1
|
Kanojia N, Kukal S, Machahary N, Bora S, Srivastava A, Paul PR, Sagar S, Kumar R, Grewal GK, Sharma S, B K B, Kukreti R. Antiepileptic drugs carbamazepine and valproic acid mediate transcriptional activation of CYP1A1 via aryl hydrocarbon receptor and regulation of estrogen metabolism. J Steroid Biochem Mol Biol 2025; 248:106699. [PMID: 39952367 DOI: 10.1016/j.jsbmb.2025.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Cytochrome P450 1A1 (CYP1A1) actively catalyzes estrogen hydroxylation reactions and maintains the levels of neuroactive steroid estradiol. The widely prescribed first-line anti-epileptic drugs (AEDs) are considered to be a potent inducer of CYP1A1 and have also been observed to affect serum estradiol and calcium levels in patients with epilepsy. However, the ability of AEDs to interfere with CYP enzyme function and estrogen disposition is a relatively unexplored area. Here we investigate the effect of widely prescribed AEDs (carbamazepine and valproic acid) on CYP1A1 regulation and the levels of estradiol and calcium in cell supernatants of hepatocellular, HepG2, and neuronal, SH-SY5Y cells. We observed that both the AEDs significantly increased CYP1A1 expression and enzyme activity, which was accompanied by a decrease in estradiol and calcium levels in HepG2 cells. This induction of CYP1A1 mRNA and protein was fully prevented by aryl hydrocarbon receptor (AHR) knockdown and StemRegenin 1 (SR1) antagonism. Notably, the AEDs did not affect the AHR expression but regulated its nuclear translocation, potentially driving the transcriptional upregulation of CYP1A1. Furthermore, the knockdown of CYP1A1 in HepG2 cells elucidated a marked increase in estradiol and calcium levels. Later, this increase subsided upon AED exposure. Lastly, we observed a similar trend in estradiol and calcium alterations in SH-SY5Y cells on AED exposure, speculating the involvement of CYP1A1 induction via AEDs at neuronal sites. This work demonstrates that AEDs mediate the upregulation of CYP1A1 via an AHR-dependent mechanism and influence estrogen and calcium homeostasis.
Collapse
Affiliation(s)
- Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nitin Machahary
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University (DTU), Shahbad Daulatpur, Delhi 110042, India
| | - Ankit Srivastava
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakti Sagar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reema Kumar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India
| | - Gurpreet Kaur Grewal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Srishti Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Binukumar B K
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Suganya S, Ashok BS, Ajith TA. A Recent Update on the Role of Estrogen and Progesterone in Alzheimer's Disease. Cell Biochem Funct 2024; 42:e70025. [PMID: 39663597 DOI: 10.1002/cbf.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Alzheimer's disease (AD), one of the most prevalent neurodegenerative disease responsible for 60%-80% dementia cases globally. The disease is more prevalent among elder females. Female reproductive hormones are found to be essential for cellular activities in brain. The physiological role of neurotrophins and sex hormones in hippocampal region during neurogenesis and neuron differentiation was studied as well. In addition to triggering cellular pathways, estrogen and progesterone carry out a number of biological processes that lead to neuroprotection. They might have an impact on learning and memory. One of estrogen's modest antioxidant properties is its direct scavenging of free radicals. The neurotrophic effect of estrogen and progesterone can be explained by their ability to rise the expression of the brain-derived neurotrophic factor (BDNF) mRNA. Additionally, they have the ability to degrade beta-amyloid and stop inflammation, apoptotic neuronal cell death, and tau protein phosphorylation. To enhance their neuroprotective action, various cross-talking pathways in cells that are mediated by estrogen, progesterone, and BDNF receptors. This include signaling by mitogen-activated protein kinase/extracellular regulated kinase, phosphatidylinositol 3-kinase/protein kinase B, and phospholipase/protein kinase C. Clinical research to establish the significance of these substances are fragmented, despite publications claiming a lower prevalence of AD when medication is started before menopause. This review article emphasizes an update on the role of estrogen, and progesterone in AD.
Collapse
Affiliation(s)
- S Suganya
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Ben Sundra Ashok
- Department of Biochemistry, Sri Ramachandra Medical College and Research Institute, Chennai, Tamil Nadu, India
| | - Thekkuttuparambil Ananthanarayanan Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Thrissur, Kerala, India
- Amala Integrated Medical Research Department, Amala Institute of Medical Sciences, Thrissur, Kerala, India
| |
Collapse
|
3
|
Weese-Myers ME, Ross AE. Subsecond Codetection of Dopamine and Estradiol at a Modified Sharkfin Waveform. Anal Chem 2024; 96:76-84. [PMID: 38103188 DOI: 10.1021/acs.analchem.3c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
17β-Estradiol (E2) is a ubiquitously expressed hormone that is active in a wide range of neuroprotective and regenerative roles throughout the brain. In particular, it is a well-known dopamine (DA) regulator and is responsible for modulating the expression of dopaminergic receptors and transporters. Recent studies point to E2 release occurring on a rapid time scale and having impacts on DA activity within seconds to minutes. As such, tools capable of monitoring the release of both E2 and DA in real time are essential for developing an accurate understanding of their interactive roles in neurotransmission and regulation. Currently, no analytical techniques capable of codetection of both analytes with high sensitivity, spatiotemporal resolution, extended monitoring, and minimal tissue damage exist. We describe a modified waveform using fast-scan cyclic voltammetry that is capable of low nanomolar detection of both DA and E2 on a subsecond time scale. Both analytes have limits of detection at or below 30 nM and high sensitivity: 11.31 ± 0.55 nA/μM for DA and 9.47 ± 0.36 nA/μM for E2. The waveform is validated in a tissue matrix, confirming its viability for measurement in a biologically relevant setting. This is the first method capable of codetection of fluctuations in DA and E2 with the temporal, spatial, and sensitivity requirements necessary for studying real-time neurochemical signaling.
Collapse
Affiliation(s)
- Moriah E Weese-Myers
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr. 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
4
|
Sex neurosteroids: Hormones made by the brain for the brain. Neurosci Lett 2021; 753:135849. [PMID: 33775739 DOI: 10.1016/j.neulet.2021.135849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
In general, hippocampal neurons are capable of synthesizing sex steroids de novo from cholesterol, since the brain is equipped with all the enzymes required for the synthesis of estradiol and testosterone, the end products of sex steroidogenesis. Regarding estradiol, its synthesis in hippocampal neurons is homeostatically controlled by Ca2+ transients and is regulated by GnRH. Locally synthesized estradiol and testosterone maintain synaptic transmission and synaptic connectivity. Remarkably, the neurosteroid estradiol is effective in females, but not in males, and vice versa dihydrotestosterone (DHT) is effective in males, but not in females. Experimentally induced inhibition of estradiol synthesis in females and DHT synthesis in males resp. results in synapse loss, impaired LTP, and downregulation of synaptic proteins. GnRH-induced increase in estradiol synthesis appears to provide a link between the hypothalamus and the hippocampus, which may underlie estrous cyclicity of spine density in the female hippocampus. Hippocampal neurons are sex-dependently differentiated with respect to the responsiveness of hippocampal neurons to sex neurosteroids.
Collapse
|
5
|
Tozzi A, Bellingacci L, Pettorossi VE. Rapid Estrogenic and Androgenic Neurosteroids Effects in the Induction of Long-Term Synaptic Changes: Implication for Early Memory Formation. Front Neurosci 2020; 14:572511. [PMID: 33192257 PMCID: PMC7653679 DOI: 10.3389/fnins.2020.572511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022] Open
Abstract
Mounting experimental evidence demonstrate that sex neuroactive steroids (neurosteroids) are essential for memory formation. Neurosteroids have a profound impact on the function and structure of neural circuits and their local synthesis is necessary for the induction of both long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and for neural spine formation in different areas of the central nervous system (CNS). Several studies demonstrated that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while 5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been proven by administering sex neurosteroids in rodent models and by using blocking agents of their synthesis or of their specific receptors. The general opposite role of sex neurosteroids in synaptic plasticity appears to be dependent on their different local availability in response to low or high frequency of synaptic stimulation, allowing the induction of bidirectional synaptic plasticity. The relevant contribution of these neurosteroids to synaptic plasticity has also been described in other brain regions involved in memory processes such as motor learning, as in the case of the vestibular nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the maintenance of a tonic or phasic local steroid synthesis determined by neural activity but might also be influenced by circulating hormones, age, and gender. To disclose the exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic changes and spine remodeling, further investigation is required.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
6
|
Taxier LR, Gross KS, Frick KM. Oestradiol as a neuromodulator of learning and memory. Nat Rev Neurosci 2020; 21:535-550. [PMID: 32879508 PMCID: PMC8302223 DOI: 10.1038/s41583-020-0362-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
Although hormones such as glucocorticoids have been broadly accepted in recent decades as general neuromodulators of memory processes, sex steroid hormones such as the potent oestrogen 17β-oestradiol have been less well recognized by the scientific community in this capacity. The predominance of females in studies of oestradiol and memory and the general (but erroneous) perception that oestrogens are 'female' hormones have probably prevented oestradiol from being more widely considered as a key memory modulator in both sexes. Indeed, although considerable evidence supports a crucial role for oestradiol in regulating learning and memory in females, a growing body of literature indicates a similar role in males. This Review discusses the mechanisms of oestradiol signalling and provides an overview of the effects of oestradiol on spatial, object recognition, social and fear memories. Although the primary focus is on data collected in females, effects of oestradiol on memory in males will be discussed, as will sex differences in the molecular mechanisms that regulate oestrogenic modulation of memory, which may have important implications for the development of future cognitive therapeutics.
