gao Y, Wang K. YAP1 exacerbates pyroptosis and senescence in nucleus pulposus cells by promoting BNIP3-mediated mitophagy. Int Immunopharmacol 2024; 143:113434. [PMID: 39442189 DOI: 10.1016/j.intimp.2024.113434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Yes-associated protein 1 (YAP1) is a crucial downstream effector of the Hippo pathway that plays a role in regulating inflammation and mitochondrial function. However, whether YAP1 regulates pyroptosis in nucleus pulposus (NP) cells caused by inflammation via mitophagy remains unclear. This study aimed to investigate the effects of YAP1 on the pyroptosis of NP cells induced by LPS. Here, we demonstrated that the protein expression of YAP1 in the NP tissue of degenerative discs was significantly reduced. Next, we found that NLRP3 inflammasome activation in YAP1-overexpressing (YAP1-ov) NP cells was further enhanced in the LPS-induced inflammatory microenvironment. YAP1-ov strongly aggravated inflammation-induced pyroptosis and senescence, but these effects were reversed by the inhibition of BNIP3-mediated mitophagy. However, comparative analysis of the overexpression of YAP1 in normal discs and discs after annulus fibrosus puncture revealed that YAP1-ov accelerated the degeneration of normal discs and attenuated the degeneration of annulus fibrosus punctured discs in vivo. Additionally, YAP1-ov upregulated the expression of TNFAIP3, an anti-inflammatory protective protein, and CLPP, a vital protein in the mitochondrial unfolded protein response, in NP cells. Collectively, the above results revealed that YAP1 exacerbates LPS-induced pyroptosis and senescence of NP cells by promoting BNIP3-mediated mitophagy, which causes disc degeneration. Notably, YAP1-ov mitigated the degeneration of the disc caused by annular needle puncture in vivo, suggesting its potential as a therapeutic candidate foracute IDD injury.
Collapse
Affiliation(s)
- Xin Peng
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang-Yu Ji
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jia-Wei Gao
- Medical School of Southeast University, Nanjing, China
| | - Shang-Hao Hong
- Department of Orthopedics, Xuyi County Hospital, Huaian, Jiangsu, China
| | - Tong Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yanzheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Peolple's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
24
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
25
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
26
|
Feng L, Lo H, Zheng J, Weng W, Sun Y, Pan X. Cycloastragenol reduces microglial NLRP3 inflammasome activation in Parkinson's disease models by promoting autophagy and reducing Scrib-driven ROS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156210. [PMID: 39522252 DOI: 10.1016/j.phymed.2024.156210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND In Parkinson's disease (PD), microglial autophagy is crucial for the maintenance of cellular redox homeostasis. Meanwhile, cycloastragenol (CAG), a triterpenoid saponin and the principal active component of Astragalus, reduces the activation of NLRP3 inflammasomes. Nevertheless, the specific molecular mechanisms underlying the CAG-mitigated microglial neuroinflammation remains obscure in PD. PURPOSE This study explored the role of CAG in the activation of microglial NLRP3 inflammasome and the mechanisms underlying its therapeutic potential for PD treatment. STUDY DESIGN The effect of CAG was assessed in α-Syn-induced primary microglia and PD models. METHODS AAV1/2-hsyn-SNCA (A53T) was stereo-injected into the striatum of mice to induce PD models and CAG was orally administered. The mice underwent quantitative 4D proteomics analysis and behavioral assessments. The primary microglia and neuron cultures were analyzed by western blotting, immunofluorescence, transmission electron microscopy, etc. RESULTS: CAG reduced phagocytosis-induced reactive oxygen species (ROS) by suppressing the microglial Scribble (Scrib) and p22phox expression. Concurrently, CAG enhanced autophagy, promoted α-Syn clearance, and reduced mitochondrial damage. These synergistic effects downregulated NLRP3 inflammasome activation, in turn reducing gasdermin D cleavage, caspase-1 activation, and the release of interleukin-1β and interleukin-18. Further investigation revealed that CAG shielded neurons from α-Syn toxicity, thus attenuating behavioral impairments observed in the mouse PD model. CONCLUSION CAG mitigates neuroinflammation by inhibiting ROS-induced NLRP3 inflammasome activation in microglia via promoting microglial autophagy and reducing the activity of Scrib-associated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which signifies a promising alternative approach to PD management.
