1
|
Mitra S, Sameer Kumar GS, Samanta A, Schmidt MV, Thakur SS. Hypothalamic protein profiling from mice subjected to social defeat stress. Mol Brain 2024; 17:30. [PMID: 38802853 PMCID: PMC11131206 DOI: 10.1186/s13041-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The Hypothalmic-Pituitary-Adrenal axis also known as the HPA axis is central to stress response. It also acts as the relay center between the body and the brain. We analysed hypothalamic proteome from mice subjected to chronic social defeat paradigm using iTRAQ based quantitative proteomics to identify changes associated with stress response. We identified greater than 2000 proteins after processing our samples analysed through Q-Exactive (Thermo) and Orbitrap Velos (Thermo) at 5% FDR. Analysis of data procured from the runs showed that the proteins whose levels were affected belonged primarily to mitochondrial and metabolic processes, translation, complement pathway among others. We also found increased levels of fibrinogen, myelin basic protein (MBP) and neurofilaments (NEFL, NEFM, NEFH) in the hypothalamus from socially defeated mice. Interestingly, research indicates that these proteins are upregulated in blood and CSF of subjects exposed to trauma and stress. Since hypothalamus secreted proteins can be found in blood and CSF, their utility as biomarkers in depression holds an impressive probability and should be validated in clinical samples.
Collapse
Affiliation(s)
- Shiladitya Mitra
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany.
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India.
| | | | - Anumita Samanta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
- Donders Institute for Brain Cognition and Behavior, Radboud University, Postbs 9010, Nijmegen, 6500GL, Netherlands
| | - Mathias V Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, Munich, 80804, Germany
| | - Suman S Thakur
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500007, India
| |
Collapse
|
2
|
Khan M, Baussan Y, Hebert-Chatelain E. Connecting Dots between Mitochondrial Dysfunction and Depression. Biomolecules 2023; 13:695. [PMID: 37189442 PMCID: PMC10135685 DOI: 10.3390/biom13040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Mitochondria are the prime source of cellular energy, and are also responsible for important processes such as oxidative stress, apoptosis and Ca2+ homeostasis. Depression is a psychiatric disease characterized by alteration in the metabolism, neurotransmission and neuroplasticity. In this manuscript, we summarize the recent evidence linking mitochondrial dysfunction to the pathophysiology of depression. Impaired expression of mitochondria-related genes, damage to mitochondrial membrane proteins and lipids, disruption of the electron transport chain, higher oxidative stress, neuroinflammation and apoptosis are all observed in preclinical models of depression and most of these parameters can be altered in the brain of patients with depression. A deeper knowledge of the depression pathophysiology and the identification of phenotypes and biomarkers with respect to mitochondrial dysfunction are needed to help early diagnosis and the development of new treatment strategies for this devastating disorder.
Collapse
Affiliation(s)
- Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Yann Baussan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Mitochondrial Signaling and Pathophysiology, University of Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
3
|
Fish Hydrolysate Supplementation Prevents Stress-Induced Dysregulation of Hippocampal Proteins Relative to Mitochondrial Metabolism and the Neuronal Network in Mice. Foods 2022; 11:foods11111591. [PMID: 35681342 PMCID: PMC9180483 DOI: 10.3390/foods11111591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Over the past several decades, stress has dramatically increased in occidental societies. The use of natural resources, such as fish hydrolysates, may be an attractive strategy to improve stress management. Our previous study demonstrated the anxiolytic effects of fish hydrolysate supplementation in mice exposed to acute mild stress by limiting stress-induced corticosterone release and modulating the expression of a number of stress-responsive genes. Here, we explore hippocampal protein modulation induced by fish hydrolysate supplementation in mice submitted to acute mild stress, with the aim of better elucidating the underlying mechanisms. Hippocampi from the same cohort of Balb/c mice supplemented with fish hydrolysate (300 mg·kg−1 body weight) or vehicle daily for seven days before being submitted or not to an acute mild stress protocol (four groups, n = 8/group) were subjected to label-free quantitative proteomics analysis combined with gene ontology data mining. Our results show that fish hydrolysate supplementation prevented the observed stress-induced dysregulation of proteins relative to mitochondrial pathways and the neuronal network. These findings suggest that fish hydrolysate represents an innovative strategy to prevent the adverse effects of stress and participate in stress management.
Collapse
|
4
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
5
|
Wei Y, Wang G, Chen J, Xiao L, Wu Z, He J, Zhang N. Maternal deprivation induces cytoskeletal alterations and depressive-like behavior in adult male rats by regulating the AKT/GSK3β/CRMP2 signaling pathway. Physiol Behav 2021; 242:113625. [PMID: 34666114 DOI: 10.1016/j.physbeh.2021.113625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/21/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Early-life adverse events exert persistent effects on brain functions and may increase the risk of psychopathology in adulthood. However, the underlying mechanism remains unclear. The purpose of our study was to study the long-lasting effects of maternal deprivation (MD) on depression-related behaviors and microtubule dynamics, and to illuminate the underlying molecular mechanism. Rat pups were separated from the dams for 360 min (MD) or 15 min (brief maternal separation) each day from postnatal day 4 through 10. Rats with MD experience showed significant depressive-like behaviors in adulthood, while brief maternal separation did not alter the behaviors. Behavioral alterations in the MD group were accompanied by alterations in the AKT/GSK3β/CRMP2 signaling pathway and hyperphosphorylation of CRMP2. CRMP2 interacted and colocalized with the cytoskeleton in the hippocampus, and the overlap of CRMP2 and tubulin staining in the hippocampus of MD rats was decreased. In MD rats, the expression of the α-tubulin isoforms Acet-tubulin and Tyr-tubulin changed, and the ratio of Tyr/Acet-tubulin, which is an important marker of microtubule dynamics, was decreased, indicating decreased microtubule dynamics. Furthermore, regulation of the AKT/GSK3β/CRMP2 signaling pathway by an LY294002 microinjection in the hippocampus resulted in cytoskeletal alterations and depressive-like behaviors in rats. These findings suggest that early-life MD induces depressive-like behaviors and cytoskeletal alterations in adult male rats and that the effects may be partly mediated by the AKT/GSK3β/CRMP2 signaling pathway. An understanding of the mechanism underlying the effect of MD on behaviors is crucial for developing pharmacological and psychological interventions for childhood neglect.