Collapse
Affiliation(s)
- Lisa R Taxier
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Kellie S Gross
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
7
|
Abstract
17β-Estradiol (E2) is a potent steroid hormone of both gonadal and neuronal origin that exerts profound effects on neuroplasticity in several brain regions. Dendritic spine and synapse formation and rearrangements are modulated and mediated by estrogens. In this chapter, we highlighted the essential background concerning the effects of E2 on synaptic rearrangements accompanied by synaptic plasticity in E2-sensitive brain regions that mediate learning and memory, i.e., cortex and hippocampus. We also address details of the molecular mechanisms underlying E2 regulation of spine dynamics. The proposed models of action of E2 overlaps with that for well-established synaptic modulators, such as adenosine. Thus, the possible synergistic effects of those two molecules in respect to synaptic rearrangement and plasticity were presented.
Collapse
|
8
|
Finney CA, Shvetcov A, Westbrook RF, Jones NM, Morris MJ. The role of hippocampal estradiol in synaptic plasticity and memory: A systematic review. Front Neuroendocrinol 2020; 56:100818. [PMID: 31843506 DOI: 10.1016/j.yfrne.2019.100818] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
The consolidation of long-term memory is influenced by various neuromodulators. One of these is estradiol, a steroid hormone that is synthesized both in peripheral endocrine tissue and in the brain, including the hippocampus. Here, we examine the evidence regarding the role of estradiol in the hippocampus, specifically, in memory formation and its effects on the molecular mechanisms underlying synaptic plasticity. We conclude that estradiol improves memory consolidation and, thereby, long-term memory. Previous studies have shown that it does this in three, interconnected ways: (1) via functional changes in excitatory activity, (2) signaling changes in calcium dynamics, protein phosphorylation and protein expression, and (3) structural changes to synaptic morphology. Through a functional network analysis of proteins affected by estradiol, we identify potential protein-protein interactions that further support a role for estradiol in modulating synaptic plasticity as well as highlight signaling pathways that may be involved in these changes within the hippocampus.
Collapse
Affiliation(s)
- C A Finney
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A Shvetcov
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - R F Westbrook
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - N M Jones
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - M J Morris
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Ding X, Gao T, Gao P, Meng Y, Zheng Y, Dong L, Luo P, Zhang G, Shi X, Rong W. Activation of the G Protein-Coupled Estrogen Receptor Elicits Store Calcium Release and Phosphorylation of the Mu-Opioid Receptors in the Human Neuroblastoma SH-SY5Y Cells. Front Neurosci 2019; 13:1351. [PMID: 31920512 PMCID: PMC6928052 DOI: 10.3389/fnins.2019.01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogens exert extensive influences on the nervous system besides their well-known roles in regulation of reproduction and metabolism. Estrogens act via the nuclear receptor ERα and ERβ to regulate gene transcription (classical genomic effects). In addition, estrogens are also known to cause rapid non-genomic effects on neuronal functions including inducing fast changes in cytosolic calcium level and rapidly desensitizing the μ type opioid receptor (MOR). The receptors responsible for the rapid actions of estrogens remain uncertain, but recent evidence points to the G protein-coupled estrogen receptor (GPER), which has been shown to be expressed widely in the nervous system. In the current study, we test the hypothesis that activation of GPER may mediate rapid calcium signaling, which may promote phosphorylation of MOR through the calcium-dependent protein kinases in neuronal cells. By qPCR and immunocytochemistry, we found that the human neuroblastoma SH-SY5Y cells endogenously express GPER and MOR. Activation of GPER by 17β-estradiol (E2) and G-1 (GPER selective agonist) evoked a rapid calcium rise in a concentration-dependent manner, which was due to store release rather than calcium entry. The GPER antagonist G15, the PLC inhibitor U73122 and the IP3 receptor inhibitor 2-APB each virtually abolished the calcium responses to E2 or G-1. Activation of GPER stimulated translocation of PKC isoforms (α and ε) to the plasma membrane, which led to MOR phosphorylation. Additionally, E2 and G-1 stimulated c-Fos expression in SH-SY5Y cells in a PLC/IP3-dependent manner. In conclusion, the present study has revealed a novel GPER-mediated estrogenic signaling in neuroblastoma cells in which activation of GPER is followed by rapid calcium mobilization, PKC activation and MOR phosphorylation. GPER-mediated rapid calcium signal may also be transmitted to the nucleus to impact on gene transcription. Such signaling cascade may play important roles in the regulation of opioid signaling in the brain.
Collapse
Affiliation(s)
- Xiaowei Ding
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Gao
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Po Gao
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youqiang Meng
- Department of Neurosurgery, Xin Hua Hospital Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zheng
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Zhang
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weifang Rong
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Cabrera Zapata LE, Bollo M, Cambiasso MJ. Estradiol-Mediated Axogenesis of Hypothalamic Neurons Requires ERK1/2 and Ryanodine Receptors-Dependent Intracellular Ca 2+ Rise in Male Rats. Front Cell Neurosci 2019; 13:122. [PMID: 31001087 PMCID: PMC6454002 DOI: 10.3389/fncel.2019.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos in vitro, but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor (ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC) blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB), and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging recording using primary cultured neurons. The results show that E2 rapidly induces an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This response was not observed in the absence of extracellular Ca2+ or with inhibitory ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization from extracellular space as well as from the endoplasmic reticulum is necessary for E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain estrogenic actions might contribute to develop novel estrogen-based therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas E Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
11
|
Sex Differences in the Rapid Cell Signaling Mechanisms Underlying the Memory-Enhancing Effects of 17β-Estradiol. eNeuro 2018; 5:eN-NWR-0267-18. [PMID: 30406188 PMCID: PMC6220582 DOI: 10.1523/eneuro.0267-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/20/2022] Open
Abstract
Little is known about how 17β-estradiol (E2) mediates memory formation in males. In ovariectomized (OVX) mice, bilateral dorsal hippocampal (DH) infusion of E2 enhances memory consolidation in object recognition (OR) and object placement (OP) tasks in a manner dependent on activation of extracellular signal-regulated kinase (ERK) and Akt signaling. Here, bilateral DH E2 infusion enhanced memory consolidation in both tasks among OVX female, gonadally-intact male, and castrated male mice, suggesting comparable facilitation of memory consolidation in both sexes, independent of testicular hormones in males. Contrary to previous reports in OVX mice, E2 did not increase DH ERK or Akt phosphorylation in males, nor did the ERK inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis (o-aminophenylmercapto) butadiene] prevent E2 from enhancing memory consolidation among intact and castrated males. These data suggest that ERK activation is not necessary for E2 to enhance memory consolidation in males, and compared with previous reports in females, reveal novel sex differences in the cell-signaling pathways through which E2 facilitates memory consolidation. To explore the mechanisms underlying E2-induced memory enhancements in males, phosphorylation of the transcription factor cAMP response element binding protein (CREB) in the DH was assessed. E2 increased phospho-CREB levels in both sexes, yet U0126 did not block these increases in castrated or intact males, indicating that E2 regulates CREB phosphorylation in males via an ERK-independent mechanism. Collectively, these findings suggest that the beneficial effects of hippocampal E2 on memory consolidation in males and females are mediated by different molecular mechanisms, which has important implications for the development of treatments to reduce memory dysfunction in men and women.
Collapse
|
12
|
Bhatta S, Blair JA, Casadesus G. Luteinizing Hormone Involvement in Aging Female Cognition: Not All Is Estrogen Loss. Front Endocrinol (Lausanne) 2018; 9:544. [PMID: 30319538 PMCID: PMC6165885 DOI: 10.3389/fendo.2018.00544] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Pervasive age-related dysfunction in hypothalamic-pituitary-gonadal (HPG) axis is associated with cognitive impairments in aging as well as pathogenesis of age-related neurodegenerative diseases such as the Alzheimer's disease (AD). As a major regulator of the HPG axis, the steroid hormone estrogen has been widely studied for its role in regulation of memory. Although estrogen modulates both cognition as well as cognition associated morphological components in a healthy state, the benefits of estrogen replacement therapy on cognition and disease seem to diminish with advancing age. Emerging data suggests an important role for luteinizing hormone (LH) in CNS function, which is another component of the HPG axis that becomes dysregulated during aging, particularly in menopause. The goal of this review is to highlight the current existing literature on LH and provide new insights on possible mechanisms of its action.