Collapse
Affiliation(s)
- Linjuan Feng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Hsuan Lo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jiahao Zheng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China
| | - Weipin Weng
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Yixin Sun
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; Institute of Clinical Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou 350001, China; Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, 88 Jiaotong Road, Fuzhou 350001, China; Clinical Research Center for Precision Diagnosis and Treatment of Neurological Diseases of Fujian Province, Fuzhou 350001, China.
| |
Collapse
|
27
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
28
|
Moreira P, Macedo J, Matos P, Bicker J, Fortuna A, Figueirinha A, Salgueiro L, Batista MT, Silva A, Silva S, Resende R, Branco PC, Cruz MT, Pereira CF. Effect of bioactive extracts from Eucalyptus globulus leaves in experimental models of Alzheimer's disease. Biomed Pharmacother 2024; 181:117652. [PMID: 39486370 DOI: 10.1016/j.biopha.2024.117652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aβ)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aβ secretion and Aβ-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aβ levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against AD‑like pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
Collapse
Affiliation(s)
- Patrícia Moreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Jéssica Macedo
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Patrícia Matos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Maria Teresa Batista
- CIEPQPF, Research Center for Chemical Processes Engineering and Forest Products, Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sónia Silva
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; iCBR-Coimbra Institute for Clinical and Biomedical Research, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Rosa Resende
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Pedro Costa Branco
- RAIZ-Forest and Paper Research Institute, Eixo, Aveiro 3800-783, Portugal
| | - Maria Teresa Cruz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Cláudia Fragão Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
29
|
Ryu G, Ko M, Lee S, Park SI, Choi JW, Lee JY, Kim JY, Kwon HJ. Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM. Biomolecules 2024; 14:1505. [PMID: 39766212 PMCID: PMC11673756 DOI: 10.3390/biom14121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD). In this study, we identified a novel target protein of UA and elucidated its mechanism for alleviating palmitic acid (PA)-induced ER stress. Cellular thermal shift assay (CETSA)-LC-MS/MS analysis revealed that UA binds directly to the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), an important regulator of calcium homeostasis in mitochondria-associated ER membranes (MAMs). As an agonist of SERCA, UA attenuates abnormal calcium fluctuations and ER stress in PA-treated liver cells, thereby contributing to cell survival. The lack of UA activity in SERCA knockdown cells suggests that UA regulates cellular homeostasis through its interaction with SERCA. Collectively, our results demonstrate that UA protects against PA-induced ER stress and enhances cell survival by regulating calcium homeostasis in MAMs through SERCA. This study highlights the potential of UA as a therapeutic agent for metabolic disorders associated with ER stress.
Collapse
Affiliation(s)
- Gayoung Ryu
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (G.R.); (M.K.); (S.L.); (S.I.P.)
| | - Minjeong Ko
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (G.R.); (M.K.); (S.L.); (S.I.P.)
| | - Sooyeon Lee
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (G.R.); (M.K.); (S.L.); (S.I.P.)
| | - Se In Park
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (G.R.); (M.K.); (S.L.); (S.I.P.)
| | - Jin-Woong Choi
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.-W.C.); (J.Y.L.); (J.Y.K.)
| | - Ju Yeon Lee
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.-W.C.); (J.Y.L.); (J.Y.K.)
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea; (J.-W.C.); (J.Y.L.); (J.Y.K.)
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (G.R.); (M.K.); (S.L.); (S.I.P.)