Collapse
Affiliation(s)
- Yanyan Wei
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Jingxu Chen
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, 100096, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Zuotian Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Jing He
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Nan Zhang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
6
|
Xiang D, Xiao J, Sun S, Fu L, Yao L, Wang G, Liu Z. Differential Regulation of DNA Methylation at the CRMP2 Promoter Region Between the Hippocampus and Prefrontal Cortex in a CUMS Depression Model. Front Psychiatry 2020; 11:141. [PMID: 32256396 PMCID: PMC7093734 DOI: 10.3389/fpsyt.2020.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Current evidence supports the idea that neural plasticity is a potential cause of depression. Abundant studies indicate that CRMP2 has important roles in neural plasticity. Moreover, CRMP2 may contribute to the etiology of depression. However, the regulatory mechanisms underlying the role of CRMP2 remain unclear. DNA methylation alteration is generally acknowledged to be involved in the development of depression. The aim of this study was to explore the relationship between the expression and DNA methylation of CRMP2 in the hippocampus and prefrontal cortex of a rat depression model. Chronic unpredictable mild stress (CUMS) was used to establish a rat depression model, and body weight and behavioral tests were used to evaluate the effects of stress. Real-time PCR and Western blotting were used to test CRMP2 mRNA and protein expression, respectively, in the hippocampus and prefrontal cortex of rats. DNA methylation levels of the CRMP2 promoter were analyzed by bisulfite sequencing PCR (BSP). CUMS caused depressive-like behavior in rats, as evidenced by: decreased body weight and sucrose preference rate; decreases in the total distance traveled, rearing frequency, velocity, and duration in the center in the open field test (OFT); and prolonged immobility in the forced swimming test (FST). CRMP2 mRNA and protein expression in the hippocampus and prefrontal cortex were significantly decreased in the CUMS group compared with the control group. The levels of CRMP2 promoter DNA methylation in the hippocampus of the CUMS group were significantly higher than those of the control group, while these changes were not observed in the prefrontal cortex of CUMS rats. Our data provide evidence that altered expression of CRMP2 in the hippocampus and prefrontal cortex is associated with the pathogenesis of depression. Moreover, the results also suggest regional differences in the regulation of DNA methylation in the CRMP2 promoter between the hippocampus and prefrontal cortex during the development of depression.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiawei Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linyan Fu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Shaw GA, Dupree JL, Neigh GN. Adolescent maturation of the prefrontal cortex: Role of stress and sex in shaping adult risk for compromise. GENES BRAIN AND BEHAVIOR 2019; 19:e12626. [DOI: 10.1111/gbb.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
- Research ServiceHunter Holmes McGuire VA Medical Center Richmond Virginia
| | - Gretchen N. Neigh
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| |
Collapse
|
8
|
Qin Y, Jiang X, Li W, Li J, Tian T, Zang G, Fang L, Zhou C, Xu B, Gong X, Huang C, Yang X, Bai M, Fan L, Xie P. Chronic mild stress leads to aberrant glucose energy metabolism in depressed Macaca fascicularis models. Psychoneuroendocrinology 2019; 107:59-69. [PMID: 31108306 DOI: 10.1016/j.psyneuen.2019.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a pathophysiologically uncharacterized mental illness with complex etiology and clinical manifestations. Rodent depression-like models have been widely used to mimic the morbid state of depression. However, research on emotional disorders can also benefit from the use of models in non-human primates, which share a wide range of genetic and social similarities with humans. METHODS To investigate the pathophysiological mechanisms of depression, we established two models, naturally occurring depression cynomolgus (NOD) and social plus visual isolation-induced depression cynomolgus (SVC), imitating chronic mild or acute intense stress, respectively. We used i-TRAQ (isobaric tags for relative and absolute quantitation)-based quantitative proteomics and shotgun proteomics to identify differentially expressed proteins in cerebrospinal fluid (CSF) of the two monkey models and human MDD patients. We also used DAVID and ingenuity pathway analysis (IPA) for further bioinformatic investigation. RESULTS In behavioral tests, NOD monkeys achieved higher scores in depression-like and anxiety-like behavioral measures, and spent more time on ingesting, thermoregulatory, and locomotive actions than SVC monkeys. A total of 902 proteins were identified by i-TRAQ, and 40 differentially expressed proteins were identified in each of the NOD-CON1 and SVC-CON2 groups. Application of DAVID revealed dysregulation of energy metabolism in the NOD group, whereas lipid metabolism and inflammatory response pathways were significantly altered in the SVC group. Use of IPA and Cytoscape showed that the oxygen species metabolic process glycolysis I/gluconeogenesis I, accompanied by downregulation of tubulin beta 3 class III (TUBB3), RAC-alpha serine/threonine-protein kinase (AKT1), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was the most significantly affected pathway in the NOD group. Furthermore, 152 differentially expressed proteins in human MDD patients also revealed disruption of glucose energy metabolism. Significantly aberrant energy metabolism in various brain regions and the plasma and liver of chronic unpredictable mild stress rodent samples were also observed in a previous study. CONCLUSIONS Our results reveal for the first time the overall CSF protein profiles of two cynomolgus monkey models of depression. We propose that chronic mild stress may affect the disruption of glucose energy metabolism in NOD cynomolgus monkeys and rodents. These findings promote our understanding of the pathophysiology of MDD and may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Yinhua Qin
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing 400016, China
| | - XiaoFeng Jiang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Li
- Department of Neurology, Army Medical Center of PLA, Chongqing 400042, China
| | - Jie Li
- Clinical Medicine Research Center, Dazhou Central Hospital, Sichuan 635000, China
| | - Tian Tian
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guangchao Zang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center of Chongqing Medical University, Chongqing 400016, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, China
| | - Bin Xu
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xue Gong
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cheng Huang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xun Yang
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing 400016, China
| | - Li Fan
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Carboni L, Marchetti L, Lauria M, Gass P, Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, Riva MA, Domenici E, Caberlotto L, Mathé AA. Cross-species evidence from human and rat brain transcriptome for growth factor signaling pathway dysregulation in major depression. Neuropsychopharmacology 2018; 43:2134-2145. [PMID: 29950584 PMCID: PMC6098161 DOI: 10.1038/s41386-018-0117-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 01/10/2023]
Abstract
An enhanced understanding of the pathophysiology of depression would facilitate the discovery of new efficacious medications. To this end, we examined hippocampal transcriptional changes in rat models of disease and in humans to identify common disease signatures by using a new algorithm for signature-based clustering of expression profiles. The tool identified a transcriptomic signature comprising 70 probesets able to discriminate depression models from controls in both Flinders Sensitive Line and Learned Helplessness animals. To identify disease-relevant pathways, we constructed an expanded protein network based on signature gene products and performed functional annotation analysis. We applied the same workflow to transcriptomic profiles of depressed patients. Remarkably, a 171-probesets transcriptional signature which discriminated depressed from healthy subjects was identified. Rat and human signatures shared the SCARA5 gene, while the respective networks derived from protein-based significant interactions with signature genes contained 25 overlapping genes. The comparison between the most enriched pathways in the rat and human signature networks identified a highly significant overlap (p-value: 3.85 × 10-6) of 67 terms including ErbB, neurotrophin, FGF, IGF, and VEGF signaling, immune responses and insulin and leptin signaling. In conclusion, this study allowed the identification of a hippocampal transcriptional signature of resilient or susceptible responses in rat MDD models which overlapped with gene expression alterations observed in depressed patients. These findings are consistent with a loss of hippocampal neural plasticity mediated by altered levels of growth factors and increased inflammatory responses causing metabolic impairments as crucial factors in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
| | - Mario Lauria
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Vollmayr
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Amanda Redfern
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Maria Razzoli
- Department of Integrative Biology and Physiology University of Minnesota, 2231 6th Street SE, Minneapolis, USA
| | - Karim Malki
- King's College London, at the Institute of Psychiatry, Psychology and Neuroscience (IOPPN), London, UK
| | - Veronica Begni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Enrico Domenici
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- Laboratory of Neurogenomic Biomarkers, Centre for Integrative Biology (CIBIO), University of Trento, Povo, Trento, Italy
| | - Laura Caberlotto
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology, Rovereto, Trento, Italy
- The Aptuit Center for Drug Discovery & Development, Via Fleming, 4, 37135, Verona, Italy
| | - Aleksander A Mathé
- Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| |
Collapse
|
10
|
Liu X, Yuan J, Guang Y, Wang X, Feng Z. Longitudinal in vivo Diffusion Tensor Imaging Detects Differential Microstructural Alterations in the Hippocampus of Chronic Social Defeat Stress-Susceptible and Resilient Mice. Front Neurosci 2018; 12:613. [PMID: 30210285 PMCID: PMC6123364 DOI: 10.3389/fnins.2018.00613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Microstructural alterations in the hippocampus may underlie stress-related disorders and stress susceptibility. However, whether these alterations are pre-existing stress vulnerability biomarkers or accumulative results of chronic stress remain unclear. Moreover, examining the whole hippocampus as one unit and ignoring the possibility of a lateralized effect of stress may mask some stress effects and contribute to the heterogeneity of previous findings. Methods: After C57BL/6 mice were exposed to a 10-day chronic social defeat stress (CSDS) paradigm, different stress phenotypes, i.e., susceptible (n = 10) and resilient (n = 7) mice, were discriminated by the behavior of the mice in a social interaction test. With in vivo diffusion tensor imaging (DTI) scans that were conducted both before and after the stress paradigm, we evaluated diffusion properties in the left and right, dorsal (dHi) and ventral hippocampus (vHi) of experimental mice. Results: A significantly lower fractional anisotropy (FA) was found in the right vHi of the susceptible mice prior to the CSDS paradigm than that found in the resilient mice, suggesting that pre-existing microstructural abnormalities may result in stress susceptibility. However, no significant group differences were found in the post-stress FA values of any of the hippocampal regions of interest (ROIs). In addition, mean diffusivity (MD) and radial diffusivity (RD) values were found to be significantly greater only in the right dHi of the resilient group compared to those of the susceptible mice. Furthermore, a significant longitudinal decrease was only observed in the right dHi RD value of the susceptible mice. Moreover, the social interaction (SI) ratio was positively related to post-stress left MD, right dHi MD, and right dHi RD values and the longitudinal right dHi MD percent change. Meanwhile, a negative relationship was detected between the SI ratio and bilateral mean of the post-stress left relative to right vHi FA value, highlighting the important role of right hippocampus in stress-resilience phenotype. Conclusion: Our findings demonstrated different longitudinal microstructural alterations in the bilateral dHi and vHi between stress-susceptible and resilient subgroups and indicated a right-sided lateralized stress effect, which may be useful in the diagnosis and prevention of stress-related disorders as well as their intervention.
