1
|
Gu W, Wu M, Zhang R, Liu P, Jiao Y, Rong H. Sufentanil enhances the cortical neurogenesis of rats with traumatic brain injury via PI3K/AKT signal pathway. Sci Rep 2025; 15:3986. [PMID: 39893215 PMCID: PMC11787385 DOI: 10.1038/s41598-025-88344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
This study aimed to explore the effects of Sufentanil on the cortical neurogenesis of rats with traumatic brain injury (TBI) and investigate the potential mechanisms. Rats with TBI model were prepared and divided into sham + vehicle, TBI + vehicle, TBI + Sufentanil and TBI + Sufentanil + LY294002 (PI3K/AKT signal pathway inhibitor) four groups. The oxidative stress, inflammation, nerve cell damage, melatonin, brain-derived neurotrophic factor (BDNF), neuron regeneration and p-AKT protein level in the cortex were detected with ELISA, TUNEL, qRT-PCR, immunofluorescence and Western blot. Pain behavioral test was assessed with mechanical withdrawal threshold (MWT). The results showed Sufentanil significantly decreased the oxidative stress and inflammation levels, increased melatonin and BDNF levels, protected the nerve cells from damage, enhanced the regeneration of immature or mature neurons and the p-AKT protein expression in the cortex, and boosted MWT in TBI rats. While the rats with TBI were treated with LY294002 and Sufentanil together, the abovementioned effects of Sufentanil on the TBI rats were partially reversed. Our results indicate Sufentanil enhances the cortical neurogenesis and inhibits mechanical allodynia of rats with TBI through suppressing the oxidative stress, inflammation response and increasing the melatonin and BDNF levels partly via PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Mimi Wu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ruocui Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Peiyu Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Hui Rong
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
2
|
Chang K, Wu JG, Ma TL, Hsu SH, Cho KS, Yu Z, Lennikov A, Ashok A, Rajagopalan A, Chen MH, Su WF, Utheim TP, Chen DF. Bioengineering strategy to promote CNS nerve growth and regeneration via chronic glutamate signaling. Acta Biomater 2024; 190:165-177. [PMID: 39427766 PMCID: PMC11614675 DOI: 10.1016/j.actbio.2024.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Being part of the mature mammalian central nervous system, impairments of the retina and optic nerves caused by trauma or diseases often cannot be restored. Progressive degeneration of retinal ganglion cells (RGCs) in glaucoma and other optic neuropathies gradually leads to permanent vision loss, which currently has no cure. The purpose of this study is to develop a biocompatible scaffold to support RGC survival and guide axon growth, facilitating optic nerve repair and regeneration. We here report that electrical stimulation (ES) significantly promoted neurite outgrowth and elongation from primary RGCs, mediated through glutamate receptor signaling. To mimic prolonged glutamate stimulation and facilitate sustained nerve growth, we fabricated biocompatible poly-γ-benzyl-L-glutamate (PBG) scaffolds for controlled glutamate release. These PBG scaffolds supported RGC survival and robust long-distance nerve growth in both retinal explants and isolated RGC cultures. In contrast, control polycaprolactone (PCL) scaffolds with similar physical structures showed little benefits on RGC survival or nerve growth. Moreover, PBG scaffolds promoted the differentiation and neurite outgrowth from embryonic stem cell-derived RGC progenitors. The aligned PBG scaffold drove directed nerve elongation along the fiber alignment. Transplantation of PBG-coated biocompatible conduits induced robust optic nerve regeneration in adult mice following nerve transection. Together, the findings present the exciting possibility of driving optic nerve regeneration and RGC progenitor cell differentiation by imitating ES or glutamate signaling. PBG presents a permissive biomaterial in supporting robust and directed axon growth with promising clinical applications in the future. STATEMENT OF SIGNIFICANCE: We here reported compelling findings that demonstrate the potent regenerative effects of a bioengineered scaffold incorporating poly-γ-benzyl-L-glutamate (PBG) on the optic nerve. Retinal ganglion cell (RGC) axons, which form the optic nerve, are incapable of regenerating in adulthood, posing a significant hurdle in restoring vision for patients with optic nerve diseases or injuries. Built upon the finding that electrical stimulation promotes RGC axonal growth through glutamate signaling, we developed PBG scaffolds to provide sustained glutamate stimulation and showed their exceptional effects on driving directed axonal elongation in cultured RGCs and neural progenitors, as well as supporting robust optic nerve regeneration after transection in vivo. The findings hold great promise for reversing vision loss in patients with optic nerve conditions.
Collapse
Affiliation(s)
- Karen Chang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jhih-Guang Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Tien-Li Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zicheng Yu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Ajay Ashok
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Aishwarya Rajagopalan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Biological Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Drammen Hospital, Drammen, Norway
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lomeli N, Pearre DC, Cruz M, Di K, Ricks-Oddie JL, Bota DA. Cisplatin induces BDNF downregulation in middle-aged female rat model while BDNF enhancement attenuates cisplatin neurotoxicity. Exp Neurol 2024; 375:114717. [PMID: 38336286 PMCID: PMC11087041 DOI: 10.1016/j.expneurol.2024.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Cancer-related cognitive impairments (CRCI) are neurological complications associated with cancer treatment, and greatly affect cancer survivors' quality of life. Brain-derived neurotrophic factor (BDNF) plays an essential role in neurogenesis, learning and memory. The reduction of BDNF is associated with the decrease in cognitive function in various neurological disorders. Few pre-clinical studies have reported on the effects of chemotherapy and medical stress on BDNF levels and cognition. The present study aimed to compare the effects of medical stress and cisplatin on serum BDNF levels and cognitive function in 9-month-old female Sprague Dawley rats to age-matched controls. Serum BDNF levels were collected longitudinally during cisplatin treatment, and cognitive function was assessed by novel object recognition (NOR) 14 weeks post-cisplatin initiation. Terminal BDNF levels were collected 24 weeks after cisplatin initiation. In cultured hippocampal neurons, we screened three neuroprotective agents, riluzole (an approved treatment for amyotrophic lateral sclerosis), as well as the ampakines CX546 and CX1739. We assessed dendritic arborization by Sholl analysis and dendritic spine density by quantifying postsynaptic density-95 (PSD-95) puncta. Cisplatin and exposure to medical stress reduced serum BDNF levels and impaired object discrimination in NOR compared to age-matched controls. Pharmacological BDNF augmentation protected neurons against cisplatin-induced reductions in dendritic branching and PSD-95. Ampakines (CX546 and CX1739) and riluzole did not affect the antitumor efficacy of cisplatin in vitro. In conclusion, we established the first middle-aged rat model of cisplatin-induced CRCI, assessing the contribution of medical stress and longitudinal changes in BDNF levels on cognitive function, although future studies are warranted to assess the efficacy of BDNF enhancement in vivo on synaptic plasticity. Collectively, our results indicate that cancer treatment exerts long-lasting changes in BDNF levels, and support BDNF enhancement as a potential preventative approach to target CRCI with therapeutics that are FDA approved and/or in clinical study for other indications.
Collapse
Affiliation(s)
- Naomi Lomeli
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Diana C Pearre
- Gynecologic Oncology, Providence Specialty Medical Group, Burbank, CA, USA
| | - Maureen Cruz
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Kaijun Di
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Joni L Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, CA, USA; Biostatistics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California Irvine, Irvine, CA, USA
| | - Daniela A Bota
- Department of Neurology, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Naffaa MM, Khan RR, Kuo CT, Yin HH. Cortical regulation of neurogenesis and cell proliferation in the ventral subventricular zone. Cell Rep 2023; 42:112783. [PMID: 37422764 PMCID: PMC10422956 DOI: 10.1016/j.celrep.2023.112783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/13/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023] Open
Abstract
Neurogenesis and differentiation of neural stem cells (NSCs) are controlled by cell-intrinsic molecular pathways that interact with extrinsic signaling cues. In this study, we identify a circuit that regulates neurogenesis and cell proliferation in the lateral ventricle-subventricular zone (LV-SVZ). Our results demonstrate that direct glutamatergic projections from the anterior cingulate cortex (ACC), as well as inhibitory projections from calretinin+ local interneurons, modulate the activity of cholinergic neurons in the subependymal zone (subep-ChAT+). Furthermore, in vivo optogenetic stimulation and inhibition of the ACC-subep-ChAT+ circuit are sufficient to control neurogenesis in the ventral SVZ. Both subep-ChAT+ and local calretinin+ neurons play critical roles in regulating ventral SVZ neurogenesis and LV-SVZ cell proliferation.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| | - Rehan R Khan
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
She YJ, Pan J, Peng LM, Ma L, Guo X, Lei DX, Wang HZ. Ketamine modulates neural stem cell differentiation by regulating TRPC3 expression through the GSK3β/β-catenin pathway. Neurotoxicology 2023; 94:1-10. [PMID: 36334642 DOI: 10.1016/j.neuro.2022.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Ketamine, a popular anesthetic, is often abused by people for its hallucinogenic effect. Thus, the safety of ketamine in pediatric populations has been called into question for potential neurotoxic effects. However, ketamine also has neuroprotective effects in many brain injury models. The differentiation of neural stem cells (NSCs) was influenced significantly by ketamine, but the molecular mechanism is still unclear. NSCs were extracted from the hippocampi of postnatal day 1 rats and treated with ketamine to induce NSCs differentiation. Our results found that ketamine promoted neuronal differentiation of NSCs dose-dependently in a small dose range (P < 0.001). The main types of neurons from NSCs were cholinergic (51 ± 4 %; 95 % CI: 41-61 %) and glutamatergic neurons (34 ± 3 %; 95 % CI: 27-42 %). Furthermore, we performed RNA sequencing to promise a more comprehensive understanding of the molecules regulated by ketamine. Finally, we combined bioimaging and multiple molecular biology techniques to clarify that ketamine influences NSC differentiation by regulating transient receptor potential canonical 3 (TRPC3) expressions. Ketamine dramatically repressed TRPC3 expression (MD [95 % CI]=0.67 [0.40-0.95], P < 0.001) with a significant increase of phosphorylated glycogen synthase kinase 3β (p-GSK3β; MD [95 % CI]=1.00 [0.74-1.27], P < 0.001) and a decrease of β-catenin protein expression (MD [95 % CI]=0.60 [0.32-0.89], P = 0.001), thereby promoting the differentiation of NSCs into neurons and inhibiting their differentiation into astrocytes. These results suggest that TRPC3 is necessary for ketamine to modulate NSC differentiation, which occurs partly via regulation of the GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Ying-Jun She
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junping Pan
- Department of Pharmacology, College of Basic Medicine, Jinan University, Guangzhou, China
| | - Liang-Ming Peng
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Ma
- Department of Cardiac Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xinying Guo
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong-Xu Lei
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huai-Zhen Wang
- Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
von Knebel Doeberitz N, Paech D, Sturm D, Pusch S, Turcan S, Saunthararajah Y. Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. Int J Cancer 2022; 151:1431-1446. [PMID: 35603902 PMCID: PMC9474618 DOI: 10.1002/ijc.34131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.