| |
Collapse
|
30
|
Shafi H, Lora AJ, Donow HM, Aggarwal S, Fu P, Wang T, Mansour HM. Advanced Spray-Dried Inhalable Microparticles/Nanoparticles of an Innovative Mitophagy Activator for Targeted Lung Delivery: Design, Comprehensive Characterization, Human Lung Cell Culture, and In Vitro Aerosol Dispersion Performance. ACS Pharmacol Transl Sci 2024; 7:3540-3558. [PMID: 39539257 PMCID: PMC11555509 DOI: 10.1021/acsptsci.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Urolithin A (UA) has demonstrated the ability to stimulate mitophagy and enhance mitochondrial and cellular health in skeletal muscles in humans after oral administration. It is hypothesized that targeted delivery of UA as inhaled dry powders to the lungs will enhance mitochondrial health through mitochondrial biogenesis. This study aimed to engineer inhalable excipient-free powders of UA as dry powder inhalers (DPIs) for targeted pulmonary delivery. The particles were designed by particle engineering from dilute organic solutions of UA using the state-of-the-art spray drying technology in a closed mode. Comprehensive physicochemical characterization and advanced microscopy techniques were conducted to examine phase behavior, molecular properties, and particle properties, which are necessary for the rational design of advanced pulmonary inhalation aerosols. Molecular fingerprinting was conducted by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and Raman spectroscopy. Chemical imaging and mapping were conducted using confocal Raman microscopy (CRM) and IR microscopy. The advanced spray-dried (SD) excipient-free powders were successfully produced at different spraying pump feed rates and exhibited favorable molecular and particle properties. The excipient-free SD powders exhibited outstanding in vitro aerosol dispersion performance with an FDI-approved human DPI device (Neohaler) and correlated with the spray drying pump rate. In vitro, cell viability of various human pulmonary cells from different lung regions demonstrated biocompatibility and safety at different doses of UA. The transepithelial electrical resistance (TEER) assay shows that UA maintains cell membrane integrity and barrier tightness, indicating its potential for safe and effective localized drug delivery without long-term adverse effects. These results demonstrated that UA has favorable physicochemical and in vitro properties for inhalation and can be successfully engineered into excipient-free inhalable microparticles/nanoparticles as DPIs.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Andrea J. Lora
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Haley M. Donow
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Saurabh Aggarwal
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
| | - Panfeng Fu
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Ting Wang
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
- Dept.
of Biomedical Engineering, FIU College of
Engineering & Computing, Miami, Florida 33199, United States
| |
Collapse
|
31
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
32
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
33
|
Guo XX, Chang XJ, Pu Q, Li AL, Li J, Li XY. Urolithin A alleviates cell senescence by inhibiting ferroptosis and enhances corneal epithelial wound healing. Front Med (Lausanne) 2024; 11:1441196. [PMID: 39351004 PMCID: PMC11439666 DOI: 10.3389/fmed.2024.1441196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To analyze the therapeutic effect and mechanism of Urolithin A (UA) on delayed corneal epithelial wound healing. Methods The C57BL/6 mice were continuously exposed to hyperosmotic stress (HS) for 7 days followed by the removal of central corneal epithelium to establish a delayed corneal epithelial wound healing model in vivo. In vitro, the human corneal epithelial cell line (HCE-T) was also incubated under HS. UA was administered in vivo and in vitro to study its effects on corneal epithelial cells. Senescence-associated β-galactosidase (SA-β-gal) staining was performed to detect the level of cell senescence. Transcriptome sequencing (RNA-seq) was conducted to elucidate the molecular mechanism underlying the effect of UA on corneal epithelial repair. Additionally, the expression of senescence-related and ferroptosis-related genes and the levels of lipid peroxides (LPO) and malondialdehyde (MDA) were measured. Results Hyperosmotic stress (HS) significantly increased the proportion of SA-β-gal staining positive cells in corneal epithelial cells and upregulated the expression of p16 and p21 (p < 0.0001). Topical application of UA decreased the accumulation of senescent cells in corneal epithelial wounds and promoted epithelial wound healing. The results of RNA-seq of HS-induced corneal epithelial cells showed that the ferroptosis pathway was significantly dysregulated. Further investigation revealed that UA decreased the level of oxidative stress in HCE-T cells, including the levels of LPO and MDA (p < 0.05). Inhibition of ferroptosis significantly prevented cellular senescence in HS-induced HCE-T cells. Conclusion In this study, UA promoted HS-induced delayed epithelial wound healing by reducing the senescence of corneal epithelial cells through the inhibition of ferroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
35
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
36
|
Komatsu W, Kishi H, Uchiyama K, Ohhira S, Kobashi G. Urolithin A suppresses NLRP3 inflammasome activation by inhibiting the generation of reactive oxygen species and prevents monosodium urate crystal-induced peritonitis. Biosci Biotechnol Biochem 2024; 88:966-978. [PMID: 38772744 DOI: 10.1093/bbb/zbae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the maturation of interleukin-1β (IL-1β) and is implicated in the pathogenesis of various inflammatory diseases. Urolithin A, a gut microbial metabolite of ellagic acid, reportedly exerts antiinflammatory effects in vitro and in vivo. However, whether urolithin A suppresses NLRP3 inflammasome activation is unclear. In this study, urolithin A inhibited the cleavage of NLRP3 inflammasome agonist-induced caspase-1, maturation of IL-1β, and activation of pyroptosis in lipopolysaccharide-primed mouse bone marrow-derived macrophages. Urolithin A reduced generation of intracellular and mitochondrial reactive oxygen species (ROS) and restricted the interaction between thioredoxin-interacting protein and NLRP3, which attenuated NLRP3 inflammasome activation. Urolithin A administration prevented monosodium urate-induced peritonitis in mice. Collectively, these findings indicate that urolithin A suppresses NLRP3 inflammasome activation, at least partially, by repressing the generation of intracellular and mitochondrial ROS.