Collapse
Affiliation(s)
- Xiao Liu
- School of Psychology, Army Medical University, Chongqing, China
| | - Jizhen Yuan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yu Guang
- School of Psychology, Army Medical University, Chongqing, China
| | - Xiaoxia Wang
- School of Psychology, Army Medical University, Chongqing, China
| | - Zhengzhi Feng
- School of Psychology, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Temporal profiling of an acute stress-induced behavioral phenotype in mice and role of hippocampal DRR1. Psychoneuroendocrinology 2018; 91:149-158. [PMID: 29555365 DOI: 10.1016/j.psyneuen.2018.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
Understanding the neurobiological mechanisms underlying the response to an acute stressor may provide novel insights into successful stress-coping strategies. Acute behavioral stress-effects may be restricted to a specific time window early after stress-induction. However, existing behavioral test batteries typically span multiple days or even weeks, limiting the feasibility for a broad behavioral analysis following acute stress. Here, we designed a novel comprehensive behavioral test battery in male mice that assesses multiple behavioral dimensions within a sufficiently brief time window to capture acute stress-effects and its temporal profile. Using this battery, we investigated the behavioral impact of acute social defeat stress (ASD) early thereafter (ASD-early, ∼4 h), when circulating corticosterone levels were elevated, and late after stress-induction (ASD-late, ∼8 h), when corticosterone were returned to timed control levels. ASD-early, but not ASD-late, displayed hippocampal-dependent cognitive impairments in the Y-maze and in the spatial object recognition test. The actin-binding protein (ABP) Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) has been described as resilience-promoting factor but the potential of DRR1 to curb stress-effects has not been investigated. Hippocampal DRR1 mRNA-expression was increased in ASD-early and ASD-late whereas DRR1-protein levels were increased only in ASD-late. We hypothesized that the absence of hippocampal DRR1 protein-upregulation in ASD-early caused the associated cognitive impairments. Hence, virus-mediated hippocampal DRR1-overexpression was induced as putative treatment, but cognitive deficits in ASD-early were not improved. We conclude that hippocampal DRR1-overexpression is insufficient to protect from the detrimental cognitive effects following acute social stress where perhaps a more global response in local actin dynamics, involving multiple stress-responsive ABPs that act synergistically, was warranted.
Collapse
|
12
|
Nemethova M, Talian I, Danielisova V, Tkacikova S, Bonova P, Bober P, Matiasova M, Sabo J, Burda J. Delayed bradykinin postconditioning modulates intrinsic neuroprotective enzyme expression in the rat CA1 region after cerebral ischemia: a proteomic study. Metab Brain Dis 2016; 31:1391-1403. [PMID: 27393013 DOI: 10.1007/s11011-016-9859-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Pyramidal cells in the CA1 brain region exhibit an ischemic tolerance after delayed postconditioning; therefore, this approach seems to be a promising neuroprotective procedure in cerebral postischemic injury improvement. However, little is known about the effect of postconditioning on protein expression patterns in the brain, especially in the affected hippocampal neurons after global cerebral ischemia. This study is focused on the examination of the ischemia-vulnerable CA1 neuronal layer and on the acquisition of protection from delayed neuronal death after ischemia. Ischemic-reperfusion injury was induced in Wistar rats and bradykinin was applied 2 days after the ischemic insult in an attempt to overcome delayed cell death. Analysis of complex peptide CA1 samples was performed by automated two dimensional liquid chromatography (2D-LC) fractionation coupled to tandem matrix assisted laser desorption/ionization time-of-flight (MALDI TOF/TOF) mass spectrometry instrumentation. We devoted our attention to differences in protein expression mapping in ischemic injured CA1 neurons in comparison with equally affected neurons, but with bradykinin application. Proteomic analysis identified several proteins occurring only after postconditioning and control, which could have a potentially neuroprotective influence on ischemic injured neurons. Among them, the prominent position occupies a regulator of glutamate level aspartate transaminase AATC, a scavenger of glutamate in brain neuroprotection after ischemia-reperfusion. We identified this enzyme in controls and after postconditioning, but AATC presence was not detected in the ischemic injured CA1 region. This finding was confirmed by two-dimensional differential electrophoresis followed by MALDI-TOF/TOF MS identification. Results suggest that bradykinin as delayed postconditioning may be associated with modulation of protein expression after ischemic injury and thus this procedure can be involved in neuroprotective metabolic pathways.
Collapse
Affiliation(s)
| | - Ivan Talian
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | | | - Sona Tkacikova
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | - Petra Bonova
- Institute of Neurobiology, SAS, Kosice, Slovakia
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | | | - Jan Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Safarik University, Kosice, Slovakia
| | - Jozef Burda
- Institute of Neurobiology, SAS, Kosice, Slovakia
| |
Collapse
|
13
|
Vasconcelos M, Stein DJ, de Almeida RMM. Social defeat protocol and relevant biomarkers, implications for stress response physiology, drug abuse, mood disorders and individual stress vulnerability: a systematic review of the last decade. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2016. [PMID: 26222297 DOI: 10.1590/2237-6089-2014-0034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Social defeat (SD) in rats, which results from male intraspecific confrontations, is ethologically relevant and useful to understand stress effects on physiology and behavior. METHODS A systematic review of studies about biomarkers induced by the SD protocol and published from 2002 to 2013 was carried out in the electronic databases PubMed, Web of Knowledge and ScienceDirect. The search terms were: social defeat, rat, neurotrophins, neuroinflammatory markers, and transcriptional factors. RESULTS Classical and recently discovered biomarkers were found to be relevant in stress-induced states. Findings were summarized in accordance to the length of exposure to stress: single, repeated, intermittent and continuous SD. This review found that the brain-derived neurotrophic factor (BDNF) is a distinct marker of stress adaptation. Along with glucocorticoids and catecholamines, BDNF seems to be important in understanding stress physiology. CONCLUSION The SD model provides a relevant tool to study stress response features, development of addictive behaviors, clinic depression and anxiety, as well as individual differences in vulnerability and resilience to stress.