Collapse
Affiliation(s)
| | - Daniel Paech
- Division of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of NeuroradiologyBonn University HospitalBonnGermany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) HeidelbergHeidelbergGermany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Oncology, Hematology & ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Stefan Pusch
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐University HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sevin Turcan
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
7
|
Ma TL, Yang SC, Cheng T, Chen MY, Wu JH, Liao SL, Chen WL, Su WF. Exploration of biomimetic poly(γ-benzyl-L-glutamate) fibrous scaffolds for corneal nerve regeneration. J Mater Chem B 2022; 10:6372-6379. [PMID: 35950376 DOI: 10.1039/d2tb01250b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Poly(γ-benzyl-L-glutamate) (PBG) made biomimetic scaffolds are explored as candidate materials for corneal nerve regeneration and neurotrophic keratopathy treatment. The PBG with built-in neurotransmitter glutamate was synthesized and fabricated into 3D fibrous scaffolds containing aligned fibers using electrospinning. In in vitro experiments, primary mouse trigeminal ganglia (TG) cells were used. Immunohistochemistry (IHC) analysis shows that TG cells cultured on PBG have no cytotoxic response for 21 days. Without any nerve growth factor, TG cells have the longest neurite length of 225.3 μm in the PBG group and 1.3 times the average length as compared with the polycaprolactone and no scaffold groups. Also, aligned fibers guide the neurite growth and extension unidirectionally. In vivo assays were carried out by intracorneal implantation of PBG on clinical New Zealand rabbits. The external eye photos and in vivo confocal microscopy (IVCM) show a low immune response. The corneal neural markers (βIII tubulin and SMI312) in the IHC analysis are consistent with the position stained by glutamate of implanted scaffolds, indicating that PBG induces neurogenesis. PBG exhibits mechanical stiffness to resist material deformation possibly caused by surgical operations. The results of this study demonstrate that PBG is suitable for corneal nerve regeneration and the treatment of neurotrophic keratopathy.
Collapse
Affiliation(s)
- Tien-Li Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Shang-Chih Yang
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ting Cheng
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Mei-Yun Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jo-Hsuan Wu
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, California, USA
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Advanced Ocular Surface and Corneal Nerve Regeneration Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan. .,Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
8
|
Molecular Markers of Adult Neurogenesis in the Telencephalon and Tectum of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2022; 23:ijms23031188. [PMID: 35163116 PMCID: PMC8835435 DOI: 10.3390/ijms23031188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.
Collapse
|
9
|
Galiakberova AA, Surin AM, Bakaeva ZV, Sharipov RR, Zhang D, Dorovskoy DA, Shakirova KM, Fisenko AP, Dashinimaev EB. IPSC-Derived Human Neurons with GCaMP6s Expression Allow In Vitro Study of Neurophysiological Responses to Neurochemicals. Neurochem Res 2021; 47:952-966. [PMID: 34855047 PMCID: PMC8891101 DOI: 10.1007/s11064-021-03497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
The study of human neurons and their interaction with neurochemicals is difficult due to the inability to collect primary biomaterial. However, recent advances in the cultivation of human stem cells, methods for their neuronal differentiation and chimeric fluorescent calcium indicators have allowed the creation of model systems in vitro. In this paper we report on the development of a method to obtain human neurons with the GCaMP6s calcium indicator, based on a human iPSC line with the TetON–NGN2 transgene complex. The protocol we developed allows us quickly, conveniently and efficiently obtain significant amounts of human neurons suitable for the study of various neurochemicals and their effects on specific neurophysiological activity, which can be easily registered using fluorescence microscopy. In the neurons we obtained, glutamate (Glu) induces rises in [Ca2+]i which are caused by ionotropic receptors for Glu, predominantly of the NMDA-type. Taken together, these facts allow us to consider the model we have created to be a useful and successful development of this technology.
Collapse
Affiliation(s)
- A A Galiakberova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, Moscow, Russia, 117997.
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, Russia, 119991.
| | - A M Surin
- Laboratory of Neurobiology, "National Medical Research Center of Children's Health", Russian Ministry of Health, Lomonosov Avenue, Moscow, Russia, 119991
- Laboratory of Pathology of Ion Transport and Intracellular Signaling, Institute of General Pathology and Pathophysiology, Baltiyskaya St., Moscow, Russia, 125315
| | - Z V Bakaeva
- Laboratory of Neurobiology, "National Medical Research Center of Children's Health", Russian Ministry of Health, Lomonosov Avenue, Moscow, Russia, 119991
- Department of General Biology and Physiology, Gorodovikov Kalmyk State University, Pushkin St., Elista, Russia, 358000
| | - R R Sharipov
- Laboratory of Pathology of Ion Transport and Intracellular Signaling, Institute of General Pathology and Pathophysiology, Baltiyskaya St., Moscow, Russia, 125315
| | - Dongxing Zhang
- Moscow Institute of Physics and Technology (State University), Institutskiy per., 141701, Dolgoprudny, Russia
| | - D A Dorovskoy
- Moscow Institute of Physics and Technology (State University), Institutskiy per., 141701, Dolgoprudny, Russia
| | - K M Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, Moscow, Russia, 117997
| | - A P Fisenko
- Laboratory of Neurobiology, "National Medical Research Center of Children's Health", Russian Ministry of Health, Lomonosov Avenue, Moscow, Russia, 119991
| | - E B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovitianov Street, Moscow, Russia, 117997
- Moscow Institute of Physics and Technology (State University), Institutskiy per., 141701, Dolgoprudny, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov St., Moscow, Russia, 119334
| |
Collapse
|
10
|
Caba E, Sherman MD, Farizatto KLG, Alcira B, Wang HW, Giardina C, Shin DG, Sandefur CI, Bahr BA. Excitotoxic stimulation activates distinct pathogenic and protective expression signatures in the hippocampus. J Cell Mol Med 2021; 25:9011-9027. [PMID: 34414662 PMCID: PMC8435451 DOI: 10.1111/jcmm.16864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Excitotoxic events underlying ischaemic and traumatic brain injuries activate degenerative and protective pathways, particularly in the hippocampus. To understand opposing pathways that determine the brain's response to excitotoxicity, we used hippocampal explants, thereby eliminating systemic variables during a precise protocol of excitatory stimulation. N‐methyl‐d‐aspartate (NMDA) was applied for 20 min and total RNA isolated one and 24 h later for neurobiology‐specific microarrays. Distinct groups of genes exhibited early vs. delayed induction, with 63 genes exclusively reduced 24‐h post‐insult. Egr‐1 and NOR‐1 displayed biphasic transcriptional modulation: early induction followed by delayed suppression. Opposing events of NMDA‐induced genes linked to pathogenesis and cell survival constituted the early expression signature. Delayed degenerative indicators (up‐regulated pathogenic genes, down‐regulated pro‐survival genes) and opposing compensatory responses (down‐regulated pathogenic genes, up‐regulated pro‐survival genes) generated networks with temporal gene profiles mirroring coexpression network clustering. We then used the expression profiles to test whether NF‐κB, a potent transcription factor implicated in both degenerative and protective pathways, is involved in the opposing responses. The NF‐κB inhibitor MG‐132 indeed altered NMDA‐mediated transcriptional changes, revealing components of opposing expression signatures that converge on the single response element. Overall, this study identified counteracting avenues among the distinct responses to excitotoxicity, thereby suggesting multi‐target treatment strategies and implications for predictive medicine.