Collapse
Affiliation(s)
- Wataru Komatsu
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Hisashi Kishi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Koji Uchiyama
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Shuji Ohhira
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
37
|
Zheng Q, Liu H, Gao Y, Cao G, Wang Y, Li Z. Ameliorating Mitochondrial Dysfunction for the Therapy of Parkinson's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311571. [PMID: 38385823 DOI: 10.1002/smll.202311571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) is currently the second most incurable central neurodegenerative disease resulting from various pathogenesis. As the "energy factory" of cells, mitochondria play an extremely important role in supporting neuronal signal transmission and other physiological activities. Mitochondrial dysfunction can cause and accelerate the occurrence and progression of PD. How to effectively prevent and suppress mitochondrial disorders is a key strategy for the treatment of PD from the root. Therefore, the emerging mitochondria-targeted therapy has attracted considerable interest. Herein, the relationship between mitochondrial dysfunction and PD, the causes and results of mitochondrial dysfunction, and major strategies for ameliorating mitochondrial dysfunction to treat PD are systematically reviewed. The study also prospects the main challenges for the treatment of PD.
Collapse
Affiliation(s)
- Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Hubei Key Laboratory of Natural Products Research and Development and College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Guozhi Cao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yusong Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| |
Collapse
|
38
|
Ren Y, Wu X, Bai T, Yang N, Yuan Y, Xu L, Wen Y, Wen Y, Wang Z, Zhou L, Zou F, Li W. CDK5-USP30 signaling pathway regulates MAVS-mediated inflammation via suppressing mitophagy in MPTP/MPP + PD model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116446. [PMID: 38772138 DOI: 10.1016/j.ecoenv.2024.116446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.
Collapse
Affiliation(s)
- Yixian Ren
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Xian Wu
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Tianyao Bai
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Nanfei Yang
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyu Yuan
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lingling Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yue Wen
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Wen
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Liping Zhou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Wenjun Li
- Department of Occupational Health and Occupational Medicine, Guangdong Province Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
39
|
Antika G, Cinar ZÖ, Dönmez S, Seçen E, Özbil M, Prandi C, Tumer TB. Effects of Strigolactones on NLRP3 Activation, Nitrosative Stress, and Antioxidant Mox Phenotype: In Vitro and In Silico Evidence. ACS BIO & MED CHEM AU 2024; 4:131-136. [PMID: 38911910 PMCID: PMC11191569 DOI: 10.1021/acsbiomedchemau.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 06/25/2024]
Abstract
Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells. However, IND and EGO10 became prominent among them due to their high potency at low micromolar doses. All SL analogues dose-dependently suppressed the release and expression of proinflammatory factors. For EGO10 and IND, IC50 values for iNOS-associated NO secretion were as low as 1.72 and 1.02 μM, respectively. In silico analyses revealed that (S)-EGO10 interacted with iNOS, NLRP3, and Keap1 ligands with the highest binding affinities among all stereoisomeric SL analogues. Although all compounds were effective in microglial Mox phenotype polarization, 4-Br-debranone exhibited a differential pattern for upregulating Nrf2-driven downstream enzymes.