Collapse
Affiliation(s)
- Sabina Bhatta
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jeffrey A. Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, United States
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- *Correspondence: Gemma Casadesus
| |
Collapse
|
13
|
Chan CB, Ye K. Sex differences in brain-derived neurotrophic factor signaling and functions. J Neurosci Res 2017; 95:328-335. [PMID: 27870419 DOI: 10.1002/jnr.23863] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that plays a critical role in numerous neuronal activities. Recent studies have indicated that some functions or action mechanisms of BDNF vary in a sex-dependent manner. In particular, BDNF content in some brain parts and the tendency to develop BDNF deficiency-related diseases such as depression are greater in female animals. With the support of relevant studies, it has been suggested that sex hormones or steroids can modulate the activities of BDNF, which may account for its functional discrepancy in different sexes. Indeed, the cross-talk between BDNF and sex steroids has been detected for decades, and some sex steroids, such as estrogen, have a positive regulatory effect on BDNF expression and signaling. Thus, the sex of animal models that are used in studying the functions of BDNF is critical. This Mini-Review summarizes our current findings on the differences in expression, signaling, and functions of BDNF between sexes. We also discuss the potential mechanisms for mediating these differential responses, with a specific emphasis on sex steroids. By presenting and discussing these findings, we seek to encourage researchers to take sex influences into consideration when designing experiments, interpreting results, and drawing conclusions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA
| |
Collapse
|
14
|
Vandegrift BJ, You C, Satta R, Brodie MS, Lasek AW. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol. PLoS One 2017; 12:e0187698. [PMID: 29107956 PMCID: PMC5673180 DOI: 10.1371/journal.pone.0187698] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Collapse
Affiliation(s)
- Bertha J. Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rosalba Satta
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark S. Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Fester L, Zhou L, Ossig C, Labitzke J, Bläute C, Bader M, Vollmer G, Jarry H, Rune GM. Synaptopodin is regulated by aromatase activity. J Neurochem 2016; 140:126-139. [PMID: 27861893 DOI: 10.1111/jnc.13889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 01/25/2023]
Abstract
Locally synthesized estradiol plays an important role in synaptic plasticity in the hippocampus. We have previously shown that in hippocampal neurons, activity of the enzyme aromatase, which converts testosterone into estradiol, is reduced via Ca2+ -dependent phosphorylation. Synaptopodin is a highly estrogen responsive protein, and it has been shown that it is an important regulator of synaptic plasticity, mediated by its close association with internal calcium stores. In this study, we show that the expression of synaptopodin is stronger in the hippocampus of female animals than in that of male animals. Phosphorylation of aromatase, using letrozole, however, down-regulates synaptopodin immunohistochemistry in the hippocampus of both male and females. Similarly, in aromatase knock-out mice synaptopodin expression in the hippocampus is reduced sex independently. Using primary-dissociated hippocampal neurons, we found that evoked release of Ca2+ from internal stores down-regulates aromatase activity, which is paralleled by reduced expression of synaptopodin. Opposite effects were achieved after inhibition of the release. Calcium-dependent regulation of synaptopodin expression was abolished when the control of aromatase activity by the Ca2+ transients was disrupted. Our data suggest that the regulation of aromatase activity by Ca2+ transients in neurons contributes to synaptic plasticity in the hippocampus of male and female animals as an on-site regulatory mechanism.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Lepu Zhou
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Christiana Ossig
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Jan Labitzke
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Corinna Bläute
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| | - Manuela Bader
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Günter Vollmer
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Hubertus Jarry
- Department of Experimental Endocrinology, University of Goettingen, Goettingen, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg, Germany
| |
Collapse
|
16
|
L-Type Calcium Channels Modulation by Estradiol. Mol Neurobiol 2016; 54:4996-5007. [PMID: 27525676 DOI: 10.1007/s12035-016-0045-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/08/2016] [Indexed: 01/29/2023]
Abstract
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Collapse
|
17
|
Gonadal hormone modulation of intracellular calcium as a mechanism of neuroprotection. Front Neuroendocrinol 2016; 42:40-52. [PMID: 26930421 DOI: 10.1016/j.yfrne.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/28/2022]
Abstract
Hormones have wide-ranging effects throughout the nervous system, including the ability interact with and modulate many aspects of intracellular calcium regulation and calcium signaling. Indeed, these interactions specifically may help to explain the often opposing or paradoxical effects of hormones, such as their ability to both promote and prevent neuronal cell death during development, as well as reduce or exacerbate damage following an insult or injury in adulthood. Here, we review the basic mechanisms underlying intracellular calcium regulation-perhaps the most dynamic and flexible of all signaling molecules-and discuss how gonadal hormones might manipulate these mechanisms to coordinate diverse cellular responses and achieve disparate outcomes. Additional future research that specifically addresses questions of sex and hormone effects on calcium signaling at different ages will be critical to understanding hormone-mediated neuroprotection.
Collapse
|
18
|
Fester L, Brandt N, Windhorst S, Pröls F, Bläute C, Rune GM. Control of aromatase in hippocampal neurons. J Steroid Biochem Mol Biol 2016; 160:9-14. [PMID: 26472556 DOI: 10.1016/j.jsbmb.2015.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Our knowledge on estradiol-induced modulation of synaptic function in the hippocampus is widely based on results following the application of the steroid hormone to either cell cultures, or after the treatment of gonadectomized animals, thus ignoring local neuronal estrogen synthesis. We and others, however, have shown that hippocampus-derived estradiol also controls synaptic plasticity in the hippocampus. Estradiol synthesis in the hippocampus is regulated by several mechanisms, which are reviewed in this report. The regulation of the activity of aromatase, the final enzyme of estrogen biosynthesis, by Ca(2+) transients, is of particular interest. Aromatase becomes inactivated as soon as it is phosphorylated by Ca(2+)-dependent kinases upon calcium release from internal stores. Accordingly, thapsigargin dephosphorylates aromatase and stimulates estradiol synthesis by depletion of internal Ca(2+) stores. Vice versa, letrozole, an aromatase inhibitor, phosphorylates aromatase and reduces estradiol synthesis. Treatment of the cultures with 17β-estradiol results in phosphorylation of the enzyme and increased aromatase protein expression, which suggests that estradiol synthesis in hippocampal neurons is regulated in an autocrine manner.
Collapse
Affiliation(s)
- Lars Fester
- University Medical Center Hamburg Eppendorf, Institute of Neuroanatomy, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicola Brandt
- University Medical Center Hamburg Eppendorf, Institute of Neuroanatomy, Martinistr. 52, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | - Felicitas Pröls
- University Medical Center Hamburg Eppendorf, Institute of Neuroanatomy, Martinistr. 52, 20246 Hamburg, Germany
| | - Corinna Bläute
- University Medical Center Hamburg Eppendorf, Institute of Neuroanatomy, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele M Rune
- University Medical Center Hamburg Eppendorf, Institute of Neuroanatomy, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Kwakowsky A, Potapov K, Kim S, Peppercorn K, Tate WP, Ábrahám IM. Treatment of beta amyloid 1-42 (Aβ(1-42))-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo. Sci Rep 2016; 6:21101. [PMID: 26879842 PMCID: PMC4754683 DOI: 10.1038/srep21101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/18/2016] [Indexed: 11/09/2022] Open
Abstract
In Alzheimer's disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ(1-42)) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ(1-42) injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ(1-42)-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response-element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD.
Collapse
Affiliation(s)
- Andrea Kwakowsky
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kyoko Potapov
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - SooHyun Kim
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Katie Peppercorn
- Department of Biochemistry, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Warren P. Tate
- Department of Biochemistry, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - István M. Ábrahám
- Centre for Neuroendocrinology and Department of Physiology, Otago Medical School, University of Otago, Dunedin, New Zealand
- MTA-NAP-B-Molecular Neuroendocrinology Research Group, Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Tozzi A, de Iure A, Tantucci M, Durante V, Quiroga-Varela A, Giampà C, Di Mauro M, Mazzocchetti P, Costa C, Di Filippo M, Grassi S, Pettorossi VE, Calabresi P. Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: interaction with the dopaminergic system. Front Cell Neurosci 2015; 9:192. [PMID: 26074768 PMCID: PMC4445326 DOI: 10.3389/fncel.2015.00192] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
17β-estradiol (E2), a neurosteroid synthesized by P450-aromatase (ARO), modulates various brain functions. We characterized the role of the locally synthesized E2 on striatal long-term synaptic plasticity and explored possible interactions between E2 receptors (ERs) and dopamine (DA) receptors in the dorsal striatum of adult male rats. Inhibition of E2 synthesis or antagonism of ERs prevented the induction of long-term potentiation (LTP) in both medium spiny neurons (MSNs) and cholinergic interneurons (ChIs). Activation of a D1-like DA receptor/cAMP/PKA-dependent pathway restored LTP. In MSNs exogenous E2 reversed the effect of ARO inhibition. Also antagonism of M1 muscarinic receptors prevented the D1-like receptor-mediated restoration of LTP confirming a role for ChIs in controlling the E2-mediated LTP of MSNs. A novel striatal interaction, occurring between ERs and D1-like receptors in both MSNs and ChIs, might be critical to regulate basal ganglia physiology and to compensate synaptic alterations in Parkinson’s disease.