Collapse
Affiliation(s)
- Mailton Vasconcelos
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Rosa Maria M de Almeida
- Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Carboni L, Nguyen TP, Caberlotto L. Systems biology integration of proteomic data in rodent models of depression reveals involvement of the immune response and glutamatergic signaling. Proteomics Clin Appl 2016; 10:1254-1263. [PMID: 27612656 DOI: 10.1002/prca.201500149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology; Alma Mater Studiorum University of Bologna; Bologna Italy
| | | | - Laura Caberlotto
- Centre for Computational and Systems Biology (COSBI); The Microsoft Research-University of Trento; Trento Italy
- Aptuit (Verona); Verona Italy
| |
Collapse
|
15
|
Radahmadi M, Hosseini N, Alaei H, Sharifi MR. The Effect of Preventive, Therapeutic and Protective Exercises on Hippocampal Memory Mediators in Stressed Rats. Malays J Med Sci 2016; 23:29-37. [PMID: 27904422 DOI: 10.21315/mjms2016.23.5.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Exercise plays a significant role in learning and memory. The present study focuses on the hippocampal corticosterone (CORT), interleukin-1 beta (IL-1β), glucose, and brain-derived neurotrophic factor (BDNF) levels in preventive, therapeutic, and protective exercises in stressful conditions. METHODS Forty male rats were randomly divided into four groups: the control group and the preventive, therapeutic, and protective exercise groups. The treadmill running was applied at a speed of 20-21m/min and a chronic stress of 6 hours/day for 21 days. Subsequently, the variables were measured in the hippocampus. RESULTS The findings revealed that the hippocampal CORT levels in the preventive exercise group had a significant enhancement compared to the control group. In the protective and particularly the therapeutic exercise groups, the hippocampal CORT levels declined. Furthermore, the hippocampal BDNF levels in the preventive and the therapeutic exercise groups indicated significantly decreased and increased, respectively, in comparison with the control group. In the preventive exercise group, however, the hippocampal glucose level turned out to be substantially higher than that in the control group. CONCLUSION It appears that the therapeutic exercise group had the best exercise protocols for improving the hippocampal memory mediators in the stress conditions. By contrast, the preventive exercise group could not improve these mediators that had been altered by stress. It is suggested that exercise time, compared to stress, can be considered as a crucial factor in the responsiveness of memory mediators.
Collapse
Affiliation(s)
- Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Hosseini
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Kang H, Choi DH, Kim SK, Lee J, Kim YJ. Alteration of Energy Metabolism and Antioxidative Processing in the Hippocampus of Rats Reared in Long-Term Environmental Enrichment. Dev Neurosci 2016; 38:186-194. [DOI: 10.1159/000446772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/10/2016] [Indexed: 11/19/2022] Open
Abstract
Environmental enrichment (EE) is a typical experimental method that promotes levels of novelty and complexity that enhance experience-dependent neuroplasticity and cognitive behavior function in laboratory animals. Early EE is associated with resilience in the face of later-life challenges. Since increased synaptic activity enhances endogenous neuronal antioxidant defenses, we hypothesized that long-term EE beginning at an early stage may alter the levels of oxidative stress. We investigated global protein expression and oxidative stress in hippocampal proteins from rats nurtured for a 6-month EE beginning in the prenatal period. The analysis of protein expression was carried out using 2-dimensional gel electrophoresis with matrix-associated laser desorption ionization time-of-flight mass spectrometry. Proteins with altered expression were involved in energy metabolism (phosphoglycerate mutase 1, α-enolase isoform 1, adenylate kinase 1, and triose phosphate isomerase) and antioxidant enzymes (superoxide dismutase 1, glutathione S-transferase ω type 1, peroxiredoxin 5, DJ-1, and glial maturation factor β). Using Western blot assays, some of the proteins with altered expression and NADPH oxidase 2 were confirmed to be decreased. Further confirmation was demonstrated with attenuated expression of 7,8-dihydro-8-oxo-deoxyguanine, a DNA oxidative stress marker, in the hippocampus of EE group rats. Our data demonstrate that a long-term EE program beginning in the prenatal and early postnatal phase of development modulates energy metabolism and reduced oxidant stress possibly through enhanced synaptic activity. We provide evidence that EE can be developed as a tool to protect the brain from oxidative stress-induced injury.
Collapse
|
17
|
Shao WH, Chen JJ, Fan SH, Lei Y, Xu HB, Zhou J, Cheng PF, Yang YT, Rao CL, Wu B, Liu HP, Xie P. Combined Metabolomics and Proteomics Analysis of Major Depression in an Animal Model: Perturbed Energy Metabolism in the Chronic Mild Stressed Rat Cerebellum. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:383-92. [PMID: 26134254 DOI: 10.1089/omi.2014.0164] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Major depressive disorder (MDD) is a highly prevalent, debilitating mental illness of importance for global health. However, its molecular pathophysiology remains poorly understood. Combined proteomics and metabolomics approaches should provide a comprehensive understanding of MDD's etiology. The present study reports novel "-omics" insights from a rodent model of MDD. Cerebellar samples from chronic mild stressed (CMS)-treated depressed rats and controls were compared with a focus on the differentially expressed proteins and metabolites using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics and gas chromotography/mass spectrometry (GC-MS) metabolomics techniques, respectively. The combined analyses found significant alterations associated with cerebellar energy metabolism, as indicated by (1) abnormal amino acid metabolism accompanied by corresponding metabolic enzymatic alterations and disturbed protein turnover, (2) increased glycolytic and tricarboxylic acid (TCA) cycle enzyme levels paralleled by changes in the concentrations of associated metabolites, and (3) perturbation of ATP biosynthesis through adenosine accompanied by perturbation of the mitochondrial respiratory chain. To the best of our knowledge, this study is the first to integrate proteomics and metabolomics analyses to examine the pathophysiological mechanism(s) underlying MDD in a CMS rodent model of depression. These results can offer important insights into the pathogenesis of MDD.
Collapse
Affiliation(s)
- Wei-hua Shao
- 1 Department of Respiratory Medicine, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Jian-jun Chen
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Song-hua Fan
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Yang Lei
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Hong-bo Xu
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Jian Zhou
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Peng-fei Cheng
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Yong-tao Yang
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Cheng-long Rao
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Bo Wu
- 3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Hai-peng Liu
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| | - Peng Xie
- 2 Department of Neurology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China .,3 Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University , Chongqing, China .,4 Chongqing Key Laboratory of Neurobiology , Chongqing, China
| |
Collapse
|
18
|
Fonseka TM, Wen XY, Foster JA, Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res 2015; 94:3-14. [PMID: 26452974 DOI: 10.1002/jnr.23639] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/23/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
The zebrafish (Danio rerio) has emerged as a model species for translational research in various neuroscience areas, including depressive disorders. Because of their physiological (neuroanatomical, neuroendocrine, neurochemical) and genetic homology to mammals, robust phenotypes, and value in high-throughput genetic and chemical genetic screens, zebrafish are ideal for developing valid experimental models of major depression and discovering novel therapeutics. Behavioral testing approaches, such as approach-avoidance, cognitive, and social paradigms, are available in zebrafish and have utility in identifying depression-like indices in zebrafish in response to physiological, genetic, environmental, and/or psychopharmacological alterations. In addition, the high sensitivity of zebrafish to commonly prescribed psychotropic drugs supports the use of this model as an invaluable tool for pharmacological research and drug screening. This Review outlines the benefits of using the zebrafish model for depression studies and summarizes the current research in this field.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xiao-Yan Wen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, Physiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jane A Foster
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Han X, Shao W, Liu Z, Fan S, Yu J, Chen J, Qiao R, Zhou J, Xie P. iTRAQ-based quantitative analysis of hippocampal postsynaptic density-associated proteins in a rat chronic mild stress model of depression. Neuroscience 2015; 298:220-92. [DOI: 10.1016/j.neuroscience.2015.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 04/02/2015] [Indexed: 01/26/2023]
|
20
|
Carboni L. The contribution of proteomic studies in humans, animal models, and after antidepressant treatments to investigate the molecular neurobiology of major depression. Proteomics Clin Appl 2015; 9:889-98. [PMID: 25488430 DOI: 10.1002/prca.201400139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Abstract
The neurobiological basis of major depressive disorder (MDD) is only partially understood. The proposed hypotheses postulate dysregulations of monoaminergic and other neurotransmitter pathways, impaired stress responses, insufficient neurogenetic and neurotrophic processes generating maladaptive neuroplasticity, inappropriate inflammatory and metabolic responses. Proteomic approaches can provide useful contributions to the investigation of the molecular neurobiology of MDD due to their open-ended nature. Studies performed in brain regions of MDD patients which had received antidepressant (AD) treatment showed that affected proteins mainly belonged to energy pathways, transport of molecules, signaling, and synaptic transmission. Studies performed in animal models offer the advantage of more controlled experimental conditions at the expense of potential loss in relevance. The design of proteomic investigations included experiments carried out in MDD models, in naive animals treated with ADs, and in animal models subjected to AD treatments. A comparison of results suggested an overlap of several modulated pathways between MDD patients and animal models. Examples include the regulation of energy metabolism, especially oxidative phosphorylation and glycolysis, signal transduction pathways, including calcium-calmodulin kinase II, synaptic proteins, and cytoskeletal proteins. Nevertheless, the paucity of studies performed in human brains requires additional studies to confirm the correspondence.