Collapse
Affiliation(s)
- Gizem Antika
- Graduate
Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Zeynep Özlem Cinar
- Graduate
Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Serhat Dönmez
- Graduate
Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Esma Seçen
- Graduate
Program of Molecular Medicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany
| | - Mehmet Özbil
- Institute
of Biotechnology, Gebze Technical University, Kocaeli 41400, Turkey
| | - Cristina Prandi
- Department
of Chemistry, University of Turin, Turin 10125, Italy
| | - Tugba Boyunegmez Tumer
- Department
of Molecular Biology and Genetics, Faculty of Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| |
Collapse
|
40
|
Jaberi KR, Alamdari-palangi V, Savardashtaki A, Vatankhah P, Jamialahmadi T, Tajbakhsh A, Sahebkar A. Modulatory Effects of Phytochemicals on Gut-Brain Axis: Therapeutic Implication. Curr Dev Nutr 2024; 8:103785. [PMID: 38939650 PMCID: PMC11208951 DOI: 10.1016/j.cdnut.2024.103785] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
This article explores the potential therapeutic implications of phytochemicals on the gut-brain axis (GBA), which serves as a communication network between the central nervous system and the enteric nervous system. Phytochemicals, which are compounds derived from plants, have been shown to interact with the gut microbiota, immune system, and neurotransmitter systems, thereby influencing brain function. Phytochemicals such as polyphenols, carotenoids, flavonoids, and terpenoids have been identified as having potential therapeutic implications for various neurological disorders. The GBA plays a critical role in the development and progression of various neurological disorders, including Parkinson's disease, multiple sclerosis, depression, anxiety, and autism spectrum disorders. Dysbiosis, or an imbalance in gut microbiota composition, has been associated with a range of neurological disorders, suggesting that modulating the gut microbiota may have potential therapeutic implications for these conditions. Although these findings are promising, further research is needed to elucidate the optimal use of phytochemicals in neurological disorder treatment, as well as their potential interactions with other medications. The literature review search was conducted using predefined search terms such as phytochemicals, gut-brain axis, neurodegenerative, and Parkinson in PubMed, Embase, and the Cochrane library.
Collapse
Affiliation(s)
- Khojasteh Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahab Alamdari-palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooya Vatankhah
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
42
|
Li W, Ali T, He K, Zheng C, Li N, Yu Z, Li S. ApoE4 dysregulation incites depressive symptoms and mitochondrial impairments in mice. J Cell Mol Med 2024; 28:e18160. [PMID: 38506067 PMCID: PMC10951871 DOI: 10.1111/jcmm.18160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 03/21/2024] Open
Abstract
Apolipoprotein E4 (ApoE4) is involved in the stress-response processes and is hypothesized to be a risk factor for depression by means of mitochondrial dysfunction. However, their exact roles and underlying mechanisms are largely unknown. ApoE4 transgenic mice (B6. Cg-ApoEtm1Unc Cdh18Tg( GFAP-APOE i4)1Hol /J) were subjected to stress (lipopolysaccharides, LPS) to elucidate the aetiology of ApoE4-induced depression. LPS treatment significantly aggravated depression-like behaviours, concurrent with neuroinflammation and impaired mitochondrial changes, and melatonin/Urolithin A (UA) + 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) reversed these effects in ApoE4 mice. Concurrently, ApoE4 mice exhibited mitophagy deficits, which could be further exacerbated by LPS stimulation, as demonstrated by reduced Atg5, Beclin-1 and Parkin levels, while PINK1 levels were increased. However, these changes were reversed by melatonin treatment. Additionally, proteomic profiling suggested mitochondria-related signalling and network changes in ApoE4 mice, which may underlie the exaggerated response to LPS. Furthermore, HEK 293T cells transfected with ApoE4 showed mitochondria-associated protein and mitophagy defects, including PGC-1α, TFAM, p-AMPKα, PINK1 and LC3B impairments. Additionally, it aggravates mitochondrial impairment (particularly mitophagy), which can be attenuated by triggering autophagy. Collectively, ApoE4 dysregulation enhanced depressive behaviour upon LPS stimulation.
Collapse
Affiliation(s)
- Weifen Li
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research CentreThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenChina
| | - Zhi‐Jian Yu
- Department of Infectious Diseases, Huazhong University of Science and Technology Union Shenzhen HospitalShenzhen University School of MedicineShenzhenChina
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Shenzhen Bay LaboratoryShenzhenChina
- Campbell Research Institute, Centre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
43
|
Luo J, Luo Y, Chen J, Gao Y, Tan J, Yang Y, Yang C, Jiang N, Luo Y. Intestinal metabolite UroB alleviates cerebral ischemia/reperfusion injury by promoting competition between TRIM65 and TXNIP for binding to NLRP3 inflammasome in response to neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167056. [PMID: 38360072 DOI: 10.1016/j.bbadis.2024.167056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.