Collapse
Affiliation(s)
- Alessandro Tozzi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Antonio de Iure
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Michela Tantucci
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Valentina Durante
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Ana Quiroga-Varela
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | | | - Michela Di Mauro
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Petra Mazzocchetti
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Cinzia Costa
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Massimiliano Di Filippo
- Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| | - Silvarosa Grassi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Vito Enrico Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia Perugia, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, IRCCS Rome, Italy ; Clinica Neurologica, Dipartimento di Medicina, Università degli Studi di Perugia, Ospedale Santa Maria della Misericordia Perugia, Italy
| |
Collapse
|
21
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
22
|
Fu J, Zhang Y, Wu R, Zheng Y, Zhang X, Yang M, Zhao J, Liu Y. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression. Neural Regen Res 2014; 9:489-97. [PMID: 25206843 PMCID: PMC4153504 DOI: 10.4103/1673-5374.130067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 01/21/2023] Open
Abstract
Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results confirmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule significantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain.
Collapse
Affiliation(s)
- Jinhua Fu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan Province, China ; Department of Psychiatry, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Yingjin Zhang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Medicine and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Renrong Wu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan Province, China
| | - Yingjun Zheng
- Guangzhou Brain Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong Province, China
| | - Xianghui Zhang
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan Province, China
| | - Mei Yang
- Department of Psychiatry, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan Province, China
| | - Yong Liu
- Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
23
|
Fortress AM, Kim J, Poole RL, Gould TJ, Frick KM. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice. ACTA ACUST UNITED AC 2014; 21:457-67. [PMID: 25128537 PMCID: PMC4138358 DOI: 10.1101/lm.034033.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.
Collapse
Affiliation(s)
- Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Rachel L Poole
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
24
|
The inhibitory effect of somatostatin receptor activation on bee venom-evoked nociceptive behavior and pCREB expression in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:251785. [PMID: 24895558 PMCID: PMC4033427 DOI: 10.1155/2014/251785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/31/2014] [Accepted: 04/14/2014] [Indexed: 12/27/2022]
Abstract
The present study examined nociceptive behaviors and the expression of phosphorylated cAMP response element-binding protein (pCREB) in the dorsal horn of the lumbar spinal cord and the dorsal root ganglion (DRG) evoked by bee venom (BV). The effect of intraplantar preapplication of the somatostatin analog octreotide on nociceptive behaviors and pCREB expression was also examined. Subcutaneous injection of BV into the rat unilateral hindpaw pad induced significant spontaneous nociceptive behaviors, primary mechanical allodynia, primary thermal hyperalgesia, and mirror-thermal hyperalgesia, as well as an increase in pCREB expression in the lumbar spinal dorsal horn and DRG. Octreotide pretreatment significantly attenuated the BV-induced lifting/licking response and mechanical allodynia. Local injection of octreotide also significantly reduced pCREB expression in the lumbar spinal dorsal horn and DRG. Furthermore, pretreatment with cyclosomatostatin, a somatostatin receptor antagonist, reversed the octreotide-induced inhibition of the lifting/licking response, mechanical allodynia, and the expression of pCREB. These results suggest that BV can induce nociceptive responses and somatostatin receptors are involved in mediating the antinociception, which provides new evidence for peripheral analgesic action of somatostatin in an inflammatory pain state.
Collapse
|
25
|
Chakrabarti M, Banik NL, Ray SK. MiR-7-1 potentiated estrogen receptor agonists for functional neuroprotection in VSC4.1 motoneurons. Neuroscience 2014; 256:322-33. [PMID: 24157932 PMCID: PMC4378839 DOI: 10.1016/j.neuroscience.2013.10.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 01/28/2023]
Abstract
Protection of motoneurons is an important goal in the treatment of spinal cord injury (SCI). We tested whether neuroprotective microRNAs (miRs) like miR-206, miR-17, miR-21, miR-7-1, and miR-106a could enhance efficacy of estrogen receptor (ER) agonists such as 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT, ERα agonist), Way200070 (WAY, ERβ agonist), and estrogen (EST, ERα and ERβ agonist) in preventing apoptosis in the calcium ionophore (CI)-insulted ventral spinal cord 4.1 (VSC4.1) motoneurons. We determined that 200 nM CI induced 70% cell death. Treatment with 50 nM PPT, 100 nM WAY, and 150 nM EST induced overexpression of ERα, ERβ, and both receptors, respectively, at mRNA and protein levels. Treatment with ER agonists significantly upregulated miR-206, miR-17, and miR-7-1 in the CI-insulted VSC4.1 motoneurons. Transfection with miR-206, miR-17, or miR-7-1 mimic potentiated WAY or EST to inhibit apoptosis in the CI-insulted VSC4.1 motoneurons. Overexpression of miR-7-1 maximally increased efficacy of WAY and EST for down regulation of pro-apoptotic Bax and upregulation of anti-apoptotic Bcl-2. A search using microRNA database (miRDB) indicated that miR-7-1 could inhibit the expression of L-type Ca(2+) channel protein alpha 1C (CPα1C). miR-7-1 overexpression and WAY or EST treatment down regulated CPα1C but upregulated p-Akt to trigger cell survival signaling. The same therapeutic strategy increased expression of the Ca(2+)/calmodulin-dependent protein kinase II beta (CaMKIIβ) and the phosphorylated cAMP response element binding protein (p-CREB) so as to promote Bcl-2 transcription. Whole cell membrane potential and mitochondrial membrane potential studies indicated that miR-7-1 highly potentiated EST to preserve functionality in the CI-insulted VSC4.1 motoneurons. In conclusion, our data indicated that miR-7-1 most significantly potentiated efficacy of EST for functional neuroprotection and this therapeutic strategy could be used in the future to attenuate apoptosis of motoneurons in SCI.
Collapse
Affiliation(s)
- M Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - N L Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - S K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States.
| |
Collapse
|
26
|
Gupta S, McCarson KE, Welch KMA, Berman NEJ. Mechanisms of pain modulation by sex hormones in migraine. Headache 2013; 51:905-22. [PMID: 21631476 DOI: 10.1111/j.1526-4610.2011.01908.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A number of pain conditions, acute as well as chronic, are much more prevalent in women, such as temporomandibular disorder (TMD), irritable bowel syndrome, fibromyalgia, and migraine. The association of female sex steroids with these nociceptive conditions is well known, but the mechanisms of their effects on pain signaling are yet to be deciphered. We reviewed the mechanisms through which female sex steroids might influence the trigeminal nociceptive pathways with a focus on migraine. Sex steroid receptors are located in trigeminal circuits, providing the molecular substrate for direct effects. In addition to classical genomic effects, sex steroids exert rapid nongenomic actions to modulate nociceptive signaling. Although there are only a handful of studies that have directly addressed the effect of sex hormones in animal models of migraine, the putative mechanisms can be extrapolated from observations in animal models of other trigeminal pain disorders, like TMD. Sex hormones may regulate sensitization of trigeminal neurons by modulating expression of nociceptive mediator such as calcitonin gene-related peptide. Its expression is mostly positively regulated by estrogen, although a few studies also report an inverse relationship. Serotonin (5-Hydroxytryptamine [5-HT]) is a neurotransmitter implicated in migraine; its synthesis is enhanced in most parts of brain by estrogen, which increases expression of the rate-limiting enzyme tryptophan hydroxylase and decreases expression of the serotonin re-uptake transporter. Downstream signaling, including extracellular signal-regulated kinase activation, calcium-dependent mechanisms, and cAMP response element-binding activation, are thought to be the major signaling events affected by sex hormones. These findings need to be confirmed in migraine-specific animal models that may also provide clues to additional ion channels, neuropeptides, and intracellular signaling cascades that contribute to the increased prevalence of migraine in women.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Science, University of Copenhagen, Glostrup, Denmark
| | | | | | | |
Collapse
|
27
|
Lesiak A, Pelz C, Ando H, Zhu M, Davare M, Lambert TJ, Hansen KF, Obrietan K, Appleyard SM, Impey S, Wayman GA. A genome-wide screen of CREB occupancy identifies the RhoA inhibitors Par6C and Rnd3 as regulators of BDNF-induced synaptogenesis. PLoS One 2013; 8:e64658. [PMID: 23762244 PMCID: PMC3675129 DOI: 10.1371/journal.pone.0064658] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Neurotrophin-regulated gene expression is believed to play a key role in long-term changes in synaptic structure and the formation of dendritic spines. Brain-derived neurotrophic factor (BDNF) has been shown to induce increases in dendritic spine formation, and this process is thought to function in part by stimulating CREB-dependent transcriptional changes. To identify CREB-regulated genes linked to BDNF-induced synaptogenesis, we profiled transcriptional occupancy of CREB in hippocampal neurons. Interestingly, de novo motif analysis of hippocampal ChIP-Seq data identified a non-canonical CRE motif (TGGCG) that was enriched at CREB target regions and conferred CREB-responsiveness. Because cytoskeletal remodeling is an essential element of the formation of dendritic spines, within our screens we focused our attention on genes previously identified as inhibitors of RhoA GTPase. Bioinformatic analyses identified dozens of candidate CREB target genes known to regulate synaptic architecture and function. We showed that two of these, the RhoA inhibitors Par6C (Pard6A) and Rnd3 (RhoE), are BDNF-induced CREB-regulated genes. Interestingly, CREB occupied a cluster of non-canonical CRE motifs in the Rnd3 promoter region. Lastly, we show that BDNF-stimulated synaptogenesis requires the expression of Par6C and Rnd3, and that overexpression of either protein is sufficient to increase synaptogenesis. Thus, we propose that BDNF can regulate formation of functional synapses by increasing the expression of the RhoA inhibitors, Par6C and Rnd3. This study shows that genome-wide analyses of CREB target genes can facilitate the discovery of new regulators of synaptogenesis.