Collapse
Affiliation(s)
- Ebru Caba
- Vertex Pharmaceuticals, Cambridge, MA, USA.,Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT, USA
| | - Marcus D Sherman
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Karen L G Farizatto
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Britney Alcira
- Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA
| | - Hsin-Wei Wang
- Bioinformatics and Biocomputing Institute, University of Connecticut, Storrs, CT, USA.,Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Dong-Guk Shin
- Bioinformatics and Biocomputing Institute, University of Connecticut, Storrs, CT, USA.,Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Conner I Sandefur
- Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Pharmacology and the Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.,Sandefur Modeling, Pittsboro, NC, USA
| | - Ben A Bahr
- Department of Pharmaceutical Sciences and the Neurosciences Program, University of Connecticut, Storrs, CT, USA.,Biotechnology Research and Training Center, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Biology, University of North Carolina-Pembroke, Pembroke, NC, USA.,Department of Chemistry and Physics, University of North Carolina-Pembroke, Pembroke, NC, USA
| |
Collapse
|
11
|
Yuizumi N, Harada Y, Kuniya T, Sunabori T, Koike M, Wakabayashi M, Ishihama Y, Suzuki Y, Kawaguchi D, Gotoh Y. Maintenance of neural stem-progenitor cells by the lysosomal biosynthesis regulators TFEB and TFE3 in the embryonic mouse telencephalon. STEM CELLS (DAYTON, OHIO) 2021; 39:929-944. [PMID: 33609411 DOI: 10.1002/stem.3359] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
Abstract
Lysosomes have recently been implicated in regulation of quiescence in adult neural stem cells (NSCs). Whether lysosomes regulate the differentiation of neural stem-progenitor cells (NPCs) in the embryonic brain has remained unknown, however. We here show that lysosomes are more abundant in rapidly dividing NPCs than in differentiating neurons in the embryonic mouse neocortex and ganglionic eminence. The genes for TFEB and TFE3, master regulators of lysosomal biosynthesis, as well as other lysosome-related genes were also expressed at higher levels in NPCs than in differentiating neurons. Anatomic analysis revealed accumulation of lysosomes at the apical and basal endfeet of NPCs. Knockdown of TFEB and TFE3, or that of the lysosomal transporter Slc15a4, resulted in premature differentiation of neocortical NPCs. Conversely, forced expression of an active form of TFEB (TFEB-AA) suppressed neuronal differentiation of NPCs in association with upregulation of NPC-related genes. These results together point to a previously unappreciated role for TFEB and TFE3, and possibly for lysosomes, in maintenance of the undifferentiated state of embryonic NPCs. We further found that lysosomes are even more abundant in an NPC subpopulation that rarely divides and includes the embryonic origin of adult NSCs than in the majority of NPCs that divide frequently for construction of the embryonic brain, and that overexpression of TFEB-AA also suppressed the cell cycle of neocortical NPCs. Our results thus also implicate lysosomes in establishment of the slowly dividing, embryonic origin of adult NSCs.
Collapse
Affiliation(s)
- Naoya Yuizumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yujin Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Kuniya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takehiko Sunabori
- Department of Cell Biology and Neuroscience, Juntendo University of Medicine, Tokyo, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University of Medicine, Tokyo, Japan
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Zhang Z, Liu Y, Luan Y, Zhu K, Hu B, Ma B, Chen L, Liu X, Lu H, Chen X, Liu Y, Zheng X. Activation of Type 4 Metabotropic Glutamate Receptor Regulates Proliferation and Neuronal Differentiation in a Cultured Rat Retinal Progenitor Cell Through the Suppression of the cAMP/PTEN/AKT Pathway. Front Mol Neurosci 2020; 13:141. [PMID: 32973444 PMCID: PMC7469868 DOI: 10.3389/fnmol.2020.00141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/10/2020] [Indexed: 02/02/2023] Open
Abstract
Retinal progenitor cells (RPCs) remain in the eye throughout life and can be characterized by their ability for self-renewal as well as their specialization into different cell types. A recent study has suggested that metabotropic glutamate receptors (mGluRs) participate in the processes of multiple types of stem cells. Therefore, clarifying the functions of different subtypes of mGluRs in RPCs may provide a novel treatment strategy for regulating the proliferation and differentiation of endogenous RPCs after retinal degeneration. In this study, we observed that mGluR4 was functionally expressed in RPCs, with an effect on cell viability and intracellular cAMP concentration. The activation of mGluR4 by VU0155041 (VU, mGluR4 positive allosteric selective modulator) reduced the number of BrdU+/Pax6+ double-positive cells and Cyclin D1 expression levels while increasing the number of neuron-specific class III beta-tubulin (Tuj1)- and Doublecortin (DCX)-positive cells. The knockdown of mGluR4 by target-specific siRNA abolished the effects of VU on RPC proliferation and neuronal differentiation. Further investigation demonstrated that mGluR4 activation inhibited AKT phosphorylation and up-regulated PTEN protein expression. Moreover, the VU0155041-induced inhibition of proliferation and enhancement of neuronal differentiation in RPCs were significantly hampered by Forskolin (adenylyl cyclase activator) and VO-OHpic trihydrate (PTEN inhibitor). In contrast, the effect of LY294002 (a highly selective Akt inhibitor) on proliferation and differentiation was similar to that of VU. These results indicate that mGluR4 activation can suppress proliferation and promote the neural differentiation of cultured rat RPCs through the cAMP/PTEN/AKT pathway. Our research lays the foundation for further pharmacological work exploring a novel potential therapy for several retinal diseases.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kun Zhu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baoqi Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Thiruvalluvan A, de Mattos EP, Brunsting JF, Bakels R, Serlidaki D, Barazzuol L, Conforti P, Fatima A, Koyuncu S, Cattaneo E, Vilchez D, Bergink S, Boddeke EHWG, Copray S, Kampinga HH. DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Mol Cell 2020; 78:346-358.e9. [PMID: 32268123 DOI: 10.1016/j.molcel.2020.02.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.
Collapse
Affiliation(s)
- Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eduardo P de Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeanette F Brunsting
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob Bakels
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Despina Serlidaki
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik H W G Boddeke
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjef Copray
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
Zhang Z, Zheng X, Liu Y, Luan Y, Wang L, Zhao L, Zhang J, Tian Y, Lu H, Chen X, Liu Y. Activation of metabotropic glutamate receptor 4 regulates proliferation and neural differentiation in neural stem/progenitor cells of the rat subventricular zone and increases phosphatase and tensin homolog protein expression. J Neurochem 2020; 156:465-480. [PMID: 32052426 DOI: 10.1111/jnc.14984] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSPCs) persist in the mammalian subventricular zone throughout life, where they can be activated in response to physiological and pathophysiological stimuli. A recent study indicates metabotropic glutamate receptor 4 (mGluR4) is involved in regulating NSPCs behaviors. Therefore, defining mGluR4 function in NSPCs is necessary for determining novel strategies to enhance the intrinsic potential for brain regeneration after injuries. In this study, mGluR4 was functionally expressed in SVZ-derived NSPCs from male Sprague-Dawley rats, in which the cyclic adenosine monophosphate concentration was reduced after treatment with the mGluR4-specific agonist VU0155041. Additionally, lateral ventricle injection of VU0155041 significantly decreased 5-bromo-2'-deoxyuridine (BrdU)+ and Ki67+ cells, while increased Doublecortin (DCX)/BrdU double-positive cells in SVZ. In cultured NSPCs, mGluR4 activation decreased the ratio of BrdU+ cells, G2/M-phase cells, and inhibited Cyclin D1 expression, whereas it increased neuron-specific class III β-tubulin (Tuj1) expression and the number of Tuj1, DCX, and PSA-NCAM-positive cells. However, pharmacological blocking mGluR4 with the antagonist MSOP or knockdown of mGluR4 abolished the effects of VU0155041 on NSPCs proliferation and neuronal differentiation. Further investigation demonstrated that VU0155041 treatment down-regulated AKT phosphorylation and up-regulated expression of the phosphatase and tensin homolog protein (PTEN) in NSPCs culture. Moreover VU0155041-induced proliferating inhibition and neuronal differentiating amplification in NSPCs were significantly hampered by VO-OHpic, a PTEN inhibitor. We conclude that activation of mGluR4 in SVZ-derived NSPCs suppresses proliferation and enhances their neuronal differentiation, and regulation of PTEN may be involved as a potential intracellular target of mGluR4 signal. Cover Image for this issue: https://doi.org/10.1111/jnc.15052.
Collapse
Affiliation(s)
- Zhichao Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaoyan Zheng
- Department of Hematology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingfei Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yan Luan
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Xi'an Medical College, Xi'an, Shaanxi, China
| | - Lingyu Zhao
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jianshui Zhang
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yumei Tian
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Haixia Lu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinlin Chen
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yong Liu
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F. Emerging intersections between neuroscience and glioma biology. Nat Neurosci 2019; 22:1951-1960. [PMID: 31719671 DOI: 10.1038/s41593-019-0540-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
Abstract
The establishment of neuronal and glial networks in the brain depends on the activities of neural progenitors, which are influenced by cell-intrinsic mechanisms, interactions with the local microenvironment and long-range signaling. Progress in neuroscience has helped identify key factors in CNS development. In parallel, studies in recent years have increased our understanding of molecular and cellular factors in the development and growth of primary brain tumors. To thrive, glioma cells exploit pathways that are active in normal CNS progenitor cells, as well as in normal neurotransmitter signaling. Furthermore, tumor cells of incurable gliomas integrate into communicating multicellular networks, where they are interconnected through neurite-like cellular protrusions. In this Review, we discuss evidence that CNS development, organization and function share a number of common features with glioma progression and malignancy. These include mechanisms used by cells to proliferate and migrate, interact with their microenvironment and integrate into multicellular networks. The emerging intersections between the fields of neuroscience and neuro-oncology considered in this review point to new research directions and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Osswald
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, INF 400, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
17
|
Hachem LD, Mothe AJ, Tator CH. Unlocking the paradoxical endogenous stem cell response after spinal cord injury. Stem Cells 2019; 38:187-194. [PMID: 31648407 DOI: 10.1002/stem.3107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
Nearly a century ago, the concept of the secondary injury in spinal cord trauma was first proposed to explain the complex cascade of molecular and cellular events leading to widespread neuronal and glial cell death after trauma. In recent years, it has been established that the ependymal region of the adult mammalian spinal cord contains a population of multipotent neural stem/progenitor cells (NSPCs) that are activated after spinal cord injury (SCI) and likely play a key role in endogenous repair and regeneration. How these cells respond to the various components of the secondary injury remains poorly understood. Emerging evidence suggests that many of the biochemical components of the secondary injury cascade which have classically been viewed as deleterious to host neuronal and glial cells may paradoxically trigger NSPC activation, proliferation, and differentiation thus challenging our current understanding of secondary injury mechanisms in SCI. Herein, we highlight new findings describing the response of endogenous NSPCs to spinal cord trauma, redefining the secondary mechanisms of SCI through the lens of the endogenous population of stem/progenitor cells. Moreover, we outline how these insights can fuel novel stem cell-based therapeutic strategies to repair the injured spinal cord.