Collapse
Affiliation(s)
- Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Mallei A, Failler M, Corna S, Racagni G, Mathé AA, Popoli M. Synaptoproteomic analysis of a rat gene-environment model of depression reveals involvement of energy metabolism and cellular remodeling pathways. Int J Neuropsychopharmacol 2015; 18:pyu067. [PMID: 25522407 PMCID: PMC4360251 DOI: 10.1093/ijnp/pyu067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. METHODS The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL) RESULTS We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. CONCLUSIONS The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy (Drs Mallei, Failler, Corna, Racagni, and Popoli); Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden (Dr Mathé).
| | - Marion Failler
- *Present address: Université Paris Descartes, Inserm U1163, Imagine Institute, Necker Hospital, Paris.
| | | | | | | | | |
Collapse
|
22
|
Stewart AM, Roy S, Wong K, Gaikwad S, Chung KM, Kalueff AV. Cytokine and endocrine parameters in mouse chronic social defeat: Implications for translational ‘cross-domain’ modeling of stress-related brain disorders. Behav Brain Res 2015; 276:84-91. [DOI: 10.1016/j.bbr.2014.08.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/27/2022]
|
23
|
Effect of chronic stress on short and long-term plasticity in dentate gyrus; Study of recovery and adaptation. Neuroscience 2014; 280:121-9. [DOI: 10.1016/j.neuroscience.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
|
24
|
Malki K, Keers R, Tosto MG, Lourdusamy A, Carboni L, Domenici E, Uher R, McGuffin P, Schalkwyk LC. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder. BMC Med 2014; 12:73. [PMID: 24886127 PMCID: PMC4046519 DOI: 10.1186/1741-7015-12-73] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. METHODS Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. RESULTS In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. CONCLUSIONS Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely distinct changes in gene-expression. However, they also suggest that the molecular signature of 'reactive' depression caused by early stressors differs considerably from that of 'reactive' depression caused by late stressors. A small set of genes was consistently dysregulated across each paradigm and in post-mortem brain tissue of depressed patients suggesting a final common pathway to the disorder. These genes included the VAMP-2 gene, which has previously been associated with Axis-I disorders including MDD, bipolar depression, schizophrenia and with antidepressant treatment response. We also discuss the implications of our findings for disease classification, personalized medicine and case-control studies of MDD.
Collapse
Affiliation(s)
- Karim Malki
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Robert Keers
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Maria Grazia Tosto
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychology, University of York, York, UK
| | | | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Enrico Domenici
- Center of Excellence for Drug Discovery in Neuroscience, GlaxoSmithKline Medicines Research Centre, Verona, Italy
- Current address: Pharma Research and Early Development, F. Hoffmann–La Roche, Basel, Switzerland
| | - Rudolf Uher
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Peter McGuffin
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | - Leonard C Schalkwyk
- King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, at Institute of Psychiatry, SGDP Research Centre (PO80), De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| |
Collapse
|
25
|
Proteomic Changes in Female Rat Hippocampus Following Exposure to a Terrified Sound Stress. J Mol Neurosci 2014; 53:158-65. [DOI: 10.1007/s12031-014-0242-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 12/27/2022]
|
26
|
Yang J, Hu L, Wu Q, Liu L, Zhao L, Zhao X, Song T, Huang C. A terrified-sound stress induced proteomic changes in adult male rat hippocampus. Physiol Behav 2014; 128:32-8. [PMID: 24518870 DOI: 10.1016/j.physbeh.2014.01.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/19/2014] [Accepted: 01/25/2014] [Indexed: 01/24/2023]
Abstract
In this study, we investigated the biochemical mechanisms in the adult rat hippocampus underlying the relationship between a terrified-sound induced psychological stress and spatial learning. Adult male rats were exposed to a terrified-sound stress, and the Morris water maze (MWM) has been used to evaluate changes in spatial learning and memory. The protein expression profile of the hippocampus was examined using two-dimensional gel electrophoresis (2DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and bioinformatics analysis. The data from the MWM tests suggested that a terrified-sound stress improved spatial learning. The proteomic analysis revealed that the expression of 52 proteins was down-regulated, while that of 35 proteins were up-regulated, in the hippocampus of the stressed rats. We identified and validated six of the most significant differentially expressed proteins that demonstrated the greatest stress-induced changes. Our study provides the first evidence that a terrified-sound stress improves spatial learning in rats, and that the enhanced spatial learning coincides with changes in protein expression in rat hippocampus.
Collapse
Affiliation(s)
- Juan Yang
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Lili Hu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Qiuhua Wu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Liying Liu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Lingyu Zhao
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Xiaoge Zhao
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Tusheng Song
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Chen Huang
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Disease-Related Gene, Ministry of Education, 76 Western Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
27
|
The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm (Vienna) 2013; 122 Suppl 1:S9-18. [DOI: 10.1007/s00702-013-1134-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
|
28
|
Dynamic proteomics of nucleus accumbens in response to acute psychological stress in environmentally enriched and isolated rats. PLoS One 2013; 8:e73689. [PMID: 24040027 PMCID: PMC3767735 DOI: 10.1371/journal.pone.0073689] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Our prior research has shown that environmental enrichment (i.e. rats reared in an environment with novel objects, social contact with conspecifics) produces a protective antidepressant-like phenotype in rats and decreases neurobiological effects of acute psychological stress. Although CREB activity has been identified as a major player, the downstream molecular mechanisms remain largely unexplored. Thus, the current study investigates proteomic differences in the accumbens of rats raised in an enriched condition (EC) versus those raised in an isolated control condition (IC) under basal conditions and after 30 min of acute restraint stress. Results showed that under basal conditions, EC rats generally expressed less mitochondria-related proteins, particularly those involved in TCA cycle and electron transport compared to IC rats. After 30 min of acute stress, EC rats displayed increased expression of energy metabolism enzymes (among others) while IC rats exhibited decreased expression of similar proteins. Further, network and pathway analyses also identified links to AKT signaling proteins, 14-3-3 family proteins, heat-shock proteins, and ubiquitin-interacting proteins. The protein ENO1 showed marked differential expression and regulation; EC rats expressed higher levels under basal conditions that increased subsequent to stress, while the basal IC expression was lower and decreased further still after stress. The results of this study define differential protein expression in a protective rat model for major depression and additionally identify a dynamic and coordinated differential response to acute stress between the two groups. These results provide new avenues for exploration of the molecular determinants of depression and the response to acute stress.