Collapse
Affiliation(s)
- Adam Lesiak
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Carl Pelz
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Hideaki Ando
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mingyan Zhu
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Monika Davare
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Talley J. Lambert
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Katelin F. Hansen
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Suzanne M. Appleyard
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Soren Impey
- Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail: (GAW); (SI)
| | - Gary A. Wayman
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Program in Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail: (GAW); (SI)
| |
Collapse
|
28
|
Pan M, Zhang C. Stimulatory effect of gonadal hormones on fetal rat hippocampal neural proliferation requires neurotrophin receptor activation in vitro. Neurosci Lett 2013; 546:1-5. [DOI: 10.1016/j.neulet.2013.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/26/2013] [Accepted: 04/12/2013] [Indexed: 11/15/2022]
|
29
|
Chen Y, Su Y, Run X, Sun Z, Wang T, Sun S, Liang Z. Pretreatment of PC12 Cells with 17β-estradiol Prevents Aβ-Induced Down-Regulation of CREB Phosphorylation and Prolongs Inhibition of GSK-3β. J Mol Neurosci 2012; 50:394-401. [DOI: 10.1007/s12031-012-9938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
30
|
Low doses of 17β-estradiol rapidly improve learning and increase hippocampal dendritic spines. Neuropsychopharmacology 2012; 37:2299-309. [PMID: 22669167 PMCID: PMC3422494 DOI: 10.1038/npp.2012.82] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While a great deal of research has been performed on the long-term genomic actions of estrogens, their rapid effects and implications for learning and memory are less well characterized. The often conflicting results of estrogenic effects on learning and memory may be due to complex and little understood interactions between genomic and rapid effects. Here, we investigated the effects of low, physiologically relevant, doses of 17β-estradiol on three different learning paradigms that assess social and non-social aspects of recognition memory and spatial memory, during a transcription independent period of memory maintenance. Ovariectomized female CD1 mice were subcutaneously administered vehicle, 1.5 μg/kg, 2 μg/kg, or 3 μg/kg of 17β-estradiol 15 minutes before social recognition, object recognition, or object placement learning. These paradigms were designed to allow the testing of learning effects within 40 min of hormone administration. In addition, using a different set of ovariectomized mice, we examined the rapid effects of 1.5 μg/kg, 2 μg/kg, or 3 μg/kg of 17β-estradiol on CA1 hippocampal dendritic spines. All 17β-estradiol doses tested impacted learning, memory, and CA1 hippocampal spines. 17β-Estradiol improved both social and object recognition, and may facilitate object placement learning and memory. In addition, 17β-estradiol increased dendritic spine density in the stratum radiatum subregion of the CA1 hippocampus, but did not affect dendritic spines in the lacunosum-moleculare, within 40 min of administration. These results demonstrate that the rapid actions of 17β-estradiol have important implications for general learning and memory processes that are not specific for a particular type of learning paradigm. These effects may be mediated by the rapid formation of new dendritic spines in the hippocampus.
Collapse
|
31
|
Lee E, Sidoryk-Wegrzynowicz M, Farina M, Rocha JBT, Aschner M. Estrogen attenuates manganese-induced glutamate transporter impairment in rat primary astrocytes. Neurotox Res 2012; 23:124-30. [PMID: 22878846 DOI: 10.1007/s12640-012-9347-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The astrocytic glutamate transporters (GLT-1, GLAST) are critical for removing excess glutamate from synaptic sites, thereby maintaining glutamate homeostasis within the brain. 17β-Estradiol (E2) is one of the most active estrogen hormones possessing neuroprotective effects both in in vivo and in vitro models, and it has been shown to enhance astrocytic glutamate transporter function (Liang et al. in J Neurochem 80:807-814, 2002; Pawlak et al. in Brain Res Mol Brain Res 138:1-7, 2005). However, E2 is not clinically optimal for neuroprotection given its peripheral feminizing and proliferative effects; therefore, brain selective estrogen receptor modulators (neuro SERMs) (Zhao et al. in Neuroscience 132:299-311, 2005) that specifically target estrogenic mechanisms, but lack the systemic estrogen side effects offer more promising therapeutic modality for the treatment of conditions associated with excessive synaptic glutamate levels. This review highlights recent studies from our laboratory showing that E2 and SERMs effectively reverse glutamate transport inhibition in a manganese (Mn)-induced model of glutamatergic deregulation. Specifically, we discuss mechanisms by which E2 restores the expression and activity of glutamate uptake. We advance the hypothesis that E2 and related compounds, such as tamoxifen may offer a potential therapeutic modality in neurodegenerative disorders, which are characterized by altered glutamate homeostasis.
Collapse
Affiliation(s)
- Eunsook Lee
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
32
|
Xiao X, Yang Y, Zhang Y, Zhang XM, Zhao ZQ, Zhang YQ. Estrogen in the Anterior Cingulate Cortex Contributes to Pain-Related Aversion. Cereb Cortex 2012; 23:2190-203. [DOI: 10.1093/cercor/bhs201] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol 2012; 24:236-48. [PMID: 22070562 PMCID: PMC3264398 DOI: 10.1111/j.1365-2826.2011.02251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails can be tailored to improve brain mitochondrial endpoints.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jimmy To
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
- Program in Neuroscience, University of Southern California, Los Angeles, California, 90033
- Address correspondence to: Roberta Diaz Brinton, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, California, 90089, Tel. 323-442-1428; Fax. 323-442-1489;
| |
Collapse
|
34
|
Koszegi Z, Szego ÉM, Cheong RY, Tolod-Kemp E, Ábrahám IM. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo. Endocrinology 2011; 152:3471-82. [PMID: 21791565 DOI: 10.1210/en.2011-1017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
35
|
Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DTS, Babus LW, Peters M, Banko JL, Chavis P, Rebeck GW, Hoe HS, Weeber EJ. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem 2011; 18:558-64. [PMID: 21852430 DOI: 10.1101/lm.2153511] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive function; however, the in vivo effect of enhanced Reelin signaling on cognitive function and synaptic plasticity in wild-type mice is unknown. The present studies test the hypothesis that in vivo enhancement of Reelin signaling can alter synaptic plasticity and ultimately influence processes of learning and memory. Purified recombinant Reelin was injected bilaterally into the ventricles of wild-type mice. We demonstrate that a single in vivo injection of Reelin increased activation of adaptor protein Disabled-1 and cAMP-response element binding protein after 15 min. These changes correlated with increased dendritic spine density, increased hippocampal CA1 long-term potentiation (LTP), and enhanced performance in associative and spatial learning and memory. The present study suggests that an acute elevation of in vivo Reelin can have long-term effects on synaptic function and cognitive ability in wild-type mice.