Collapse
Affiliation(s)
- Laureen D Hachem
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Andrea J Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Libby CJ, McConathy J, Darley-Usmar V, Hjelmeland AB. The Role of Metabolic Plasticity in Blood and Brain Stem Cell Pathophysiology. Cancer Res 2019; 80:5-16. [PMID: 31575548 DOI: 10.1158/0008-5472.can-19-1169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/04/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Our understanding of intratumoral heterogeneity in cancer continues to evolve, with current models incorporating single-cell signatures to explore cell-cell interactions and differentiation state. The transition between stem and differentiation states in nonneoplastic cells requires metabolic plasticity, and this plasticity is increasingly recognized to play a central role in cancer biology. The insights from hematopoietic and neural stem cell differentiation pathways were used to identify cancer stem cells in leukemia and gliomas. Similarly, defining metabolic heterogeneity and fuel-switching signals in nonneoplastic stem cells may also give important insights into the corresponding molecular mechanisms controlling metabolic plasticity in cancer. These advances are important, because metabolic adaptation to anticancer therapeutics is rooted in this inherent metabolic plasticity and is a therapeutic challenge to be overcome.
Collapse
Affiliation(s)
- Catherine J Libby
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Center for Free Radical Biology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
19
|
Xiang Y, Han H, Ji S, Wei L, Yang P, Zhang J. The developmental expression of metabotropic glutamate receptor 4 in prenatal human frontal lobe and neurogenesis regions. Brain Dev 2019; 41:567-576. [PMID: 30954358 DOI: 10.1016/j.braindev.2019.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/22/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUNDS Metabotropic glutamate receptors, besides ionotropic receptors, mediate the complicated effect of glutamate on neurogenesis. Previous studies showed that metabotropic glutamate receptor 4 (mGluR4) regulated the proliferation and differentiation of neural stem/progenitor cells in vitro. However, little is known about the expression pattern of mGluR4 on prenatal central nervous system in vivo, especially the human being. METHODS The normal brain tissues of human fetus were collected and divided into 4 groups according to the gestational age: 9-11 W, 14-16 W, 22-24 W and 32-36 W. Then the expression of mGluR4 was evaluated at mRNA and protein levels by means of PCR or immunohistochemistry method, respectively. The type of cell expressing mGluR4 was further investigated using double-labeling immunofluorescence. RESULTS RT-PCR showed that the mRNA of mGluR4 could be detected in frontal lobe from 9 W to 32 W and real-time PCR quantificationally demonstrated the mRNA increased with development. Similarly, immnoreactivity was found in all layers of frontal lobe, VZ/SVZ. The intensity scores analysis showed that the staining became stronger and the range extended gradually with development. The double-labeling immunofluorescence showed that mGluR4 was present in neural stem/progenitor cells (nestin-positive cells after 9 W), young neurons (DCX-positive cells after 9 W), mature neurons (NeuN-positive cells in cortex after 32 W), as well as typical astrocytes (GFAP-positive cells in medulla after 32 W). CONCLUSION These results supply an important evidence that mGluR4 is expressed in prenatal human cerebrum, and main kinds of cells related to neurogenesis are involved in its expression.
Collapse
Affiliation(s)
- Yan Xiang
- Department of Internal Medicine, Xi'an Huashan Central Hospital, China
| | - Hua Han
- Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, China
| | - Shengfeng Ji
- Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, China
| | - Liang Wei
- Department of Human Anatomy & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, China
| | - Pengbo Yang
- Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, China.
| | - Junfeng Zhang
- Department of Human Anatomy & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, China.
| |
Collapse
|
20
|
Danesi C, Keinänen K, Castrén ML. Dysregulated Ca 2+-Permeable AMPA Receptor Signaling in Neural Progenitors Modeling Fragile X Syndrome. Front Synaptic Neurosci 2019; 11:2. [PMID: 30800064 PMCID: PMC6375879 DOI: 10.3389/fnsyn.2019.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that represents a common cause of intellectual disability and is a variant of autism spectrum disorder (ASD). Studies that have searched for similarities in syndromic and non-syndromic forms of ASD have paid special attention to alterations of maturation and function of glutamatergic synapses. Copy number variations (CNVs) in the loci containing genes encoding alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) subunits are associated with ASD in genetic studies. In FXS, dysregulated AMPAR subunit expression and trafficking affect neural progenitor differentiation and synapse formation and neuronal plasticity in the mature brain. Decreased expression of GluA2, the AMPAR subunit that critically controls Ca2+-permeability, and a concomitant increase in Ca2+-permeable AMPARs (CP-AMPARs) in human and mouse FXS neural progenitors parallels changes in expression of GluA2-targeting microRNAs (miRNAs). Thus, posttranscriptional regulation of GluA2 by miRNAs and subsequent alterations in calcium signaling may contribute to abnormal synaptic function in FXS and, by implication, in some forms of ASD.
Collapse
Affiliation(s)
- Claudia Danesi
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kari Keinänen
- Research Program in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Lin CY, Luo SC, Yu JS, Chen TC, Su WF. Peptide-Based Polyelectrolyte Promotes Directional and Long Neurite Outgrowth. ACS APPLIED BIO MATERIALS 2018; 2:518-526. [DOI: 10.1021/acsabm.8b00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chia-Yu Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Shing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Tapei 10002, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
22
|
Multiple effects of the herbicide glufosinate-ammonium and its main metabolite on neural stem cells from the subventricular zone of newborn mice. Neurotoxicology 2018; 69:152-163. [DOI: 10.1016/j.neuro.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/13/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022]
|
23
|
Shtaya A, Sadek AR, Zaben M, Seifert G, Pringle A, Steinhäuser C, Gray WP. AMPA receptors and seizures mediate hippocampal radial glia-like stem cell proliferation. Glia 2018; 66:2397-2413. [PMID: 30357924 DOI: 10.1002/glia.23479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
Neurogenesis is sustained throughout life in the mammalian brain, supporting hippocampus-dependent learning and memory. Its permanent alteration by status epilepticus (SE) is associated with learning and cognitive impairments. The mechanisms underlying the initiation of altered neurogenesis after SE are not understood. Glial fibrillary acidic protein-positive radial glia (RG)-like cells proliferate early after SE, but their proliferation dynamics and signaling are largely unclear. We have previously reported a polarized distribution of AMPA receptors (AMPARs) on RG-like cells in vivo and postulated that these may signal their proliferation. Here, we examined the acute effects of kainate on hippocampal precursor cells in vitro and in kainate-induced SE on proliferating and quiescent clones of 5-bromo-2-deoxyuridine prelabeled hippocampal precursors in vivo. In vitro, we found that 5 μM kainate shortened the cell cycle time of RG-like cells via AMPAR activation and accelerated cell cycle re-entry of their progeny. It also shifted their fate choice expanding the population of RG-like cells and reducing the population of downstream amplifying neural progenitors. Kainate enhanced the survival of all precursor cell subtypes. Pharmacologically, kainate's proliferative and survival effects were abolished by AMPAR blockade. Functional AMPAR expression was confirmed on RG-like cells in vitro. In agreement with these observations, kainate/seizures enhanced the proliferation and expansion predominantly of constitutively cycling RG-like cell clones in vivo. Our results identify AMPARs as key potential players in initiating the proliferation of dentate RG-like cells and unravel a possible receptor target for modifying the radial glia-like cell response to SE.
Collapse
Affiliation(s)
- Anan Shtaya
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom.,University of Southampton School of Medicine, Southampton, United Kingdom
| | | | - Malik Zaben
- University of Southampton School of Medicine, Southampton, United Kingdom.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,B.R.A.I.N. Biomedical Research Unit, Cardiff University, Cardiff, United Kingdom
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ashley Pringle
- University of Southampton School of Medicine, Southampton, United Kingdom
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - William Peter Gray
- University of Southampton School of Medicine, Southampton, United Kingdom.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.,B.R.A.I.N. Biomedical Research Unit, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
24
|
Mishra A, Singh S, Shukla S. Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease. J Exp Neurosci 2018; 12:1179069518779829. [PMID: 29899667 PMCID: PMC5985548 DOI: 10.1177/1179069518779829] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/02/2018] [Indexed: 01/09/2023] Open
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein–coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson’s disease (PD), Alzheimer’s disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Collapse
Affiliation(s)
- Akanksha Mishra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shubha Shukla
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, New Delhi, India
- Shubha Shukla, Division of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
25
|
Turunen PM, Louhivuori LM, Louhivuori V, Kukkonen JP, Åkerman KE. Endocannabinoid Signaling in Embryonic Neuronal Motility and Cell–Cell Contact – Role of mGluR5 and TRPC3 Channels. Neuroscience 2018; 375:135-148. [DOI: 10.1016/j.neuroscience.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
26
|
Iacovelli L, Orlando R, Rossi A, Spinsanti P, Melchiorri D, Nicoletti F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr Opin Pharmacol 2018. [PMID: 29525720 DOI: 10.1016/j.coph.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In spite of the recent advancement in the molecular characterization of malignant gliomas and medulloblastomas, the treatment of primary brain tumors remains suboptimal. The use of small molecule inhibitors of intracellular signaling pathways, inhibitors of angiogenesis, and immunotherapic agents is limited by systemic adverse effects, limited brain penetration, and, in some cases, lack of efficacy. Thus, adjuvant chemo-therapy and radiotherapy still remain the gold standard in the treatment of grade-IV astrocytoma (glioblastoma multiforme) and medulloblastoma. We review evidence that supports the development of mGlu3 receptor antagonists as add-on drugs in the treatment of malignant gliomas. These drugs appear to display pleiotropic effect on tumor cells, affecting proliferation, differentiation, and response to chemotherapy. mGlu1 and mGlu4 receptors could also be targeted by potential anticancer agents in the treatment of malignant gliomas and medulloblastoma, but extensive research is required for target validation.