Collapse
Affiliation(s)
- Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jialei Chen
- Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Tan
- Department of Pathology and Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongkang Yang
- Department of Clinical Medicine, Clinical Medical College of Chengdu University, Chengdu, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China; Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Mingo YB, Gabele L, Lonnemann N, Brône B, Korte M, Hosseini S. The effects of urolithin A on poly I:C-induced microglial activation. Front Cell Neurosci 2024; 18:1343562. [PMID: 38577490 PMCID: PMC10993698 DOI: 10.3389/fncel.2024.1343562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Neuroinflammation can be triggered by various stimuli, including viral infections. Viruses can directly invade the brain and infect neuronal cells or indirectly trigger a "cytokine storm" in the periphery that eventually leads to microglial activation in the brain. While this initial activation of microglial cells is important for viral clearance, chronic activation leads to excessive inflammation and oxidative stress, which can be neurotoxic. Remarkebly, recent studies have shown that certain viruses such as influenza A virus, coronavirus, herpes virus and Epstein-Barr virus may be involved in the development of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Therefore, it is important to find therapeutic strategies against chronic neuroinflammation triggered by viral infections. Here, we investigated the effects of urolithin A (UA) on microglial activation in vitro induced by a viral mimetic, poly I:C, in a triple co-culture system of neurons, astrocytes and microglial cells. Immunocytochemistry was used to perform a comprehensive single-cell analysis of the morphological changes of microglia as an indicator of their reactive state. Treatment with UA significantly prevented the poly I:C-induced reactive state of microglia, which was characterized by increased expression of the microglial activation markers CD68 and IBA-1. UA restored the poly I:C-induced morphology by restoring microglial ramification. In addition, UA was able to reduce the release of the pro-inflammatory mediators CCL2, TNF-α, and IL-1β and showed a trend toward attenuation of cellular ROS production in poly I:C-treated cultures. Overall, this study suggests that UA as a component of a healthy diet may help prevent virus-induced neuroinflammation and may have therapeutic potential for future studies to prevent or treat neurodegenerative diseases by targeting the associated neuroinflammatory processes.
Collapse
Affiliation(s)
- Yakum Benard Mingo
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Niklas Lonnemann
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bert Brône
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
45
|
Misrani A, Tabassum S, Zhang ZY, Tan SH, Long C. Urolithin A Prevents Sleep-deprivation-induced Neuroinflammation and Mitochondrial Dysfunction in Young and Aged Mice. Mol Neurobiol 2024; 61:1448-1466. [PMID: 37725214 DOI: 10.1007/s12035-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
Sleep deprivation (SD) has reached epidemic proportions worldwide and negatively affects people of all ages. Cognitive impairment induced by SD involves neuroinflammation and mitochondrial dysfunction, but the underlying mechanisms are largely unknown. Urolithin A (UA) is a natural compound that can reduce neuroinflammation and improve mitochondrial health, but its therapeutic effects in a SD model have not yet been studied. Young (3-months old) and aged (12-months old) mice were sleep deprived for 24 h, and UA (2.5 mg/kg or 10 mg/kg) was injected intraperitoneally for 7 consecutive days before the SD period. Immunofluorescent staining, western blotting, and RT-PCR were employed to evaluate levels of proteins involved in neuroinflammation and mitochondrial function. Transmission electron microscope and Golgi-Cox staining were used to evaluate mitochondrial and neuronal morphology, respectively. Finally, contextual fear conditioning and the Morris water maze test were conducted to assess hippocampal learning and memory. In the hippocampus of young (3 months-old) and aged (12 months-old) mice subjected to 24 h SD, pretreatment with UA prevented the activation of microglia and astrocytes, NF-κB-NLRP3 signaling and IL-1β, IL6, TNF-α cytokine production, thus ameliorating neuroinflammation. Furthermore, UA also attenuated SD-induced mitochondrial dysfunction, normalized autophagy and mitophagy and protected hippocampal neuronal morphology. Finally, UA prevented SD-induced hippocampal memory impairment. Cumulatively, the results show that UA imparts cognitive protection by reducing neuroinflammation and enhancing mitochondrial function in SD mice. This suggests that UA shows promise as a therapeutic for the treatment of SD-induced neurological disorders.
Collapse
Affiliation(s)
- Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sidra Tabassum
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zai-Yong Zhang
- Department of Cardiology, Panyu Central Hospital, Guangzhou, 511400, China
- Cardiovascular Institute of Panyu District, Guangzhou, 511400, China
| | - Shao-Hua Tan
- Department of Neurology, Panyu District Central Hospital, Guangzhou, 511400, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, China.