Collapse
Affiliation(s)
- Justin T Rogers
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Takahashi K, Piao S, Yamatani H, Du B, Yin L, Ohta T, Kawagoe J, Takata K, Tsutsumi S, Kurachi H. Estrogen induces neurite outgrowth via Rho family GTPases in neuroblastoma cells. Mol Cell Neurosci 2011; 48:217-24. [PMID: 21864685 DOI: 10.1016/j.mcn.2011.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 07/03/2011] [Accepted: 08/05/2011] [Indexed: 12/26/2022] Open
Abstract
Estrogen (E2) has direct in vivo and in vitro effects, such as inducing neurite outgrowth, on neurons. We investigated the morphological changes and intracellular signaling pathway induced by E2 in neuroblastoma (SH-SY5Y) cells. The effect of medroxyprogesterone acetate (MPA) or progesterone (P4) on the E2-induced neurite outgrowth was also examined using SH-SY5Y cells. Neurite outgrowth was induced by E2 in association with the phosphorylation of Akt, and these effects of E2 were abolished by MPA but not by P4. Progesterone receptor antagonist RU486 blocked the inhibitory effects of MPA. Estrogen receptor antagonist ICI 182,780 and phosphatidylinositol 3-kinase inhibitor LY294002 inhibited the E2-induced neurite outgrowth. Because the Rho family of small GTPases has been shown to be involved in the regulation of neurite outgrowth, we examined the cross-talk among Rac1, Cdc42 and RhoA in the E2-induced neurite outgrowth. E2 immediately increased the Rac1 and Cdc42 activity and decreased the RhoA activity. E2-induced neurite outgrowth was attenuated in cells expressing dominant-negative mutants for Rac1 or Cdc42. These results suggest that regulation of Rho family GTPase activity by E2 is important for the neurite outgrowth in neuroblastoma cells, and that MPA may have an antagonistic effect against E2.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Obstetrics and Gynecology, Yamagata University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J Neurosci 2011; 31:6780-90. [PMID: 21543608 DOI: 10.1523/jneurosci.0910-11.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tropomyosin-related kinase B receptor (TrkB) is a neurotrophin receptor important for the synaptic plasticity underlying hippocampal-dependent learning and memory. Because this receptor is widely expressed in hippocampal neurons, the precise location of TrkB activation is likely important for its specific actions. The goal of this study was to identify the precise sites of TrkB activation in the mouse hippocampal formation and to determine any changes in the distribution of activated TrkB under conditions of enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal excitability. Using electron microscopy, we localized TrkB phosphorylated at tyrosine 816 (pTrkB) in the hippocampal formation of male and female mice under conditions of naturally low circulating estradiol and naturally high circulating estradiol, when BDNF expression, TrkB signaling, and synaptic plasticity are enhanced. To compare relative amounts of pTrkB in each group, we counted profiles containing pTrkB-immunoreactivity (pTrkB-ir) in all hippocampal subregions. pTrkB-ir was in axons, axon terminals, dendrites, and dendritic spines of neurons in the hippocampal formation, but the majority of pTrkB-ir localized to presynaptic profiles. pTrkB-ir also was abundant in glial profiles, which were further identified as microglia using immunofluorescence and confocal microscopy. Axonal and glial pTrkB-ir and pTrkB-ir in the CA1 stratum radiatum were more abundant in high-estradiol states (proestrus females) than low-estradiol states (estrus and diestrus females and males). These findings suggest that presynaptic TrkB is positioned to modulate estradiol-mediated and BDNF-dependent synaptic plasticity. Furthermore, they suggest a novel role for TrkB in microglial function in the neuroimmune system.
Collapse
|
38
|
Ma XM, Huang JP, Kim EJ, Zhu Q, Kuchel GA, Mains RE, Eipper BA. Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus 2011; 21:661-77. [PMID: 20333733 PMCID: PMC2911517 DOI: 10.1002/hipo.20780] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2010] [Indexed: 12/13/2022]
Abstract
Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor α (ERα) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size in hippocampal neurons. To determine whether Kalirin might play a role in the effects of estradiol on spine formation, Kal7 expression was examined in the hippocampus of ovariectomized rats. Estradiol replacement increased Kal7 staining in both CA1 pyramidal neurons and interneurons in ovariectomized rats. Estradiol treatment of cultured hippocampal neurons increased Kal7 levels at the postsynaptic side of excitatory synapses and increased the number of excitatory synapses along the dendrites of pyramidal neurons. These increases were mediated via ERα because a selective ERα agonist, but not a selective ERβ agonist, caused a similar increase in both Kal7 levels and excitatory synapse number in cultured hippocampal neurons. When Kal7 expression was reduced using a Kal7-specific shRNA, the density of excitatory synapses was reduced and estradiol was no longer able to increase synapse formation. Expression of exogenous Kal7 in hippocampal interneurons resulted in decreased levels of GAD65 staining. Inhibition of GABAergic transmission with bicuculline produced a robust increase in Kal7 expression. These studies suggest Kal7 plays a key role in the mechanisms of estradiol-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wu TW, Chen S, Brinton RD. Membrane estrogen receptors mediate calcium signaling and MAP kinase activation in individual hippocampal neurons. Brain Res 2011; 1379:34-43. [PMID: 21241678 PMCID: PMC3050738 DOI: 10.1016/j.brainres.2011.01.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2011] [Indexed: 11/19/2022]
Abstract
Previously we demonstrated that 17β-Estradiol (E2) induced rapid Ca(2+) influx via L-type calcium channel activation, which was required for activation of Src/ERK/CREB/Bcl2 signaling cascade and subsequent induction of neuroprotective and neurotrophic responses in rat hippocampal and cortical neurons (Wu et al., 2005; Zhao et al., 2005). The current study determined the presence and specificity of membrane E2 binding sites and the functional consequence of E2 binding to membrane receptors in individual neurons. Using E2-BSA-FITC (fluorescein isothiocyanate) macromolecular complex, membrane E2 binding sites were observed in hippocampal neurons. Punctate FITC signal was observed on plasma membrane of soma and neuronal processes in E2-BSA-FITC binding neurons. No membrane binding was observed with BSA-FITC. Specificity of binding was demonstrated by competition with excess un-conjugated E2. An ERa specific agonist, PPT, and an ERb agonist, DPN, partially competed for E2-BSA-FITC binding. Imaging of intracellular Ca(2+) ([Ca(2+)]i) in live neurons, revealed rapid Ca(2+) responses in E2-BSA-FITC binding neurons within minutes that culminated in a greater [Ca(2+)]i rise and [Ca(2+)]i spikes at >20 min. The same neurons in which E2-BSA-FITC induced a [Ca(2+)]i rise also exhibited activated pERK (extracellular signal-regulated kinase) that was translocated to the nucleus. Immunofluorescent analyses demonstrated that both excitatory and inhibitory neuronal markers labeled subpopulations of E2-BSA-FITC binding neurons. All E2-BSA-FITC binding neurons expressed L-type calcium channels. These results demonstrate, at a single cell level, that E2 membrane receptors mediate the rapid signaling cascades required for E2 neuroprotective and neurotrophic effects in hippocampal neurons. These results are discussed with respect to therapeutic targets of estrogen therapy in brain.