Collapse
|
29
|
Chakravarty S, Reddy BR, Sudhakar SR, Saxena S, Das T, Meghah V, Brahmendra Swamy CV, Kumar A, Idris MM. Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: altered brain proteome profile implicates mitochondrial dysfunction. PLoS One 2013; 8:e63302. [PMID: 23691016 PMCID: PMC3653931 DOI: 10.1371/journal.pone.0063302] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Anxiety and depression are major chronic mood disorders, and the etiopathology for each appears to be repeated exposure to diverse unpredictable stress factors. Most of the studies on anxiety and related mood disorders are performed in rodents, and a good model is chronic unpredictable stress (CUS). In this study, we have attempted to understand the molecular basis of the neuroglial and behavioral changes underlying CUS-induced mood disorders in the simplest vertebrate model, the zebrafish, Danio rerio. Zebrafish were subjected to a CUS paradigm in which two different stressors were used daily for 15 days, and thorough behavioral analyses were performed to assess anxiety and related mood disorder phenotypes using the novel tank test, shoal cohesion and scototaxis. Fifteen days of exposure to chronic stressors appears to induce an anxiety and related mood disorder phenotype. Decreased neurogenesis, another hallmark of anxiety and related disorders in rodents, was also observed in this zebrafish model. The common molecular markers of rodent anxiety and related disorders, corticotropin-releasing factor (CRF), calcineurin (ppp3r1a) and phospho cyclic AMP response element binding protein (pCREB), were also replicated in the fish model. Finally, using 2DE FTMS/ITMSMS proteomics analyses, 18 proteins were found to be deregulated in zebrafish anxiety and related disorders. The most affected process was mitochondrial function, 4 of the 18 differentially regulated proteins were mitochondrial proteins: PHB2, SLC25A5, VDAC3 and IDH2, as reported in rodent and clinical samples. Thus, the zebrafish CUS model and proteomics can facilitate not only uncovering new molecular targets of anxiety and related mood disorders but also the routine screening of compounds for drug development.
Collapse
Affiliation(s)
- Sumana Chakravarty
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- * E-mail: (SC); (MMI)
| | - Bommana R. Reddy
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Sreesha R. Sudhakar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Sandeep Saxena
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Tapatee Das
- Chemical Biology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Vuppalapaty Meghah
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | | | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
| | - Mohammed M. Idris
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, India
- * E-mail: (SC); (MMI)
| |
Collapse
|
30
|
Sokolowska E, Hovatta I. Anxiety genetics - findings from cross-species genome-wide approaches. BIOLOGY OF MOOD & ANXIETY DISORDERS 2013; 3:9. [PMID: 23659354 PMCID: PMC3655048 DOI: 10.1186/2045-5380-3-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/16/2013] [Indexed: 12/02/2022]
Abstract
Anxiety disorders are complex diseases, which often occur in combination with major depression, alcohol use disorder, or general medical conditions. Anxiety disorders were the most common mental disorders within the EU states in 2010 with 14% prevalence. Anxiety disorders are triggered by environmental factors in genetically susceptible individuals, and therefore genetic research offers a great route to unravel molecular basis of these diseases. As anxiety is an evolutionarily conserved response, mouse models can be used to carry out genome-wide searches for specific genes in a setting that controls for the environmental factors. In this review, we discuss translational approaches that aim to bridge results from unbiased genome-wide screens using mouse models to anxiety disorders in humans. Several methods, such as quantitative trait locus mapping, gene expression profiling, and proteomics, have been used in various mouse models of anxiety to identify genes that regulate anxiety or play a role in maintaining pathological anxiety. We first discuss briefly the evolutionary background of anxiety, which justifies cross-species approaches. We then describe how several genes have been identified through genome-wide methods in mouse models and subsequently investigated in human anxiety disorder samples as candidate genes. These studies have led to the identification of completely novel biological pathways that regulate anxiety in mice and humans, and that can be further investigated as targets for therapy.
Collapse
Affiliation(s)
- Ewa Sokolowska
- Department of Biosciences, Viikki Biocenter, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
31
|
Hu Y, Zhou J, Fang L, Liu H, Zhan Q, Luo D, Zhou C, Chen J, Li Q, Xie P. Hippocampal synaptic dysregulation of exo/endocytosis-associated proteins induced in a chronic mild-stressed rat model. Neuroscience 2013; 230:1-12. [DOI: 10.1016/j.neuroscience.2012.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/04/2012] [Accepted: 08/14/2012] [Indexed: 10/28/2022]
|
32
|
Raftogianni A, Stamatakis A, Papadopoulou A, Vougas K, Anagnostopoulos AK, Stylianopoulou F, Tsangaris GT. Effects of an early experience of reward through maternal contact or its denial on laterality of protein expression in the developing rat hippocampus. PLoS One 2012; 7:e48337. [PMID: 23118990 PMCID: PMC3485191 DOI: 10.1371/journal.pone.0048337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023] Open
Abstract
Laterality is a basic characteristic of the brain which is detectable early in life. Although early experiences affect laterality of the mature brain, there are no reports on their immediate neurochemical effects during neonatal life, which could provide evidence as to the mechanisms leading to the lateralized brain. In order to address this issue, we determined the differential protein expression profile of the left and right hippocampus of 13-day-old rat control (CTR) pups, as well as following exposure to an early experience involving either receipt (RER) or denial (DER) of the expected reward of maternal contact. Proteomic analysis was performed by 2-dimensional polyacrylamide gel electrophoresis (PAGE) followed by mass spectroscopy. The majority of proteins found to be differentially expressed either between the three experimental groups (DER, RER, CTR) or between the left and right hemisphere were cytoskeletal (34%), enzymes of energy metabolism (32%), and heat shock proteins (17%). In all three groups more proteins were up-regulated in the left compared to the right hippocampus. Tubulins were found to be most often up-regulated, always in the left hippocampus. The differential expression of β-tubulin, β-actin, dihydropyrimidinase like protein 1, glial fibrillary acidic protein (GFAP) and Heat Shock protein 70 revealed by the proteomic analysis was in general confirmed by Western blots. Exposure to the early experience affected brain asymmetry: In the RER pups the ratio of proteins up-regulated in the left hippocampus to those in the right was 1.8, while the respective ratio was 3.6 in the CTR and 3.4 in the DER. Our results could contribute to the elucidation of the cellular mechanisms mediating the effects of early experiences on the vulnerability for psychopathology, since proteins shown in our study to be differentially expressed (e.g. tubulins, dihydropyrimidinase like proteins, 14-3-3 protein, GFAP, ATP synthase, α-internexin) have also been identified in proteomic analyses of post-mortem brains from psychiatric patients.
Collapse
Affiliation(s)
- Androniki Raftogianni
- Laboratory of Biology-Biochemistry, Department of Basic Sciences, School of Health Sciences, University of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
33
|
Curtis MA, Low VF, Faull RLM. Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 2012; 72:990-1005. [PMID: 22539366 DOI: 10.1002/dneu.22028] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimer's disease, Huntington's disease, and Parkinson's disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Maurice A Curtis
- Department of Anatomy with Radiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
34
|
Filiou MD, Webhofer C, Gormanns P, Zhang Y, Reckow S, Bisle B, Teplytska L, Frank E, Kessler MS, Maccarrone G, Landgraf R, Turck CW. The (15)N isotope effect as a means for correlating phenotypic alterations and affected pathways in a trait anxiety mouse model. Proteomics 2012; 12:2421-7. [PMID: 22700377 DOI: 10.1002/pmic.201100673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/29/2012] [Accepted: 03/05/2012] [Indexed: 11/06/2022]
Abstract
Stable isotope labeling techniques hold great potential for accurate quantitative proteomics comparisons by MS. To investigate the effect of stable isotopes in vivo, we metabolically labeled high anxiety-related behavior (HAB) mice with the heavy nitrogen isotope (15)N. (15)N-labeled HAB mice exhibited behavioral alterations compared to unlabeled ((14)N) HAB mice in their depression-like phenotype. To correlate behavioral alterations with changes on the molecular level, we explored the (15)N isotope effect on the brain proteome by comparing protein expression levels between (15)N-labeled and (14)N HAB mouse brains using quantitative MS. By implementing two complementary in silico pathway analysis approaches, we were able to identify altered networks in (15)N-labeled HAB mice, including major metabolic pathways such as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Here, we discuss the affected pathways with regard to their relevance for the behavioral phenotype and critically assess the utility of exploiting the (15)N isotope effect for correlating phenotypic and molecular alterations.