Collapse
Affiliation(s)
- Luisa Iacovelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy.
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Alessandro Rossi
- Faculty of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Paola Spinsanti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
27
|
Involvement of mGluR I in EphB/ephrinB reverse signaling activation induced retinal ganglion cell apoptosis in a rat chronic hypertension model. Brain Res 2018; 1683:27-35. [PMID: 29366625 DOI: 10.1016/j.brainres.2018.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/05/2018] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
EphB/ephrinB reverse signaling is involved in retinal ganglion cell (RGC) apoptosis in experimental glaucoma. Here, we further investigated the mechanisms underlying EphB/ephrinB reverse signaling activation induced RGC apoptosis in a rat chronic ocular hypertension (COH) model, using patch-clamp techniques in retinal slices. In COH retinas, RGCs showed higher spontaneous firing frequency and much more depolarized membrane potential as compared to control, which was mimicked by intravitreally injection of EphB2-Fc, an activator of ephrinB2. The changes in RGC spontaneous firing and membrane potential could be reversed by the tyrosine kinase inhibitor PP2, suggesting that EphB/ephrinB reverse signaling activation induced RGC hyperexcitability. Intravitreal pre-injection of either LY367385 or MPEP, selective mGluR1 and mGluR5 antagonists, also blocked the changes in RGC spontaneous firing and membrane potential. Co-immunoprecipitation experiments showed an interaction between ephrinB2 and group I metabotropic glutamate receptor (mGluR I) (mGluR1/mGluR5). Furthermore, intravitreal pre-injection of the mixture of L-NAME (an NO synthase inhibitor) and XPro1595 (a selective inhibitor of soluble TNF-α) could reduce the EphB2-Fc injection induced increase in RGC firing, suggesting that Müller cells might be involved in EphB/ephrinB reverse signaling activation induced change in RGC hyperexcitability. In addition, LY367385/MPEP reduced the numbers of TUNEL-positive RGCs both in EphB2-Fc injected and COH retinas. All results suggest that activation of EphB/ephrinB reverse signaling induces RGC hyperexcitability and apoptosis by interacting with mGluR I in COH rats. Appropriate reduction of EphB/ephrinB reverse signaling could alleviate the loss of RGCs in glaucoma.
Collapse
|
28
|
Achuta VS, Möykkynen T, Peteri UK, Turconi G, Rivera C, Keinänen K, Castrén ML. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome. Sci Signal 2018; 11:11/513/eaan8784. [PMID: 29339535 DOI: 10.1126/scisignal.aan8784] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered neuronal network formation and function involving dysregulated excitatory and inhibitory circuits are associated with fragile X syndrome (FXS). We examined functional maturation of the excitatory transmission system in FXS by investigating the response of FXS patient-derived neural progenitor cells to the glutamate analog (AMPA). Neural progenitors derived from induced pluripotent stem cell (iPSC) lines generated from boys with FXS had augmented intracellular Ca2+ responses to AMPA and kainate that were mediated by Ca2+-permeable AMPA receptors (CP-AMPARs) lacking the GluA2 subunit. Together with the enhanced differentiation of glutamate-responsive cells, the proportion of CP-AMPAR and N-methyl-d-aspartate (NMDA) receptor-coexpressing cells was increased in human FXS progenitors. Differentiation of cells lacking GluA2 was also increased and paralleled the increased inward rectification in neural progenitors derived from Fmr1-knockout mice (the FXS mouse model). Human FXS progenitors had increased the expression of the precursor and mature forms of miR-181a, a microRNA that represses translation of the transcript encoding GluA2. Blocking GluA2-lacking, CP-AMPARs reduced the neurite length of human iPSC-derived control progenitors and further reduced the shortened length of neurites in human FXS progenitors, supporting the contribution of CP-AMPARs to the regulation of progenitor differentiation. Furthermore, we observed reduced expression of Gria2 (the GluA2-encoding gene) in the frontal lobe of FXS mice, consistent with functional changes of AMPARs in FXS. Increased Ca2+ influx through CP-AMPARs may increase the vulnerability and affect the differentiation and migration of distinct cell populations, which may interfere with normal circuit formation in FXS.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Tommi Möykkynen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Giorgio Turconi
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée, INSERM, Unité 901, 13009 Marseille, France.,Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Kari Keinänen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland. .,Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.,Autism Foundation, Kuortaneenkatu 7B, FIN-00520 Helsinki, Finland
| |
Collapse
|
29
|
Rubio-Casillas A, Fernández-Guasti A. The dose makes the poison: from glutamate-mediated neurogenesis to neuronal atrophy and depression. Rev Neurosci 2018; 27:599-622. [PMID: 27096778 DOI: 10.1515/revneuro-2015-0066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Experimental evidence has demonstrated that glutamate is an essential factor for neurogenesis, whereas another line of research postulates that excessive glutamatergic neurotransmission is associated with the pathogenesis of depression. The present review shows that such paradox can be explained within the framework of hormesis, defined as biphasic dose responses. Low glutamate levels activate adaptive stress responses that include proteins that protect neurons against more severe stress. Conversely, abnormally high levels of glutamate, resulting from increased release and/or decreased removal, cause neuronal atrophy and depression. The dysregulation of the glutamatergic transmission in depression could be underlined by several factors including a decreased inhibition (γ-aminobutyric acid or serotonin) or an increased excitation (primarily within the glutamatergic system). Experimental evidence shows that the activation of N-methyl-D-aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) can exert two opposite effects on neurogenesis and neuron survival depending on the synaptic or extrasynaptic concentration. Chronic stress, which usually underlies experimental and clinical depression, enhances glutamate release. This overactivates NMDA receptors (NMDAR) and consequently impairs AMPAR activity. Various studies show that treatment with antidepressants decreases plasma glutamate levels in depressed individuals and regulates glutamate receptors by reducing NMDAR function by decreasing the expression of its subunits and by potentiating AMPAR-mediated transmission. Additionally, it has been shown that chronic treatment with antidepressants having divergent mechanisms of action (including tricyclics, selective serotonin reuptake inhibitors, and ketamine) markedly reduced depolarization-evoked glutamate release in the hippocampus. These data, taken together, suggest that the glutamatergic system could be a final common pathway for antidepressant treatments.
Collapse
|
30
|
Meyer LC, Paisley CE, Mohamed E, Bigbee JW, Kordula T, Richard H, Lutfy K, Sato-Bigbee C. Novel role of the nociceptin system as a regulator of glutamate transporter expression in developing astrocytes. Glia 2017; 65:2003-2023. [PMID: 28906039 PMCID: PMC5766282 DOI: 10.1002/glia.23210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
Our previous results showed that oligodendrocyte development is regulated by both nociceptin and its G-protein coupled receptor, the nociceptin/orphanin FQ receptor (NOR). The present in vitro and in vivo findings show that nociceptin plays a crucial conserved role regulating the levels of the glutamate/aspartate transporter GLAST/EAAT1 in both human and rodent brain astrocytes. This nociceptin-mediated response takes place during a critical developmental window that coincides with the early stages of astrocyte maturation. GLAST/EAAT1 upregulation by nociceptin is mediated by NOR and the downstream participation of a complex signaling cascade that involves the interaction of several kinase systems, including PI-3K/AKT, mTOR, and JAK. Because GLAST is the main glutamate transporter during brain maturation, these novel findings suggest that nociceptin plays a crucial role in regulating the function of early astrocytes and their capacity to support glutamate homeostasis in the developing brain.
Collapse
Affiliation(s)
- Logan C Meyer
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Caitlin E Paisley
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Esraa Mohamed
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Hope Richard
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Carmen Sato-Bigbee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
31
|
Dindler A, Blaabjerg M, Kamand M, Bogetofte H, Meyer M. Activation of Group II Metabotropic Glutamate Receptors Increases Proliferation but does not Influence Neuronal Differentiation of a Human Neural Stem Cell Line. Basic Clin Pharmacol Toxicol 2017; 122:367-372. [PMID: 29024451 DOI: 10.1111/bcpt.12920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022]
Abstract
The multiple functions of glutamate include regulation of neural development and stem cells. While the importance of the ionotropic glutamate receptors is well-established, less is known about the role of metabotropic glutamate receptors (mGluRs). In this study, we examined the effects of pharmacological activation and inhibition of mGluR2/3 on proliferation, differentiation and viability of a human neural stem cell line. Immunofluorescence staining revealed the presence of mGluR2/3 receptors on both proliferating and differentiating stem cells, including cells differentiated into β-tubulin III-positive immature neurons and glial fibrillary acidic protein-positive astrocytes. Stimulation of mGluR2/3 receptors during cell propagation using the agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG-IV) increased total cell numbers significantly (60% compared to untreated controls). This effect could be inhibited by the specific antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495). The antagonist alone had no effect. No significant decrease in cell death was found following mGluR2/3 stimulation, suggesting that the observed elevation in cell number was not related to cell viability. Subsequent differentiation of the cells resulted in a slight decrease in β-tubulin III-positive neurons (5.2-3.2% of total cells) for DCG-IV pre-treated cultures. Treatment with DCG-IV and LY342495 during cell differentiation alone had no such effect. Western blot analysis revealed that the active, dimeric form of mGluR2/3 was mainly present on the proliferating cells, which may explain our findings. This study emphasizes the importance of glutamate and mGluRs on regulation of human neural stem cells and suggests a significant role of mGluR2/3 during cell proliferation.