- School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
46
|
Huenchuguala S, Segura-Aguilar J. Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res 2024; 19:529-535. [PMID: 37721280 PMCID: PMC10581573 DOI: 10.4103/1673-5374.380878] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
The positive effect of levodopa in the treatment of Parkinson's disease, although it is limited in time and has severe side effects, has encouraged the scientific community to look for new drugs that can stop the neurodegenerative process or even regenerate the neuromelanin-containing dopaminergic nigrostriatal neurons. Successful preclinical studies with coenzyme Q10, mitoquinone, isradipine, nilotinib, TCH346, neurturin, zonisamide, deferiprone, prasinezumab, and cinpanemab prompted clinical trials. However, these failed and after more than 50 years levodopa continues to be the key drug in the treatment of the disease, despite its severe side effects after 4-6 years of chronic treatment. The lack of translated successful results obtained in preclinical investigations based on the use of neurotoxins that do not exist in the human body as new drugs for Parkinson's disease treatment is a big problem. In our opinion, the cause of these failures lies in the experimental animal models involving neurotoxins that do not exist in the human body, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 6-hydroxydopamine, that induce a very fast, massive and expansive neurodegenerative process, which contrasts with the extremely slow one of neuromelanin-containing dopaminergic neurons. The exceedingly slow progress of the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's patients is due to (i) a degenerative model in which the neurotoxic effect of an endogenous neurotoxin affects a single neuron, (ii) a neurotoxic event that is not expansive and (iii) the fact that the neurotoxin that triggers the neurodegenerative process is produced inside the neuromelanin-containing dopaminergic neurons. The endogenous neurotoxin that fits this degenerative model involving one single neuron at a time is aminochrome, since it (i) is generated within neuromelanin-containing dopaminergic neurons, (ii) does not cause an expansive neurotoxic effect and (iii) triggers all the mechanisms involved in the neurodegenerative process of the nigrostriatal neurons in idiopathic Parkinson's disease. In conclusion, based on the hypothesis that the neurodegenerative process of idiopathic Parkinson's disease corresponds to a single-neuron neurodegeneration model, we must search for molecules that increase the expression of the neuroprotective enzymes DT-diaphorase and glutathione transferase M2-2. It has been observed that the activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 pathway is associated with the transcriptional activation of the DT-diaphorase and glutathione transferase genes.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras, Osorno, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomedicas (ICBM), Faculty of medicine, University of Chile, Independencia, Santiago, Chile
| |
Collapse
|
47
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
48
|
Zhan F, Dong Y, Zhou L, Li X, Zhou Z, Xu G. Minocycline alleviates LPS-induced cognitive dysfunction in mice by inhibiting the NLRP3/caspase-1 pathway. Aging (Albany NY) 2024; 16:2989-3006. [PMID: 38329438 PMCID: PMC10911373 DOI: 10.18632/aging.205528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/06/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Growing experimental evidence indicates that cognitive impairment is linked to neuroinflammation. Minocycline (MINO), an antibiotic known for its anti-inflammatory, has shown promise in alleviating cognitive impairment. Nonetheless, the exact mechanism through which MINO improves cognitive impairment is not yet understood. METHODS A neuroinflammatory model was establish by utilizing lipopolysaccharide. The assessment of mice's cognitive and learning abilities was conducted through the MWM and Y-maze tests. The evaluation of hippocampal neuronal injury and microglial activation were achieved by performing HE staining and IHC, respectively. To evaluate BV2 cell viability and apoptosis, the CCK-8 and Hoechst 33342/PI staining assays were employed. In order to assess the protein and RNA expression levels of NLRP3, caspase-1, IL-1β, IL-18, Iba-1, and Bcl2/Bax, WB and RT-qPCR were utilized. Additionally, the inhibitory effect of MINO on apoptosis by targeting the NLRP3/caspase-1 pathway was investigated using Nigericin. RESULTS MINO was effective in reducing the time it took for mice to escape from the test, increasing the number of platforms they crossed, and mitigating damage to the hippocampus while also suppressing microglial activation and the expression of Iba-1 in a neuroinflammatory model caused by LPS. Furthermore, MINO improved the viability of BV2 cell and reduced apoptosis. It also had the effect of reducing the expression levels of NLRP3/Caspase-1, IL-1β, IL-18, and BAX, while upregulating the expression of Bcl2. Additionally, MINO was found to downregulate the NLRP3 expression, which is specifically activated by nigericin. CONCLUSION The protective effect of MINO relies on the crucial involvement of the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zheng Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