Collapse
Affiliation(s)
- Michaela D Filiou
- Department of Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prunet P, Øverli Ø, Douxfils J, Bernardini G, Kestemont P, Baron D. Fish welfare and genomics. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:43-60. [PMID: 21671026 DOI: 10.1007/s10695-011-9522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/31/2011] [Indexed: 05/30/2023]
Abstract
There is a considerable public and scientific debate concerning welfare of fish in aquaculture. In this review, we will consider fish welfare as an integration of physiological, behavioral, and cognitive/emotional responses, all of which are essentially adaptative responses to stressful situations. An overview of fish welfare in this context suggests that understanding will rely on knowledge of all components of allostatic responses to stress and environmental perturbations. The development of genomic technologies provides new approaches to this task, exemplified by how genome-wide analysis of genetic structures and corresponding expression patterns can lead to the discovery of new aspects of adaptative responses. We will illustrate how the genomic approach may give rise to new biomarkers for fish welfare and also increase our understanding of the interaction between physiological, behavioral, and emotional responses. In a first part, we present data on expression of candidate genes selected a priori. This is a common avenue to develop molecular biomarkers capable of diagnosing a stress condition at its earliest onset, in order to allow quick corrective intervention in an aquaculture setting. However, most of these studies address isolated physiological functions and stress responses that may not be truly indicative of animal welfare, and there is only rudimentary understanding of genes related to possible cognitive and emotional responses in fish. We also present an overview on transcriptomic analysis related to the effect of aquaculture stressors, environmental changes (temperature, salinity, hypoxia), or concerning specific behavioral patterns. These studies illustrate the potential of genomic approaches to characterize the complexity of the molecular mechanisms which underlies not only physiological but also behavioral responses in relation to fish welfare. Thirdly, we address proteomic studies on biological responses to stressors such as salinity change and hypoxia. We will also consider proteomic studies developed in mammals in relation to anxiety and depressive status which may lead to new potential candidates in fish. Finally, in the conclusion, we will suggest new developments to facilitate an integrated view of fish welfare. This includes use of laser microdissection in the transcriptomic/proteomic studies, development of meta-analysis methods for extracting information from genomic data sets, and implementation of technological advances for high-throughput proteomic studies. Development of these new approaches should be as productive for our understanding of the biological processes underlying fish welfare as it has been for the progress of pathophysiological research.
Collapse
Affiliation(s)
- P Prunet
- UR1037 SCRIBE, IFR140, INRA, Campus de Beaulieu, Rennes, France.
| | | | | | | | | | | |
Collapse
|
36
|
Zhang XD, Chen BC, Dong QT, Andersson R, Pan XD, Tan SJ, Ye XZ, Yao JG, Yu Z. Establishment and assessments of a new model for the postoperative fatigue syndrome by major small intestinal resection in rats. Scand J Gastroenterol 2011; 46:1302-1309. [PMID: 21854092 DOI: 10.3109/00365521.2011.610001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Postoperative fatigue syndrome (POFS) is a general and main complication after surgery. However, there is no stable and standardized animal model for POFS. The aim of the present study was to establish a rodent model of POFS by small intestinal resection, with POFS evaluated by acknowledged physical and behavioral methods. MATERIAL AND METHODS Forty-two Sprague-Dawley rats were randomly divided into four groups according to the length of a "middle" small intestinal resection: 0% (sham group; i.e., laparotomy alone), 10%, 40% and 70% groups, with corresponding lengths of small intestinal resections. Following surgery, the general state of health was evaluated. Tail suspension test, open field test and Morris water maze test were used to evaluate the degree of POFS. Serum albumin, transferrin, prealbumin and fibronectin were measured to assess the nutritional status, and superoxide dismutase (SOD) and malondialdehyde (MDA) were also measured. RESULTS As compared with the other three groups, the 70% small intestinal resection group showed the worst general state of health, decreased strength of the tail suspension test and decreased score of Morris water maze test (p < 0.05) after operation. All rats in whom the small intestinal resection was done demonstrated a certain degree of malnutrition and behavior of depression, and the 70% resection group had the lowest levels of transferrin, prealbumin and fibronectin as compared with the other groups (p < 0.05), as well as decreased SOD and increased MDA in serum (p < 0.05). CONCLUSIONS Resection of 70% of the small intestine resulted in typical characteristics of POFS. As this procedure is simple, stable and easily reproducible, it may serve as a model for research on POFS.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Effects of chronic social defeat stress on MAP kinase cascade. Neurosci Lett 2011; 504:281-4. [DOI: 10.1016/j.neulet.2011.09.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/21/2011] [Indexed: 01/08/2023]
|
38
|
Piubelli C, Gruber S, El Khoury A, Mathé AA, Domenici E, Carboni L. Nortriptyline influences protein pathways involved in carbohydrate metabolism and actin-related processes in a rat gene-environment model of depression. Eur Neuropsychopharmacol 2011; 21:545-62. [PMID: 21168998 DOI: 10.1016/j.euroneuro.2010.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/24/2010] [Accepted: 11/09/2010] [Indexed: 01/21/2023]
Abstract
Although most available antidepressants increase monoaminergic neurotransmission, their therapeutic efficacy is likely mediated by longer-term molecular adaptations. To investigate the molecular changes induced by chronic antidepressant treatment we analysed proteomic changes in rat pre-frontal/frontal cortex and hippocampus after nortriptyline (NT) administration. A wide-scale analysis of protein expression was performed on the Flinders Sensitive Line (FSL), a genetically-selected rat model of depression, and the control Flinders Resistant Line (FRL). The effect of NT treatment was examined in a gene-environment interaction model, applying maternal separation (MS) to both strains. In the forced swim test, FSL rats were significantly more immobile than FRL animals, whereas NT treatment reduced immobility time. MS alone did not modify immobility time, but it impaired the response to NT in the FSL strain. In the proteomic analysis, in FSL rats NT treatment chiefly modulated cytoskeleton proteins and carbohydrate metabolism. In the FRL strain, changes influenced protein polymerization and intracellular transport. After MS, NT treatment mainly affected proteins in nucleotide metabolism in FSL rats and synaptic transmission and neurite morphogenesis pathways in FRL rats. When the effects of NT treatment and MS were compared between strains, carbohydrate metabolic pathways were predominantly modulated.
Collapse
|
39
|
Escitalopram modulates neuron-remodelling proteins in a rat gene-environment interaction model of depression as revealed by proteomics. Part I: genetic background. Int J Neuropsychopharmacol 2011; 14:796-833. [PMID: 21054914 DOI: 10.1017/s1461145710001318] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The wide-scale analysis of protein expression provides a powerful strategy for the molecular exploration of complex pathophysiological mechanisms, such as the response to antidepressants. Using a 2D proteomic approach we investigated the Flinders Sensitive Line (FSL), a genetically selected rat model of depression, and the control Flinders Resistant Line (FRL). To evaluate gene-environment interactions, FSL and FRL pups were separated from their mothers for 3 h (maternal separation, MS), as early-life trauma is considered an important antecedent of depression. All groups were treated with either escitalopram (Esc) admixed to food (25 mg/kg.d) or vehicle for 1 month. At the week 3, forced swim tests were performed. Protein extracts from prefrontal/frontal cortex and hippocampus were separated by 2D electrophoresis. Proteins displaying statistically significant differences in expression levels were identified by mass spectrometry. Immobility time values in the forced swim test were higher in FSL rats and reduced by antidepressant treatment. Moreover, the Esc-induced reduction in immobility time was not detected in MS rats. The impact of genetic background in response to Esc was specifically investigated here. Bioinformatics analyses highlighted gene ontology terms showing tighter associations with the modulated proteins. Esc modulated protein belonging to cytoskeleton organization in FSL; carbohydrate metabolism and intracellular transport in FRL. Proteins differently modulated in the two strains after MS and Esc play a role in cytoskeleton organization, vesicle-mediated transport, apoptosis regulation and macromolecule catabolism. These findings suggest pathways involved in neuronal remodelling as molecular correlates of response to antidepressants in a model of vulnerability.