Collapse
Affiliation(s)
- Tzu-wei Wu
- Neuroscience Program, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121
| | - Shuhua Chen
- Department of Molecular Pharmacology & Toxicology, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121
| | - Roberta D. Brinton
- Neuroscience Program, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121
- Department of Molecular Pharmacology & Toxicology, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, CA 90089-9121
| |
Collapse
|
40
|
Irwin RW, Yao J, Ahmed SS, Hamilton RT, Cadenas E, Brinton RD. Medroxyprogesterone acetate antagonizes estrogen up-regulation of brain mitochondrial function. Endocrinology 2011; 152:556-67. [PMID: 21159850 PMCID: PMC3157324 DOI: 10.1210/en.2010-1061] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/04/2010] [Indexed: 01/22/2023]
Abstract
The impact of clinical progestins used in contraception and hormone therapies on the metabolic capacity of the brain has long-term implications for neurological health in pre- and postmenopausal women. Previous analyses indicated that progesterone and 17β-estradiol (E2) sustain and enhance brain mitochondrial energy-transducing capacity. Herein we determined the impact of the clinical progestin, medroxyprogesterone acetate (MPA), on glycolysis, oxidative stress, and mitochondrial function in brain. Ovariectomized female rats were treated with MPA, E2, E2+MPA, or vehicle with ovary-intact rats serving as a positive control. MPA alone and MPA plus E2 resulted in diminished mitochondrial protein levels for pyruvate dehydrogenase, cytochrome oxidase, ATP synthase, manganese-superoxide dismutase, and peroxiredoxin V. MPA alone did not rescue the ovariectomy-induced decrease in mitochondrial bioenergetic function, whereas the coadministration of E2 and MPA exhibited moderate efficacy. However, the coadministration of MPA was detrimental to antioxidant defense, including manganese-superoxide dismutase activity/expression and peroxiredoxin V expression. Accumulated lipid peroxides were cleared by E2 treatment alone but not in combination with MPA. Furthermore, MPA abolished E2-induced enhancement of mitochondrial respiration in primary cultures of the hippocampal neurons and glia. Collectively these findings indicate that the effects of MPA differ significantly from the bioenergetic profile induced by progesterone and that, overall, MPA induced a decline in glycolytic and oxidative phosphorylation protein and activity. These preclinical findings on the basis of acute exposure to MPA raise concerns regarding neurological health after chronic use of MPA in contraceptive and hormone therapy.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, Pharmaceutical Sciences Center, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | |
Collapse
|
41
|
Das A, Smith JA, Gibson C, Varma AK, Ray SK, Banik NL. Estrogen receptor agonists and estrogen attenuate TNF-α-induced apoptosis in VSC4.1 motoneurons. J Endocrinol 2011; 208:171-82. [PMID: 21068071 PMCID: PMC3951893 DOI: 10.1677/joe-10-0338] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) may cause apoptosis and inflammation in amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI). Recent studies suggest that estrogen (EST) provides neuroprotection against SCI. We tested whether 1,3,5-tris (4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (EST receptor alpha (ERα) agonist), 2,3-bis (4-hydroxyphenyl) propionitrile (DPN) (EST receptor beta (ERβ) agonist), or EST itself would prevent apoptosis in VSC4.1 motoneurons following exposure to TNF-α. Cells were exposed to TNF-α and 15 min later treated with PPT, DPN, or EST. Posttreatment with 50 nM PPT, 50 nM DPN, or 150 nM EST prevented cell death in VSC4.1 motoneurons. Treatment of VSC4.1 motoneurons with PPT, DPN, or EST induced overexpression of ERα, ERβ, or both, which contributed to neuroprotection by upregulating expression of anti-apoptotic proteins (p-AKT, p-CREB, Bcl-2, and p-Src). Our analyses also revealed that EST agonists and EST increased phosphorylation of extracellular signal-regulated kinase (ERK). The L-type Ca(2+) channel inhibitor, nifedipine (10 μM), partially inhibited EST agonist and EST-induced increase in phosphorylated ERK expression. The mitogen-activated protein kinase inhibitor, PD98059 (5 μM), partially prevented ER agonists and EST from providing neuroprotection to TNF-α toxicity. Presence of the nuclear ER antagonist, ICI 182 780 (10 μM), blocked the neuroprotection provided by all three ER agonists tested. Taken together, our data indicate that both ERα and ERβ contribute to PPT, DPN, or EST-mediated neuroprotection with similar signaling profiles. Our data strongly imply that PPT, DPN, or EST can be used as effective neuroprotective agents to attenuate motoneuron death in ALS and SCI.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bryant DN, Dorsa DM. Roles of estrogen receptors alpha and beta in sexually dimorphic neuroprotection against glutamate toxicity. Neuroscience 2010; 170:1261-9. [PMID: 20732393 PMCID: PMC2949441 DOI: 10.1016/j.neuroscience.2010.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/24/2010] [Accepted: 08/11/2010] [Indexed: 02/05/2023]
Abstract
Although most agree that 17β-estradiol is neuroprotective via a variety of mechanisms, less is known about the role that biological sex plays in receptor-mediated estradiol neuroprotection. To address this issue we isolated primary cortical neurons from rat pups sorted by sex and assessed the ability of estradiol to protect the neurons from death induced by glutamate. Five-minute pretreatment with 10-50 nM 17β-estradiol protected female but not male neurons from glutamate toxicity 24 h later. Both estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are expressed in these cultures. Experiments using an ERα selective agonist or antagonist indicate that this receptor is important for neuroprotection in female cortical neurons. The ERβ selective agonist conveys a small degree of neuroprotection to both male and female cortical neurons. Interestingly, we found that 17α estradiol and the novel membrane estrogen receptor (mER) agonist STX, but not bovine serum albumin conjugated estradiol or the GPR30 agonist G1 were neuroprotective in both male and female neurons. Taken together these data highlight a role for ERα in sexually dimorphic neuroprotection.
Collapse
Affiliation(s)
- D N Bryant
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, USA.
| | | |
Collapse
|
43
|
Devidze N, Fujimori K, Urade Y, Pfaff DW, Mong JA. Estradiol regulation of lipocalin-type prostaglandin D synthase promoter activity: evidence for direct and indirect mechanisms. Neurosci Lett 2010; 474:17-21. [PMID: 20193744 PMCID: PMC3249404 DOI: 10.1016/j.neulet.2010.02.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 11/28/2022]
Abstract
In the CNS, lipocalin-type prostaglandin D synthase (L-PGDS) is predominantly a non-neuronal enzyme responsible for the production of PGD(2), an endogenous sleep promoting substance. We have previously demonstrated that estradiol differentially regulates L-PGDS transcript levels in the rodent brain. In hypothalamic nuclei, estradiol increases L-PGDS transcript expression, whereas in the ventrolateral preoptic area L-PGDS gene expression is reduced after estradiol treatment. In the present study, we have used an immortalized glioma cell line transfected with a L-PGDS reporter construct and estrogen receptor (ER) alpha and ERbeta expression plasmids to further elucidate the mechanisms underlying estradiol regulation of L-PGDS gene expression. We found that physiologically relevant concentrations of estradiol evoked an inverted U response in cells expressing ERalpha. The most effective concentration of estradiol (10(-11)M) increased the promoter activity 3-fold over baseline. Expression of ERbeta did not increase activity over control and when ERbeta was co-expressed with ERalpha there was a significant attenuation of the promoter activity. While ERalpha significantly increased L-PGDS promoter activity, our previous in vivo studies demonstrate a greater magnitude of change in L-PGDS gene expression in the presences of estradiol. This led us to ask whether estradiol is signaling via a paracrine factor released by the neighboring neurons. Conditioned media from estradiol treated neurons applied to the glioma cell line resulted in a significant 7-fold increase in L-PGDS promoter activity supporting the possibility that neuronal-glial interactions are involved in estradiol regulation of L-PGDS.
Collapse
Affiliation(s)
- Nino Devidze
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, New York, NY 10021
| | - Ko Fujimori
- Department of Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Urade
- Department of Behavioral Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Donald W. Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, New York, NY 10021
| | - Jessica A. Mong
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Maryland, Baltimore, MD 21201
| |
Collapse
|
44
|
Prange-Kiel J, Fester L, Zhou L, Jarry H, Rune GM. Estrus cyclicity of spinogenesis: underlying mechanisms. J Neural Transm (Vienna) 2010; 116:1417-25. [PMID: 19730783 PMCID: PMC3085745 DOI: 10.1007/s00702-009-0294-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 08/06/2009] [Indexed: 11/09/2022]
Abstract
Hippocampal spine density varies with the estrus cycle. The cyclic change in estradiol levels in serum was hypothesized to underlie this phenomenon, since treatment of ovariectomized animals with estradiol induced an increase in spine density in hippocampal dendrites of rats, as compared to ovariectomized controls. In contrast, application of estradiol to hippocampal slice cultures did not promote spinogenesis. In addressing this discrepancy, we found that hippocampal neurons themselves are capable of synthesizing estradiol de novo. Estradiol synthesis can be suppressed by aromatase inhibitors and by knock-down of Steroid Acute Regulatory Protein (StAR) and enhanced by substrates of steroidogenesis. Expression of estrogen receptors (ERs) and synaptic proteins, synaptogenesis, and long-term potentiation (LTP) correlated positively with aromatase activity in hippocampal cultures without any difference between genders. All effects due to inhibition of aromatase activity were rescued by application of estradiol to the cultures. Most importantly, gonadotropin-releasing hormone (GnRH) increased estradiol synthesis dose-dependently via an aromatase-mediated mechanism and consistently increased spine synapse density and spinophilin expression. As a consequence, our data suggest that cyclic fluctuations in spine synapse density result from pulsative release of GnRH from the hypothalamus and its effect on hippocampal estradiol synthesis, rather than from varying levels of serum estradiol. This hypothesis is further supported by higher GnRH receptor (GnRH-R) density in the hippocampus than in the cortex and hypothalamus and the specificity of estrus cyclicity of spinogenesis in the hippocampus, as compared to the cortex.
Collapse
Affiliation(s)
- Janine Prange-Kiel
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
45
|
Action of estrogen on survival of basal forebrain cholinergic neurons: promoting amelioration. Psychoneuroendocrinology 2009; 34 Suppl 1:S104-12. [PMID: 19560872 DOI: 10.1016/j.psyneuen.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
Extensive studies during the past two decades provide compelling evidence that the gonadal steroid, estrogen, has the potential to affect the viability of basal forebrain cholinergic neurons. These observations reflect a unique ameliorative feature of estrogen as it restores and protects the cholinergic neurons against noxious stimuli or neurodegenerative processes. Hence, we first address the ameliorative function of estrogen on basal forebrain cholinergic neurons such as the actions of estrogen on neuronal plasticity of cholinergic neurons, estrogen-induced memory enhancement and the ameliorative role of estrogen on cholinergic neuron related neurodegenerative processes such as Alzheimer's disease. Second, we survey recent data as to possible mechanisms underlying the ameliorative actions of estrogen; influencing the amyloid precursor protein processing, enhancement in neurotrophin receptor signaling and estrogen-induced non-classical actions on second messenger systems. In addition, clinical relevance, pitfalls and future aspects of estrogen therapy on basal forebrain cholinergic neurons will be discussed.