Collapse
Affiliation(s)
- Anne Dindler
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Morad Kamand
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Helle Bogetofte
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
32
|
AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Proc Natl Acad Sci U S A 2017; 114:3939-3944. [PMID: 28348228 DOI: 10.1073/pnas.1612943114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AMPA-type glutamate receptors (GluAs) mediate fast excitatory transmission in the vertebrate central nervous system (CNS), and their function has been extensively studied in the mature mammalian brain. However, GluA expression begins very early in developing embryos, suggesting that they may also have unidentified developmental roles. Here, we identify developmental roles for GluAs in the ascidian Ciona intestinalis Mammals express Ca2+-permeable GluAs (Ca-P GluAs) and Ca2+-impermeable GluAs (Ca-I GluAs) by combining subunits derived from four genes. In contrast, ascidians have a single gluA gene. Taking advantage of the simple genomic GluA organization in ascidians, we knocked down (KD) GluAs in Ciona and observed severe impairments in formation of the ocellus, a photoreceptive organ used during the swimming stage, and in resorption of the tail and body axis rotation during metamorphosis to the adult stage. These defects could be rescued by injection of KD-resistant GluAs. GluA KD phenotypes could also be reproduced by expressing a GluA mutant that dominantly inhibits glutamate-evoked currents. These results suggest that, in addition to their role in synaptic communication in mature animals, GluAs also have critical developmental functions.
Collapse
|
33
|
Song M, Yu SP, Mohamad O, Cao W, Wei ZZ, Gu X, Jiang MQ, Wei L. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol Dis 2016; 98:9-24. [PMID: 27884724 DOI: 10.1016/j.nbd.2016.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/11/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022] Open
Abstract
Neurogenesis in the subventricular zone (SVZ) of the adult brain may contribute to tissue repair after brain injuries. Whether SVZ neurogenesis can be upregulated by specific neuronal activity in vivo and promote functional recovery after stroke is largely unknown. Using the spatial and cell type specific optogenetic technique combined with multiple approaches of in vitro, ex vivo and in vivo examinations, we tested the hypothesis that glutamatergic activation in the striatum could upregulate SVZ neurogenesis in the normal and ischemic brain. In transgenic mice expressing the light-gated channelrhodopsin-2 (ChR2) channel in glutamatergic neurons, optogenetic stimulation of the glutamatergic activity in the striatum triggered glutamate release into SVZ region, evoked membrane currents, Ca2+ influx and increased proliferation of SVZ neuroblasts, mediated by AMPA receptor activation. In ChR2 transgenic mice subjected to focal ischemic stroke, optogenetic stimuli to the striatum started 5days after stroke for 8days not only promoted cell proliferation but also the migration of SVZ neuroblasts into the peri-infarct cortex with increased neuronal differentiation and improved long-term functional recovery. These data provide the first morphological and functional evidence showing a unique striatum-SVZ neuronal regulation via a semi-phasic synaptic mechanism that can boost neurogenic cascades and stroke recovery. The benefits from stimulating endogenous glutamatergic activity suggest a novel regenerative strategy after ischemic stroke and other brain injuries.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
34
|
Birbrair A, Sattiraju A, Zhu D, Zulato G, Batista I, Nguyen VT, Messi ML, Solingapuram Sai KK, Marini FC, Delbono O, Mintz A. Novel Peripherally Derived Neural-Like Stem Cells as Therapeutic Carriers for Treating Glioblastomas. Stem Cells Transl Med 2016; 6:471-481. [PMID: 28191774 PMCID: PMC5442817 DOI: 10.5966/sctm.2016-0007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM), an aggressive grade IV astrocytoma, is the most common primary malignant adult brain tumor characterized by extensive invasiveness, heterogeneity, and angiogenesis. Standard treatment options such as radiation and chemotherapy have proven to be only marginally effective in treating GBM because of its invasive nature. Therefore, extensive efforts have been put forth to develop tumor‐tropic stem cells as viable therapeutic vehicles with potential to treat even the most invasive tumor cells that are harbored within areas of normal brain. To this end, we discovered a newly described NG2‐expressing cell that we isolated from a distinct pericyte subtype found abundantly in cultures derived from peripheral muscle. In this work, we show the translational significance of these peripherally derived neural‐like stem cells (NLSC) and their potential to migrate toward tumors and act as therapeutic carriers. We demonstrate that these NLSCs exhibit in vitro and in vivo GBM tropism. Furthermore, NLSCs did not promote angiogenesis or transform into tumor‐associated stromal cells, which are concerns raised when using other common stem cells, such as mesenchymal stem cells and induced neural stem cells, as therapeutic carriers. We also demonstrate the potential of NLSCs to express a prototype therapeutic, tumor necrosis factor α‐related apoptosis‐inducing ligand and kill GBM cells in vitro. These data demonstrate the therapeutic potential of our newly characterized NLSC against GBM. Stem Cells Translational Medicine2017;6:471–481
Collapse
Affiliation(s)
- Alexander Birbrair
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Department of Pathology, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Anirudh Sattiraju
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| | - Dongqin Zhu
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Gilberto Zulato
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Izadora Batista
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Van T. Nguyen
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Maria Laura Messi
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Kiran Kumar Solingapuram Sai
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| | - Frank C. Marini
- Wake Forest Institute for Regenerative Medicine, Winston‐Salem, North Carolina, USA
| | - Osvaldo Delbono
- Department of Internal Medicine‐Gerontology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston‐Salem, North Carolina, USA
- Brain Tumor Center of Excellence, Comprehensive Cancer Center of Wake Forest University, Winston‐Salem, North Carolina, USA
| |
Collapse
|
35
|
Macht VA. Neuro-immune interactions across development: A look at glutamate in the prefrontal cortex. Neurosci Biobehav Rev 2016; 71:267-280. [PMID: 27593444 DOI: 10.1016/j.neubiorev.2016.08.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Although the primary role for the immune system is to respond to pathogens, more recently, the immune system has been demonstrated to have a critical role in signaling developmental events. Of particular interest for this review is how immunocompetent microglia and astrocytes interact with glutamatergic systems to influence the development of neural circuits in the prefrontal cortex (PFC). Microglia are the resident macrophages of the brain, and astrocytes mediate both glutamatergic uptake and coordinate with microglia to respond to the general excitatory state of the brain. Cross-talk between microglia, astrocytes, and glutamatergic neurons forms a quad-partite synapse, and this review argues that interactions within this synapse have critical implications for the maturation of PFC-dependent cognitive function. Similarly, understanding developmental shifts in immune signaling may help elucidate variations in sensitivities to developmental disruptions.
Collapse
Affiliation(s)
- Victoria A Macht
- University of South Carolina, 1512 Pendleton St., Department of Psychology, Columbia, SC 29208, United States.
| |
Collapse
|
36
|
Hachem LD, Mothe AJ, Tator CH. Glutamate Increases In Vitro Survival and Proliferation and Attenuates Oxidative Stress-Induced Cell Death in Adult Spinal Cord-Derived Neural Stem/Progenitor Cells via Non-NMDA Ionotropic Glutamate Receptors. Stem Cells Dev 2016; 25:1223-33. [PMID: 27316370 DOI: 10.1089/scd.2015.0389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) leads to a cascade of secondary chemical insults, including oxidative stress and glutamate excitotoxicity, which damage host neurons and glia. Transplantation of exogenous neural stem/progenitor cells (NSPCs) has shown promise in enhancing regeneration after SCI, although survival of transplanted cells remains poor. Understanding the response of NSPCs to the chemical mediators of secondary injury is essential in finding therapies to enhance survival. We examined the in vitro effects of glutamate and glutamate receptor agonists on adult rat spinal cord-derived NSPCs. NSPCs isolated from the periventricular region of the adult rat spinal cord were exposed to various concentrations of glutamate for 96 h. We found that glutamate treatment (500 μM) for 96 h significantly increased live cell numbers, reduced cell death, and increased proliferation, but did not significantly alter cell phenotype. Concurrent glutamate treatment (500 μM) in the setting of H2O2 exposure (500 μM) for 10 h increased NSPC survival compared to H2O2 exposure alone. The effects of glutamate on NSPCs were blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist GYKI-52466, but not by the N-methyl-D-aspartic acid receptor antagonist MK-801 or DL-AP5, or the mGluR3 antagonist LY-341495. Furthermore, treatment of NSPCs with AMPA, kainic acid, or the kainate receptor-specific agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propanoic acid mimicked the responses seen with glutamate both alone and in the setting of oxidative stress. These findings offer important insights into potential mechanisms to enhance NSPC survival and implicate a potential role for glutamate in promoting NSPC survival and proliferation after traumatic SCI.