49
|
Madsen HB, Park JH, Chu X, Hou Y, Li Z, Rasmussen LJ, Croteau DL, Bohr VA, Akbari M. The cGAS-STING signaling pathway is modulated by urolithin A. Mech Ageing Dev 2024; 217:111897. [PMID: 38109974 DOI: 10.1016/j.mad.2023.111897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
During aging, general cellular processes, including autophagic clearance and immunological responses become compromised; therefore, identifying compounds that target these cellular processes is an important approach to improve our health span. The innate immune cGAS-STING pathway has emerged as an important signaling system in the organismal defense against viral and bacterial infections, inflammatory responses to cellular damage, regulation of autophagy, and tumor immunosurveillance. These key functions of the cGAS-STING pathway make it an attractive target for pharmacological intervention in disease treatments and in controlling inflammation and immunity. Here, we show that urolithin A (UA), an ellagic acid metabolite, exerts a profound effect on the expression of STING and enhances cGAS-STING activation and cytosolic DNA clearance in human cell lines. Animal laboratory models and limited human trials have reported no obvious adverse effects of UA administration. Thus, the use of UA alone or in combination with other pharmacological compounds may present a potential therapeutic approach in the treatment of human diseases that involves aberrant activation of the cGAS-STING pathway or accumulation of cytosolic DNA and this warrants further investigation in relevant transgenic animal models.
Collapse
Affiliation(s)
- H B Madsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - J-H Park
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA
| | - X Chu
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA
| | - Y Hou
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Z Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - L J Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - D L Croteau
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Laboratory of Genetics and Genomics, Computational Biology and Genomics Core, National Institute on Aging, 251 Bayview Blvd, Baltimore, USA
| | - V A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark; Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA.
| | - M Akbari
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark; Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
50
|
Lu J, Zong Y, Tao X, Dai H, Song J, Zhou H. Anesthesia/surgery-induced learning and memory dysfunction by inhibiting mitophagy-mediated NLRP3 inflammasome inactivation in aged mice. Exp Brain Res 2024; 242:417-427. [PMID: 38145993 PMCID: PMC10805997 DOI: 10.1007/s00221-023-06724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/15/2023] [Indexed: 12/27/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication, not only affects the quality of life of the elderly and increases the mortality rate, but also brings a greater burden to the family and society. Previous studies demonstrated that Nod-like receptor protein 3 (NLRP3) inflammasome participates in various inflammatory and neurodegenerative diseases. However, possible mitophagy mechanism in anesthesia/surgery-elicited NLRP3 inflammasome activation remains to be elucidated. Hence, this study clarified whether mitophagy dysfunction is related to anesthesia/surgery-elicited NLRP3 inflammasome activation. POCD model was established in aged C57BL/6 J mice by tibial fracture fixation under isoflurane anesthesia. Morris Water Maze (MWM) was used to evaluate learning and memory abilities. We found that in vitro experiments, lipopolysaccharide (LPS) significantly facilitated NLRP3 inflammasome activation and mitophagy inhibition in BV2 cells. Rapamycin restored mitophagy and improved mitochondrial function, and inhibited NLRP3 inflammasome activation induced by LPS. In vivo experiments, anesthesia and surgery caused upregulation of hippocampal NLRP3, caspase recruitment domain (ASC) and interleukin-1β (IL-1 β), and downregulation of microtubule-associated protein light chain 3II (LC3II) and Beclin1 in aged mice. Olaparib inhibited anesthesia/surgery-induced NLRP3, ASC, and IL-1β over-expression in the hippocampus, while upregulated the expression of LC3II and Beclin1. Furthermore, Olaparib improved cognitive impairment in older mice. These results revealed that mitophagy was involved in NLRP3 inflammasome-mediated anesthesia/surgery-induced cognitive deficits in aged mice. Overall, our results suggested that mitophagy was related in NLRP3 inflammasome-induced cognitive deficits after anesthesia and surgery in aged mice. Activating mitophagy may have clinical benefits in the prevention of cognitive impairment induced by anesthesia and surgery in elderly patients.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Youming Zong
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Xiaoyan Tao
- Department of Nursing, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Hongyu Dai
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Jiale Song
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China
| | - Hongmei Zhou
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing City, Zhejiang Province, China.
| |
Collapse
|