Collapse
|
40
|
Ginsberg SD, Che S, Hashim A, Zavadil J, Cancro R, Lee SH, Petkova E, Sershen HW, Volavka J. Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression. Brain Struct Funct 2011; 216:347-56. [PMID: 21512897 DOI: 10.1007/s00429-011-0315-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 03/24/2011] [Indexed: 12/22/2022]
Abstract
This study was designed to understand molecular and cellular mechanisms underlying aggressive behaviors in mice exposed to repeated interactions in their homecage with conspecifics. A resident-intruder procedure was employed whereby two males were allowed to interact for 10 min trials, and aggressive and/or submissive behaviors (e.g., degree of attacking, biting, chasing, grooming, rearing, or upright posture) were assessed. Following 10 days of behavioral trials, brains were removed and dissected into specific regions including the cerebellum, frontal cortex, hippocampus, midbrain, pons, and striatum. Gene expression analysis was performed using real-time quantitative polymerase-chain reaction (qPCR) for catechol-O-methyltransferase (COMT) and tyrosine hydroxylase (TH). Compared to naive control mice, significant up regulation of COMT expression of residents was observed in the cerebellum, frontal cortex, hippocampus, midbrain, and striatum; in all of these brain regions the COMT expression of residents was also significantly higher than that of intruders. The intruders also had a significant down regulation (compared to naive control mice) within the hippocampus, indicating a selective decrease in COMT expression in the hippocampus of submissive subjects. Immunoblot analysis confirmed COMT up regulation in the midbrain and hippocampus of residents and down regulation in intruders. qPCR analysis of TH expression indicated significant up regulation in the midbrain of residents and concomitant down regulation in intruders. These findings implicate regionally- and behaviorally-specific regulation of COMT and TH expression in aggressive and submissive behaviors. Additional molecular and cellular characterization of COMT, TH, and other potential targets is warranted within this animal model of aggression.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, New York University Langone Medical Center, New York, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience 2011; 176:349-80. [DOI: 10.1016/j.neuroscience.2010.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 11/15/2022]
|
42
|
Gao J, Gao G, Zhang Y, Wang F. Proteomic analysis of human epithelial ovarian cancer xenografts in immunodeficient mice exposed to chronic psychological stress. SCIENCE CHINA-LIFE SCIENCES 2011; 54:112-20. [DOI: 10.1007/s11427-010-4126-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 10/13/2010] [Indexed: 01/23/2023]
|
43
|
Whittle N, Li L, Chen WQ, Yang JW, Sartori SB, Lubec G, Singewald N. Changes in brain protein expression are linked to magnesium restriction-induced depression-like behavior. Amino Acids 2011; 40:1231-48. [DOI: 10.1007/s00726-010-0758-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 01/22/2023]
|
44
|
Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J. Proteomic research in psychiatry. J Psychopharmacol 2011; 25:151-96. [PMID: 20142298 DOI: 10.1177/0269881109106931] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders such as Alzheimer's disease, schizophrenia and mood disorders are severe and disabling conditions of largely unknown origin and poorly understood pathophysiology. An accurate diagnosis and treatment of these disorders is often complicated by their aetiological and clinical heterogeneity. In recent years proteomic technologies based on mass spectrometry have been increasingly used, especially in the search for diagnostic and prognostic biomarkers in neuropsychiatric disorders. Proteomics enable an automated high-throughput protein determination revealing expression levels, post-translational modifications and complex protein-interaction networks. In contrast to other methods such as molecular genetics, proteomics provide the opportunity to determine modifications at the protein level thereby possibly being more closely related to pathophysiological processes underlying the clinical phenomenology of specific psychiatric conditions. In this article we review the theoretical background of proteomics and its most commonly utilized techniques. Furthermore the current impact of proteomic research on diverse psychiatric diseases, such as Alzheimer's disease, schizophrenia, mood and anxiety disorders, drug abuse and autism, is discussed. Proteomic methods are expected to gain crucial significance in psychiatric research and neuropharmacology over the coming decade.
Collapse
Affiliation(s)
- Regina Taurines
- Academic Unit of Psychiatry, The School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Filiou MD, Turck CW, Martins-de-Souza D. Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 2010; 5:38-49. [DOI: 10.1002/prca.201000060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 12/21/2022]
|
46
|
Artinian NT, Franklin B. Counseling African Americans in Cardiac Rehabilitation: Implications for Comprehensive Lifestyle Modification. Am J Lifestyle Med 2010. [DOI: 10.1177/1559827610363251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
African Americans are more likely to die of a myocardial infarction than any other racial group and have higher rates of sudden cardiac death, and in comparison to whites, these deaths are likely to occur at a younger age. Because secondary prevention interventions have been reported to reduce overall mortality, it is important that health care providers understand and respond with sensitivity to the needs and preferences that African Americans bring to cardiac rehabilitation. Providing culturally appropriate cardiac rehabilitation services to African Americans has the potential to improve access to care, quality of care, and health outcomes. This article reviews the historical legacy and general values and beliefs that African Americans bring to their participation in cardiac rehabilitation and examines values and beliefs about diet, weight, body image, exercise, rest, and preferences for depression treatment that should be considered when counseling African Americans. Social-ecological factors that influence the ability to commit to and maintain cardiovascular risk—reducing behaviors are also discussed. Strategies for responding to the health-related beliefs and cultural values of African Americans are examined.
Collapse
|
47
|
Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats. Exp Brain Res 2010; 201:641-51. [PMID: 19921157 PMCID: PMC2839508 DOI: 10.1007/s00221-009-2083-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/01/2009] [Indexed: 02/07/2023]
Abstract
Chronic stress causes insensitivity to rewards (anhedonia) in rats, reflected by the absence of anticipatory behavior for a sucrose-reward, which can be reversed by antidepressant treatment or repeated announced transfer to an enriched cage. It was, however, not clear whether the highly rewarding properties of the enriched cage alone caused this reversal or whether the anticipation of this reward as such had an additional effect. Therefore, the present study compared the consequences of the announcement of a reward to the mere effect of a reward alone with respect to their efficacy to counteract the consequences of chronic stress. Two forms of synaptic plasticity, long-term potentiation and long-term depression were investigated in area CA1 of the hippocampus. This was done in socially stressed rats (induced by defeat and subsequent long-term individual housing), socially stressed rats that received a reward (short-term enriched housing) and socially stressed rats to which this reward was announced by means of a stimulus that was repeatedly paired to the reward. The results were compared to corresponding control rats. We show that announcement of enriched housing appeared to have had an additional effect compared to the enriched housing per se as indicated by a significant higher amount of LTP. In conclusion, announced short-term enriched housing has a high and long-lasting counteracting efficacy on stress-induced alterations of hippocampal synaptic plasticity. This information is important for counteracting the consequences of chronic stress in both human and captive rats.
Collapse
|
48
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
49
|
Kedracka-Krok S, Fic E, Jankowska U, Jaciuk M, Gruca P, Papp M, Kusmider M, Solich J, Debski J, Dadlez M, Dziedzicka-Wasylewska M. Effect of chronic mild stress and imipramine on the proteome of the rat dentate gyrus. J Neurochem 2010; 113:848-59. [DOI: 10.1111/j.1471-4159.2010.06652.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Denmark A, Tien D, Wong K, Chung A, Cachat J, Goodspeed J, Grimes C, Elegante M, Suciu C, Elkhayat S, Bartels B, Jackson A, Rosenberg M, Chung KM, Badani H, Kadri F, Roy S, Tan J, Gaikwad S, Stewart A, Zapolsky I, Gilder T, Kalueff AV. The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behav Brain Res 2010; 208:553-9. [DOI: 10.1016/j.bbr.2009.12.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/26/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
|