Collapse
|
46
|
de Castilhos J, Hermel EES, Rasia-Filho AA, Achaval M. Influence of substitutive ovarian steroids in the nuclear and cell body volumes of neurons in the posterodorsal medial amygdala of adult ovariectomized female rats. Neurosci Lett 2009; 469:19-23. [PMID: 19925848 DOI: 10.1016/j.neulet.2009.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 01/06/2023]
Abstract
The volumes of the neuronal nucleus and the cell body in the left posterodorsal medial amygdala (MePD) of adult ovariectomized (OVX) female rats submitted to different hormonal therapies were studied here, aiming to reveal possible influence of substitutive sex steroids in these morphological parameters. One week following ovariectomy and at the end of treatments, brains were cut to semi-thin sections (1 microm) and stained with 1% toluidine blue for stereological estimations, carried out using the Cavalieri method and the technique of point counting. Both the volume of the neuronal nucleus and the soma showed a statistically significant difference when comparing the data among OVX females treated with vehicle (V), estradiol (EB) alone, EB plus progesterone (EB+P) or P alone [n=5 rats in each group; one-way ANOVA test, P<0.01 in both cases]. The Tukey test showed that OVX and EB+P treated females had higher mean neuronal nucleus and somatic volumes when compared to V (P<0.01) or EB alone (P<0.01). Also, OVX females treated with P alone showed larger mean neuronal nucleus and somatic volumes when compared to V (P<0.05). These results suggest that the neuronal nucleus and the somatic volumes can be modulated by substitutive ovarian hormones administered to OVX females, for which P can lead to higher results. These findings reveal additional epigenetic actions of the sex steroids in the MePD and new neuronal morphological features in adult female rats.
Collapse
Affiliation(s)
- Juliana de Castilhos
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul/ICBS, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
47
|
Tiwari-Woodruff S, Voskuhl RR. Neuroprotective and anti-inflammatory effects of estrogen receptor ligand treatment in mice. J Neurol Sci 2009; 286:81-5. [PMID: 19442988 PMCID: PMC2760614 DOI: 10.1016/j.jns.2009.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/23/2009] [Accepted: 04/14/2009] [Indexed: 11/15/2022]
Abstract
Demyelination and neurodegeneration is a major contributor in the progression of disability in multiple sclerosis (MS). Thus, the development of therapies that are neuroprotective has elicited considerable interests. Estrogens and estrogen receptor (ER) ligand treatments are promising treatments to prevent MS-induced neurodegeneration and a multicenter phase II clinical trial of estriol as a beneficial therapy in MS is underway. Here, we discuss studies performed in our laboratory that examined the effects of ER ligands in the inflammatory/demyelinating disorder experimental autoimmune encephalomyelitis (EAE), a model of MS. Administration of estriol or 17beta-estradiol reduced clinical severity and this clinical disease improvement was associated with favorable changes in cytokine production. There was a significant decrease of neuronal pathology in gray matter along with myelin and axon preservation in white matter of spinal cords of mice with EAE. In subsequent experiments, we contrasted the results of ERalpha versus ERbeta ligand treatment. While ERalpha ligand treatment was anti-inflammatory, ERbeta ligand treatment was not. ERbeta ligand treatment nevertheless reduced demyelination and preserved axon numbers in white matter and prevented neuronal abnormalities in gray matter. Clinically, ERalpha ligand treatment abrogated the disease at the onset, while ERbeta ligand treatment had no effect at disease onset, but promoted recovery. Thus, unlike ERalpha ligand treatment, ERbeta ligand treatment was protective at the level of the target organ, independent of anti-inflammatory effects in the peripheral immune system. ERbeta ligand treatment should be considered as a potential neuroprotective agent for MS and other neurodegenerative diseases, particularly since breast and uterine cancer are mediated through ERalpha.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Estradiol/therapeutic use
- Estrogen Receptor alpha/deficiency
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/deficiency
- Estrogen Receptor beta/metabolism
- Estrogens/therapeutic use
- Ligands
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Myelin Proteins/metabolism
- Myelitis/etiology
- Myelitis/prevention & control
- Nerve Tissue Proteins/metabolism
- Neurodegenerative Diseases/etiology
- Neurodegenerative Diseases/prevention & control
- Neuroprotective Agents/therapeutic use
- Receptors, Estrogen
Collapse
Affiliation(s)
- Seema Tiwari-Woodruff
- Department of Neurology, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
48
|
Fester L, Zhou L, Bütow A, Huber C, von Lossow R, Prange-Kiel J, Jarry H, Rune GM. Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 2009; 19:692-705. [PMID: 19156851 DOI: 10.1002/hipo.20548] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cholesterol of glial origin promotes synaptogenesis (Mauch et al., (2001) Science 294:1354-1357). Because in the hippocampus local estradiol synthesis is essential for synaptogenesis, we addressed the question of whether cholesterol-promoted synapse formation results from the function of cholesterol as a precursor of estradiol synthesis in this brain area. To this end, we treated hippocampal cultures with cholesterol, estradiol, or with letrozole, a potent aromatase inhibitor. Cholesterol increased neuronal estradiol release into the medium, the number of spine synapses in hippocampal slice cultures, and immunoreactivity of synaptic proteins in dispersed cultures. Simultaneous application of cholesterol and letrozole or blockade of estrogen receptors by ICI 182 780 abolished cholesterol-induced synapse formation. As a further approach, we inhibited the access of cholesterol to the first enzyme of steroidogenesis by knock-down of steroidogenic acute regulatory protein, the rate-limiting step in steroidogenesis. A rescue of reduced synaptic protein expression in transfected cells was achieved by estradiol but not by cholesterol. Our data indicate that in the hippocampus cholesterol-promoted synapse formation requires the conversion of cholesterol to estradiol.
Collapse
Affiliation(s)
- Lars Fester
- Institute of Anatomy I: Cellular Neurobiology, Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Nguyen TVV, Yao M, Pike CJ. Dihydrotestosterone activates CREB signaling in cultured hippocampal neurons. Brain Res 2009; 1298:1-12. [PMID: 19729001 DOI: 10.1016/j.brainres.2009.08.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 12/17/2022]
Abstract
Although androgens induce numerous actions in brain, relatively little is known about which cell signaling pathways androgens activate in neurons. Recent work in our laboratory showed that the androgens testosterone and dihydrotestosterone (DHT) activate androgen receptor (AR)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling. Since the transcription factor cyclic AMP response element binding protein (CREB) is a downstream effector of MAPK/ERK and androgens activate CREB in non-neuronal cells, we investigated whether androgens activate CREB signaling in neurons. First, we observed that DHT rapidly activates CREB in cultured hippocampal neurons, as evidenced by CREB phosphorylation. Further, we observed that DHT-induced CREB phosphorylation is AR-dependent, as it occurs in PC12 cells stably transfected with AR but in neither wild-type nor empty vector-transfected cells. Next, we sought to identify the signal transduction pathways upstream of CREB phosphorylation using pharmacological inhibitors. DHT-induced CREB phosphorylation in neurons was found to be dependent upon protein kinase C (PKC) signaling but independent of MAPK/ERK, phosphatidylinositol 3-kinase, protein kinase A, and Ca(2+)/calmodulin-dependent protein kinase IV. These results demonstrate that DHT induces PKC-dependent CREB signaling, which may contribute to androgen-mediated neural functions.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
50
|
Vanoye-Carlo A, Mendoza-Rodriguez CA, Morales T, Langley E, Cerbón M. Estrogen receptors increased expression during hippocampal neuroprotection in lactating rats. J Steroid Biochem Mol Biol 2009; 116:1-7. [PMID: 19467858 DOI: 10.1016/j.jsbmb.2009.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 02/10/2009] [Accepted: 02/12/2009] [Indexed: 11/28/2022]
Abstract
Estrogen receptor (ER)-mediated neuroprotection has been demonstrated in both in vitro and in vivo model systems. Two types of estrogen receptors, ERalpha and ERbeta, are the major mediators of the biological functions of estrogens. In the hippocampus, ERbeta is prevalent over ERalpha. Recently, we reported that during the final phase of lactation there is a neuroprotective mechanism in the hippocampus of the adult female rat against neuronal damage induced by systemic kainic acid administration vs. virgin (metestrus) rats. In this study, we assessed differential ER expression and localization in CA1, CA3 and dentate gyrus regions of dorsal hippocampus of metestrus and lactating adult rats at day 19 of lactation, during basal conditions (metestrus and L19, respectively) and 24h after systemic kainate administration. ERs were assessed by western blot and immunohistochemistry. We found a significant increase in the expression of ERs in the hippocampus during lactation as compared with metestrus. ERbeta was significantly increased in the CA1 and CA3 of lactating rats after the kainic acid insult. In addition, we observed a relocalization of ERbeta from the cytoplasm to the nucleus of neuronal cells. Our results suggest that there is a strong correlation between expression of ERs, especially ERbeta, in lactating CA1 and CA3 hippocampus regions in response to kainate administration, and neuroprotection observed during this reproductive period. This may be one of the mechanisms involved in the protection of the maternal brain to ensure offspring survival.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | | | | | | | | |
Collapse
|