Collapse
Affiliation(s)
- Laureen D Hachem
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Andrea J Mothe
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada
| | - Charles H Tator
- 1 Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Toronto, Canada .,2 Division of Neurosurgery, Department of Surgery, University of Toronto , Toronto, Canada
| |
Collapse
|
37
|
Achuta VS, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, Roybon L, Castrén ML. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol 2016; 77:438-453. [PMID: 27411166 DOI: 10.1002/dneu.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 01/04/2023]
Abstract
Disrupted metabotropic glutamate receptor 5 (mGluR5) signaling is implicated in many neuropsychiatric disorders, including autism spectrum disorder, found in fragile X syndrome (FXS). Here we report that intracellular calcium responses to the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) are augmented, and calcium-dependent mGluR5-mediated mechanisms alter the differentiation of neural progenitors in neurospheres derived from human induced pluripotent FXS stem cells and the brains of mouse model of FXS. Treatment with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) prevents an abnormal clustering of DHPG-responsive cells that are responsive to activation of ionotropic receptors in mouse FXS neurospheres. MPEP also corrects morphological defects of differentiated cells and enhanced migration of neuron-like cells in mouse FXS neurospheres. Unlike in mouse neurospheres, MPEP increases the differentiation of DHPG-responsive radial glial cells as well as the subpopulation of cells responsive to both DHPG and activation of ionotropic receptors in human neurospheres. However, MPEP normalizes the FXS-specific increase in the differentiation of cells responsive only to N-methyl-d-aspartate (NMDA) present in human neurospheres. Exposure to MPEP prevents the accumulation of intermediate basal progenitors in embryonic FXS mouse brain suggesting that rescue effects of GluR5 antagonist are progenitor type-dependent and species-specific differences of basal progenitors may modify effects of MPEP on the cortical development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Heli Grym
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Noora Putkonen
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Verna Louhivuori
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland
| | - Virve Kärkkäinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, FI-70211, Finland
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund University, BMC A10, Sölvegatan 19, Lund, SE-221 84, Sweden
| | - Maija L Castrén
- Faculty of Medicine, Physiology, University of Helsinki, P.O. Box 63, Helsinki, FIN, 00014, Finland.,Autism Foundation, Kuortaneenkatu 7B, Helsinki, FI-00520, Finland
| |
Collapse
|
38
|
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 2016; 110:574-585. [PMID: 27346208 DOI: 10.1016/j.neuropharm.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Myelin is essential for the mammalian brain to function efficiently. Whilst many factors have been associated with regulating the differentiation of oligodendroglia and myelination, glutamate signalling might be particularly important for learning-dependent myelination. The majority of myelinated projection neurons are glutamatergic. Oligodendrocyte precursor cells receive glutamatergic synaptic inputs from unmyelinated axons and oligodendrocyte lineage cells express glutamate receptors which enable them to monitor and respond to changes in neuronal activity. Yet, what role glutamate plays for oligodendroglia is not fully understood. Here, we review glutamate signalling and its effects on oligodendrocyte lineage cells, and myelination in health and disease. Furthermore, we discuss whether glutamate signalling between neurons and oligodendroglia might lay the foundation to activity-dependent white matter plasticity. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
39
|
Control of adult neurogenesis by programmed cell death in the mammalian brain. Mol Brain 2016; 9:43. [PMID: 27098178 PMCID: PMC4839132 DOI: 10.1186/s13041-016-0224-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/14/2016] [Indexed: 01/19/2023] Open
Abstract
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Collapse
|
40
|
Weig BC, Richardson JR, Lowndes HE, Reuhl KR. Trimethyltin intoxication induces the migration of ventricular/subventricular zone cells to the injured murine hippocampus. Neurotoxicology 2016; 54:72-80. [PMID: 27045884 DOI: 10.1016/j.neuro.2016.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Following the postnatal decline of cell proliferation in the mammalian central nervous system, the adult brain retains progenitor cells with stem cell-like properties in the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampus. Brain injury can stimulate proliferation and redirect the migration pattern of SVZ precursor cells to the injury site. Sublethal exposure to the neurotoxicant trimethyltin (TMT) causes dose-dependent necrosis and apoptosis in the hippocampus dentate gyrus and increases SGZ stem cell proliferation to generate new granule cells. To determine whether SVZ cells also contribute to the repopulation of the TMT-damaged dentate gyrus, 6-8 week old male C3H mice were injected with the carbocyanine dye spDiI and bromodeoxyuridine (80mg/kg; ip.) to label ventricular cells prior to TMT exposure. The presence of labeled cells in hippocampus was determined 7 and 28days after TMT exposure. No significant change in the number of BrdU(+) and spDiI(+) cells was observed in the dentate gyrus 7days after TMT treatment. However, 28days after TMT treatment there was a 3-4 fold increase in the number of spDiI-labeled cells in the hippocampal hilus and dentate gyrus. Few spDiI(+) cells stained positive for the mature phenotypic markers NeuN or GFAP, suggesting they may represent undifferentiated cells. A small percentage of migrating cells were BrdU(+)/spDiI(+), indicating some newly produced, SVZ- derived precursors migrated to the hippocampus. Taken together, these data suggest that TMT-induced injury of the hippocampus can stimulate the migration of ventricular zone-derived cells to injured dentate gyrus.
Collapse
Affiliation(s)
- Blair C Weig
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States
| | - Jason R Richardson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Herbert E Lowndes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States
| | - Kenneth R Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy and Joint Program in Toxicology, Rutgers Biomedical Health Sciences, Piscataway, NJ, United States.
| |
Collapse
|
41
|
Adlaf EW, Mitchell-Dick A, Kuo CT. Discerning Neurogenic vs. Non-Neurogenic Postnatal Lateral Ventricular Astrocytes via Activity-Dependent Input. Front Neurosci 2016; 10:111. [PMID: 27047330 PMCID: PMC4805585 DOI: 10.3389/fnins.2016.00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/07/2016] [Indexed: 11/23/2022] Open
Abstract
Throughout development, neural stem cells (NSCs) give rise to differentiated neurons, astrocytes, and oligodendrocytes which together modulate perception, memory, and behavior in the adult nervous system. To understand how NSCs contribute to postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV) neurogenic niche in the rodent postnatal brain serves as an excellent model system. It is a specialized area containing self-renewing GFAP+ astrocytes functioning as NSCs generating new neurons throughout life. In addition to this now well-studied regenerative process, the LV niche also generates differentiated astrocytes, playing an important role for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic identity of NSCs has complicated their distinction from terminally-differentiated astrocytes in the niche. Our current models of postnatal/adult LV neurogenesis do not take into account local astrogenesis, or the possibility that cellular markers may be similar between non-dividing GFAP+ NSCs and their differentiated astrocyte daughters. Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with extracellular/niche-driven cues. It is generally believed that these local effects are responsible for sustaining neurogenesis, though behavioral paradigms and disease states have suggested possibilities for neural circuit-level modulation. With recent experimental findings that neuronal stimulation can directly evoke responses in LV NSCs, it is possible that this exciting property will add a new dimension to identifying postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.
Collapse
Affiliation(s)
- Elena W Adlaf
- Department of Cell Biology, Duke University School of Medicine Durham, NC, USA
| | - Aaron Mitchell-Dick
- Department of Cell Biology, Duke University School of MedicineDurham, NC, USA; Cellular and Molecular Biology Graduate Training Program, Duke University School of MedicineDurham, NC, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of MedicineDurham, NC, USA; Cellular and Molecular Biology Graduate Training Program, Duke University School of MedicineDurham, NC, USA; Brumley Neonatal Perinatal Research Institute, Duke University School of MedicineDurham, NC, USA; Department of Neurobiology, Duke University School of MedicineDurham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University School of MedicineDurham, NC, USA; Duke Institute for Brain Sciences, Duke UniversityDurham, NC, USA
| |
Collapse
|
42
|
Evaluation of the effects of riluzole on adult spinal cord‐derived neural stem/progenitor cells
in vitro
and
in vivo. Int J Dev Neurosci 2015; 47:140-6. [DOI: 10.1016/j.ijdevneu.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/14/2022] Open
|
43
|
Xie W, Wang JQ, Wang QC, Wang Y, Yao S, Tang TS. Adult neural progenitor cells from Huntington's disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals. Cell Prolif 2015; 48:517-31. [PMID: 26269226 DOI: 10.1111/cpr.12205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Huntington's disease (HD) is an inherited human neurodegenerative disorder characterized by uncontrollable movement, psychiatric disturbance and cognitive decline. Impaired proliferative/differentiational potentials of adult neural progenitor cells (ANPCs) have been thought to be a pathogenic mechanism involved in it. In this study, we aimed to elucidate intrinsic properties of ANPCs subjected to neurodegenerative condition in YAC128 HD mice. MATERIALS AND METHODS ANPCs were isolated from the SVZ regions of 4-month-old WT and YAC128 mice. Cell proliferation, migration and neuronal differentiation in vitro were compared between these two genotypes with/without Ca(2+) inhibitors or ROS scavenger treatments. Differences in ANPC proliferation and differentiation capabilities in vivo between the two genotypes were evaluated using Ki-67 and Doublecortin (DCX) immunofluorescence respectively. RESULTS Compared to WT ANPCs, YAC128 ANPCs had significantly enhanced cell proliferation, migration and neuronal differentiation in vitro, accompanied by increased Ca(2+) and ROS signals. Raised proliferation and migration in YAC128 ANPCs were abolished by Ca(2+) signalling antagonists and ROS scavenging. However, in vivo, HD ANPCs failed to show any elevated proliferation or differentiation. CONCLUSIONS Increased Ca(2+) signalling and higher level of ROS conferred HD ANPC enhancement of proliferation and migration potentials. However, the in vivo micro-environment did not support endogenous ANPCs to respond appropriately to neuronal loss in these YAC128 mouse brains.
Collapse
Affiliation(s)
- Wenjuan Xie
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiu-Qiang Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiao-Chu Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng Yao
- Department of Neurology, Navy General Hospital, Beijing, 100048, China
| | - Tie-Shan Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
44
|
Tokuda K, Kuramitsu Y, Byron B, Kitagawa T, Tokuda N, Kobayashi D, Nagayama M, Araki N, Sonoda KH, Nakamura K. Up-regulation of DRP-3 long isoform during the induction of neural progenitor cells by glutamate treatment in the ex vivo rat retina. Biochem Biophys Res Commun 2015; 463:593-9. [DOI: 10.1016/j.bbrc.2015.05.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
|
45
|
Chen H, Goodus MT, de Toledo SM, Azzam EI, Levison SW, Souayah N. Ionizing Radiation Perturbs Cell Cycle Progression of Neural Precursors in the Subventricular Zone Without Affecting Their Long-Term Self-Renewal. ASN Neuro 2015; 7:7/3/1759091415578026. [PMID: 26056396 PMCID: PMC4461572 DOI: 10.1177/1759091415578026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Damage to normal human brain cells from exposure to ionizing radiation may occur during the course of radiotherapy or from accidental exposure. Delayed effects may complicate the immediate effects resulting in neurodegeneration and cognitive decline. We examined cellular and molecular changes associated with exposure of neural stem/progenitor cells (NSPs) to 137Cs γ-ray doses in the range of 0 to 8 Gy. Subventricular zone NSPs isolated from newborn mouse pups were analyzed for proliferation, self-renewal, and differentiation, shortly after irradiation. Strikingly, there was no apparent increase in the fraction of dying cells after irradiation, and the number of single cells that formed neurospheres showed no significant change from control. Upon differentiation, irradiated neural precursors did not differ in their ability to generate neurons, astrocytes, and oligodendrocytes. By contrast, progression of NSPs through the cell cycle decreased dramatically after exposure to 8 Gy (p < .001). Mice at postnatal day 10 were exposed to 8 Gy of γ rays delivered to the whole body and NSPs of the subventricular zone were analyzed using a four-color flow cytometry panel combined with ethynyl deoxyuridine incorporation. Similar flow cytometric analyses were performed on NSPs cultured as neurospheres. These studies revealed that neither the percentage of neural stem cells nor their proliferation was affected. By contrast, γ-irradiation decreased the proliferation of two classes of multipotent cells and increased the proliferation of a specific glial-restricted precursor. Altogether, these results support the conclusion that primitive neural precursors are radioresistant, but their proliferation is slowed down as a consequence of γ-ray exposure.
Collapse
Affiliation(s)
- Hongxin Chen
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Matthew T Goodus
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sonia M de Toledo
- Department of Radiology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Edouard I Azzam
- Department of Radiology, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Steven W Levison
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Nizar Souayah
- Department of Neurology and Neurosciences, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
46
|
Zhou R, Chen F, Feng X, Zhou L, Li Y, Chen L. Perinatal exposure to low-dose of bisphenol A causes anxiety-like alteration in adrenal axis regulation and behaviors of rat offspring: a potential role for metabotropic glutamate 2/3 receptors. J Psychiatr Res 2015; 64:121-9. [PMID: 25812946 DOI: 10.1016/j.jpsychires.2015.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/07/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
AIMS The present study focuses on detecting anxiety-like behavior and associated neurochemical alterations in adolescent rats exposed perinatally to bisphenol A (BPA), an estrogen-mimicking endocrine disrupter and investigating the possible involvement of metabotropic glutamate 2/3 receptors (mGlu2/3 receptors) in BPA-induced anxiogenic effects. METHODS AND RESULTS When female breeders were administered orally with BPA (40 μg/kg/d) during pregnancy and lactation, their pups (here named 'BPA-exposed offspring') developed an anxiety-like phenotype, characterized by the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, impaired glucocorticoid receptor (GR)-mediated negative feedback regulation of the HPA axis, altered hippocampal synaptic plasticity and increased anxiety-like behaviors. BPA-exposed offspring also showed a reduced expression of mGlu2/3 receptors in the hippocampus. BPA-exposed offspring further subjected to systemic administration of mGlu2/3 receptor agonist (LY379268, 0.5 mg/kg, i.p.) or antagonist (LY341495, 1.5 mg/kg, i.p.) twice per day for 6 days. The results indicated that chronic LY379268 treatment corrected the anxiety-like behaviors and associated neurochemical and endocrinological alterations in BPA-exposed offspring. CONCLUSION Our data demonstrate for the first time that the perinatal BPA exposure induces an anxiety-like phenotype in behaviors and -related neuroendocrinology, and suggest that the changes in mGlu2/3 receptor might lie at the core of the pathological reprogramming triggered by early-life adversity. mGlu2/3 receptor may serve as a novel biomarker and potential therapeutic target for anxiety disorders associated with adverse early-life agents including perinatal BPA exposure.
Collapse
Affiliation(s)
- Rong Zhou
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Fang Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiao Feng
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Libin Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
47
|
Hachem LD, Mothe AJ, Tator CH. Effect of BDNF and Other Potential Survival Factors in Models of In Vitro Oxidative Stress on Adult Spinal Cord-Derived Neural Stem/Progenitor Cells. Biores Open Access 2015; 4:146-59. [PMID: 26309791 PMCID: PMC4497651 DOI: 10.1089/biores.2014.0058] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transplantation of neural stem/progenitor cells (NSPCs) is a promising strategy in spinal cord injury (SCI). However, poor survival of transplanted stem cells remains a major limitation of this therapy due to the hostile environment of the injured cord. Oxidative stress is a hallmark in the pathogenesis of SCI; however, its effects on NSPCs from the adult spinal cord have yet to be examined. We therefore developed in vitro models of mild and severe oxidative stress of adult spinal cord-derived NSPCs and used these models to examine potential cell survival factors. NSPCs harvested from the adult rat spinal cord were treated with hydrogen peroxide (H2O2) in vitro to induce oxidative stress. A mild 4 h exposure to H2O2 (500 μM) significantly increased the level of intracellular reactive oxygen species with minimal effect on viability. In contrast, 24 h of oxidative stress led to a marked reduction in cell survival. Pretreatment with brain-derived neurotrophic factor (BDNF) for 48 h attenuated the increase in intracellular reactive oxygen species and enhanced survival. This survival effect was associated with a significant reduction in the number of apoptotic cells and a significant increase in the activity of the antioxidant enzymes glutathione reductase and superoxide dismutase. BDNF treatment had no effect on NSPC differentiation or proliferation. In contrast, cyclosporin A and thyrotropin-releasing hormone had minimal or no effect on NSPC survival. Thus, these models of in vitro oxidative stress may be useful for screening neuroprotective factors administered prior to transplantation to enhance survival of stem cell transplants.
Collapse
Affiliation(s)
- Laureen D Hachem
- Division of Genetics and Development, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Ontario, Canada
| | - Andrea J Mothe
- Division of Genetics and Development, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Ontario, Canada
| | - Charles H Tator
- Division of Genetics and Development, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network , Ontario, Canada . ; Department of Surgery, Division of Neurosurgery, University of Toronto , Ontario, Canada
| |
Collapse
|
48
|
Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: the double neurogenic niche hypothesis. Behav Brain Res 2014; 281:309-17. [PMID: 25546722 DOI: 10.1016/j.bbr.2014.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/07/2023]
Abstract
Adult hippocampal neurogenesis (AHN) is involved in learning, memory, and stress, and plays a significant role in neurodegenerative and psychiatric disorders. As an age-dependent process, AHN is largely influenced by changes that occur during the pre- and postnatal stages of brain development, and constitutes an important field of research. This review examines the current knowledge regarding the regulators of AHN and the influence of prenatal and postnatal stress on later AHN. In addition, a hypothesis is presented suggesting that each kind of stress influences a specific neurogenic pool, developmental or postnatal, that later becomes a precursor with important repercussions for AHN. This hypothesis is referred to as "the double neurogenic niche hypothesis." Discovering what receptors, transcription factors, or genes are specifically activated by different stressors is proposed as an essential line of future research in the field. Such knowledge shall constitute an important starting point toward the goal of modifying AHN in neurodegenerative or psychiatric diseases.
Collapse
|
49
|
Erichsen JL, Blaabjerg M, Bogetofte H, Serrano AM, Meyer M. Group I Metabotropic Glutamate Receptors: A Potential Target for Regulation of Proliferation and Differentiation of an Immortalized Human Neural Stem Cell Line. Basic Clin Pharmacol Toxicol 2014; 116:329-36. [DOI: 10.1111/bcpt.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Ladeby Erichsen
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Morten Blaabjerg
- Department of Neurology; Odense University Hospital; Odense Denmark
| | - Helle Bogetofte
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - Alberto Martinez Serrano
- Department of Molecular Biology and Center of Molecular Biology Severo Ochoa; University Autonoma Madrid-C.S.I.C. Campus Cantoblanco; Madrid Spain
| | - Morten Meyer
- Department of Neurobiology Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
50
|
Li J, McDonald CA, Fahey MC, Jenkin G, Miller SL. Could cord blood cell therapy reduce preterm brain injury? Front Neurol 2014; 5:200. [PMID: 25346720 PMCID: PMC4191167 DOI: 10.3389/fneur.2014.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022] Open
Abstract
Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.
Collapse
Affiliation(s)
- Jingang Li
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia
| | | | - Michael C Fahey
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Paediatrics, Monash University , Clayton, VIC , Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| | - Suzanne L Miller
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| |
Collapse
|